mm/vmscan.c: consider swap space when deciding whether to continue reclaim
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int swappiness;
99
100         int order;
101
102         /*
103          * Intend to reclaim enough continuous memory rather than reclaim
104          * enough amount of memory. i.e, mode for high order allocation.
105          */
106         reclaim_mode_t reclaim_mode;
107
108         /* Which cgroup do we reclaim from */
109         struct mem_cgroup *mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)                    \
122         do {                                                            \
123                 if ((_page)->lru.prev != _base) {                       \
124                         struct page *prev;                              \
125                                                                         \
126                         prev = lru_to_page(&(_page->lru));              \
127                         prefetch(&prev->_field);                        \
128                 }                                                       \
129         } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
136         do {                                                            \
137                 if ((_page)->lru.prev != _base) {                       \
138                         struct page *prev;                              \
139                                                                         \
140                         prev = lru_to_page(&(_page->lru));              \
141                         prefetchw(&prev->_field);                       \
142                 }                                                       \
143         } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;    /* The total number of pages which the VM controls */
153
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
162
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164                                                   struct scan_control *sc)
165 {
166         if (!scanning_global_lru(sc))
167                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169         return &zone->reclaim_stat;
170 }
171
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173                                 struct scan_control *sc, enum lru_list lru)
174 {
175         if (!scanning_global_lru(sc))
176                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256
257                 /*
258                  * copy the current shrinker scan count into a local variable
259                  * and zero it so that other concurrent shrinker invocations
260                  * don't also do this scanning work.
261                  */
262                 do {
263                         nr = shrinker->nr;
264                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
265
266                 total_scan = nr;
267                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
268                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
269                 delta *= max_pass;
270                 do_div(delta, lru_pages + 1);
271                 total_scan += delta;
272                 if (total_scan < 0) {
273                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
274                                "delete nr=%ld\n",
275                                shrinker->shrink, total_scan);
276                         total_scan = max_pass;
277                 }
278
279                 /*
280                  * We need to avoid excessive windup on filesystem shrinkers
281                  * due to large numbers of GFP_NOFS allocations causing the
282                  * shrinkers to return -1 all the time. This results in a large
283                  * nr being built up so when a shrink that can do some work
284                  * comes along it empties the entire cache due to nr >>>
285                  * max_pass.  This is bad for sustaining a working set in
286                  * memory.
287                  *
288                  * Hence only allow the shrinker to scan the entire cache when
289                  * a large delta change is calculated directly.
290                  */
291                 if (delta < max_pass / 4)
292                         total_scan = min(total_scan, max_pass / 2);
293
294                 /*
295                  * Avoid risking looping forever due to too large nr value:
296                  * never try to free more than twice the estimate number of
297                  * freeable entries.
298                  */
299                 if (total_scan > max_pass * 2)
300                         total_scan = max_pass * 2;
301
302                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
303                                         nr_pages_scanned, lru_pages,
304                                         max_pass, delta, total_scan);
305
306                 while (total_scan >= SHRINK_BATCH) {
307                         long this_scan = SHRINK_BATCH;
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         this_scan);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, this_scan);
318                         total_scan -= this_scan;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageSwapBacked(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page || referenced_ptes > 1)
727                         return PAGEREF_ACTIVATE;
728
729                 /*
730                  * Activate file-backed executable pages after first usage.
731                  */
732                 if (vm_flags & VM_EXEC)
733                         return PAGEREF_ACTIVATE;
734
735                 return PAGEREF_KEEP;
736         }
737
738         /* Reclaim if clean, defer dirty pages to writeback */
739         if (referenced_page && !PageSwapBacked(page))
740                 return PAGEREF_RECLAIM_CLEAN;
741
742         return PAGEREF_RECLAIM;
743 }
744
745 static noinline_for_stack void free_page_list(struct list_head *free_pages)
746 {
747         struct pagevec freed_pvec;
748         struct page *page, *tmp;
749
750         pagevec_init(&freed_pvec, 1);
751
752         list_for_each_entry_safe(page, tmp, free_pages, lru) {
753                 list_del(&page->lru);
754                 if (!pagevec_add(&freed_pvec, page)) {
755                         __pagevec_free(&freed_pvec);
756                         pagevec_reinit(&freed_pvec);
757                 }
758         }
759
760         pagevec_free(&freed_pvec);
761 }
762
763 /*
764  * shrink_page_list() returns the number of reclaimed pages
765  */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767                                       struct zone *zone,
768                                       struct scan_control *sc)
769 {
770         LIST_HEAD(ret_pages);
771         LIST_HEAD(free_pages);
772         int pgactivate = 0;
773         unsigned long nr_dirty = 0;
774         unsigned long nr_congested = 0;
775         unsigned long nr_reclaimed = 0;
776
777         cond_resched();
778
779         while (!list_empty(page_list)) {
780                 enum page_references references;
781                 struct address_space *mapping;
782                 struct page *page;
783                 int may_enter_fs;
784
785                 cond_resched();
786
787                 page = lru_to_page(page_list);
788                 list_del(&page->lru);
789
790                 if (!trylock_page(page))
791                         goto keep;
792
793                 VM_BUG_ON(PageActive(page));
794                 VM_BUG_ON(page_zone(page) != zone);
795
796                 sc->nr_scanned++;
797
798                 if (unlikely(!page_evictable(page, NULL)))
799                         goto cull_mlocked;
800
801                 if (!sc->may_unmap && page_mapped(page))
802                         goto keep_locked;
803
804                 /* Double the slab pressure for mapped and swapcache pages */
805                 if (page_mapped(page) || PageSwapCache(page))
806                         sc->nr_scanned++;
807
808                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
809                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
810
811                 if (PageWriteback(page)) {
812                         /*
813                          * Synchronous reclaim is performed in two passes,
814                          * first an asynchronous pass over the list to
815                          * start parallel writeback, and a second synchronous
816                          * pass to wait for the IO to complete.  Wait here
817                          * for any page for which writeback has already
818                          * started.
819                          */
820                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
821                             may_enter_fs)
822                                 wait_on_page_writeback(page);
823                         else {
824                                 unlock_page(page);
825                                 goto keep_lumpy;
826                         }
827                 }
828
829                 references = page_check_references(page, sc);
830                 switch (references) {
831                 case PAGEREF_ACTIVATE:
832                         goto activate_locked;
833                 case PAGEREF_KEEP:
834                         goto keep_locked;
835                 case PAGEREF_RECLAIM:
836                 case PAGEREF_RECLAIM_CLEAN:
837                         ; /* try to reclaim the page below */
838                 }
839
840                 /*
841                  * Anonymous process memory has backing store?
842                  * Try to allocate it some swap space here.
843                  */
844                 if (PageAnon(page) && !PageSwapCache(page)) {
845                         if (!(sc->gfp_mask & __GFP_IO))
846                                 goto keep_locked;
847                         if (!add_to_swap(page))
848                                 goto activate_locked;
849                         may_enter_fs = 1;
850                 }
851
852                 mapping = page_mapping(page);
853
854                 /*
855                  * The page is mapped into the page tables of one or more
856                  * processes. Try to unmap it here.
857                  */
858                 if (page_mapped(page) && mapping) {
859                         switch (try_to_unmap(page, TTU_UNMAP)) {
860                         case SWAP_FAIL:
861                                 goto activate_locked;
862                         case SWAP_AGAIN:
863                                 goto keep_locked;
864                         case SWAP_MLOCK:
865                                 goto cull_mlocked;
866                         case SWAP_SUCCESS:
867                                 ; /* try to free the page below */
868                         }
869                 }
870
871                 if (PageDirty(page)) {
872                         nr_dirty++;
873
874                         if (references == PAGEREF_RECLAIM_CLEAN)
875                                 goto keep_locked;
876                         if (!may_enter_fs)
877                                 goto keep_locked;
878                         if (!sc->may_writepage)
879                                 goto keep_locked;
880
881                         /* Page is dirty, try to write it out here */
882                         switch (pageout(page, mapping, sc)) {
883                         case PAGE_KEEP:
884                                 nr_congested++;
885                                 goto keep_locked;
886                         case PAGE_ACTIVATE:
887                                 goto activate_locked;
888                         case PAGE_SUCCESS:
889                                 if (PageWriteback(page))
890                                         goto keep_lumpy;
891                                 if (PageDirty(page))
892                                         goto keep;
893
894                                 /*
895                                  * A synchronous write - probably a ramdisk.  Go
896                                  * ahead and try to reclaim the page.
897                                  */
898                                 if (!trylock_page(page))
899                                         goto keep;
900                                 if (PageDirty(page) || PageWriteback(page))
901                                         goto keep_locked;
902                                 mapping = page_mapping(page);
903                         case PAGE_CLEAN:
904                                 ; /* try to free the page below */
905                         }
906                 }
907
908                 /*
909                  * If the page has buffers, try to free the buffer mappings
910                  * associated with this page. If we succeed we try to free
911                  * the page as well.
912                  *
913                  * We do this even if the page is PageDirty().
914                  * try_to_release_page() does not perform I/O, but it is
915                  * possible for a page to have PageDirty set, but it is actually
916                  * clean (all its buffers are clean).  This happens if the
917                  * buffers were written out directly, with submit_bh(). ext3
918                  * will do this, as well as the blockdev mapping.
919                  * try_to_release_page() will discover that cleanness and will
920                  * drop the buffers and mark the page clean - it can be freed.
921                  *
922                  * Rarely, pages can have buffers and no ->mapping.  These are
923                  * the pages which were not successfully invalidated in
924                  * truncate_complete_page().  We try to drop those buffers here
925                  * and if that worked, and the page is no longer mapped into
926                  * process address space (page_count == 1) it can be freed.
927                  * Otherwise, leave the page on the LRU so it is swappable.
928                  */
929                 if (page_has_private(page)) {
930                         if (!try_to_release_page(page, sc->gfp_mask))
931                                 goto activate_locked;
932                         if (!mapping && page_count(page) == 1) {
933                                 unlock_page(page);
934                                 if (put_page_testzero(page))
935                                         goto free_it;
936                                 else {
937                                         /*
938                                          * rare race with speculative reference.
939                                          * the speculative reference will free
940                                          * this page shortly, so we may
941                                          * increment nr_reclaimed here (and
942                                          * leave it off the LRU).
943                                          */
944                                         nr_reclaimed++;
945                                         continue;
946                                 }
947                         }
948                 }
949
950                 if (!mapping || !__remove_mapping(mapping, page))
951                         goto keep_locked;
952
953                 /*
954                  * At this point, we have no other references and there is
955                  * no way to pick any more up (removed from LRU, removed
956                  * from pagecache). Can use non-atomic bitops now (and
957                  * we obviously don't have to worry about waking up a process
958                  * waiting on the page lock, because there are no references.
