mm: vmscan: check if reclaim should really abort even if compaction_ready() is true...
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int swappiness;
99
100         int order;
101
102         /*
103          * Intend to reclaim enough continuous memory rather than reclaim
104          * enough amount of memory. i.e, mode for high order allocation.
105          */
106         reclaim_mode_t reclaim_mode;
107
108         /* Which cgroup do we reclaim from */
109         struct mem_cgroup *mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)                    \
122         do {                                                            \
123                 if ((_page)->lru.prev != _base) {                       \
124                         struct page *prev;                              \
125                                                                         \
126                         prev = lru_to_page(&(_page->lru));              \
127                         prefetch(&prev->_field);                        \
128                 }                                                       \
129         } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
136         do {                                                            \
137                 if ((_page)->lru.prev != _base) {                       \
138                         struct page *prev;                              \
139                                                                         \
140                         prev = lru_to_page(&(_page->lru));              \
141                         prefetchw(&prev->_field);                       \
142                 }                                                       \
143         } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;    /* The total number of pages which the VM controls */
153
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
162
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164                                                   struct scan_control *sc)
165 {
166         if (!scanning_global_lru(sc))
167                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169         return &zone->reclaim_stat;
170 }
171
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173                                 struct scan_control *sc, enum lru_list lru)
174 {
175         if (!scanning_global_lru(sc))
176                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256
257                 /*
258                  * copy the current shrinker scan count into a local variable
259                  * and zero it so that other concurrent shrinker invocations
260                  * don't also do this scanning work.
261                  */
262                 do {
263                         nr = shrinker->nr;
264                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
265
266                 total_scan = nr;
267                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
268                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
269                 delta *= max_pass;
270                 do_div(delta, lru_pages + 1);
271                 total_scan += delta;
272                 if (total_scan < 0) {
273                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
274                                "delete nr=%ld\n",
275                                shrinker->shrink, total_scan);
276                         total_scan = max_pass;
277                 }
278
279                 /*
280                  * We need to avoid excessive windup on filesystem shrinkers
281                  * due to large numbers of GFP_NOFS allocations causing the
282                  * shrinkers to return -1 all the time. This results in a large
283                  * nr being built up so when a shrink that can do some work
284                  * comes along it empties the entire cache due to nr >>>
285                  * max_pass.  This is bad for sustaining a working set in
286                  * memory.
287                  *
288                  * Hence only allow the shrinker to scan the entire cache when
289                  * a large delta change is calculated directly.
290                  */
291                 if (delta < max_pass / 4)
292                         total_scan = min(total_scan, max_pass / 2);
293
294                 /*
295                  * Avoid risking looping forever due to too large nr value:
296                  * never try to free more than twice the estimate number of
297                  * freeable entries.
298                  */
299                 if (total_scan > max_pass * 2)
300                         total_scan = max_pass * 2;
301
302                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
303                                         nr_pages_scanned, lru_pages,
304                                         max_pass, delta, total_scan);
305
306                 while (total_scan >= SHRINK_BATCH) {
307                         long this_scan = SHRINK_BATCH;
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         this_scan);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, this_scan);
318                         total_scan -= this_scan;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageSwapBacked(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page)
727                         return PAGEREF_ACTIVATE;
728
729                 return PAGEREF_KEEP;
730         }
731
732         /* Reclaim if clean, defer dirty pages to writeback */
733         if (referenced_page && !PageSwapBacked(page))
734                 return PAGEREF_RECLAIM_CLEAN;
735
736         return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741         struct pagevec freed_pvec;
742         struct page *page, *tmp;
743
744         pagevec_init(&freed_pvec, 1);
745
746         list_for_each_entry_safe(page, tmp, free_pages, lru) {
747                 list_del(&page->lru);
748                 if (!pagevec_add(&freed_pvec, page)) {
749                         __pagevec_free(&freed_pvec);
750                         pagevec_reinit(&freed_pvec);
751                 }
752         }
753
754         pagevec_free(&freed_pvec);
755 }
756
757 /*
758  * shrink_page_list() returns the number of reclaimed pages
759  */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761                                       struct zone *zone,
762                                       struct scan_control *sc)
763 {
764         LIST_HEAD(ret_pages);
765         LIST_HEAD(free_pages);
766         int pgactivate = 0;
767         unsigned long nr_dirty = 0;
768         unsigned long nr_congested = 0;
769         unsigned long nr_reclaimed = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * Synchronous reclaim is performed in two passes,
808                          * first an asynchronous pass over the list to
809                          * start parallel writeback, and a second synchronous
810                          * pass to wait for the IO to complete.  Wait here
811                          * for any page for which writeback has already
812                          * started.
813                          */
814                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815                             may_enter_fs)
816                                 wait_on_page_writeback(page);
817                         else {
818                                 unlock_page(page);
819                                 goto keep_lumpy;
820                         }
821                 }
822
823                 references = page_check_references(page, sc);
824                 switch (references) {
825                 case PAGEREF_ACTIVATE:
826                         goto activate_locked;
827                 case PAGEREF_KEEP:
828                         goto keep_locked;
829                 case PAGEREF_RECLAIM:
830                 case PAGEREF_RECLAIM_CLEAN:
831                         ; /* try to reclaim the page below */
832                 }
833
834                 /*
835                  * Anonymous process memory has backing store?
836                  * Try to allocate it some swap space here.
837                  */
838                 if (PageAnon(page) && !PageSwapCache(page)) {
839                         if (!(sc->gfp_mask & __GFP_IO))
840                                 goto keep_locked;
841                         if (!add_to_swap(page))
842                                 goto activate_locked;
843                         may_enter_fs = 1;
844                 }
845
846                 mapping = page_mapping(page);
847
848                 /*
849                  * The page is mapped into the page tables of one or more
850                  * processes. Try to unmap it here.
851                  */
852                 if (page_mapped(page) && mapping) {
853                         switch (try_to_unmap(page, TTU_UNMAP)) {
854                         case SWAP_FAIL:
855                                 goto activate_locked;
856                         case SWAP_AGAIN:
857                                 goto keep_locked;
858                         case SWAP_MLOCK:
859                                 goto cull_mlocked;
860                         case SWAP_SUCCESS:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 if (PageDirty(page)) {
866                         nr_dirty++;
867
868                         if (references == PAGEREF_RECLAIM_CLEAN)
869                                 goto keep_locked;
870                         if (!may_enter_fs)
871                                 goto keep_locked;
872                         if (!sc->may_writepage)
873                                 goto keep_locked;
874
875                         /* Page is dirty, try to write it out here */
876                         switch (pageout(page, mapping, sc)) {
877                         case PAGE_KEEP:
878                                 nr_congested++;
879                                 goto keep_locked;
880                         case PAGE_ACTIVATE:
881                                 goto activate_locked;
882                         case PAGE_SUCCESS:
883                                 if (PageWriteback(page))
884                                         goto keep_lumpy;
885                                 if (PageDirty(page))
886                                         goto keep;
887
888                                 /*
889                                  * A synchronous write - probably a ramdisk.  Go
890                                  * ahead and try to reclaim the page.
891                                  */
892                                 if (!trylock_page(page))
893                                         goto keep;
894                                 if (PageDirty(page) || PageWriteback(page))
895                                         goto keep_locked;
896                                 mapping = page_mapping(page);
897                         case PAGE_CLEAN:
898                                 ; /* try to free the page below */
899                         }
900                 }
901
902                 /*
903                  * If the page has buffers, try to free the buffer mappings
904                  * associated with this page. If we succeed we try to free
905                  * the page as well.
906                  *
907                  * We do this even if the page is PageDirty().
908                  * try_to_release_page() does not perform I/O, but it is
909                  * possible for a page to have PageDirty set, but it is actually
910                  * clean (all its buffers are clean).  This happens if the
911                  * buffers were written out directly, with submit_bh(). ext3
912                  * will do this, as well as the blockdev mapping.
913                  * try_to_release_page() will discover that cleanness and will
914                  * drop the buffers and mark the page clean - it can be freed.
915                  *
916                  * Rarely, pages can have buffers and no ->mapping.  These are
917                  * the pages which were not successfully invalidated in
918                  * truncate_complete_page().  We try to drop those buffers here
919                  * and if that worked, and the page is no longer mapped into
920                  * process address space (page_count == 1) it can be freed.
921                  * Otherwise, leave the page on the LRU so it is swappable.
922                  */
923                 if (page_has_private(page)) {
924                         if (!try_to_release_page(page, sc->gfp_mask))
925                                 goto activate_locked;
926                         if (!mapping && page_count(page) == 1) {
927                                 unlock_page(page);
928                                 if (put_page_testzero(page))
929                                         goto free_it;
930                                 else {
931                                         /*
932                                          * rare race with speculative reference.
933                                          * the speculative reference will free
934                                          * this page shortly, so we may
935                                          * increment nr_reclaimed here (and
936                                          * leave it off the LRU).
937                                          */
938                                         nr_reclaimed++;
939                                         continue;
940                                 }
941                         }
942                 }
943
944                 if (!mapping || !__remove_mapping(mapping, page))
945                         goto keep_locked;
946
947                 /*
948                  * At this point, we have no other references and there is
949                  * no way to pick any more up (removed from LRU, removed
950                  * from pagecache). Can use non-atomic bitops now (and
951                  * we obviously don't have to worry about waking up a process
952                  * waiting on the page lock, because there are no references.
953                  */
954                 __clear_page_locked(page);
955 free_it:
956                 nr_reclaimed++;
957
958                 /*
959                  * Is there need to periodically free_page_list? It would
960                  * appear not as the counts should be low
961                  */
962                 list_add(&page->lru, &free_pages);
963                 continue;
964
965 cull_mlocked:
966                 if (PageSwapCache(page))
967                         try_to_free_swap(page);
968                 unlock_page(page);
969                 putback_lru_page(page);
970                 reset_reclaim_mode(sc);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 reset_reclaim_mode(sc);
984 keep_lumpy:
985                 list_add(&page->lru, &ret_pages);
986                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987         }
988
989         /*
990          * Tag a zone as congested if all the dirty pages encountered were
991          * backed by a congested BDI. In this case, reclaimers should just
992          * back off and wait for congestion to clear because further reclaim
993          * will encounter the same problem
994          */
995         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996                 zone_set_flag(zone, ZONE_CONGESTED);
997
998         free_page_list(&free_pages);
999
1000         list_splice(&ret_pages, page_list);
1001         count_vm_events(PGACTIVATE, pgactivate);
1002         return nr_reclaimed;
1003 }
1004
1005 /*
1006  * Attempt to remove the specified page from its LRU.  Only take this page
1007  * if it is of the appropriate PageActive status.  Pages which are being
1008  * freed elsewhere are also ignored.
1009  *
1010  * page:        page to consider
1011  * mode:        one of the LRU isolation modes defined above
1012  *
1013  * returns 0 on success, -ve errno on failure.
1014  */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017         bool all_lru_mode;
1018         int ret = -EINVAL;
1019
1020         /* Only take pages on the LRU. */
1021         if (!PageLRU(page))
1022                 return ret;
1023
1024         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027         /*
1028          * When checking the active state, we need to be sure we are
1029          * dealing with comparible boolean values.  Take the logical not
1030          * of each.
1031          */
1032         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033                 return ret;
1034
1035         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036                 return ret;
1037
1038         /*
1039          * When this function is being called for lumpy reclaim, we
1040          * initially look into all LRU pages, active, inactive and
1041          * unevictable; only give shrink_page_list evictable pages.