959                  */
960                 __clear_page_locked(page);
961 free_it:
962                 nr_reclaimed++;
963
964                 /*
965                  * Is there need to periodically free_page_list? It would
966                  * appear not as the counts should be low
967                  */
968                 list_add(&page->lru, &free_pages);
969                 continue;
970
971 cull_mlocked:
972                 if (PageSwapCache(page))
973                         try_to_free_swap(page);
974                 unlock_page(page);
975                 putback_lru_page(page);
976                 reset_reclaim_mode(sc);
977                 continue;
978
979 activate_locked:
980                 /* Not a candidate for swapping, so reclaim swap space. */
981                 if (PageSwapCache(page) && vm_swap_full())
982                         try_to_free_swap(page);
983                 VM_BUG_ON(PageActive(page));
984                 SetPageActive(page);
985                 pgactivate++;
986 keep_locked:
987                 unlock_page(page);
988 keep:
989                 reset_reclaim_mode(sc);
990 keep_lumpy:
991                 list_add(&page->lru, &ret_pages);
992                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
993         }
994
995         /*
996          * Tag a zone as congested if all the dirty pages encountered were
997          * backed by a congested BDI. In this case, reclaimers should just
998          * back off and wait for congestion to clear because further reclaim
999          * will encounter the same problem
1000          */
1001         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1002                 zone_set_flag(zone, ZONE_CONGESTED);
1003
1004         free_page_list(&free_pages);
1005
1006         list_splice(&ret_pages, page_list);
1007         count_vm_events(PGACTIVATE, pgactivate);
1008         return nr_reclaimed;
1009 }
1010
1011 /*
1012  * Attempt to remove the specified page from its LRU.  Only take this page
1013  * if it is of the appropriate PageActive status.  Pages which are being
1014  * freed elsewhere are also ignored.
1015  *
1016  * page:        page to consider
1017  * mode:        one of the LRU isolation modes defined above
1018  *
1019  * returns 0 on success, -ve errno on failure.
1020  */
1021 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1022 {
1023         bool all_lru_mode;
1024         int ret = -EINVAL;
1025
1026         /* Only take pages on the LRU. */
1027         if (!PageLRU(page))
1028                 return ret;
1029
1030         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1031                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1032
1033         /*
1034          * When checking the active state, we need to be sure we are
1035          * dealing with comparible boolean values.  Take the logical not
1036          * of each.
1037          */
1038         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1039                 return ret;
1040
1041         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1042                 return ret;
1043
1044         /*
1045          * When this function is being called for lumpy reclaim, we
1046          * initially look into all LRU pages, active, inactive and
1047          * unevictable; only give shrink_page_list evictable pages.
1048          */
1049         if (PageUnevictable(page))
1050                 return ret;
1051
1052         ret = -EBUSY;
1053
1054         /*
1055          * To minimise LRU disruption, the caller can indicate that it only
1056          * wants to isolate pages it will be able to operate on without
1057          * blocking - clean pages for the most part.
1058          *
1059          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1060          * is used by reclaim when it is cannot write to backing storage
1061          *
1062          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1063          * that it is possible to migrate without blocking
1064          */
1065         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1066                 /* All the caller can do on PageWriteback is block */
1067                 if (PageWriteback(page))
1068                         return ret;
1069
1070                 if (PageDirty(page)) {
1071                         struct address_space *mapping;
1072
1073                         /* ISOLATE_CLEAN means only clean pages */
1074                         if (mode & ISOLATE_CLEAN)
1075                                 return ret;
1076
1077                         /*
1078                          * Only pages without mappings or that have a
1079                          * ->migratepage callback are possible to migrate
1080                          * without blocking
1081                          */
1082                         mapping = page_mapping(page);
1083                         if (mapping && !mapping->a_ops->migratepage)
1084                                 return ret;
1085                 }
1086         }
1087
1088         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1089                 return ret;
1090
1091         if (likely(get_page_unless_zero(page))) {
1092                 /*
1093                  * Be careful not to clear PageLRU until after we're
1094                  * sure the page is not being freed elsewhere -- the
1095                  * page release code relies on it.
1096                  */
1097                 ClearPageLRU(page);
1098                 ret = 0;
1099         }
1100
1101         return ret;
1102 }
1103
1104 /*
1105  * zone->lru_lock is heavily contended.  Some of the functions that
1106  * shrink the lists perform better by taking out a batch of pages
1107  * and working on them outside the LRU lock.
1108  *
1109  * For pagecache intensive workloads, this function is the hottest
1110  * spot in the kernel (apart from copy_*_user functions).
1111  *
1112  * Appropriate locks must be held before calling this function.
1113  *
1114  * @nr_to_scan: The number of pages to look through on the list.
1115  * @src:        The LRU list to pull pages off.
1116  * @dst:        The temp list to put pages on to.
1117  * @scanned:    The number of pages that were scanned.
1118  * @order:      The caller's attempted allocation order
1119  * @mode:       One of the LRU isolation modes
1120  * @file:       True [1] if isolating file [!anon] pages
1121  *
1122  * returns how many pages were moved onto *@dst.
1123  */
1124 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1125                 struct list_head *src, struct list_head *dst,
1126                 unsigned long *scanned, int order, isolate_mode_t mode,
1127                 int file)
1128 {
1129         unsigned long nr_taken = 0;
1130         unsigned long nr_lumpy_taken = 0;
1131         unsigned long nr_lumpy_dirty = 0;
1132         unsigned long nr_lumpy_failed = 0;
1133         unsigned long scan;
1134
1135         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1136                 struct page *page;
1137                 unsigned long pfn;
1138                 unsigned long end_pfn;
1139                 unsigned long page_pfn;
1140                 int zone_id;
1141
1142                 page = lru_to_page(src);
1143                 prefetchw_prev_lru_page(page, src, flags);
1144
1145                 VM_BUG_ON(!PageLRU(page));
1146
1147                 switch (__isolate_lru_page(page, mode, file)) {
1148                 case 0:
1149                         list_move(&page->lru, dst);
1150                         mem_cgroup_del_lru(page);
1151                         nr_taken += hpage_nr_pages(page);
1152                         break;
1153
1154                 case -EBUSY:
1155                         /* else it is being freed elsewhere */
1156                         list_move(&page->lru, src);
1157                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1158                         continue;
1159
1160                 default:
1161                         BUG();
1162                 }
1163
1164                 if (!order)
1165                         continue;
1166
1167                 /*
1168                  * Attempt to take all pages in the order aligned region
1169                  * surrounding the tag page.  Only take those pages of
1170                  * the same active state as that tag page.  We may safely
1171                  * round the target page pfn down to the requested order
1172                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1173                  * where that page is in a different zone we will detect
1174                  * it from its zone id and abort this block scan.
1175                  */
1176                 zone_id = page_zone_id(page);
1177                 page_pfn = page_to_pfn(page);
1178                 pfn = page_pfn & ~((1 << order) - 1);
1179                 end_pfn = pfn + (1 << order);
1180                 for (; pfn < end_pfn; pfn++) {
1181                         struct page *cursor_page;
1182
1183                         /* The target page is in the block, ignore it. */
1184                         if (unlikely(pfn == page_pfn))
1185                                 continue;
1186
1187                         /* Avoid holes within the zone. */
1188                         if (unlikely(!pfn_valid_within(pfn)))
1189                                 break;
1190
1191                         cursor_page = pfn_to_page(pfn);
1192
1193                         /* Check that we have not crossed a zone boundary. */
1194                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1195                                 break;
1196
1197                         /*
1198                          * If we don't have enough swap space, reclaiming of
1199                          * anon page which don't already have a swap slot is
1200                          * pointless.
1201                          */
1202                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1203                             !PageSwapCache(cursor_page))
1204                                 break;
1205
1206                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1207                                 list_move(&cursor_page->lru, dst);
1208                                 mem_cgroup_del_lru(cursor_page);
1209                                 nr_taken += hpage_nr_pages(page);
1210                                 nr_lumpy_taken++;
1211                                 if (PageDirty(cursor_page))
1212                                         nr_lumpy_dirty++;
1213                                 scan++;
1214                         } else {
1215                                 /*
1216                                  * Check if the page is freed already.
1217                                  *
1218                                  * We can't use page_count() as that
1219                                  * requires compound_head and we don't
1220                                  * have a pin on the page here. If a
1221                                  * page is tail, we may or may not
1222                                  * have isolated the head, so assume
1223                                  * it's not free, it'd be tricky to
1224                                  * track the head status without a
1225                                  * page pin.
1226                                  */
1227                                 if (!PageTail(cursor_page) &&
1228                                     !atomic_read(&cursor_page->_count))
1229                                         continue;
1230                                 break;
1231                         }
1232                 }
1233
1234                 /* If we break out of the loop above, lumpy reclaim failed */
1235                 if (pfn < end_pfn)
1236                         nr_lumpy_failed++;
1237         }
1238
1239         *scanned = scan;
1240
1241         trace_mm_vmscan_lru_isolate(order,
1242                         nr_to_scan, scan,
1243                         nr_taken,
1244                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1245                         mode);
1246         return nr_taken;
1247 }
1248
1249 static unsigned long isolate_pages_global(unsigned long nr,
1250                                         struct list_head *dst,
1251                                         unsigned long *scanned, int order,
1252                                         isolate_mode_t mode,
1253                                         struct zone *z, int active, int file)
1254 {
1255         int lru = LRU_BASE;
1256         if (active)
1257                 lru += LRU_ACTIVE;
1258         if (file)
1259                 lru += LRU_FILE;
1260         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1261                                                                 mode, file);
1262 }
1263
1264 /*
1265  * clear_active_flags() is a helper for shrink_active_list(), clearing
1266  * any active bits from the pages in the list.
1267  */
1268 static unsigned long clear_active_flags(struct list_head *page_list,
1269                                         unsigned int *count)
1270 {
1271         int nr_active = 0;
1272         int lru;
1273         struct page *page;
1274
1275         list_for_each_entry(page, page_list, lru) {
1276                 int numpages = hpage_nr_pages(page);
1277                 lru = page_lru_base_type(page);
1278                 if (PageActive(page)) {
1279                         lru += LRU_ACTIVE;
1280                         ClearPageActive(page);
1281                         nr_active += numpages;
1282                 }
1283                 if (count)
1284                         count[lru] += numpages;
1285         }
1286
1287         return nr_active;
1288 }
1289
1290 /**
1291  * isolate_lru_page - tries to isolate a page from its LRU list
1292  * @page: page to isolate from its LRU list
1293  *
1294  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1295  * vmstat statistic corresponding to whatever LRU list the page was on.
1296  *
1297  * Returns 0 if the page was removed from an LRU list.
1298  * Returns -EBUSY if the page was not on an LRU list.