1042          */
1043         if (PageUnevictable(page))
1044                 return ret;
1045
1046         ret = -EBUSY;
1047
1048         /*
1049          * To minimise LRU disruption, the caller can indicate that it only
1050          * wants to isolate pages it will be able to operate on without
1051          * blocking - clean pages for the most part.
1052          *
1053          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1054          * is used by reclaim when it is cannot write to backing storage
1055          *
1056          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1057          * that it is possible to migrate without blocking
1058          */
1059         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1060                 /* All the caller can do on PageWriteback is block */
1061                 if (PageWriteback(page))
1062                         return ret;
1063
1064                 if (PageDirty(page)) {
1065                         struct address_space *mapping;
1066
1067                         /* ISOLATE_CLEAN means only clean pages */
1068                         if (mode & ISOLATE_CLEAN)
1069                                 return ret;
1070
1071                         /*
1072                          * Only pages without mappings or that have a
1073                          * ->migratepage callback are possible to migrate
1074                          * without blocking
1075                          */
1076                         mapping = page_mapping(page);
1077                         if (mapping && !mapping->a_ops->migratepage)
1078                                 return ret;
1079                 }
1080         }
1081
1082         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1083                 return ret;
1084
1085         if (likely(get_page_unless_zero(page))) {
1086                 /*
1087                  * Be careful not to clear PageLRU until after we're
1088                  * sure the page is not being freed elsewhere -- the
1089                  * page release code relies on it.
1090                  */
1091                 ClearPageLRU(page);
1092                 ret = 0;
1093         }
1094
1095         return ret;
1096 }
1097
1098 /*
1099  * zone->lru_lock is heavily contended.  Some of the functions that
1100  * shrink the lists perform better by taking out a batch of pages
1101  * and working on them outside the LRU lock.
1102  *
1103  * For pagecache intensive workloads, this function is the hottest
1104  * spot in the kernel (apart from copy_*_user functions).
1105  *
1106  * Appropriate locks must be held before calling this function.
1107  *
1108  * @nr_to_scan: The number of pages to look through on the list.
1109  * @src:        The LRU list to pull pages off.
1110  * @dst:        The temp list to put pages on to.
1111  * @scanned:    The number of pages that were scanned.
1112  * @order:      The caller's attempted allocation order
1113  * @mode:       One of the LRU isolation modes
1114  * @file:       True [1] if isolating file [!anon] pages
1115  *
1116  * returns how many pages were moved onto *@dst.
1117  */
1118 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1119                 struct list_head *src, struct list_head *dst,
1120                 unsigned long *scanned, int order, isolate_mode_t mode,
1121                 int file)
1122 {
1123         unsigned long nr_taken = 0;
1124         unsigned long nr_lumpy_taken = 0;
1125         unsigned long nr_lumpy_dirty = 0;
1126         unsigned long nr_lumpy_failed = 0;
1127         unsigned long scan;
1128
1129         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1130                 struct page *page;
1131                 unsigned long pfn;
1132                 unsigned long end_pfn;
1133                 unsigned long page_pfn;
1134                 int zone_id;
1135
1136                 page = lru_to_page(src);
1137                 prefetchw_prev_lru_page(page, src, flags);
1138
1139                 VM_BUG_ON(!PageLRU(page));
1140
1141                 switch (__isolate_lru_page(page, mode, file)) {
1142                 case 0:
1143                         list_move(&page->lru, dst);
1144                         mem_cgroup_del_lru(page);
1145                         nr_taken += hpage_nr_pages(page);
1146                         break;
1147
1148                 case -EBUSY:
1149                         /* else it is being freed elsewhere */
1150                         list_move(&page->lru, src);
1151                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1152                         continue;
1153
1154                 default:
1155                         BUG();
1156                 }
1157
1158                 if (!order)
1159                         continue;
1160
1161                 /*
1162                  * Attempt to take all pages in the order aligned region
1163                  * surrounding the tag page.  Only take those pages of
1164                  * the same active state as that tag page.  We may safely
1165                  * round the target page pfn down to the requested order
1166                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1167                  * where that page is in a different zone we will detect
1168                  * it from its zone id and abort this block scan.
1169                  */
1170                 zone_id = page_zone_id(page);
1171                 page_pfn = page_to_pfn(page);
1172                 pfn = page_pfn & ~((1 << order) - 1);
1173                 end_pfn = pfn + (1 << order);
1174                 for (; pfn < end_pfn; pfn++) {
1175                         struct page *cursor_page;
1176
1177                         /* The target page is in the block, ignore it. */
1178                         if (unlikely(pfn == page_pfn))
1179                                 continue;
1180
1181                         /* Avoid holes within the zone. */
1182                         if (unlikely(!pfn_valid_within(pfn)))
1183                                 break;
1184
1185                         cursor_page = pfn_to_page(pfn);
1186
1187                         /* Check that we have not crossed a zone boundary. */
1188                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1189                                 break;
1190
1191                         /*
1192                          * If we don't have enough swap space, reclaiming of
1193                          * anon page which don't already have a swap slot is
1194                          * pointless.
1195                          */
1196                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1197                             !PageSwapCache(cursor_page))
1198                                 break;
1199
1200                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1201                                 list_move(&cursor_page->lru, dst);
1202                                 mem_cgroup_del_lru(cursor_page);
1203                                 nr_taken += hpage_nr_pages(page);
1204                                 nr_lumpy_taken++;
1205                                 if (PageDirty(cursor_page))
1206                                         nr_lumpy_dirty++;
1207                                 scan++;
1208                         } else {
1209                                 /*
1210                                  * Check if the page is freed already.
1211                                  *
1212                                  * We can't use page_count() as that
1213                                  * requires compound_head and we don't
1214                                  * have a pin on the page here. If a
1215                                  * page is tail, we may or may not
1216                                  * have isolated the head, so assume
1217                                  * it's not free, it'd be tricky to
1218                                  * track the head status without a
1219                                  * page pin.
1220                                  */
1221                                 if (!PageTail(cursor_page) &&
1222                                     !atomic_read(&cursor_page->_count))
1223                                         continue;
1224                                 break;
1225                         }
1226                 }
1227
1228                 /* If we break out of the loop above, lumpy reclaim failed */
1229                 if (pfn < end_pfn)
1230                         nr_lumpy_failed++;
1231         }
1232
1233         *scanned = scan;
1234
1235         trace_mm_vmscan_lru_isolate(order,
1236                         nr_to_scan, scan,
1237                         nr_taken,
1238                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1239                         mode);
1240         return nr_taken;
1241 }
1242
1243 static unsigned long isolate_pages_global(unsigned long nr,
1244                                         struct list_head *dst,
1245                                         unsigned long *scanned, int order,
1246                                         isolate_mode_t mode,
1247                                         struct zone *z, int active, int file)
1248 {
1249         int lru = LRU_BASE;
1250         if (active)
1251                 lru += LRU_ACTIVE;
1252         if (file)
1253                 lru += LRU_FILE;
1254         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1255                                                                 mode, file);
1256 }
1257
1258 /*
1259  * clear_active_flags() is a helper for shrink_active_list(), clearing
1260  * any active bits from the pages in the list.
1261  */
1262 static unsigned long clear_active_flags(struct list_head *page_list,
1263                                         unsigned int *count)
1264 {
1265         int nr_active = 0;
1266         int lru;
1267         struct page *page;
1268
1269         list_for_each_entry(page, page_list, lru) {
1270                 int numpages = hpage_nr_pages(page);
1271                 lru = page_lru_base_type(page);
1272                 if (PageActive(page)) {
1273                         lru += LRU_ACTIVE;
1274                         ClearPageActive(page);
1275                         nr_active += numpages;
1276                 }
1277                 if (count)
1278                         count[lru] += numpages;
1279         }
1280
1281         return nr_active;
1282 }
1283
1284 /**
1285  * isolate_lru_page - tries to isolate a page from its LRU list
1286  * @page: page to isolate from its LRU list
1287  *
1288  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1289  * vmstat statistic corresponding to whatever LRU list the page was on.
1290  *
1291  * Returns 0 if the page was removed from an LRU list.
1292  * Returns -EBUSY if the page was not on an LRU list.
1293  *
1294  * The returned page will have PageLRU() cleared.  If it was found on
1295  * the active list, it will have PageActive set.  If it was found on
1296  * the unevictable list, it will have the PageUnevictable bit set. That flag
1297  * may need to be cleared by the caller before letting the page go.
1298  *
1299  * The vmstat statistic corresponding to the list on which the page was
1300  * found will be decremented.
1301  *
1302  * Restrictions:
1303  * (1) Must be called with an elevated refcount on the page. This is a
1304  *     fundamentnal difference from isolate_lru_pages (which is called
1305  *     without a stable reference).
1306  * (2) the lru_lock must not be held.
1307  * (3) interrupts must be enabled.
1308  */
1309 int isolate_lru_page(struct page *page)
1310 {
1311         int ret = -EBUSY;
1312
1313         VM_BUG_ON(!page_count(page));
1314
1315         if (PageLRU(page)) {
1316                 struct zone *zone = page_zone(page);
1317
1318                 spin_lock_irq(&zone->lru_lock);
1319                 if (PageLRU(page)) {
1320                         int lru = page_lru(page);
1321                         ret = 0;
1322                         get_page(page);
1323                         ClearPageLRU(page);
1324
1325                         del_page_from_lru_list(zone, page, lru);
1326                 }
1327                 spin_unlock_irq(&zone->lru_lock);
1328         }
1329         return ret;
1330 }
1331
1332 /*
1333  * Are there way too many processes in the direct reclaim path already?
1334  */
1335 static int too_many_isolated(struct zone *zone, int file,
1336                 struct scan_control *sc)
1337 {
1338         unsigned long inactive, isolated;
1339
1340         if (current_is_kswapd())
1341                 return 0;
1342
1343         if (!scanning_global_lru(sc))
1344                 return 0;
1345
1346         if (file) {
1347                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1348                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1349         } else {
1350                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1351                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1352         }
1353
1354         return isolated > inactive;
1355 }
1356
1357 /*
1358  * TODO: Try merging with migrations version of putback_lru_pages
1359  */
1360 static noinline_for_stack void
1361 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1362                                 unsigned long nr_anon, unsigned long nr_file,
1363                                 struct list_head *page_list)
1364 {
1365         struct page *page;
1366         struct pagevec pvec;
1367         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1368
1369         pagevec_init(&pvec, 1);
1370
1371         /*
1372          * Put back any unfreeable pages.
1373          */
1374         spin_lock(&zone->lru_lock);
1375         while (!list_empty(page_list)) {
1376                 int lru;
1377                 page = lru_to_page(page_list);
1378                 VM_BUG_ON(PageLRU(page));
1379                 list_del(&page->lru);
1380                 if (unlikely(!page_evictable(page, NULL))) {
1381                         spin_unlock_irq(&zone->lru_lock);
1382                         putback_lru_page(page);
1383                         spin_lock_irq(&zone->lru_lock);
1384                         continue;
1385                 }
1386                 SetPageLRU(page);
1387                 lru = page_lru(page);
1388                 add_page_to_lru_list(zone, page, lru);
1389                 if (is_active_lru(lru)) {
1390                         int file = is_file_lru(lru);
1391                         int numpages = hpage_nr_pages(page);
1392                         reclaim_stat->recent_rotated[file] += numpages;
1393                 }
1394                 if (!pagevec_add(&pvec, page)) {
1395                         spin_unlock_irq(&zone->lru_lock);
1396                         __pagevec_release(&pvec);
1397                         spin_lock_irq(&zone->lru_lock);
1398                 }
1399         }
1400         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1401         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1402
1403         spin_unlock_irq(&zone->lru_lock);
1404         pagevec_release(&pvec);
1405 }
1406
1407 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1408                                         struct scan_control *sc,
1409                                         unsigned long *nr_anon,
1410                                         unsigned long *nr_file,
1411                                         struct list_head *isolated_list)
1412 {
1413         unsigned long nr_active;
1414         unsigned int count[NR_LRU_LISTS] = { 0, };
1415         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1416
1417         nr_active = clear_active_flags(isolated_list, count);
1418         __count_vm_events(PGDEACTIVATE, nr_active);
1419
1420         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1421                               -count[LRU_ACTIVE_FILE]);
1422         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1423                               -count[LRU_INACTIVE_FILE]);
1424         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1425                               -count[LRU_ACTIVE_ANON]);
1426         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1427                               -count[LRU_INACTIVE_ANON]);
1428
1429         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1430         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1431         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1432         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1433
1434         reclaim_stat->recent_scanned[0] += *nr_anon;
1435         reclaim_stat->recent_scanned[1] += *nr_file;
1436 }
1437
1438 /*
1439  * Returns true if the caller should wait to clean dirty/writeback pages.
1440  *
1441  * If we are direct reclaiming for contiguous pages and we do not reclaim
1442  * everything in the list, try again and wait for writeback IO to complete.
1443  * This will stall high-order allocations noticeably. Only do that when really
1444  * need to free the pages under high memory pressure.
1445  */
1446 static inline bool should_reclaim_stall(unsigned long nr_taken,
1447                                         unsigned long nr_freed,
1448                                         int priority,
1449                                         struct scan_control *sc)
1450 {
1451         int lumpy_stall_priority;
1452
1453         /* kswapd should not stall on sync IO */
1454         if (current_is_kswapd())
1455                 return false;
1456
1457         /* Only stall on lumpy reclaim */
1458         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1459                 return false;
1460
1461         /* If we have relaimed everything on the isolated list, no stall */
1462         if (nr_freed == nr_taken)
1463                 return false;
1464
1465         /*
1466          * For high-order allocations, there are two stall thresholds.
1467          * High-cost allocations stall immediately where as lower
1468          * order allocations such as stacks require the scanning
1469          * priority to be much higher before stalling.
1470          */
1471         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1472                 lumpy_stall_priority = DEF_PRIORITY;
1473         else
1474                 lumpy_stall_priority = DEF_PRIORITY / 3;
1475
1476         return priority <= lumpy_stall_priority;
1477 }
1478
1479 /*
1480  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1481  * of reclaimed pages
1482  */
1483 static noinline_for_stack unsigned long
1484 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1485                         struct scan_control *sc, int priority, int file)
1486 {
1487         LIST_HEAD(page_list);
1488         unsigned long nr_scanned;
1489         unsigned long nr_reclaimed = 0;
1490         unsigned long nr_taken;
1491         unsigned long nr_anon;
1492         unsigned long nr_file;
1493         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1494
1495         while (unlikely(too_many_isolated(zone, file, sc))) {
1496                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1497
1498                 /* We are about to die and free our memory. Return now. */
1499                 if (fatal_signal_pending(current))
1500                         return SWAP_CLUSTER_MAX;
1501         }
1502
1503         set_reclaim_mode(priority, sc, false);
1504         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1505                 reclaim_mode |= ISOLATE_ACTIVE;
1506
1507         lru_add_drain();
1508
1509         if (!sc->may_unmap)
1510                 reclaim_mode |= ISOLATE_UNMAPPED;
1511         if (!sc->may_writepage)
1512                 reclaim_mode |= ISOLATE_CLEAN;
1513
1514         spin_lock_irq(&zone->lru_lock);
1515
1516         if (scanning_global_lru(sc)) {
1517                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1518                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1519                 zone->pages_scanned += nr_scanned;
1520                 if (current_is_kswapd())
1521                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1522                                                nr_scanned);
1523                 else
1524                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1525                                                nr_scanned);
1526         } else {
1527                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1528                         &nr_scanned, sc->order, reclaim_mode, zone,
1529                         sc->mem_cgroup, 0, file);
1530                 /*
1531                  * mem_cgroup_isolate_pages() keeps track of
1532                  * scanned pages on its own.
1533                  */
1534         }
1535
1536         if (nr_taken == 0) {
1537                 spin_unlock_irq(&zone->lru_lock);
1538                 return 0;
1539         }
1540
1541         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1542
1543         spin_unlock_irq(&zone->lru_lock);
1544
1545         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1546
1547         /* Check if we should syncronously wait for writeback */
1548         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1549                 set_reclaim_mode(priority, sc, true);
1550                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1551         }
1552
1553         local_irq_disable();
1554         if (current_is_kswapd())
1555                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1556         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1557
1558         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1559
1560         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1561                 zone_idx(zone),
1562                 nr_scanned, nr_reclaimed,
1563                 priority,
1564                 trace_shrink_flags(file, sc->reclaim_mode));
1565         return nr_reclaimed;
1566 }
1567
1568 /*
1569  * This moves pages from the active list to the inactive list.
1570  *
1571  * We move them the other way if the page is referenced by one or more
1572  * processes, from rmap.
1573  *
1574  * If the pages are mostly unmapped, the processing is fast and it is
1575  * appropriate to hold zone->lru_lock across the whole operation.  But if
1576  * the pages are mapped, the processing is slow (page_referenced()) so we
1577  * should drop zone->lru_lock around each page.  It's impossible to balance
1578  * this, so instead we remove the pages from the LRU while processing them.
1579  * It is safe to rely on PG_active against the non-LRU pages in here because
1580  * nobody will play with that bit on a non-LRU page.
1581  *
1582  * The downside is that we have to touch page->_count against each page.
1583  * But we had to alter page->flags anyway.
1584  */
1585
1586 static void move_active_pages_to_lru(struct zone *zone,
1587                                      struct list_head *list,
1588                                      enum lru_list lru)
1589 {
1590         unsigned long pgmoved = 0;
1591         struct pagevec pvec;
1592         struct page *page;
1593
1594         pagevec_init(&pvec, 1);
1595
1596         while (!list_empty(list)) {
1597                 page = lru_to_page(list);
1598
1599                 VM_BUG_ON(PageLRU(page));
1600                 SetPageLRU(page);
1601
1602                 list_move(&page->lru, &zone->lru[lru].list);
1603                 mem_cgroup_add_lru_list(page, lru);
1604                 pgmoved += hpage_nr_pages(page);
1605
1606                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1607                         spin_unlock_irq(&zone->lru_lock);
1608                         if (buffer_heads_over_limit)
1609                                 pagevec_strip(&pvec);
1610                         __pagevec_release(&pvec);
1611                         spin_lock_irq(&zone->lru_lock);
1612                 }
1613         }
1614         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1615         if (!is_active_lru(lru))
1616                 __count_vm_events(PGDEACTIVATE, pgmoved);
1617 }
1618
1619 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1620                         struct scan_control *sc, int priority, int file)
1621 {
1622         unsigned long nr_taken;
1623         unsigned long pgscanned;
1624         unsigned long vm_flags;
1625         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1626         LIST_HEAD(l_active);
1627         LIST_HEAD(l_inactive);
1628         struct page *page;
1629         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1630         unsigned long nr_rotated = 0;
1631         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1632
1633         lru_add_drain();
1634
1635         if (!sc->may_unmap)
1636                 reclaim_mode |= ISOLATE_UNMAPPED;
1637         if (!sc->may_writepage)
1638                 reclaim_mode |= ISOLATE_CLEAN;
1639
1640         spin_lock_irq(&zone->lru_lock);
1641         if (scanning_global_lru(sc)) {
1642                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1643                                                 &pgscanned, sc->order,
1644                                                 reclaim_mode, zone,
1645                                                 1, file);
1646                 zone->pages_scanned += pgscanned;
1647         } else {
1648                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1649                                                 &pgscanned, sc->order,
1650                                                 reclaim_mode, zone,
1651                                                 sc->mem_cgroup, 1, file);
1652                 /*
1653                  * mem_cgroup_isolate_pages() keeps track of
1654                  * scanned pages on its own.
1655                  */
1656         }
1657
1658         reclaim_stat->recent_scanned[file] += nr_taken;
1659
1660         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1661         if (file)
1662                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1663         else
1664                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1665         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1666         spin_unlock_irq(&zone->lru_lock);
1667
1668         while (!list_empty(&l_hold)) {
1669                 cond_resched();
1670                 page = lru_to_page(&l_hold);
1671                 list_del(&page->lru);
1672
1673                 if (unlikely(!page_evictable(page, NULL))) {
1674                         putback_lru_page(page);
1675                         continue;
1676                 }
1677
1678                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1679                         nr_rotated += hpage_nr_pages(page);
1680                         /*
1681                          * Identify referenced, file-backed active pages and
1682                          * give them one more trip around the active list. So
1683                          * that executable code get better chances to stay in
1684                          * memory under moderate memory pressure.  Anon pages
1685                          * are not likely to be evicted by use-once streaming
1686                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1687                          * so we ignore them here.
1688                          */
1689                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1690                                 list_add(&page->lru, &l_active);
1691                                 continue;
1692                         }
1693                 }
1694
1695                 ClearPageActive(page);  /* we are de-activating */
1696                 list_add(&page->lru, &l_inactive);
1697         }
1698
1699         /*
1700          * Move pages back to the lru list.
1701          */
1702         spin_lock_irq(&zone->lru_lock);
1703         /*
1704          * Count referenced pages from currently used mappings as rotated,
1705          * even though only some of them are actually re-activated.  This
1706          * helps balance scan pressure between file and anonymous pages in
1707          * get_scan_ratio.
1708          */
1709         reclaim_stat->recent_rotated[file] += nr_rotated;
1710
1711         move_active_pages_to_lru(zone, &l_active,
1712                                                 LRU_ACTIVE + file * LRU_FILE);
1713         move_active_pages_to_lru(zone, &l_inactive,
1714                                                 LRU_BASE   + file * LRU_FILE);
1715         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1716         spin_unlock_irq(&zone->lru_lock);
1717 }
1718
1719 #ifdef CONFIG_SWAP
1720 static int inactive_anon_is_low_global(struct zone *zone)
1721 {
1722         unsigned long active, inactive;
1723
1724         active = zone_page_state(zone, NR_ACTIVE_ANON);
1725         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1726
1727         if (inactive * zone->inactive_ratio < active)
1728                 return 1;
1729
1730         return 0;
1731 }
1732
1733 /**
1734  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1735  * @zone: zone to check
1736  * @sc:   scan control of this context
1737  *
1738  * Returns true if the zone does not have enough inactive anon pages,
1739  * meaning some active anon pages need to be deactivated.
1740  */
1741 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1742 {
1743         int low;
1744
1745         /*
1746          * If we don't have swap space, anonymous page deactivation
1747          * is pointless.