1299  *
1300  * The returned page will have PageLRU() cleared.  If it was found on
1301  * the active list, it will have PageActive set.  If it was found on
1302  * the unevictable list, it will have the PageUnevictable bit set. That flag
1303  * may need to be cleared by the caller before letting the page go.
1304  *
1305  * The vmstat statistic corresponding to the list on which the page was
1306  * found will be decremented.
1307  *
1308  * Restrictions:
1309  * (1) Must be called with an elevated refcount on the page. This is a
1310  *     fundamentnal difference from isolate_lru_pages (which is called
1311  *     without a stable reference).
1312  * (2) the lru_lock must not be held.
1313  * (3) interrupts must be enabled.
1314  */
1315 int isolate_lru_page(struct page *page)
1316 {
1317         int ret = -EBUSY;
1318
1319         VM_BUG_ON(!page_count(page));
1320
1321         if (PageLRU(page)) {
1322                 struct zone *zone = page_zone(page);
1323
1324                 spin_lock_irq(&zone->lru_lock);
1325                 if (PageLRU(page)) {
1326                         int lru = page_lru(page);
1327                         ret = 0;
1328                         get_page(page);
1329                         ClearPageLRU(page);
1330
1331                         del_page_from_lru_list(zone, page, lru);
1332                 }
1333                 spin_unlock_irq(&zone->lru_lock);
1334         }
1335         return ret;
1336 }
1337
1338 /*
1339  * Are there way too many processes in the direct reclaim path already?
1340  */
1341 static int too_many_isolated(struct zone *zone, int file,
1342                 struct scan_control *sc)
1343 {
1344         unsigned long inactive, isolated;
1345
1346         if (current_is_kswapd())
1347                 return 0;
1348
1349         if (!scanning_global_lru(sc))
1350                 return 0;
1351
1352         if (file) {
1353                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1354                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1355         } else {
1356                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1357                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1358         }
1359
1360         return isolated > inactive;
1361 }
1362
1363 /*
1364  * TODO: Try merging with migrations version of putback_lru_pages
1365  */
1366 static noinline_for_stack void
1367 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1368                                 unsigned long nr_anon, unsigned long nr_file,
1369                                 struct list_head *page_list)
1370 {
1371         struct page *page;
1372         struct pagevec pvec;
1373         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375         pagevec_init(&pvec, 1);
1376
1377         /*
1378          * Put back any unfreeable pages.
1379          */
1380         spin_lock(&zone->lru_lock);
1381         while (!list_empty(page_list)) {
1382                 int lru;
1383                 page = lru_to_page(page_list);
1384                 VM_BUG_ON(PageLRU(page));
1385                 list_del(&page->lru);
1386                 if (unlikely(!page_evictable(page, NULL))) {
1387                         spin_unlock_irq(&zone->lru_lock);
1388                         putback_lru_page(page);
1389                         spin_lock_irq(&zone->lru_lock);
1390                         continue;
1391                 }
1392                 SetPageLRU(page);
1393                 lru = page_lru(page);
1394                 add_page_to_lru_list(zone, page, lru);
1395                 if (is_active_lru(lru)) {
1396                         int file = is_file_lru(lru);
1397                         int numpages = hpage_nr_pages(page);
1398                         reclaim_stat->recent_rotated[file] += numpages;
1399                 }
1400                 if (!pagevec_add(&pvec, page)) {
1401                         spin_unlock_irq(&zone->lru_lock);
1402                         __pagevec_release(&pvec);
1403                         spin_lock_irq(&zone->lru_lock);
1404                 }
1405         }
1406         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1407         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1408
1409         spin_unlock_irq(&zone->lru_lock);
1410         pagevec_release(&pvec);
1411 }
1412
1413 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1414                                         struct scan_control *sc,
1415                                         unsigned long *nr_anon,
1416                                         unsigned long *nr_file,
1417                                         struct list_head *isolated_list)
1418 {
1419         unsigned long nr_active;
1420         unsigned int count[NR_LRU_LISTS] = { 0, };
1421         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1422
1423         nr_active = clear_active_flags(isolated_list, count);
1424         __count_vm_events(PGDEACTIVATE, nr_active);
1425
1426         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1427                               -count[LRU_ACTIVE_FILE]);
1428         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1429                               -count[LRU_INACTIVE_FILE]);
1430         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1431                               -count[LRU_ACTIVE_ANON]);
1432         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1433                               -count[LRU_INACTIVE_ANON]);
1434
1435         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1436         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1437         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1438         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1439
1440         reclaim_stat->recent_scanned[0] += *nr_anon;
1441         reclaim_stat->recent_scanned[1] += *nr_file;
1442 }
1443
1444 /*
1445  * Returns true if the caller should wait to clean dirty/writeback pages.
1446  *
1447  * If we are direct reclaiming for contiguous pages and we do not reclaim
1448  * everything in the list, try again and wait for writeback IO to complete.
1449  * This will stall high-order allocations noticeably. Only do that when really
1450  * need to free the pages under high memory pressure.
1451  */
1452 static inline bool should_reclaim_stall(unsigned long nr_taken,
1453                                         unsigned long nr_freed,
1454                                         int priority,
1455                                         struct scan_control *sc)
1456 {
1457         int lumpy_stall_priority;
1458
1459         /* kswapd should not stall on sync IO */
1460         if (current_is_kswapd())
1461                 return false;
1462
1463         /* Only stall on lumpy reclaim */
1464         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1465                 return false;
1466
1467         /* If we have relaimed everything on the isolated list, no stall */
1468         if (nr_freed == nr_taken)
1469                 return false;
1470
1471         /*
1472          * For high-order allocations, there are two stall thresholds.
1473          * High-cost allocations stall immediately where as lower
1474          * order allocations such as stacks require the scanning
1475          * priority to be much higher before stalling.
1476          */
1477         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1478                 lumpy_stall_priority = DEF_PRIORITY;
1479         else
1480                 lumpy_stall_priority = DEF_PRIORITY / 3;
1481
1482         return priority <= lumpy_stall_priority;
1483 }
1484
1485 /*
1486  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1487  * of reclaimed pages
1488  */
1489 static noinline_for_stack unsigned long
1490 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1491                         struct scan_control *sc, int priority, int file)
1492 {
1493         LIST_HEAD(page_list);
1494         unsigned long nr_scanned;
1495         unsigned long nr_reclaimed = 0;
1496         unsigned long nr_taken;
1497         unsigned long nr_anon;
1498         unsigned long nr_file;
1499         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1500
1501         while (unlikely(too_many_isolated(zone, file, sc))) {
1502                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1503
1504                 /* We are about to die and free our memory. Return now. */
1505                 if (fatal_signal_pending(current))
1506                         return SWAP_CLUSTER_MAX;
1507         }
1508
1509         set_reclaim_mode(priority, sc, false);
1510         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1511                 reclaim_mode |= ISOLATE_ACTIVE;
1512
1513         lru_add_drain();
1514
1515         if (!sc->may_unmap)
1516                 reclaim_mode |= ISOLATE_UNMAPPED;
1517         if (!sc->may_writepage)
1518                 reclaim_mode |= ISOLATE_CLEAN;
1519
1520         spin_lock_irq(&zone->lru_lock);
1521
1522         if (scanning_global_lru(sc)) {
1523                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1524                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1525                 zone->pages_scanned += nr_scanned;
1526                 if (current_is_kswapd())
1527                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1528                                                nr_scanned);
1529                 else
1530                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1531                                                nr_scanned);
1532         } else {
1533                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1534                         &nr_scanned, sc->order, reclaim_mode, zone,
1535                         sc->mem_cgroup, 0, file);
1536                 /*
1537                  * mem_cgroup_isolate_pages() keeps track of
1538                  * scanned pages on its own.
1539                  */
1540         }
1541
1542         if (nr_taken == 0) {
1543                 spin_unlock_irq(&zone->lru_lock);
1544                 return 0;
1545         }
1546
1547         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1548
1549         spin_unlock_irq(&zone->lru_lock);
1550
1551         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1552
1553         /* Check if we should syncronously wait for writeback */
1554         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1555                 set_reclaim_mode(priority, sc, true);
1556                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1557         }
1558
1559         local_irq_disable();
1560         if (current_is_kswapd())
1561                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1562         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1563
1564         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1565
1566         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1567                 zone_idx(zone),
1568                 nr_scanned, nr_reclaimed,
1569                 priority,
1570                 trace_shrink_flags(file, sc->reclaim_mode));
1571         return nr_reclaimed;
1572 }
1573
1574 /*
1575  * This moves pages from the active list to the inactive list.
1576  *
1577  * We move them the other way if the page is referenced by one or more
1578  * processes, from rmap.
1579  *
1580  * If the pages are mostly unmapped, the processing is fast and it is
1581  * appropriate to hold zone->lru_lock across the whole operation.  But if
1582  * the pages are mapped, the processing is slow (page_referenced()) so we
1583  * should drop zone->lru_lock around each page.  It's impossible to balance
1584  * this, so instead we remove the pages from the LRU while processing them.
1585  * It is safe to rely on PG_active against the non-LRU pages in here because
1586  * nobody will play with that bit on a non-LRU page.
1587  *
1588  * The downside is that we have to touch page->_count against each page.
1589  * But we had to alter page->flags anyway.
1590  */
1591
1592 static void move_active_pages_to_lru(struct zone *zone,
1593                                      struct list_head *list,
1594                                      enum lru_list lru)
1595 {
1596         unsigned long pgmoved = 0;
1597         struct pagevec pvec;
1598         struct page *page;
1599
1600         pagevec_init(&pvec, 1);
1601
1602         while (!list_empty(list)) {
1603                 page = lru_to_page(list);
1604
1605                 VM_BUG_ON(PageLRU(page));
1606                 SetPageLRU(page);
1607
1608                 list_move(&page->lru, &zone->lru[lru].list);
1609                 mem_cgroup_add_lru_list(page, lru);
1610                 pgmoved += hpage_nr_pages(page);
1611
1612                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1613                         spin_unlock_irq(&zone->lru_lock);
1614                         if (buffer_heads_over_limit)
1615                                 pagevec_strip(&pvec);
1616                         __pagevec_release(&pvec);
1617                         spin_lock_irq(&zone->lru_lock);
1618                 }
1619         }
1620         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1621         if (!is_active_lru(lru))
1622                 __count_vm_events(PGDEACTIVATE, pgmoved);
1623 }
1624
1625 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1626                         struct scan_control *sc, int priority, int file)
1627 {
1628         unsigned long nr_taken;
1629         unsigned long pgscanned;
1630         unsigned long vm_flags;
1631         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1632         LIST_HEAD(l_active);
1633         LIST_HEAD(l_inactive);
1634         struct page *page;
1635         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1636         unsigned long nr_rotated = 0;
1637         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1638
1639         lru_add_drain();
1640
1641         if (!sc->may_unmap)
1642                 reclaim_mode |= ISOLATE_UNMAPPED;
1643         if (!sc->may_writepage)
1644                 reclaim_mode |= ISOLATE_CLEAN;
1645
1646         spin_lock_irq(&zone->lru_lock);
1647         if (scanning_global_lru(sc)) {
1648                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1649                                                 &pgscanned, sc->order,
1650                                                 reclaim_mode, zone,
1651                                                 1, file);
1652                 zone->pages_scanned += pgscanned;
1653         } else {
1654                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1655                                                 &pgscanned, sc->order,
1656                                                 reclaim_mode, zone,
1657                                                 sc->mem_cgroup, 1, file);
1658                 /*
1659                  * mem_cgroup_isolate_pages() keeps track of
1660                  * scanned pages on its own.