1748          */
1749         if (!total_swap_pages)
1750                 return 0;
1751
1752         if (scanning_global_lru(sc))
1753                 low = inactive_anon_is_low_global(zone);
1754         else
1755                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1756         return low;
1757 }
1758 #else
1759 static inline int inactive_anon_is_low(struct zone *zone,
1760                                         struct scan_control *sc)
1761 {
1762         return 0;
1763 }
1764 #endif
1765
1766 static int inactive_file_is_low_global(struct zone *zone)
1767 {
1768         unsigned long active, inactive;
1769
1770         active = zone_page_state(zone, NR_ACTIVE_FILE);
1771         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1772
1773         return (active > inactive);
1774 }
1775
1776 /**
1777  * inactive_file_is_low - check if file pages need to be deactivated
1778  * @zone: zone to check
1779  * @sc:   scan control of this context
1780  *
1781  * When the system is doing streaming IO, memory pressure here
1782  * ensures that active file pages get deactivated, until more
1783  * than half of the file pages are on the inactive list.
1784  *
1785  * Once we get to that situation, protect the system's working
1786  * set from being evicted by disabling active file page aging.
1787  *
1788  * This uses a different ratio than the anonymous pages, because
1789  * the page cache uses a use-once replacement algorithm.
1790  */
1791 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1792 {
1793         int low;
1794
1795         if (scanning_global_lru(sc))
1796                 low = inactive_file_is_low_global(zone);
1797         else
1798                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1799         return low;
1800 }
1801
1802 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1803                                 int file)
1804 {
1805         if (file)
1806                 return inactive_file_is_low(zone, sc);
1807         else
1808                 return inactive_anon_is_low(zone, sc);
1809 }
1810
1811 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1812         struct zone *zone, struct scan_control *sc, int priority)
1813 {
1814         int file = is_file_lru(lru);
1815
1816         if (is_active_lru(lru)) {
1817                 if (inactive_list_is_low(zone, sc, file))
1818                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1819                 return 0;
1820         }
1821
1822         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1823 }
1824
1825 /*
1826  * Determine how aggressively the anon and file LRU lists should be
1827  * scanned.  The relative value of each set of LRU lists is determined
1828  * by looking at the fraction of the pages scanned we did rotate back
1829  * onto the active list instead of evict.
1830  *
1831  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1832  */
1833 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1834                                         unsigned long *nr, int priority)
1835 {
1836         unsigned long anon, file, free;
1837         unsigned long anon_prio, file_prio;
1838         unsigned long ap, fp;
1839         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1840         u64 fraction[2], denominator;
1841         enum lru_list l;
1842         int noswap = 0;
1843         bool force_scan = false;
1844         unsigned long nr_force_scan[2];
1845
1846         /* kswapd does zone balancing and needs to scan this zone */
1847         if (scanning_global_lru(sc) && current_is_kswapd())
1848                 force_scan = true;
1849         /* memcg may have small limit and need to avoid priority drop */
1850         if (!scanning_global_lru(sc))
1851                 force_scan = true;
1852
1853         /* If we have no swap space, do not bother scanning anon pages. */
1854         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1855                 noswap = 1;
1856                 fraction[0] = 0;
1857                 fraction[1] = 1;
1858                 denominator = 1;
1859                 nr_force_scan[0] = 0;
1860                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1861                 goto out;
1862         }
1863
1864         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1865                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1866         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1867                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1868
1869         if (scanning_global_lru(sc)) {
1870                 free  = zone_page_state(zone, NR_FREE_PAGES);
1871                 /* If we have very few page cache pages,
1872                    force-scan anon pages. */
1873                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1874                         fraction[0] = 1;
1875                         fraction[1] = 0;
1876                         denominator = 1;
1877                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1878                         nr_force_scan[1] = 0;
1879                         goto out;
1880                 }
1881         }
1882
1883         /*
1884          * With swappiness at 100, anonymous and file have the same priority.
1885          * This scanning priority is essentially the inverse of IO cost.
1886          */
1887         anon_prio = sc->swappiness;
1888         file_prio = 200 - sc->swappiness;
1889
1890         /*
1891          * OK, so we have swap space and a fair amount of page cache
1892          * pages.  We use the recently rotated / recently scanned
1893          * ratios to determine how valuable each cache is.
1894          *
1895          * Because workloads change over time (and to avoid overflow)
1896          * we keep these statistics as a floating average, which ends
1897          * up weighing recent references more than old ones.
1898          *
1899          * anon in [0], file in [1]
1900          */
1901         spin_lock_irq(&zone->lru_lock);
1902         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1903                 reclaim_stat->recent_scanned[0] /= 2;
1904                 reclaim_stat->recent_rotated[0] /= 2;
1905         }
1906
1907         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1908                 reclaim_stat->recent_scanned[1] /= 2;
1909                 reclaim_stat->recent_rotated[1] /= 2;
1910         }
1911
1912         /*
1913          * The amount of pressure on anon vs file pages is inversely
1914          * proportional to the fraction of recently scanned pages on
1915          * each list that were recently referenced and in active use.
1916          */
1917         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1918         ap /= reclaim_stat->recent_rotated[0] + 1;
1919
1920         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1921         fp /= reclaim_stat->recent_rotated[1] + 1;
1922         spin_unlock_irq(&zone->lru_lock);
1923
1924         fraction[0] = ap;
1925         fraction[1] = fp;
1926         denominator = ap + fp + 1;
1927         if (force_scan) {
1928                 unsigned long scan = SWAP_CLUSTER_MAX;
1929                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1930                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1931         }
1932 out:
1933         for_each_evictable_lru(l) {
1934                 int file = is_file_lru(l);
1935                 unsigned long scan;
1936
1937                 scan = zone_nr_lru_pages(zone, sc, l);
1938                 if (priority || noswap) {
1939                         scan >>= priority;
1940                         scan = div64_u64(scan * fraction[file], denominator);
1941                 }
1942
1943                 /*
1944                  * If zone is small or memcg is small, nr[l] can be 0.
1945                  * This results no-scan on this priority and priority drop down.
1946                  * For global direct reclaim, it can visit next zone and tend
1947                  * not to have problems. For global kswapd, it's for zone
1948                  * balancing and it need to scan a small amounts. When using
1949                  * memcg, priority drop can cause big latency. So, it's better
1950                  * to scan small amount. See may_noscan above.
1951                  */
1952                 if (!scan && force_scan)
1953                         scan = nr_force_scan[file];
1954                 nr[l] = scan;
1955         }
1956 }
1957
1958 /*
1959  * Reclaim/compaction depends on a number of pages being freed. To avoid
1960  * disruption to the system, a small number of order-0 pages continue to be
1961  * rotated and reclaimed in the normal fashion. However, by the time we get
1962  * back to the allocator and call try_to_compact_zone(), we ensure that
1963  * there are enough free pages for it to be likely successful
1964  */
1965 static inline bool should_continue_reclaim(struct zone *zone,
1966                                         unsigned long nr_reclaimed,
1967                                         unsigned long nr_scanned,
1968                                         struct scan_control *sc)
1969 {
1970         unsigned long pages_for_compaction;
1971         unsigned long inactive_lru_pages;
1972
1973         /* If not in reclaim/compaction mode, stop */
1974         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1975                 return false;
1976
1977         /* Consider stopping depending on scan and reclaim activity */
1978         if (sc->gfp_mask & __GFP_REPEAT) {
1979                 /*
1980                  * For __GFP_REPEAT allocations, stop reclaiming if the
1981                  * full LRU list has been scanned and we are still failing
1982                  * to reclaim pages. This full LRU scan is potentially
1983                  * expensive but a __GFP_REPEAT caller really wants to succeed
1984                  */
1985                 if (!nr_reclaimed && !nr_scanned)
1986                         return false;
1987         } else {
1988                 /*
1989                  * For non-__GFP_REPEAT allocations which can presumably
1990                  * fail without consequence, stop if we failed to reclaim
1991                  * any pages from the last SWAP_CLUSTER_MAX number of
1992                  * pages that were scanned. This will return to the
1993                  * caller faster at the risk reclaim/compaction and
1994                  * the resulting allocation attempt fails
1995                  */
1996                 if (!nr_reclaimed)
1997                         return false;
1998         }
1999
2000         /*
2001          * If we have not reclaimed enough pages for compaction and the
2002          * inactive lists are large enough, continue reclaiming
2003          */
2004         pages_for_compaction = (2UL << sc->order);
2005         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2006                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2007         if (sc->nr_reclaimed < pages_for_compaction &&
2008                         inactive_lru_pages > pages_for_compaction)
2009                 return true;
2010
2011         /* If compaction would go ahead or the allocation would succeed, stop */
2012         switch (compaction_suitable(zone, sc->order)) {
2013         case COMPACT_PARTIAL:
2014         case COMPACT_CONTINUE:
2015                 return false;
2016         default:
2017                 return true;
2018         }
2019 }
2020
2021 /*
2022  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2023  */
2024 static void shrink_zone(int priority, struct zone *zone,
2025                                 struct scan_control *sc)
2026 {
2027         unsigned long nr[NR_LRU_LISTS];
2028         unsigned long nr_to_scan;
2029         enum lru_list l;
2030         unsigned long nr_reclaimed, nr_scanned;
2031         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2032
2033 restart:
2034         nr_reclaimed = 0;
2035         nr_scanned = sc->nr_scanned;
2036         get_scan_count(zone, sc, nr, priority);
2037
2038         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2039                                         nr[LRU_INACTIVE_FILE]) {
2040                 for_each_evictable_lru(l) {
2041                         if (nr[l]) {
2042                                 nr_to_scan = min_t(unsigned long,
2043                                                    nr[l], SWAP_CLUSTER_MAX);
2044                                 nr[l] -= nr_to_scan;
2045
2046                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2047                                                             zone, sc, priority);
2048                         }
2049                 }
2050                 /*
2051                  * On large memory systems, scan >> priority can become
2052                  * really large. This is fine for the starting priority;
2053                  * we want to put equal scanning pressure on each zone.
2054                  * However, if the VM has a harder time of freeing pages,
2055                  * with multiple processes reclaiming pages, the total
2056                  * freeing target can get unreasonably large.
2057                  */
2058                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2059                         break;
2060         }
2061         sc->nr_reclaimed += nr_reclaimed;
2062
2063         /*
2064          * Even if we did not try to evict anon pages at all, we want to
2065          * rebalance the anon lru active/inactive ratio.
2066          */
2067         if (inactive_anon_is_low(zone, sc))
2068                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2069
2070         /* reclaim/compaction might need reclaim to continue */
2071         if (should_continue_reclaim(zone, nr_reclaimed,
2072                                         sc->nr_scanned - nr_scanned, sc))
2073                 goto restart;
2074
2075         throttle_vm_writeout(sc->gfp_mask);
2076 }
2077
2078 /* Returns true if compaction should go ahead for a high-order request */
2079 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2080 {
2081         unsigned long balance_gap, watermark;
2082         bool watermark_ok;
2083
2084         /* Do not consider compaction for orders reclaim is meant to satisfy */
2085         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2086                 return false;
2087
2088         /*
2089          * Compaction takes time to run and there are potentially other
2090          * callers using the pages just freed. Continue reclaiming until
2091          * there is a buffer of free pages available to give compaction
2092          * a reasonable chance of completing and allocating the page
2093          */
2094         balance_gap = min(low_wmark_pages(zone),
2095                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2096                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2097         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2098         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2099
2100         /*
2101          * If compaction is deferred, reclaim up to a point where
2102          * compaction will have a chance of success when re-enabled
2103          */
2104         if (compaction_deferred(zone))
2105                 return watermark_ok;
2106
2107         /* If compaction is not ready to start, keep reclaiming */
2108         if (!compaction_suitable(zone, sc->order))
2109                 return false;
2110
2111         return watermark_ok;
2112 }
2113
2114 /*
2115  * This is the direct reclaim path, for page-allocating processes.  We only
2116  * try to reclaim pages from zones which will satisfy the caller's allocation
2117  * request.