1661                  */
1662         }
1663
1664         reclaim_stat->recent_scanned[file] += nr_taken;
1665
1666         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1667         if (file)
1668                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1669         else
1670                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1671         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1672         spin_unlock_irq(&zone->lru_lock);
1673
1674         while (!list_empty(&l_hold)) {
1675                 cond_resched();
1676                 page = lru_to_page(&l_hold);
1677                 list_del(&page->lru);
1678
1679                 if (unlikely(!page_evictable(page, NULL))) {
1680                         putback_lru_page(page);
1681                         continue;
1682                 }
1683
1684                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1685                         nr_rotated += hpage_nr_pages(page);
1686                         /*
1687                          * Identify referenced, file-backed active pages and
1688                          * give them one more trip around the active list. So
1689                          * that executable code get better chances to stay in
1690                          * memory under moderate memory pressure.  Anon pages
1691                          * are not likely to be evicted by use-once streaming
1692                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1693                          * so we ignore them here.
1694                          */
1695                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1696                                 list_add(&page->lru, &l_active);
1697                                 continue;
1698                         }
1699                 }
1700
1701                 ClearPageActive(page);  /* we are de-activating */
1702                 list_add(&page->lru, &l_inactive);
1703         }
1704
1705         /*
1706          * Move pages back to the lru list.
1707          */
1708         spin_lock_irq(&zone->lru_lock);
1709         /*
1710          * Count referenced pages from currently used mappings as rotated,
1711          * even though only some of them are actually re-activated.  This
1712          * helps balance scan pressure between file and anonymous pages in
1713          * get_scan_ratio.
1714          */
1715         reclaim_stat->recent_rotated[file] += nr_rotated;
1716
1717         move_active_pages_to_lru(zone, &l_active,
1718                                                 LRU_ACTIVE + file * LRU_FILE);
1719         move_active_pages_to_lru(zone, &l_inactive,
1720                                                 LRU_BASE   + file * LRU_FILE);
1721         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1722         spin_unlock_irq(&zone->lru_lock);
1723 }
1724
1725 #ifdef CONFIG_SWAP
1726 static int inactive_anon_is_low_global(struct zone *zone)
1727 {
1728         unsigned long active, inactive;
1729
1730         active = zone_page_state(zone, NR_ACTIVE_ANON);
1731         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1732
1733         if (inactive * zone->inactive_ratio < active)
1734                 return 1;
1735
1736         return 0;
1737 }
1738
1739 /**
1740  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1741  * @zone: zone to check
1742  * @sc:   scan control of this context
1743  *
1744  * Returns true if the zone does not have enough inactive anon pages,
1745  * meaning some active anon pages need to be deactivated.
1746  */
1747 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1748 {
1749         int low;
1750
1751         /*
1752          * If we don't have swap space, anonymous page deactivation
1753          * is pointless.
1754          */
1755         if (!total_swap_pages)
1756                 return 0;
1757
1758         if (scanning_global_lru(sc))
1759                 low = inactive_anon_is_low_global(zone);
1760         else
1761                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1762         return low;
1763 }
1764 #else
1765 static inline int inactive_anon_is_low(struct zone *zone,
1766                                         struct scan_control *sc)
1767 {
1768         return 0;
1769 }
1770 #endif
1771
1772 static int inactive_file_is_low_global(struct zone *zone)
1773 {
1774         unsigned long active, inactive;
1775
1776         active = zone_page_state(zone, NR_ACTIVE_FILE);
1777         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1778
1779         return (active > inactive);
1780 }
1781
1782 /**
1783  * inactive_file_is_low - check if file pages need to be deactivated
1784  * @zone: zone to check
1785  * @sc:   scan control of this context
1786  *
1787  * When the system is doing streaming IO, memory pressure here
1788  * ensures that active file pages get deactivated, until more
1789  * than half of the file pages are on the inactive list.
1790  *
1791  * Once we get to that situation, protect the system's working
1792  * set from being evicted by disabling active file page aging.
1793  *
1794  * This uses a different ratio than the anonymous pages, because
1795  * the page cache uses a use-once replacement algorithm.
1796  */
1797 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1798 {
1799         int low;
1800
1801         if (scanning_global_lru(sc))
1802                 low = inactive_file_is_low_global(zone);
1803         else
1804                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1805         return low;
1806 }
1807
1808 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1809                                 int file)
1810 {
1811         if (file)
1812                 return inactive_file_is_low(zone, sc);
1813         else
1814                 return inactive_anon_is_low(zone, sc);
1815 }
1816
1817 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1818         struct zone *zone, struct scan_control *sc, int priority)
1819 {
1820         int file = is_file_lru(lru);
1821
1822         if (is_active_lru(lru)) {
1823                 if (inactive_list_is_low(zone, sc, file))
1824                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1825                 return 0;
1826         }
1827
1828         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1829 }
1830
1831 /*
1832  * Determine how aggressively the anon and file LRU lists should be
1833  * scanned.  The relative value of each set of LRU lists is determined
1834  * by looking at the fraction of the pages scanned we did rotate back
1835  * onto the active list instead of evict.
1836  *
1837  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1838  */
1839 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1840                                         unsigned long *nr, int priority)
1841 {
1842         unsigned long anon, file, free;
1843         unsigned long anon_prio, file_prio;
1844         unsigned long ap, fp;
1845         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1846         u64 fraction[2], denominator;
1847         enum lru_list l;
1848         int noswap = 0;
1849         bool force_scan = false;
1850         unsigned long nr_force_scan[2];
1851
1852         /* kswapd does zone balancing and needs to scan this zone */
1853         if (scanning_global_lru(sc) && current_is_kswapd())
1854                 force_scan = true;
1855         /* memcg may have small limit and need to avoid priority drop */
1856         if (!scanning_global_lru(sc))
1857                 force_scan = true;
1858
1859         /* If we have no swap space, do not bother scanning anon pages. */
1860         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1861                 noswap = 1;
1862                 fraction[0] = 0;
1863                 fraction[1] = 1;
1864                 denominator = 1;
1865                 nr_force_scan[0] = 0;
1866                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1867                 goto out;
1868         }
1869
1870         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1871                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1872         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1873                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1874
1875         if (scanning_global_lru(sc)) {
1876                 free  = zone_page_state(zone, NR_FREE_PAGES);
1877                 /* If we have very few page cache pages,
1878                    force-scan anon pages. */
1879                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1880                         fraction[0] = 1;
1881                         fraction[1] = 0;
1882                         denominator = 1;
1883                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1884                         nr_force_scan[1] = 0;
1885                         goto out;
1886                 }
1887         }
1888
1889         /*
1890          * With swappiness at 100, anonymous and file have the same priority.
1891          * This scanning priority is essentially the inverse of IO cost.
1892          */
1893         anon_prio = sc->swappiness;
1894         file_prio = 200 - sc->swappiness;
1895
1896         /*
1897          * OK, so we have swap space and a fair amount of page cache
1898          * pages.  We use the recently rotated / recently scanned
1899          * ratios to determine how valuable each cache is.
1900          *
1901          * Because workloads change over time (and to avoid overflow)
1902          * we keep these statistics as a floating average, which ends
1903          * up weighing recent references more than old ones.
1904          *
1905          * anon in [0], file in [1]
1906          */
1907         spin_lock_irq(&zone->lru_lock);
1908         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1909                 reclaim_stat->recent_scanned[0] /= 2;
1910                 reclaim_stat->recent_rotated[0] /= 2;
1911         }
1912
1913         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1914                 reclaim_stat->recent_scanned[1] /= 2;
1915                 reclaim_stat->recent_rotated[1] /= 2;
1916         }
1917
1918         /*
1919          * The amount of pressure on anon vs file pages is inversely
1920          * proportional to the fraction of recently scanned pages on
1921          * each list that were recently referenced and in active use.
1922          */
1923         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1924         ap /= reclaim_stat->recent_rotated[0] + 1;
1925
1926         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1927         fp /= reclaim_stat->recent_rotated[1] + 1;
1928         spin_unlock_irq(&zone->lru_lock);
1929
1930         fraction[0] = ap;
1931         fraction[1] = fp;
1932         denominator = ap + fp + 1;
1933         if (force_scan) {
1934                 unsigned long scan = SWAP_CLUSTER_MAX;
1935                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1936                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1937         }
1938 out:
1939         for_each_evictable_lru(l) {
1940                 int file = is_file_lru(l);
1941                 unsigned long scan;
1942
1943                 scan = zone_nr_lru_pages(zone, sc, l);
1944                 if (priority || noswap) {
1945                         scan >>= priority;
1946                         scan = div64_u64(scan * fraction[file], denominator);
1947                 }
1948
1949                 /*
1950                  * If zone is small or memcg is small, nr[l] can be 0.
1951                  * This results no-scan on this priority and priority drop down.
1952                  * For global direct reclaim, it can visit next zone and tend
1953                  * not to have problems. For global kswapd, it's for zone
1954                  * balancing and it need to scan a small amounts. When using
1955                  * memcg, priority drop can cause big latency. So, it's better
1956                  * to scan small amount. See may_noscan above.
1957                  */
1958                 if (!scan && force_scan)
1959                         scan = nr_force_scan[file];
1960                 nr[l] = scan;
1961         }
1962 }
1963
1964 /*
1965  * Reclaim/compaction depends on a number of pages being freed. To avoid
1966  * disruption to the system, a small number of order-0 pages continue to be
1967  * rotated and reclaimed in the normal fashion. However, by the time we get
1968  * back to the allocator and call try_to_compact_zone(), we ensure that
1969  * there are enough free pages for it to be likely successful
1970  */
1971 static inline bool should_continue_reclaim(struct zone *zone,
1972                                         unsigned long nr_reclaimed,
1973                                         unsigned long nr_scanned,
1974                                         struct scan_control *sc)
1975 {
1976         unsigned long pages_for_compaction;
1977         unsigned long inactive_lru_pages;
1978
1979         /* If not in reclaim/compaction mode, stop */
1980         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1981                 return false;
1982
1983         /* Consider stopping depending on scan and reclaim activity */
1984         if (sc->gfp_mask & __GFP_REPEAT) {
1985                 /*
1986                  * For __GFP_REPEAT allocations, stop reclaiming if the
1987                  * full LRU list has been scanned and we are still failing
1988                  * to reclaim pages. This full LRU scan is potentially
1989                  * expensive but a __GFP_REPEAT caller really wants to succeed
1990                  */
1991                 if (!nr_reclaimed && !nr_scanned)
1992                         return false;
1993         } else {
1994                 /*
1995                  * For non-__GFP_REPEAT allocations which can presumably
1996                  * fail without consequence, stop if we failed to reclaim
1997                  * any pages from the last SWAP_CLUSTER_MAX number of
1998                  * pages that were scanned. This will return to the
1999                  * caller faster at the risk reclaim/compaction and
2000                  * the resulting allocation attempt fails
2001                  */
2002                 if (!nr_reclaimed)
2003                         return false;
2004         }
2005
2006         /*
2007          * If we have not reclaimed enough pages for compaction and the
2008          * inactive lists are large enough, continue reclaiming
2009          */
2010         pages_for_compaction = (2UL << sc->order);
2011         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2012         if (nr_swap_pages > 0)
2013                 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2014         if (sc->nr_reclaimed < pages_for_compaction &&
2015                         inactive_lru_pages > pages_for_compaction)
2016                 return true;
2017
2018         /* If compaction would go ahead or the allocation would succeed, stop */
2019         switch (compaction_suitable(zone, sc->order)) {
2020         case COMPACT_PARTIAL:
2021         case COMPACT_CONTINUE:
2022                 return false;
2023         default:
2024                 return true;
2025         }
2026 }
2027
2028 /*
2029  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030  */
2031 static void shrink_zone(int priority, struct zone *zone,
2032                                 struct scan_control *sc)
2033 {
2034         unsigned long nr[NR_LRU_LISTS];
2035         unsigned long nr_to_scan;
2036         enum lru_list l;
2037         unsigned long nr_reclaimed, nr_scanned;
2038         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039
2040 restart:
2041         nr_reclaimed = 0;
2042         nr_scanned = sc->nr_scanned;
2043         get_scan_count(zone, sc, nr, priority);
2044
2045         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2046                                         nr[LRU_INACTIVE_FILE]) {
2047                 for_each_evictable_lru(l) {
2048                         if (nr[l]) {
2049                                 nr_to_scan = min_t(unsigned long,
2050                                                    nr[l], SWAP_CLUSTER_MAX);
2051                                 nr[l] -= nr_to_scan;
2052
2053                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2054                                                             zone, sc, priority);
2055                         }
2056                 }
2057                 /*
2058                  * On large memory systems, scan >> priority can become
2059                  * really large. This is fine for the starting priority;
2060                  * we want to put equal scanning pressure on each zone.
2061                  * However, if the VM has a harder time of freeing pages,
2062                  * with multiple processes reclaiming pages, the total
2063                  * freeing target can get unreasonably large.
2064                  */
2065                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2066                         break;
2067         }
2068         sc->nr_reclaimed += nr_reclaimed;
2069
2070         /*
2071          * Even if we did not try to evict anon pages at all, we want to
2072          * rebalance the anon lru active/inactive ratio.
2073          */
2074         if (inactive_anon_is_low(zone, sc))
2075                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2076
2077         /* reclaim/compaction might need reclaim to continue */
2078         if (should_continue_reclaim(zone, nr_reclaimed,
2079                                         sc->nr_scanned - nr_scanned, sc))
2080                 goto restart;
2081
2082         throttle_vm_writeout(sc->gfp_mask);
2083 }
2084
2085 /* Returns true if compaction should go ahead for a high-order request */
2086 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2087 {
2088         unsigned long balance_gap, watermark;
2089         bool watermark_ok;
2090
2091         /* Do not consider compaction for orders reclaim is meant to satisfy */
2092         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2093                 return false;
2094
2095         /*
2096          * Compaction takes time to run and there are potentially other
2097          * callers using the pages just freed. Continue reclaiming until
2098          * there is a buffer of free pages available to give compaction
2099          * a reasonable chance of completing and allocating the page
2100          */
2101         balance_gap = min(low_wmark_pages(zone),
2102                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2103                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2104         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2105         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2106
2107         /*
2108          * If compaction is deferred, reclaim up to a point where
2109          * compaction will have a chance of success when re-enabled
2110          */
2111         if (compaction_deferred(zone))
2112                 return watermark_ok;
2113
2114         /* If compaction is not ready to start, keep reclaiming */
2115         if (!compaction_suitable(zone, sc->order))
2116                 return false;
2117
2118         return watermark_ok;
2119 }
2120
2121 /*
2122  * This is the direct reclaim path, for page-allocating processes.  We only
2123  * try to reclaim pages from zones which will satisfy the caller's allocation
2124  * request.
2125  *
2126  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2127  * Because:
2128  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2129  *    allocation or
2130  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2131  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2132  *    zone defense algorithm.
2133  *
2134  * If a zone is deemed to be full of pinned pages then just give it a light
2135  * scan then give up on it.
2136  *
2137  * This function returns true if a zone is being reclaimed for a costly
2138  * high-order allocation and compaction is ready to begin. This indicates to
2139  * the caller that it should consider retrying the allocation instead of
2140  * further reclaim.
2141  */
2142 static bool shrink_zones(int priority, struct zonelist *zonelist,
2143                                         struct scan_control *sc)
2144 {
2145         struct zoneref *z;
2146         struct zone *zone;
2147         unsigned long nr_soft_reclaimed;
2148         unsigned long nr_soft_scanned;
2149         bool aborted_reclaim = false;
2150
2151         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2152                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2153                 if (!populated_zone(zone))
2154                         continue;
2155                 /*
2156                  * Take care memory controller reclaiming has small influence
2157                  * to global LRU.
2158                  */
2159                 if (scanning_global_lru(sc)) {
2160                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2161                                 continue;
2162                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2163                                 continue;       /* Let kswapd poll it */
2164                         if (COMPACTION_BUILD) {
2165                                 /*
2166                                  * If we already have plenty of memory free for
2167                                  * compaction in this zone, don't free any more.
2168                                  * Even though compaction is invoked for any
2169                                  * non-zero order, only frequent costly order
2170                                  * reclamation is disruptive enough to become a
2171                                  * noticable problem, like transparent huge page
2172                                  * allocations.
2173                                  */
2174                                 if (compaction_ready(zone, sc)) {
2175                                         aborted_reclaim = true;
2176                                         continue;
2177                                 }
2178                         }
2179                         /*
2180                          * This steals pages from memory cgroups over softlimit
2181                          * and returns the number of reclaimed pages and
2182                          * scanned pages. This works for global memory pressure
2183                          * and balancing, not for a memcg's limit.
2184                          */
2185                         nr_soft_scanned = 0;
2186                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2187                                                 sc->order, sc->gfp_mask,
2188                                                 &nr_soft_scanned);
2189                         sc->nr_reclaimed += nr_soft_reclaimed;
2190                         sc->nr_scanned += nr_soft_scanned;
2191                         /* need some check for avoid more shrink_zone() */
2192                 }
2193
2194                 shrink_zone(priority, zone, sc);
2195         }
2196
2197         return aborted_reclaim;
2198 }
2199
2200 static bool zone_reclaimable(struct zone *zone)
2201 {
2202         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2203 }
2204
2205 /* All zones in zonelist are unreclaimable? */
2206 static bool all_unreclaimable(struct zonelist *zonelist,
2207                 struct scan_control *sc)
2208 {
2209         struct zoneref *z;
2210         struct zone *zone;
2211
2212         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2213                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2214                 if (!populated_zone(zone))
2215                         continue;
2216                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2217                         continue;
2218                 if (!zone->all_unreclaimable)
2219                         return false;
2220         }
2221
2222         return true;
2223 }
2224
2225 /*
2226  * This is the main entry point to direct page reclaim.
2227  *
2228  * If a full scan of the inactive list fails to free enough memory then we
2229  * are "out of memory" and something needs to be killed.
2230  *
2231  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2232  * high - the zone may be full of dirty or under-writeback pages, which this
2233  * caller can't do much about.  We kick the writeback threads and take explicit
2234  * naps in the hope that some of these pages can be written.  But if the
2235  * allocating task holds filesystem locks which prevent writeout this might not
2236  * work, and the allocation attempt will fail.
2237  *
2238  * returns:     0, if no pages reclaimed
2239  *              else, the number of pages reclaimed
2240  */
2241 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2242                                         struct scan_control *sc,
2243                                         struct shrink_control *shrink)
2244 {
2245         int priority;
2246         unsigned long total_scanned = 0;
2247         struct reclaim_state *reclaim_state = current->reclaim_state;
2248         struct zoneref *z;
2249         struct zone *zone;
2250         unsigned long writeback_threshold;
2251         bool aborted_reclaim;
2252
2253         get_mems_allowed();
2254         delayacct_freepages_start();
2255
2256         if (scanning_global_lru(sc))
2257                 count_vm_event(ALLOCSTALL);
2258
2259         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2260                 sc->nr_scanned = 0;
2261                 if (!priority)
2262                         disable_swap_token(sc->mem_cgroup);
2263                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2264
2265                 /*
2266                  * Don't shrink slabs when reclaiming memory from
2267                  * over limit cgroups
2268                  */
2269                 if (scanning_global_lru(sc)) {
2270                         unsigned long lru_pages = 0;
2271                         for_each_zone_zonelist(zone, z, zonelist,
2272                                         gfp_zone(sc->gfp_mask)) {
2273                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2274                                         continue;
2275
2276                                 lru_pages += zone_reclaimable_pages(zone);
2277                         }
2278
2279                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2280                         if (reclaim_state) {
2281                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2282                                 reclaim_state->reclaimed_slab = 0;
2283                         }
2284                 }
2285                 total_scanned += sc->nr_scanned;
2286                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2287                         goto out;
2288
2289                 /*
2290                  * Try to write back as many pages as we just scanned.  This
2291                  * tends to cause slow streaming writers to write data to the
2292                  * disk smoothly, at the dirtying rate, which is nice.   But
2293                  * that's undesirable in laptop mode, where we *want* lumpy
2294                  * writeout.  So in laptop mode, write out the whole world.
2295                  */
2296                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2297                 if (total_scanned > writeback_threshold) {
2298                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2299                         sc->may_writepage = 1;
2300                 }
2301
2302                 /* Take a nap, wait for some writeback to complete */
2303                 if (!sc->hibernation_mode && sc->nr_scanned &&
2304                     priority < DEF_PRIORITY - 2) {
2305                         struct zone *preferred_zone;
2306
2307                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2308                                                 &cpuset_current_mems_allowed,
2309                                                 &preferred_zone);
2310                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2311                 }
2312         }
2313
2314 out:
2315         delayacct_freepages_end();
2316         put_mems_allowed();
2317
2318         if (sc->nr_reclaimed)
2319                 return sc->nr_reclaimed;
2320
2321         /*
2322          * As hibernation is going on, kswapd is freezed so that it can't mark
2323          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2324          * check.