2118  *
2119  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2120  * Because:
2121  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2122  *    allocation or
2123  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2124  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2125  *    zone defense algorithm.
2126  *
2127  * If a zone is deemed to be full of pinned pages then just give it a light
2128  * scan then give up on it.
2129  *
2130  * This function returns true if a zone is being reclaimed for a costly
2131  * high-order allocation and compaction is ready to begin. This indicates to
2132  * the caller that it should consider retrying the allocation instead of
2133  * further reclaim.
2134  */
2135 static bool shrink_zones(int priority, struct zonelist *zonelist,
2136                                         struct scan_control *sc)
2137 {
2138         struct zoneref *z;
2139         struct zone *zone;
2140         unsigned long nr_soft_reclaimed;
2141         unsigned long nr_soft_scanned;
2142         bool aborted_reclaim = false;
2143
2144         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2145                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2146                 if (!populated_zone(zone))
2147                         continue;
2148                 /*
2149                  * Take care memory controller reclaiming has small influence
2150                  * to global LRU.
2151                  */
2152                 if (scanning_global_lru(sc)) {
2153                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2154                                 continue;
2155                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2156                                 continue;       /* Let kswapd poll it */
2157                         if (COMPACTION_BUILD) {
2158                                 /*
2159                                  * If we already have plenty of memory free for
2160                                  * compaction in this zone, don't free any more.
2161                                  * Even though compaction is invoked for any
2162                                  * non-zero order, only frequent costly order
2163                                  * reclamation is disruptive enough to become a
2164                                  * noticable problem, like transparent huge page
2165                                  * allocations.
2166                                  */
2167                                 if (compaction_ready(zone, sc)) {
2168                                         aborted_reclaim = true;
2169                                         continue;
2170                                 }
2171                         }
2172                         /*
2173                          * This steals pages from memory cgroups over softlimit
2174                          * and returns the number of reclaimed pages and
2175                          * scanned pages. This works for global memory pressure
2176                          * and balancing, not for a memcg's limit.
2177                          */
2178                         nr_soft_scanned = 0;
2179                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2180                                                 sc->order, sc->gfp_mask,
2181                                                 &nr_soft_scanned);
2182                         sc->nr_reclaimed += nr_soft_reclaimed;
2183                         sc->nr_scanned += nr_soft_scanned;
2184                         /* need some check for avoid more shrink_zone() */
2185                 }
2186
2187                 shrink_zone(priority, zone, sc);
2188         }
2189
2190         return aborted_reclaim;
2191 }
2192
2193 static bool zone_reclaimable(struct zone *zone)
2194 {
2195         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2196 }
2197
2198 /* All zones in zonelist are unreclaimable? */
2199 static bool all_unreclaimable(struct zonelist *zonelist,
2200                 struct scan_control *sc)
2201 {
2202         struct zoneref *z;
2203         struct zone *zone;
2204
2205         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2206                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2207                 if (!populated_zone(zone))
2208                         continue;
2209                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2210                         continue;
2211                 if (!zone->all_unreclaimable)
2212                         return false;
2213         }
2214
2215         return true;
2216 }
2217
2218 /*
2219  * This is the main entry point to direct page reclaim.
2220  *
2221  * If a full scan of the inactive list fails to free enough memory then we
2222  * are "out of memory" and something needs to be killed.
2223  *
2224  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2225  * high - the zone may be full of dirty or under-writeback pages, which this
2226  * caller can't do much about.  We kick the writeback threads and take explicit
2227  * naps in the hope that some of these pages can be written.  But if the
2228  * allocating task holds filesystem locks which prevent writeout this might not
2229  * work, and the allocation attempt will fail.
2230  *
2231  * returns:     0, if no pages reclaimed
2232  *              else, the number of pages reclaimed
2233  */
2234 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2235                                         struct scan_control *sc,
2236                                         struct shrink_control *shrink)
2237 {
2238         int priority;
2239         unsigned long total_scanned = 0;
2240         struct reclaim_state *reclaim_state = current->reclaim_state;
2241         struct zoneref *z;
2242         struct zone *zone;
2243         unsigned long writeback_threshold;
2244         bool aborted_reclaim;
2245
2246         get_mems_allowed();
2247         delayacct_freepages_start();
2248
2249         if (scanning_global_lru(sc))
2250                 count_vm_event(ALLOCSTALL);
2251
2252         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2253                 sc->nr_scanned = 0;
2254                 if (!priority)
2255                         disable_swap_token(sc->mem_cgroup);
2256                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2257
2258                 /*
2259                  * Don't shrink slabs when reclaiming memory from
2260                  * over limit cgroups
2261                  */
2262                 if (scanning_global_lru(sc)) {
2263                         unsigned long lru_pages = 0;
2264                         for_each_zone_zonelist(zone, z, zonelist,
2265                                         gfp_zone(sc->gfp_mask)) {
2266                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2267                                         continue;
2268
2269                                 lru_pages += zone_reclaimable_pages(zone);
2270                         }
2271
2272                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2273                         if (reclaim_state) {
2274                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2275                                 reclaim_state->reclaimed_slab = 0;
2276                         }
2277                 }
2278                 total_scanned += sc->nr_scanned;
2279                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2280                         goto out;
2281
2282                 /*
2283                  * Try to write back as many pages as we just scanned.  This
2284                  * tends to cause slow streaming writers to write data to the
2285                  * disk smoothly, at the dirtying rate, which is nice.   But
2286                  * that's undesirable in laptop mode, where we *want* lumpy
2287                  * writeout.  So in laptop mode, write out the whole world.
2288                  */
2289                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2290                 if (total_scanned > writeback_threshold) {
2291                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2292                         sc->may_writepage = 1;
2293                 }
2294
2295                 /* Take a nap, wait for some writeback to complete */
2296                 if (!sc->hibernation_mode && sc->nr_scanned &&
2297                     priority < DEF_PRIORITY - 2) {
2298                         struct zone *preferred_zone;
2299
2300                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2301                                                 &cpuset_current_mems_allowed,
2302                                                 &preferred_zone);
2303                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2304                 }
2305         }
2306
2307 out:
2308         delayacct_freepages_end();
2309         put_mems_allowed();
2310
2311         if (sc->nr_reclaimed)
2312                 return sc->nr_reclaimed;
2313
2314         /*
2315          * As hibernation is going on, kswapd is freezed so that it can't mark
2316          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2317          * check.
2318          */
2319         if (oom_killer_disabled)
2320                 return 0;
2321
2322         /* Aborted reclaim to try compaction? don't OOM, then */
2323         if (aborted_reclaim)
2324                 return 1;
2325
2326         /* top priority shrink_zones still had more to do? don't OOM, then */
2327         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2328                 return 1;
2329
2330         return 0;
2331 }
2332
2333 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2334                                 gfp_t gfp_mask, nodemask_t *nodemask)
2335 {
2336         unsigned long nr_reclaimed;
2337         struct scan_control sc = {
2338                 .gfp_mask = gfp_mask,
2339                 .may_writepage = !laptop_mode,
2340                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2341                 .may_unmap = 1,
2342                 .may_swap = 1,
2343                 .swappiness = vm_swappiness,
2344                 .order = order,
2345                 .mem_cgroup = NULL,
2346                 .nodemask = nodemask,
2347         };
2348         struct shrink_control shrink = {
2349                 .gfp_mask = sc.gfp_mask,
2350         };
2351
2352         trace_mm_vmscan_direct_reclaim_begin(order,
2353                                 sc.may_writepage,
2354                                 gfp_mask);
2355
2356         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2357
2358         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2359
2360         return nr_reclaimed;
2361 }
2362
2363 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2364
2365 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2366                                                 gfp_t gfp_mask, bool noswap,
2367                                                 unsigned int swappiness,
2368                                                 struct zone *zone,
2369                                                 unsigned long *nr_scanned)
2370 {
2371         struct scan_control sc = {
2372                 .nr_scanned = 0,
2373                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2374                 .may_writepage = !laptop_mode,
2375                 .may_unmap = 1,
2376                 .may_swap = !noswap,
2377                 .swappiness = swappiness,
2378                 .order = 0,
2379                 .mem_cgroup = mem,
2380         };
2381
2382         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2383                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2384
2385         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2386                                                       sc.may_writepage,
2387                                                       sc.gfp_mask);
2388
2389         /*
2390          * NOTE: Although we can get the priority field, using it
2391          * here is not a good idea, since it limits the pages we can scan.
2392          * if we don't reclaim here, the shrink_zone from balance_pgdat
2393          * will pick up pages from other mem cgroup's as well. We hack
2394          * the priority and make it zero.
2395          */
2396         shrink_zone(0, zone, &sc);
2397
2398         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2399
2400         *nr_scanned = sc.nr_scanned;
2401         return sc.nr_reclaimed;
2402 }
2403
2404 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2405                                            gfp_t gfp_mask,
2406                                            bool noswap,
2407                                            unsigned int swappiness)
2408 {
2409         struct zonelist *zonelist;
2410         unsigned long nr_reclaimed;
2411         int nid;
2412         struct scan_control sc = {
2413                 .may_writepage = !laptop_mode,
2414                 .may_unmap = 1,
2415                 .may_swap = !noswap,
2416                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2417                 .swappiness = swappiness,
2418                 .order = 0,
2419                 .mem_cgroup = mem_cont,
2420                 .nodemask = NULL, /* we don't care the placement */
2421                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2422                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2423         };
2424         struct shrink_control shrink = {
2425                 .gfp_mask = sc.gfp_mask,
2426         };
2427
2428         /*
2429          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2430          * take care of from where we get pages. So the node where we start the
2431          * scan does not need to be the current node.
2432          */
2433         nid = mem_cgroup_select_victim_node(mem_cont);
2434
2435         zonelist = NODE_DATA(nid)->node_zonelists;
2436
2437         trace_mm_vmscan_memcg_reclaim_begin(0,
2438                                             sc.may_writepage,
2439                                             sc.gfp_mask);
2440
2441         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2442
2443         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2444
2445         return nr_reclaimed;
2446 }
2447 #endif
2448
2449 /*
2450  * pgdat_balanced is used when checking if a node is balanced for high-order
2451  * allocations. Only zones that meet watermarks and are in a zone allowed
2452  * by the callers classzone_idx are added to balanced_pages. The total of
2453  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2454  * for the node to be considered balanced. Forcing all zones to be balanced
2455  * for high orders can cause excessive reclaim when there are imbalanced zones.
2456  * The choice of 25% is due to
2457  *   o a 16M DMA zone that is balanced will not balance a zone on any
2458  *     reasonable sized machine
2459  *   o On all other machines, the top zone must be at least a reasonable
2460  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2461  *     would need to be at least 256M for it to be balance a whole node.
2462  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2463  *     to balance a node on its own. These seemed like reasonable ratios.