2325          */
2326         if (oom_killer_disabled)
2327                 return 0;
2328
2329         /* Aborted reclaim to try compaction? don't OOM, then */
2330         if (aborted_reclaim)
2331                 return 1;
2332
2333         /* top priority shrink_zones still had more to do? don't OOM, then */
2334         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2335                 return 1;
2336
2337         return 0;
2338 }
2339
2340 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2341                                 gfp_t gfp_mask, nodemask_t *nodemask)
2342 {
2343         unsigned long nr_reclaimed;
2344         struct scan_control sc = {
2345                 .gfp_mask = gfp_mask,
2346                 .may_writepage = !laptop_mode,
2347                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2348                 .may_unmap = 1,
2349                 .may_swap = 1,
2350                 .swappiness = vm_swappiness,
2351                 .order = order,
2352                 .mem_cgroup = NULL,
2353                 .nodemask = nodemask,
2354         };
2355         struct shrink_control shrink = {
2356                 .gfp_mask = sc.gfp_mask,
2357         };
2358
2359         trace_mm_vmscan_direct_reclaim_begin(order,
2360                                 sc.may_writepage,
2361                                 gfp_mask);
2362
2363         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2364
2365         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2366
2367         return nr_reclaimed;
2368 }
2369
2370 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2371
2372 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2373                                                 gfp_t gfp_mask, bool noswap,
2374                                                 unsigned int swappiness,
2375                                                 struct zone *zone,
2376                                                 unsigned long *nr_scanned)
2377 {
2378         struct scan_control sc = {
2379                 .nr_scanned = 0,
2380                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2381                 .may_writepage = !laptop_mode,
2382                 .may_unmap = 1,
2383                 .may_swap = !noswap,
2384                 .swappiness = swappiness,
2385                 .order = 0,
2386                 .mem_cgroup = mem,
2387         };
2388
2389         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2390                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2391
2392         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2393                                                       sc.may_writepage,
2394                                                       sc.gfp_mask);
2395
2396         /*
2397          * NOTE: Although we can get the priority field, using it
2398          * here is not a good idea, since it limits the pages we can scan.
2399          * if we don't reclaim here, the shrink_zone from balance_pgdat
2400          * will pick up pages from other mem cgroup's as well. We hack
2401          * the priority and make it zero.
2402          */
2403         shrink_zone(0, zone, &sc);
2404
2405         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2406
2407         *nr_scanned = sc.nr_scanned;
2408         return sc.nr_reclaimed;
2409 }
2410
2411 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2412                                            gfp_t gfp_mask,
2413                                            bool noswap,
2414                                            unsigned int swappiness)
2415 {
2416         struct zonelist *zonelist;
2417         unsigned long nr_reclaimed;
2418         int nid;
2419         struct scan_control sc = {
2420                 .may_writepage = !laptop_mode,
2421                 .may_unmap = 1,
2422                 .may_swap = !noswap,
2423                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2424                 .swappiness = swappiness,
2425                 .order = 0,
2426                 .mem_cgroup = mem_cont,
2427                 .nodemask = NULL, /* we don't care the placement */
2428                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2429                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2430         };
2431         struct shrink_control shrink = {
2432                 .gfp_mask = sc.gfp_mask,
2433         };
2434
2435         /*
2436          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2437          * take care of from where we get pages. So the node where we start the
2438          * scan does not need to be the current node.
2439          */
2440         nid = mem_cgroup_select_victim_node(mem_cont);
2441
2442         zonelist = NODE_DATA(nid)->node_zonelists;
2443
2444         trace_mm_vmscan_memcg_reclaim_begin(0,
2445                                             sc.may_writepage,
2446                                             sc.gfp_mask);
2447
2448         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2449
2450         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2451
2452         return nr_reclaimed;
2453 }
2454 #endif
2455
2456 /*
2457  * pgdat_balanced is used when checking if a node is balanced for high-order
2458  * allocations. Only zones that meet watermarks and are in a zone allowed
2459  * by the callers classzone_idx are added to balanced_pages. The total of
2460  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2461  * for the node to be considered balanced. Forcing all zones to be balanced
2462  * for high orders can cause excessive reclaim when there are imbalanced zones.
2463  * The choice of 25% is due to
2464  *   o a 16M DMA zone that is balanced will not balance a zone on any
2465  *     reasonable sized machine
2466  *   o On all other machines, the top zone must be at least a reasonable
2467  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2468  *     would need to be at least 256M for it to be balance a whole node.
2469  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2470  *     to balance a node on its own. These seemed like reasonable ratios.
2471  */
2472 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2473                                                 int classzone_idx)
2474 {
2475         unsigned long present_pages = 0;
2476         int i;
2477
2478         for (i = 0; i <= classzone_idx; i++)
2479                 present_pages += pgdat->node_zones[i].present_pages;
2480
2481         /* A special case here: if zone has no page, we think it's balanced */
2482         return balanced_pages >= (present_pages >> 2);
2483 }
2484
2485 /* is kswapd sleeping prematurely? */
2486 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2487                                         int classzone_idx)
2488 {
2489         int i;
2490         unsigned long balanced = 0;
2491         bool all_zones_ok = true;
2492
2493         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2494         if (remaining)
2495                 return true;
2496
2497         /* Check the watermark levels */
2498         for (i = 0; i <= classzone_idx; i++) {
2499                 struct zone *zone = pgdat->node_zones + i;
2500
2501                 if (!populated_zone(zone))
2502                         continue;
2503
2504                 /*
2505                  * balance_pgdat() skips over all_unreclaimable after
2506                  * DEF_PRIORITY. Effectively, it considers them balanced so
2507                  * they must be considered balanced here as well if kswapd
2508                  * is to sleep
2509                  */
2510                 if (zone->all_unreclaimable) {
2511                         balanced += zone->present_pages;
2512                         continue;
2513                 }
2514
2515                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2516                                                         i, 0))
2517                         all_zones_ok = false;
2518                 else
2519                         balanced += zone->present_pages;
2520         }
2521
2522         /*
2523          * For high-order requests, the balanced zones must contain at least
2524          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2525          * must be balanced
2526          */
2527         if (order)
2528                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2529         else
2530                 return !all_zones_ok;
2531 }
2532
2533 /*
2534  * For kswapd, balance_pgdat() will work across all this node's zones until
2535  * they are all at high_wmark_pages(zone).
2536  *
2537  * Returns the final order kswapd was reclaiming at
2538  *
2539  * There is special handling here for zones which are full of pinned pages.
2540  * This can happen if the pages are all mlocked, or if they are all used by
2541  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2542  * What we do is to detect the case where all pages in the zone have been
2543  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2544  * dead and from now on, only perform a short scan.  Basically we're polling
2545  * the zone for when the problem goes away.
2546  *
2547  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2548  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2549  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2550  * lower zones regardless of the number of free pages in the lower zones. This
2551  * interoperates with the page allocator fallback scheme to ensure that aging
2552  * of pages is balanced across the zones.
2553  */
2554 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2555                                                         int *classzone_idx)
2556 {
2557         int all_zones_ok;
2558         unsigned long balanced;
2559         int priority;
2560         int i;
2561         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2562         unsigned long total_scanned;
2563         struct reclaim_state *reclaim_state = current->reclaim_state;
2564         unsigned long nr_soft_reclaimed;
2565         unsigned long nr_soft_scanned;
2566         struct scan_control sc = {
2567                 .gfp_mask = GFP_KERNEL,
2568                 .may_unmap = 1,
2569                 .may_swap = 1,
2570                 /*
2571                  * kswapd doesn't want to be bailed out while reclaim. because
2572                  * we want to put equal scanning pressure on each zone.
2573                  */
2574                 .nr_to_reclaim = ULONG_MAX,
2575                 .swappiness = vm_swappiness,
2576                 .order = order,
2577                 .mem_cgroup = NULL,
2578         };
2579         struct shrink_control shrink = {
2580                 .gfp_mask = sc.gfp_mask,
2581         };
2582 loop_again:
2583         total_scanned = 0;
2584         sc.nr_reclaimed = 0;
2585         sc.may_writepage = !laptop_mode;
2586         count_vm_event(PAGEOUTRUN);
2587
2588         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2589                 unsigned long lru_pages = 0;
2590                 int has_under_min_watermark_zone = 0;
2591
2592                 /* The swap token gets in the way of swapout... */
2593                 if (!priority)
2594                         disable_swap_token(NULL);
2595
2596                 all_zones_ok = 1;
2597                 balanced = 0;
2598
2599                 /*
2600                  * Scan in the highmem->dma direction for the highest
2601                  * zone which needs scanning
2602                  */
2603                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2604                         struct zone *zone = pgdat->node_zones + i;
2605
2606                         if (!populated_zone(zone))
2607                                 continue;
2608
2609                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2610                                 continue;
2611
2612                         /*
2613                          * Do some background aging of the anon list, to give
2614                          * pages a chance to be referenced before reclaiming.
2615                          */
2616                         if (inactive_anon_is_low(zone, &sc))
2617                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2618                                                         &sc, priority, 0);
2619
2620                         if (!zone_watermark_ok_safe(zone, order,
2621                                         high_wmark_pages(zone), 0, 0)) {
2622                                 end_zone = i;
2623                                 break;
2624                         } else {
2625                                 /* If balanced, clear the congested flag */
2626                                 zone_clear_flag(zone, ZONE_CONGESTED);
2627                         }
2628                 }
2629                 if (i < 0)
2630                         goto out;
2631
2632                 for (i = 0; i <= end_zone; i++) {
2633                         struct zone *zone = pgdat->node_zones + i;
2634
2635                         lru_pages += zone_reclaimable_pages(zone);
2636                 }
2637
2638                 /*
2639                  * Now scan the zone in the dma->highmem direction, stopping
2640                  * at the last zone which needs scanning.
2641                  *
2642                  * We do this because the page allocator works in the opposite
2643                  * direction.  This prevents the page allocator from allocating
2644                  * pages behind kswapd's direction of progress, which would
2645                  * cause too much scanning of the lower zones.
2646                  */
2647                 for (i = 0; i <= end_zone; i++) {
2648                         struct zone *zone = pgdat->node_zones + i;
2649                         int nr_slab;
2650                         unsigned long balance_gap;
2651
2652                         if (!populated_zone(zone))
2653                                 continue;
2654
2655                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2656                                 continue;
2657
2658                         sc.nr_scanned = 0;
2659
2660                         nr_soft_scanned = 0;
2661                         /*
2662                          * Call soft limit reclaim before calling shrink_zone.