2464  */
2465 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2466                                                 int classzone_idx)
2467 {
2468         unsigned long present_pages = 0;
2469         int i;
2470
2471         for (i = 0; i <= classzone_idx; i++)
2472                 present_pages += pgdat->node_zones[i].present_pages;
2473
2474         /* A special case here: if zone has no page, we think it's balanced */
2475         return balanced_pages >= (present_pages >> 2);
2476 }
2477
2478 /* is kswapd sleeping prematurely? */
2479 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2480                                         int classzone_idx)
2481 {
2482         int i;
2483         unsigned long balanced = 0;
2484         bool all_zones_ok = true;
2485
2486         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2487         if (remaining)
2488                 return true;
2489
2490         /* Check the watermark levels */
2491         for (i = 0; i <= classzone_idx; i++) {
2492                 struct zone *zone = pgdat->node_zones + i;
2493
2494                 if (!populated_zone(zone))
2495                         continue;
2496
2497                 /*
2498                  * balance_pgdat() skips over all_unreclaimable after
2499                  * DEF_PRIORITY. Effectively, it considers them balanced so
2500                  * they must be considered balanced here as well if kswapd
2501                  * is to sleep
2502                  */
2503                 if (zone->all_unreclaimable) {
2504                         balanced += zone->present_pages;
2505                         continue;
2506                 }
2507
2508                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2509                                                         i, 0))
2510                         all_zones_ok = false;
2511                 else
2512                         balanced += zone->present_pages;
2513         }
2514
2515         /*
2516          * For high-order requests, the balanced zones must contain at least
2517          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2518          * must be balanced
2519          */
2520         if (order)
2521                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2522         else
2523                 return !all_zones_ok;
2524 }
2525
2526 /*
2527  * For kswapd, balance_pgdat() will work across all this node's zones until
2528  * they are all at high_wmark_pages(zone).
2529  *
2530  * Returns the final order kswapd was reclaiming at
2531  *
2532  * There is special handling here for zones which are full of pinned pages.
2533  * This can happen if the pages are all mlocked, or if they are all used by
2534  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2535  * What we do is to detect the case where all pages in the zone have been
2536  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2537  * dead and from now on, only perform a short scan.  Basically we're polling
2538  * the zone for when the problem goes away.
2539  *
2540  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2541  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2542  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2543  * lower zones regardless of the number of free pages in the lower zones. This
2544  * interoperates with the page allocator fallback scheme to ensure that aging
2545  * of pages is balanced across the zones.
2546  */
2547 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2548                                                         int *classzone_idx)
2549 {
2550         int all_zones_ok;
2551         unsigned long balanced;
2552         int priority;
2553         int i;
2554         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2555         unsigned long total_scanned;
2556         struct reclaim_state *reclaim_state = current->reclaim_state;
2557         unsigned long nr_soft_reclaimed;
2558         unsigned long nr_soft_scanned;
2559         struct scan_control sc = {
2560                 .gfp_mask = GFP_KERNEL,
2561                 .may_unmap = 1,
2562                 .may_swap = 1,
2563                 /*
2564                  * kswapd doesn't want to be bailed out while reclaim. because
2565                  * we want to put equal scanning pressure on each zone.
2566                  */
2567                 .nr_to_reclaim = ULONG_MAX,
2568                 .swappiness = vm_swappiness,
2569                 .order = order,
2570                 .mem_cgroup = NULL,
2571         };
2572         struct shrink_control shrink = {
2573                 .gfp_mask = sc.gfp_mask,
2574         };
2575 loop_again:
2576         total_scanned = 0;
2577         sc.nr_reclaimed = 0;
2578         sc.may_writepage = !laptop_mode;
2579         count_vm_event(PAGEOUTRUN);
2580
2581         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2582                 unsigned long lru_pages = 0;
2583                 int has_under_min_watermark_zone = 0;
2584
2585                 /* The swap token gets in the way of swapout... */
2586                 if (!priority)
2587                         disable_swap_token(NULL);
2588
2589                 all_zones_ok = 1;
2590                 balanced = 0;
2591
2592                 /*
2593                  * Scan in the highmem->dma direction for the highest
2594                  * zone which needs scanning
2595                  */
2596                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2597                         struct zone *zone = pgdat->node_zones + i;
2598
2599                         if (!populated_zone(zone))
2600                                 continue;
2601
2602                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2603                                 continue;
2604
2605                         /*
2606                          * Do some background aging of the anon list, to give
2607                          * pages a chance to be referenced before reclaiming.
2608                          */
2609                         if (inactive_anon_is_low(zone, &sc))
2610                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2611                                                         &sc, priority, 0);
2612
2613                         if (!zone_watermark_ok_safe(zone, order,
2614                                         high_wmark_pages(zone), 0, 0)) {
2615                                 end_zone = i;
2616                                 break;
2617                         } else {
2618                                 /* If balanced, clear the congested flag */
2619                                 zone_clear_flag(zone, ZONE_CONGESTED);
2620                         }
2621                 }
2622                 if (i < 0)
2623                         goto out;
2624
2625                 for (i = 0; i <= end_zone; i++) {
2626                         struct zone *zone = pgdat->node_zones + i;
2627
2628                         lru_pages += zone_reclaimable_pages(zone);
2629                 }
2630
2631                 /*
2632                  * Now scan the zone in the dma->highmem direction, stopping
2633                  * at the last zone which needs scanning.
2634                  *
2635                  * We do this because the page allocator works in the opposite
2636                  * direction.  This prevents the page allocator from allocating
2637                  * pages behind kswapd's direction of progress, which would
2638                  * cause too much scanning of the lower zones.
2639                  */
2640                 for (i = 0; i <= end_zone; i++) {
2641                         struct zone *zone = pgdat->node_zones + i;
2642                         int nr_slab;
2643                         unsigned long balance_gap;
2644
2645                         if (!populated_zone(zone))
2646                                 continue;
2647
2648                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2649                                 continue;
2650
2651                         sc.nr_scanned = 0;
2652
2653                         nr_soft_scanned = 0;
2654                         /*
2655                          * Call soft limit reclaim before calling shrink_zone.
2656                          */
2657                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2658                                                         order, sc.gfp_mask,
2659                                                         &nr_soft_scanned);
2660                         sc.nr_reclaimed += nr_soft_reclaimed;
2661                         total_scanned += nr_soft_scanned;
2662
2663                         /*
2664                          * We put equal pressure on every zone, unless
2665                          * one zone has way too many pages free
2666                          * already. The "too many pages" is defined
2667                          * as the high wmark plus a "gap" where the
2668                          * gap is either the low watermark or 1%
2669                          * of the zone, whichever is smaller.
2670                          */
2671                         balance_gap = min(low_wmark_pages(zone),
2672                                 (zone->present_pages +
2673                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2674                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2675                         if (!zone_watermark_ok_safe(zone, order,
2676                                         high_wmark_pages(zone) + balance_gap,
2677                                         end_zone, 0)) {
2678                                 shrink_zone(priority, zone, &sc);
2679
2680                                 reclaim_state->reclaimed_slab = 0;
2681                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2682                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2683                                 total_scanned += sc.nr_scanned;
2684
2685                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2686                                         zone->all_unreclaimable = 1;
2687                         }
2688
2689                         /*
2690                          * If we've done a decent amount of scanning and
2691                          * the reclaim ratio is low, start doing writepage
2692                          * even in laptop mode
2693                          */
2694                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2695                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2696                                 sc.may_writepage = 1;
2697
2698                         if (zone->all_unreclaimable) {
2699                                 if (end_zone && end_zone == i)
2700                                         end_zone--;
2701                                 continue;
2702                         }
2703
2704                         if (!zone_watermark_ok_safe(zone, order,
2705                                         high_wmark_pages(zone), end_zone, 0)) {
2706                                 all_zones_ok = 0;
2707                                 /*
2708                                  * We are still under min water mark.  This
2709                                  * means that we have a GFP_ATOMIC allocation
2710                                  * failure risk. Hurry up!
2711                                  */
2712                                 if (!zone_watermark_ok_safe(zone, order,
2713                                             min_wmark_pages(zone), end_zone, 0))
2714                                         has_under_min_watermark_zone = 1;
2715                         } else {
2716                                 /*
2717                                  * If a zone reaches its high watermark,
2718                                  * consider it to be no longer congested. It's
2719                                  * possible there are dirty pages backed by
2720                                  * congested BDIs but as pressure is relieved,
2721                                  * spectulatively avoid congestion waits
2722                                  */
2723                                 zone_clear_flag(zone, ZONE_CONGESTED);
2724                                 if (i <= *classzone_idx)
2725                                         balanced += zone->present_pages;
2726                         }
2727
2728                 }
2729                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2730                         break;          /* kswapd: all done */
2731                 /*
2732                  * OK, kswapd is getting into trouble.  Take a nap, then take
2733                  * another pass across the zones.
2734                  */
2735                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2736                         if (has_under_min_watermark_zone)
2737                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2738                         else
2739                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2740                 }
2741
2742                 /*
2743                  * We do this so kswapd doesn't build up large priorities for
2744                  * example when it is freeing in parallel with allocators. It
2745                  * matches the direct reclaim path behaviour in terms of impact
2746                  * on zone->*_priority.
2747                  */
2748                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2749                         break;
2750         }
2751 out:
2752
2753         /*
2754          * order-0: All zones must meet high watermark for a balanced node
2755          * high-order: Balanced zones must make up at least 25% of the node
2756          *             for the node to be balanced
2757          */
2758         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2759                 cond_resched();
2760
2761                 try_to_freeze();
2762
2763                 /*
2764                  * Fragmentation may mean that the system cannot be
2765                  * rebalanced for high-order allocations in all zones.
2766                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2767                  * it means the zones have been fully scanned and are still
2768                  * not balanced. For high-order allocations, there is
2769                  * little point trying all over again as kswapd may
2770                  * infinite loop.
2771                  *
2772                  * Instead, recheck all watermarks at order-0 as they
2773                  * are the most important. If watermarks are ok, kswapd will go
2774                  * back to sleep. High-order users can still perform direct
2775                  * reclaim if they wish.
2776                  */
2777                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2778                         order = sc.order = 0;
2779
2780                 goto loop_again;
2781         }
2782
2783         /*
2784          * If kswapd was reclaiming at a higher order, it has the option of
2785          * sleeping without all zones being balanced. Before it does, it must
2786          * ensure that the watermarks for order-0 on *all* zones are met and
2787          * that the congestion flags are cleared. The congestion flag must
2788          * be cleared as kswapd is the only mechanism that clears the flag
2789          * and it is potentially going to sleep here.
2790          */
2791         if (order) {
2792                 for (i = 0; i <= end_zone; i++) {
2793                         struct zone *zone = pgdat->node_zones + i;
2794
2795                         if (!populated_zone(zone))
2796                                 continue;
2797
2798                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2799                                 continue;
2800
2801                         /* Confirm the zone is balanced for order-0 */
2802                         if (!zone_watermark_ok(zone, 0,
2803                                         high_wmark_pages(zone), 0, 0)) {
2804                                 order = sc.order = 0;
2805                                 goto loop_again;
2806                         }
2807
2808                         /* If balanced, clear the congested flag */
2809                         zone_clear_flag(zone, ZONE_CONGESTED);
2810                 }
2811         }
2812
2813         /*
2814          * Return the order we were reclaiming at so sleeping_prematurely()
2815          * makes a decision on the order we were last reclaiming at. However,
2816          * if another caller entered the allocator slow path while kswapd
2817          * was awake, order will remain at the higher level
2818          */
2819         *classzone_idx = end_zone;
2820         return order;
2821 }
2822
2823 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2824 {
2825         long remaining = 0;
2826         DEFINE_WAIT(wait);
2827
2828         if (freezing(current) || kthread_should_stop())
2829                 return;
2830
2831         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2832
2833         /* Try to sleep for a short interval */
2834         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2835                 remaining = schedule_timeout(HZ/10);
2836                 finish_wait(&pgdat->kswapd_wait, &wait);
2837                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2838         }
2839
2840         /*
2841          * After a short sleep, check if it was a premature sleep. If not, then
2842          * go fully to sleep until explicitly woken up.