2663                          */
2664                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2665                                                         order, sc.gfp_mask,
2666                                                         &nr_soft_scanned);
2667                         sc.nr_reclaimed += nr_soft_reclaimed;
2668                         total_scanned += nr_soft_scanned;
2669
2670                         /*
2671                          * We put equal pressure on every zone, unless
2672                          * one zone has way too many pages free
2673                          * already. The "too many pages" is defined
2674                          * as the high wmark plus a "gap" where the
2675                          * gap is either the low watermark or 1%
2676                          * of the zone, whichever is smaller.
2677                          */
2678                         balance_gap = min(low_wmark_pages(zone),
2679                                 (zone->present_pages +
2680                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2681                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2682                         if (!zone_watermark_ok_safe(zone, order,
2683                                         high_wmark_pages(zone) + balance_gap,
2684                                         end_zone, 0)) {
2685                                 shrink_zone(priority, zone, &sc);
2686
2687                                 reclaim_state->reclaimed_slab = 0;
2688                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2689                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2690                                 total_scanned += sc.nr_scanned;
2691
2692                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2693                                         zone->all_unreclaimable = 1;
2694                         }
2695
2696                         /*
2697                          * If we've done a decent amount of scanning and
2698                          * the reclaim ratio is low, start doing writepage
2699                          * even in laptop mode
2700                          */
2701                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2702                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2703                                 sc.may_writepage = 1;
2704
2705                         if (zone->all_unreclaimable) {
2706                                 if (end_zone && end_zone == i)
2707                                         end_zone--;
2708                                 continue;
2709                         }
2710
2711                         if (!zone_watermark_ok_safe(zone, order,
2712                                         high_wmark_pages(zone), end_zone, 0)) {
2713                                 all_zones_ok = 0;
2714                                 /*
2715                                  * We are still under min water mark.  This
2716                                  * means that we have a GFP_ATOMIC allocation
2717                                  * failure risk. Hurry up!
2718                                  */
2719                                 if (!zone_watermark_ok_safe(zone, order,
2720                                             min_wmark_pages(zone), end_zone, 0))
2721                                         has_under_min_watermark_zone = 1;
2722                         } else {
2723                                 /*
2724                                  * If a zone reaches its high watermark,
2725                                  * consider it to be no longer congested. It's
2726                                  * possible there are dirty pages backed by
2727                                  * congested BDIs but as pressure is relieved,
2728                                  * spectulatively avoid congestion waits
2729                                  */
2730                                 zone_clear_flag(zone, ZONE_CONGESTED);
2731                                 if (i <= *classzone_idx)
2732                                         balanced += zone->present_pages;
2733                         }
2734
2735                 }
2736                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2737                         break;          /* kswapd: all done */
2738                 /*
2739                  * OK, kswapd is getting into trouble.  Take a nap, then take
2740                  * another pass across the zones.
2741                  */
2742                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2743                         if (has_under_min_watermark_zone)
2744                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2745                         else
2746                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2747                 }
2748
2749                 /*
2750                  * We do this so kswapd doesn't build up large priorities for
2751                  * example when it is freeing in parallel with allocators. It
2752                  * matches the direct reclaim path behaviour in terms of impact
2753                  * on zone->*_priority.
2754                  */
2755                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2756                         break;
2757         }
2758 out:
2759
2760         /*
2761          * order-0: All zones must meet high watermark for a balanced node
2762          * high-order: Balanced zones must make up at least 25% of the node
2763          *             for the node to be balanced
2764          */
2765         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2766                 cond_resched();
2767
2768                 try_to_freeze();
2769
2770                 /*
2771                  * Fragmentation may mean that the system cannot be
2772                  * rebalanced for high-order allocations in all zones.
2773                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2774                  * it means the zones have been fully scanned and are still
2775                  * not balanced. For high-order allocations, there is
2776                  * little point trying all over again as kswapd may
2777                  * infinite loop.
2778                  *
2779                  * Instead, recheck all watermarks at order-0 as they
2780                  * are the most important. If watermarks are ok, kswapd will go
2781                  * back to sleep. High-order users can still perform direct
2782                  * reclaim if they wish.
2783                  */
2784                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2785                         order = sc.order = 0;
2786
2787                 goto loop_again;
2788         }
2789
2790         /*
2791          * If kswapd was reclaiming at a higher order, it has the option of
2792          * sleeping without all zones being balanced. Before it does, it must
2793          * ensure that the watermarks for order-0 on *all* zones are met and
2794          * that the congestion flags are cleared. The congestion flag must
2795          * be cleared as kswapd is the only mechanism that clears the flag
2796          * and it is potentially going to sleep here.
2797          */
2798         if (order) {
2799                 for (i = 0; i <= end_zone; i++) {
2800                         struct zone *zone = pgdat->node_zones + i;
2801
2802                         if (!populated_zone(zone))
2803                                 continue;
2804
2805                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2806                                 continue;
2807
2808                         /* Confirm the zone is balanced for order-0 */
2809                         if (!zone_watermark_ok(zone, 0,
2810                                         high_wmark_pages(zone), 0, 0)) {
2811                                 order = sc.order = 0;
2812                                 goto loop_again;
2813                         }
2814
2815                         /* If balanced, clear the congested flag */
2816                         zone_clear_flag(zone, ZONE_CONGESTED);
2817                 }
2818         }
2819
2820         /*
2821          * Return the order we were reclaiming at so sleeping_prematurely()
2822          * makes a decision on the order we were last reclaiming at. However,
2823          * if another caller entered the allocator slow path while kswapd
2824          * was awake, order will remain at the higher level
2825          */
2826         *classzone_idx = end_zone;
2827         return order;
2828 }
2829
2830 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2831 {
2832         long remaining = 0;
2833         DEFINE_WAIT(wait);
2834
2835         if (freezing(current) || kthread_should_stop())
2836                 return;
2837
2838         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2839
2840         /* Try to sleep for a short interval */
2841         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2842                 remaining = schedule_timeout(HZ/10);
2843                 finish_wait(&pgdat->kswapd_wait, &wait);
2844                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2845         }
2846
2847         /*
2848          * After a short sleep, check if it was a premature sleep. If not, then
2849          * go fully to sleep until explicitly woken up.
2850          */
2851         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2852                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2853
2854                 /*
2855                  * vmstat counters are not perfectly accurate and the estimated
2856                  * value for counters such as NR_FREE_PAGES can deviate from the
2857                  * true value by nr_online_cpus * threshold. To avoid the zone
2858                  * watermarks being breached while under pressure, we reduce the
2859                  * per-cpu vmstat threshold while kswapd is awake and restore
2860                  * them before going back to sleep.
2861                  */
2862                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2863
2864                 if (!kthread_should_stop())
2865                         schedule();
2866
2867                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2868         } else {
2869                 if (remaining)
2870                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2871                 else
2872                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2873         }
2874         finish_wait(&pgdat->kswapd_wait, &wait);
2875 }
2876
2877 /*
2878  * The background pageout daemon, started as a kernel thread
2879  * from the init process.
2880  *
2881  * This basically trickles out pages so that we have _some_
2882  * free memory available even if there is no other activity
2883  * that frees anything up. This is needed for things like routing
2884  * etc, where we otherwise might have all activity going on in
2885  * asynchronous contexts that cannot page things out.
2886  *
2887  * If there are applications that are active memory-allocators
2888  * (most normal use), this basically shouldn't matter.
2889  */
2890 static int kswapd(void *p)
2891 {
2892         unsigned long order, new_order;
2893         unsigned balanced_order;
2894         int classzone_idx, new_classzone_idx;
2895         int balanced_classzone_idx;
2896         pg_data_t *pgdat = (pg_data_t*)p;
2897         struct task_struct *tsk = current;
2898
2899         struct reclaim_state reclaim_state = {
2900                 .reclaimed_slab = 0,
2901         };
2902         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2903
2904         lockdep_set_current_reclaim_state(GFP_KERNEL);
2905
2906         if (!cpumask_empty(cpumask))
2907                 set_cpus_allowed_ptr(tsk, cpumask);
2908         current->reclaim_state = &reclaim_state;
2909
2910         /*
2911          * Tell the memory management that we're a "memory allocator",
2912          * and that if we need more memory we should get access to it
2913          * regardless (see "__alloc_pages()"). "kswapd" should
2914          * never get caught in the normal page freeing logic.
2915          *
2916          * (Kswapd normally doesn't need memory anyway, but sometimes
2917          * you need a small amount of memory in order to be able to
2918          * page out something else, and this flag essentially protects
2919          * us from recursively trying to free more memory as we're
2920          * trying to free the first piece of memory in the first place).
2921          */
2922         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2923         set_freezable();
2924
2925         order = new_order = 0;
2926         balanced_order = 0;
2927         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2928         balanced_classzone_idx = classzone_idx;
2929         for ( ; ; ) {
2930                 int ret;
2931
2932                 /*
2933                  * If the last balance_pgdat was unsuccessful it's unlikely a
2934                  * new request of a similar or harder type will succeed soon
2935                  * so consider going to sleep on the basis we reclaimed at
2936                  */
2937                 if (balanced_classzone_idx >= new_classzone_idx &&
2938                                         balanced_order == new_order) {
2939                         new_order = pgdat->kswapd_max_order;
2940                         new_classzone_idx = pgdat->classzone_idx;
2941                         pgdat->kswapd_max_order =  0;
2942                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2943                 }
2944
2945                 if (order < new_order || classzone_idx > new_classzone_idx) {
2946                         /*
2947                          * Don't sleep if someone wants a larger 'order'
2948                          * allocation or has tigher zone constraints
2949                          */
2950                         order = new_order;
2951                         classzone_idx = new_classzone_idx;
2952                 } else {
2953                         kswapd_try_to_sleep(pgdat, balanced_order,
2954                                                 balanced_classzone_idx);
2955                         order = pgdat->kswapd_max_order;
2956                         classzone_idx = pgdat->classzone_idx;
2957                         new_order = order;
2958                         new_classzone_idx = classzone_idx;
2959                         pgdat->kswapd_max_order = 0;
2960                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2961                 }
2962
2963                 ret = try_to_freeze();
2964                 if (kthread_should_stop())
2965                         break;
2966
2967                 /*
2968                  * We can speed up thawing tasks if we don't call balance_pgdat
2969                  * after returning from the refrigerator
2970                  */
2971                 if (!ret) {
2972                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2973                         balanced_classzone_idx = classzone_idx;
2974                         balanced_order = balance_pgdat(pgdat, order,
2975                                                 &balanced_classzone_idx);
2976                 }
2977         }
2978         return 0;
2979 }
2980
2981 /*
2982  * A zone is low on free memory, so wake its kswapd task to service it.