2843          */
2844         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2845                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2846
2847                 /*
2848                  * vmstat counters are not perfectly accurate and the estimated
2849                  * value for counters such as NR_FREE_PAGES can deviate from the
2850                  * true value by nr_online_cpus * threshold. To avoid the zone
2851                  * watermarks being breached while under pressure, we reduce the
2852                  * per-cpu vmstat threshold while kswapd is awake and restore
2853                  * them before going back to sleep.
2854                  */
2855                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2856
2857                 if (!kthread_should_stop())
2858                         schedule();
2859
2860                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2861         } else {
2862                 if (remaining)
2863                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2864                 else
2865                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2866         }
2867         finish_wait(&pgdat->kswapd_wait, &wait);
2868 }
2869
2870 /*
2871  * The background pageout daemon, started as a kernel thread
2872  * from the init process.
2873  *
2874  * This basically trickles out pages so that we have _some_
2875  * free memory available even if there is no other activity
2876  * that frees anything up. This is needed for things like routing
2877  * etc, where we otherwise might have all activity going on in
2878  * asynchronous contexts that cannot page things out.
2879  *
2880  * If there are applications that are active memory-allocators
2881  * (most normal use), this basically shouldn't matter.
2882  */
2883 static int kswapd(void *p)
2884 {
2885         unsigned long order, new_order;
2886         unsigned balanced_order;
2887         int classzone_idx, new_classzone_idx;
2888         int balanced_classzone_idx;
2889         pg_data_t *pgdat = (pg_data_t*)p;
2890         struct task_struct *tsk = current;
2891
2892         struct reclaim_state reclaim_state = {
2893                 .reclaimed_slab = 0,
2894         };
2895         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2896
2897         lockdep_set_current_reclaim_state(GFP_KERNEL);
2898
2899         if (!cpumask_empty(cpumask))
2900                 set_cpus_allowed_ptr(tsk, cpumask);
2901         current->reclaim_state = &reclaim_state;
2902
2903         /*
2904          * Tell the memory management that we're a "memory allocator",
2905          * and that if we need more memory we should get access to it
2906          * regardless (see "__alloc_pages()"). "kswapd" should
2907          * never get caught in the normal page freeing logic.
2908          *
2909          * (Kswapd normally doesn't need memory anyway, but sometimes
2910          * you need a small amount of memory in order to be able to
2911          * page out something else, and this flag essentially protects
2912          * us from recursively trying to free more memory as we're
2913          * trying to free the first piece of memory in the first place).
2914          */
2915         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2916         set_freezable();
2917
2918         order = new_order = 0;
2919         balanced_order = 0;
2920         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2921         balanced_classzone_idx = classzone_idx;
2922         for ( ; ; ) {
2923                 int ret;
2924
2925                 /*
2926                  * If the last balance_pgdat was unsuccessful it's unlikely a
2927                  * new request of a similar or harder type will succeed soon
2928                  * so consider going to sleep on the basis we reclaimed at
2929                  */
2930                 if (balanced_classzone_idx >= new_classzone_idx &&
2931                                         balanced_order == new_order) {
2932                         new_order = pgdat->kswapd_max_order;
2933                         new_classzone_idx = pgdat->classzone_idx;
2934                         pgdat->kswapd_max_order =  0;
2935                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2936                 }
2937
2938                 if (order < new_order || classzone_idx > new_classzone_idx) {
2939                         /*
2940                          * Don't sleep if someone wants a larger 'order'
2941                          * allocation or has tigher zone constraints
2942                          */
2943                         order = new_order;
2944                         classzone_idx = new_classzone_idx;
2945                 } else {
2946                         kswapd_try_to_sleep(pgdat, balanced_order,
2947                                                 balanced_classzone_idx);
2948                         order = pgdat->kswapd_max_order;
2949                         classzone_idx = pgdat->classzone_idx;
2950                         new_order = order;
2951                         new_classzone_idx = classzone_idx;
2952                         pgdat->kswapd_max_order = 0;
2953                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2954                 }
2955
2956                 ret = try_to_freeze();
2957                 if (kthread_should_stop())
2958                         break;
2959
2960                 /*
2961                  * We can speed up thawing tasks if we don't call balance_pgdat
2962                  * after returning from the refrigerator
2963                  */
2964                 if (!ret) {
2965                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2966                         balanced_classzone_idx = classzone_idx;
2967                         balanced_order = balance_pgdat(pgdat, order,
2968                                                 &balanced_classzone_idx);
2969                 }
2970         }
2971         return 0;
2972 }
2973
2974 /*
2975  * A zone is low on free memory, so wake its kswapd task to service it.
2976  */
2977 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2978 {
2979         pg_data_t *pgdat;
2980
2981         if (!populated_zone(zone))
2982                 return;
2983
2984         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2985                 return;
2986         pgdat = zone->zone_pgdat;
2987         if (pgdat->kswapd_max_order < order) {
2988                 pgdat->kswapd_max_order = order;
2989                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2990         }
2991         if (!waitqueue_active(&pgdat->kswapd_wait))
2992                 return;
2993         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2994                 return;
2995
2996         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2997         wake_up_interruptible(&pgdat->kswapd_wait);
2998 }
2999
3000 /*
3001  * The reclaimable count would be mostly accurate.
3002  * The less reclaimable pages may be
3003  * - mlocked pages, which will be moved to unevictable list when encountered
3004  * - mapped pages, which may require several travels to be reclaimed
3005  * - dirty pages, which is not "instantly" reclaimable
3006  */
3007 unsigned long global_reclaimable_pages(void)
3008 {
3009         int nr;
3010
3011         nr = global_page_state(NR_ACTIVE_FILE) +
3012              global_page_state(NR_INACTIVE_FILE);
3013
3014         if (nr_swap_pages > 0)
3015                 nr += global_page_state(NR_ACTIVE_ANON) +
3016                       global_page_state(NR_INACTIVE_ANON);
3017
3018         return nr;
3019 }
3020
3021 unsigned long zone_reclaimable_pages(struct zone *zone)
3022 {
3023         int nr;
3024
3025         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3026              zone_page_state(zone, NR_INACTIVE_FILE);
3027
3028         if (nr_swap_pages > 0)
3029                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3030                       zone_page_state(zone, NR_INACTIVE_ANON);
3031
3032         return nr;
3033 }
3034
3035 #ifdef CONFIG_HIBERNATION
3036 /*
3037  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3038  * freed pages.
3039  *
3040  * Rather than trying to age LRUs the aim is to preserve the overall
3041  * LRU order by reclaiming preferentially
3042  * inactive > active > active referenced > active mapped
3043  */
3044 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3045 {
3046         struct reclaim_state reclaim_state;
3047         struct scan_control sc = {
3048                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3049                 .may_swap = 1,
3050                 .may_unmap = 1,
3051                 .may_writepage = 1,
3052                 .nr_to_reclaim = nr_to_reclaim,
3053                 .hibernation_mode = 1,
3054                 .swappiness = vm_swappiness,
3055                 .order = 0,
3056         };
3057         struct shrink_control shrink = {
3058                 .gfp_mask = sc.gfp_mask,
3059         };
3060         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3061         struct task_struct *p = current;
3062         unsigned long nr_reclaimed;
3063
3064         p->flags |= PF_MEMALLOC;
3065         lockdep_set_current_reclaim_state(sc.gfp_mask);
3066         reclaim_state.reclaimed_slab = 0;
3067         p->reclaim_state = &reclaim_state;
3068
3069         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3070
3071         p->reclaim_state = NULL;
3072         lockdep_clear_current_reclaim_state();
3073         p->flags &= ~PF_MEMALLOC;
3074
3075         return nr_reclaimed;
3076 }
3077 #endif /* CONFIG_HIBERNATION */
3078
3079 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3080    not required for correctness.  So if the last cpu in a node goes
3081    away, we get changed to run anywhere: as the first one comes back,
3082    restore their cpu bindings. */
3083 static int __devinit cpu_callback(struct notifier_block *nfb,
3084                                   unsigned long action, void *hcpu)
3085 {
3086         int nid;
3087
3088         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3089                 for_each_node_state(nid, N_HIGH_MEMORY) {
3090                         pg_data_t *pgdat = NODE_DATA(nid);
3091                         const struct cpumask *mask;
3092
3093                         mask = cpumask_of_node(pgdat->node_id);
3094
3095                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3096                                 /* One of our CPUs online: restore mask */
3097                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3098                 }
3099         }
3100         return NOTIFY_OK;
3101 }
3102
3103 /*
3104  * This kswapd start function will be called by init and node-hot-add.
3105  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3106  */
3107 int kswapd_run(int nid)
3108 {
3109         pg_data_t *pgdat = NODE_DATA(nid);
3110         int ret = 0;
3111
3112         if (pgdat->kswapd)
3113                 return 0;
3114
3115         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3116         if (IS_ERR(pgdat->kswapd)) {
3117                 /* failure at boot is fatal */
3118                 BUG_ON(system_state == SYSTEM_BOOTING);
3119                 printk("Failed to start kswapd on node %d\n",nid);
3120                 ret = -1;
3121         }
3122         return ret;
3123 }
3124
3125 /*
3126  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3127  * hold lock_memory_hotplug().
3128  */
3129 void kswapd_stop(int nid)
3130 {
3131         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3132
3133         if (kswapd) {
3134                 kthread_stop(kswapd);
3135                 NODE_DATA(nid)->kswapd = NULL;
3136         }
3137 }
3138
3139 static int __init kswapd_init(void)
3140 {
3141         int nid;
3142
3143         swap_setup();
3144         for_each_node_state(nid, N_HIGH_MEMORY)
3145                 kswapd_run(nid);
3146         hotcpu_notifier(cpu_callback, 0);
3147         return 0;
3148 }
3149
3150 module_init(kswapd_init)
3151
3152 #ifdef CONFIG_NUMA
3153 /*
3154  * Zone reclaim mode
3155  *
3156  * If non-zero call zone_reclaim when the number of free pages falls below
3157  * the watermarks.
3158  */
3159 int zone_reclaim_mode __read_mostly;
3160
3161 #define RECLAIM_OFF 0
3162 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3163 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3164 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3165
3166 /*
3167  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3168  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3169  * a zone.
3170  */
3171 #define ZONE_RECLAIM_PRIORITY 4
3172
3173 /*
3174  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3175  * occur.
3176  */
3177 int sysctl_min_unmapped_ratio = 1;
3178
3179 /*
3180  * If the number of slab pages in a zone grows beyond this percentage then
3181  * slab reclaim needs to occur.
3182  */
3183 int sysctl_min_slab_ratio = 5;
3184
3185 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3186 {
3187         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3188         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3189                 zone_page_state(zone, NR_ACTIVE_FILE);
3190
3191         /*
3192          * It's possible for there to be more file mapped pages than
3193          * accounted for by the pages on the file LRU lists because
3194          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3195          */
3196         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3197 }
3198
3199 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3200 static long zone_pagecache_reclaimable(struct zone *zone)
3201 {
3202         long nr_pagecache_reclaimable;
3203         long delta = 0;
3204
3205         /*
3206          * If RECLAIM_SWAP is set, then all file pages are considered
3207          * potentially reclaimable. Otherwise, we have to worry about
3208          * pages like swapcache and zone_unmapped_file_pages() provides
3209          * a better estimate
3210          */
3211         if (zone_reclaim_mode & RECLAIM_SWAP)
3212                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3213         else
3214                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3215
3216         /* If we can't clean pages, remove dirty pages from consideration */
3217         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3218                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3219
3220         /* Watch for any possible underflows due to delta */
3221         if (unlikely(delta > nr_pagecache_reclaimable))
3222                 delta = nr_pagecache_reclaimable;
3223
3224         return nr_pagecache_reclaimable - delta;
3225 }
3226
3227 /*
3228  * Try to free up some pages from this zone through reclaim.
3229  */
3230 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3231 {
3232         /* Minimum pages needed in order to stay on node */
3233         const unsigned long nr_pages = 1 << order;
3234         struct task_struct *p = current;
3235         struct reclaim_state reclaim_state;
3236         int priority;
3237         struct scan_control sc = {
3238                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3239                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3240                 .may_swap = 1,
3241                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3242                                        SWAP_CLUSTER_MAX),
3243                 .gfp_mask = gfp_mask,
3244                 .swappiness = vm_swappiness,
3245                 .order = order,
3246         };
3247         struct shrink_control shrink = {
3248                 .gfp_mask = sc.gfp_mask,
3249         };
3250         unsigned long nr_slab_pages0, nr_slab_pages1;
3251
3252         cond_resched();
3253         /*
3254          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3255          * and we also need to be able to write out pages for RECLAIM_WRITE
3256          * and RECLAIM_SWAP.
3257          */
3258         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3259         lockdep_set_current_reclaim_state(gfp_mask);
3260         reclaim_state.reclaimed_slab = 0;
3261         p->reclaim_state = &reclaim_state;
3262
3263         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3264                 /*
3265                  * Free memory by calling shrink zone with increasing
3266                  * priorities until we have enough memory freed.
3267                  */
3268                 priority = ZONE_RECLAIM_PRIORITY;
3269                 do {
3270                         shrink_zone(priority, zone, &sc);
3271                         priority--;
3272                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3273         }
3274
3275         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3276         if (nr_slab_pages0 > zone->min_slab_pages) {
3277                 /*
3278                  * shrink_slab() does not currently allow us to determine how
3279                  * many pages were freed in this zone. So we take the current
3280                  * number of slab pages and shake the slab until it is reduced
3281                  * by the same nr_pages that we used for reclaiming unmapped
3282                  * pages.
3283                  *
3284                  * Note that shrink_slab will free memory on all zones and may
3285                  * take a long time.
3286                  */
3287                 for (;;) {
3288                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3289
3290                         /* No reclaimable slab or very low memory pressure */
3291                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3292                                 break;
3293
3294                         /* Freed enough memory */
3295                         nr_slab_pages1 = zone_page_state(zone,
3296                                                         NR_SLAB_RECLAIMABLE);
3297                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3298                                 break;
3299                 }
3300
3301                 /*
3302                  * Update nr_reclaimed by the number of slab pages we
3303                  * reclaimed from this zone.
3304                  */
3305                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3306                 if (nr_slab_pages1 < nr_slab_pages0)
3307                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3308         }
3309
3310         p->reclaim_state = NULL;
3311         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3312         lockdep_clear_current_reclaim_state();
3313         return sc.nr_reclaimed >= nr_pages;
3314 }
3315
3316 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3317 {
3318         int node_id;
3319         int ret;
3320
3321         /*
3322          * Zone reclaim reclaims unmapped file backed pages and
3323          * slab pages if we are over the defined limits.
3324          *
3325          * A small portion of unmapped file backed pages is needed for
3326          * file I/O otherwise pages read by file I/O will be immediately
3327          * thrown out if the zone is overallocated. So we do not reclaim
3328          * if less than a specified percentage of the zone is used by
3329          * unmapped file backed pages.
3330          */
3331         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3332             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3333                 return ZONE_RECLAIM_FULL;
3334
3335         if (zone->all_unreclaimable)
3336                 return ZONE_RECLAIM_FULL;
3337
3338         /*
3339          * Do not scan if the allocation should not be delayed.
3340          */
3341         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3342                 return ZONE_RECLAIM_NOSCAN;
3343
3344         /*
3345          * Only run zone reclaim on the local zone or on zones that do not
3346          * have associated processors. This will favor the local processor
3347          * over remote processors and spread off node memory allocations
3348          * as wide as possible.
3349          */
3350         node_id = zone_to_nid(zone);
3351         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3352                 return ZONE_RECLAIM_NOSCAN;
3353
3354         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3355                 return ZONE_RECLAIM_NOSCAN;
3356
3357         ret = __zone_reclaim(zone, gfp_mask, order);
3358         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3359
3360         if (!ret)
3361                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3362
3363         return ret;
3364 }
3365 #endif
3366
3367 /*
3368  * page_evictable - test whether a page is evictable
3369  * @page: the page to test
3370  * @vma: the VMA in which the page is or will be mapped, may be NULL
3371  *
3372  * Test whether page is evictable--i.e., should be placed on active/inactive
3373  * lists vs unevictable list.  The vma argument is !NULL when called from the
3374  * fault path to determine how to instantate a new page.
3375  *
3376  * Reasons page might not be evictable:
3377  * (1) page's mapping marked unevictable
3378  * (2) page is part of an mlocked VMA
3379  *
3380  */
3381 int page_evictable(struct page *page, struct vm_area_struct *vma)
3382 {
3383
3384         if (mapping_unevictable(page_mapping(page)))
3385                 return 0;
3386
3387         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3388                 return 0;
3389
3390         return 1;
3391 }
3392
3393 /**
3394  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3395  * @page: page to check evictability and move to appropriate lru list
3396  * @zone: zone page is in
3397  *
3398  * Checks a page for evictability and moves the page to the appropriate
3399  * zone lru list.
3400  *
3401  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3402  * have PageUnevictable set.
3403  */
3404 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3405 {
3406         VM_BUG_ON(PageActive(page));
3407
3408 retry:
3409         ClearPageUnevictable(page);
3410         if (page_evictable(page, NULL)) {
3411                 enum lru_list l = page_lru_base_type(page);
3412
3413                 __dec_zone_state(zone, NR_UNEVICTABLE);
3414                 list_move(&page->lru, &zone->lru[l].list);
3415                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3416                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3417                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3418         } else {
3419                 /*
3420                  * rotate unevictable list
3421                  */
3422                 SetPageUnevictable(page);
3423                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3424                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3425                 if (page_evictable(page, NULL))
3426                         goto retry;
3427         }
3428 }
3429
3430 /**
3431  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3432  * @mapping: struct address_space to scan for evictable pages
3433  *
3434  * Scan all pages in mapping.  Check unevictable pages for
3435  * evictability and move them to the appropriate zone lru list.
3436  */
3437 void scan_mapping_unevictable_pages(struct address_space *mapping)
3438 {
3439         pgoff_t next = 0;
3440         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3441                          PAGE_CACHE_SHIFT;
3442         struct zone *zone;
3443         struct pagevec pvec;
3444
3445         if (mapping->nrpages == 0)
3446                 return;
3447
3448         pagevec_init(&pvec, 0);
3449         while (next < end &&
3450                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3451                 int i;
3452                 int pg_scanned = 0;
3453
3454                 zone = NULL;
3455
3456                 for (i = 0; i < pagevec_count(&pvec); i++) {
3457                         struct page *page = pvec.pages[i];
3458                         pgoff_t page_index = page->index;
3459                         struct zone *pagezone = page_zone(page);
3460
3461                         pg_scanned++;
3462                         if (page_index > next)
3463                                 next = page_index;
3464                         next++;
3465
3466                         if (pagezone != zone) {
3467                                 if (zone)
3468                                         spin_unlock_irq(&zone->lru_lock);
3469                                 zone = pagezone;
3470                                 spin_lock_irq(&zone->lru_lock);
3471                         }
3472
3473                         if (PageLRU(page) && PageUnevictable(page))
3474                                 check_move_unevictable_page(page, zone);
3475                 }
3476                 if (zone)
3477                         spin_unlock_irq(&zone->lru_lock);
3478                 pagevec_release(&pvec);
3479
3480                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3481         }
3482
3483 }
3484
3485 /**
3486  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3487  * @zone - zone of which to scan the unevictable list
3488  *
3489  * Scan @zone's unevictable LRU lists to check for pages that have become
3490  * evictable.  Move those that have to @zone's inactive list where they
3491  * become candidates for reclaim, unless shrink_inactive_zone() decides
3492  * to reactivate them.  Pages that are still unevictable are rotated
3493  * back onto @zone's unevictable list.
3494  */
3495 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3496 static void scan_zone_unevictable_pages(struct zone *zone)
3497 {
3498         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3499         unsigned long scan;
3500         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3501
3502         while (nr_to_scan > 0) {
3503                 unsigned long batch_size = min(nr_to_scan,
3504                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3505
3506                 spin_lock_irq(&zone->lru_lock);
3507                 for (scan = 0;  scan < batch_size; scan++) {
3508                         struct page *page = lru_to_page(l_unevictable);
3509
3510                         if (!trylock_page(page))
3511                                 continue;
3512
3513                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3514
3515                         if (likely(PageLRU(page) && PageUnevictable(page)))
3516                                 check_move_unevictable_page(page, zone);
3517
3518                         unlock_page(page);
3519                 }
3520                 spin_unlock_irq(&zone->lru_lock);
3521
3522                 nr_to_scan -= batch_size;
3523         }
3524 }
3525
3526
3527 /**
3528  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3529  *
3530  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3531  * pages that have become evictable.  Move those back to the zones'
3532  * inactive list where they become candidates for reclaim.
3533  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3534  * and we add swap to the system.  As such, it runs in the context of a task
3535  * that has possibly/probably made some previously unevictable pages
3536  * evictable.
3537  */
3538 static void scan_all_zones_unevictable_pages(void)
3539 {
3540         struct zone *zone;
3541
3542         for_each_zone(zone) {
3543                 scan_zone_unevictable_pages(zone);
3544         }
3545 }
3546
3547 /*
3548  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3549  * all nodes' unevictable lists for evictable pages
3550  */
3551 unsigned long scan_unevictable_pages;
3552
3553 int scan_unevictable_handler(struct ctl_table *table, int write,
3554                            void __user *buffer,
3555                            size_t *length, loff_t *ppos)
3556 {
3557         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3558
3559         if (write && *(unsigned long *)table->data)
3560                 scan_all_zones_unevictable_pages();
3561
3562         scan_unevictable_pages = 0;
3563         return 0;
3564 }
3565
3566 #ifdef CONFIG_NUMA
3567 /*
3568  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3569  * a specified node's per zone unevictable lists for evictable pages.
3570  */
3571
3572 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3573                                           struct sysdev_attribute *attr,
3574                                           char *buf)
3575 {
3576         return sprintf(buf, "0\n");     /* always zero; should fit... */
3577 }
3578
3579 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3580                                            struct sysdev_attribute *attr,
3581                                         const char *buf, size_t count)
3582 {
3583         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3584         struct zone *zone;
3585         unsigned long res;
3586         unsigned long req = strict_strtoul(buf, 10, &res);
3587
3588         if (!req)
3589                 return 1;       /* zero is no-op */
3590
3591         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3592                 if (!populated_zone(zone))
3593                         continue;
3594                 scan_zone_unevictable_pages(zone);
3595         }
3596         return 1;
3597 }
3598
3599
3600 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3601                         read_scan_unevictable_node,
3602                         write_scan_unevictable_node);
3603
3604 int scan_unevictable_register_node(struct node *node)
3605 {
3606         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3607 }
3608
3609 void scan_unevictable_unregister_node(struct node *node)
3610 {
3611         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3612 }
3613 #endif