2983  */
2984 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2985 {
2986         pg_data_t *pgdat;
2987
2988         if (!populated_zone(zone))
2989                 return;
2990
2991         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2992                 return;
2993         pgdat = zone->zone_pgdat;
2994         if (pgdat->kswapd_max_order < order) {
2995                 pgdat->kswapd_max_order = order;
2996                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2997         }
2998         if (!waitqueue_active(&pgdat->kswapd_wait))
2999                 return;
3000         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3001                 return;
3002
3003         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3004         wake_up_interruptible(&pgdat->kswapd_wait);
3005 }
3006
3007 /*
3008  * The reclaimable count would be mostly accurate.
3009  * The less reclaimable pages may be
3010  * - mlocked pages, which will be moved to unevictable list when encountered
3011  * - mapped pages, which may require several travels to be reclaimed
3012  * - dirty pages, which is not "instantly" reclaimable
3013  */
3014 unsigned long global_reclaimable_pages(void)
3015 {
3016         int nr;
3017
3018         nr = global_page_state(NR_ACTIVE_FILE) +
3019              global_page_state(NR_INACTIVE_FILE);
3020
3021         if (nr_swap_pages > 0)
3022                 nr += global_page_state(NR_ACTIVE_ANON) +
3023                       global_page_state(NR_INACTIVE_ANON);
3024
3025         return nr;
3026 }
3027
3028 unsigned long zone_reclaimable_pages(struct zone *zone)
3029 {
3030         int nr;
3031
3032         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3033              zone_page_state(zone, NR_INACTIVE_FILE);
3034
3035         if (nr_swap_pages > 0)
3036                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3037                       zone_page_state(zone, NR_INACTIVE_ANON);
3038
3039         return nr;
3040 }
3041
3042 #ifdef CONFIG_HIBERNATION
3043 /*
3044  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3045  * freed pages.
3046  *
3047  * Rather than trying to age LRUs the aim is to preserve the overall
3048  * LRU order by reclaiming preferentially
3049  * inactive > active > active referenced > active mapped
3050  */
3051 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3052 {
3053         struct reclaim_state reclaim_state;
3054         struct scan_control sc = {
3055                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3056                 .may_swap = 1,
3057                 .may_unmap = 1,
3058                 .may_writepage = 1,
3059                 .nr_to_reclaim = nr_to_reclaim,
3060                 .hibernation_mode = 1,
3061                 .swappiness = vm_swappiness,
3062                 .order = 0,
3063         };
3064         struct shrink_control shrink = {
3065                 .gfp_mask = sc.gfp_mask,
3066         };
3067         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3068         struct task_struct *p = current;
3069         unsigned long nr_reclaimed;
3070
3071         p->flags |= PF_MEMALLOC;
3072         lockdep_set_current_reclaim_state(sc.gfp_mask);
3073         reclaim_state.reclaimed_slab = 0;
3074         p->reclaim_state = &reclaim_state;
3075
3076         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3077
3078         p->reclaim_state = NULL;
3079         lockdep_clear_current_reclaim_state();
3080         p->flags &= ~PF_MEMALLOC;
3081
3082         return nr_reclaimed;
3083 }
3084 #endif /* CONFIG_HIBERNATION */
3085
3086 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3087    not required for correctness.  So if the last cpu in a node goes
3088    away, we get changed to run anywhere: as the first one comes back,
3089    restore their cpu bindings. */
3090 static int __devinit cpu_callback(struct notifier_block *nfb,
3091                                   unsigned long action, void *hcpu)
3092 {
3093         int nid;
3094
3095         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3096                 for_each_node_state(nid, N_HIGH_MEMORY) {
3097                         pg_data_t *pgdat = NODE_DATA(nid);
3098                         const struct cpumask *mask;
3099
3100                         mask = cpumask_of_node(pgdat->node_id);
3101
3102                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3103                                 /* One of our CPUs online: restore mask */
3104                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3105                 }
3106         }
3107         return NOTIFY_OK;
3108 }
3109
3110 /*
3111  * This kswapd start function will be called by init and node-hot-add.
3112  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3113  */
3114 int kswapd_run(int nid)
3115 {
3116         pg_data_t *pgdat = NODE_DATA(nid);
3117         int ret = 0;
3118
3119         if (pgdat->kswapd)
3120                 return 0;
3121
3122         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3123         if (IS_ERR(pgdat->kswapd)) {
3124                 /* failure at boot is fatal */
3125                 BUG_ON(system_state == SYSTEM_BOOTING);
3126                 printk("Failed to start kswapd on node %d\n",nid);
3127                 ret = -1;
3128         }
3129         return ret;
3130 }
3131
3132 /*
3133  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3134  * hold lock_memory_hotplug().
3135  */
3136 void kswapd_stop(int nid)
3137 {
3138         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3139
3140         if (kswapd) {
3141                 kthread_stop(kswapd);
3142                 NODE_DATA(nid)->kswapd = NULL;
3143         }
3144 }
3145
3146 static int __init kswapd_init(void)
3147 {
3148         int nid;
3149
3150         swap_setup();
3151         for_each_node_state(nid, N_HIGH_MEMORY)
3152                 kswapd_run(nid);
3153         hotcpu_notifier(cpu_callback, 0);
3154         return 0;
3155 }
3156
3157 module_init(kswapd_init)
3158
3159 #ifdef CONFIG_NUMA
3160 /*
3161  * Zone reclaim mode
3162  *
3163  * If non-zero call zone_reclaim when the number of free pages falls below
3164  * the watermarks.
3165  */
3166 int zone_reclaim_mode __read_mostly;
3167
3168 #define RECLAIM_OFF 0
3169 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3170 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3171 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3172
3173 /*
3174  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3175  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3176  * a zone.
3177  */
3178 #define ZONE_RECLAIM_PRIORITY 4
3179
3180 /*
3181  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3182  * occur.
3183  */
3184 int sysctl_min_unmapped_ratio = 1;
3185
3186 /*
3187  * If the number of slab pages in a zone grows beyond this percentage then
3188  * slab reclaim needs to occur.
3189  */
3190 int sysctl_min_slab_ratio = 5;
3191
3192 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3193 {
3194         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3195         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3196                 zone_page_state(zone, NR_ACTIVE_FILE);
3197
3198         /*
3199          * It's possible for there to be more file mapped pages than
3200          * accounted for by the pages on the file LRU lists because
3201          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3202          */
3203         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3204 }
3205
3206 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3207 static long zone_pagecache_reclaimable(struct zone *zone)
3208 {
3209         long nr_pagecache_reclaimable;
3210         long delta = 0;
3211
3212         /*
3213          * If RECLAIM_SWAP is set, then all file pages are considered
3214          * potentially reclaimable. Otherwise, we have to worry about
3215          * pages like swapcache and zone_unmapped_file_pages() provides
3216          * a better estimate
3217          */
3218         if (zone_reclaim_mode & RECLAIM_SWAP)
3219                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3220         else
3221                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3222
3223         /* If we can't clean pages, remove dirty pages from consideration */
3224         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3225                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3226
3227         /* Watch for any possible underflows due to delta */
3228         if (unlikely(delta > nr_pagecache_reclaimable))
3229                 delta = nr_pagecache_reclaimable;
3230
3231         return nr_pagecache_reclaimable - delta;
3232 }
3233
3234 /*
3235  * Try to free up some pages from this zone through reclaim.
3236  */
3237 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3238 {
3239         /* Minimum pages needed in order to stay on node */
3240         const unsigned long nr_pages = 1 << order;
3241         struct task_struct *p = current;
3242         struct reclaim_state reclaim_state;
3243         int priority;
3244         struct scan_control sc = {
3245                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3246                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3247                 .may_swap = 1,
3248                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3249                                        SWAP_CLUSTER_MAX),
3250                 .gfp_mask = gfp_mask,
3251                 .swappiness = vm_swappiness,
3252                 .order = order,
3253         };
3254         struct shrink_control shrink = {
3255                 .gfp_mask = sc.gfp_mask,
3256         };
3257         unsigned long nr_slab_pages0, nr_slab_pages1;
3258
3259         cond_resched();
3260         /*
3261          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3262          * and we also need to be able to write out pages for RECLAIM_WRITE
3263          * and RECLAIM_SWAP.
3264          */
3265         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3266         lockdep_set_current_reclaim_state(gfp_mask);
3267         reclaim_state.reclaimed_slab = 0;
3268         p->reclaim_state = &reclaim_state;
3269
3270         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3271                 /*
3272                  * Free memory by calling shrink zone with increasing
3273                  * priorities until we have enough memory freed.
3274                  */
3275                 priority = ZONE_RECLAIM_PRIORITY;
3276                 do {
3277                         shrink_zone(priority, zone, &sc);
3278                         priority--;
3279                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3280         }
3281
3282         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3283         if (nr_slab_pages0 > zone->min_slab_pages) {
3284                 /*
3285                  * shrink_slab() does not currently allow us to determine how
3286                  * many pages were freed in this zone. So we take the current
3287                  * number of slab pages and shake the slab until it is reduced
3288                  * by the same nr_pages that we used for reclaiming unmapped
3289                  * pages.
3290                  *
3291                  * Note that shrink_slab will free memory on all zones and may
3292                  * take a long time.
3293                  */
3294                 for (;;) {
3295                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3296
3297                         /* No reclaimable slab or very low memory pressure */
3298                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3299                                 break;
3300
3301                         /* Freed enough memory */
3302                         nr_slab_pages1 = zone_page_state(zone,
3303                                                         NR_SLAB_RECLAIMABLE);
3304                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3305                                 break;
3306                 }
3307
3308                 /*
3309                  * Update nr_reclaimed by the number of slab pages we
3310                  * reclaimed from this zone.
3311                  */
3312                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3313                 if (nr_slab_pages1 < nr_slab_pages0)
3314                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3315         }
3316
3317         p->reclaim_state = NULL;
3318         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3319         lockdep_clear_current_reclaim_state();
3320         return sc.nr_reclaimed >= nr_pages;
3321 }
3322
3323 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3324 {
3325         int node_id;
3326         int ret;
3327
3328         /*
3329          * Zone reclaim reclaims unmapped file backed pages and
3330          * slab pages if we are over the defined limits.
3331          *
3332          * A small portion of unmapped file backed pages is needed for
3333          * file I/O otherwise pages read by file I/O will be immediately
3334          * thrown out if the zone is overallocated. So we do not reclaim
3335          * if less than a specified percentage of the zone is used by
3336          * unmapped file backed pages.
3337          */
3338         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3339             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3340                 return ZONE_RECLAIM_FULL;
3341
3342         if (zone->all_unreclaimable)
3343                 return ZONE_RECLAIM_FULL;
3344
3345         /*
3346          * Do not scan if the allocation should not be delayed.
3347          */
3348         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3349                 return ZONE_RECLAIM_NOSCAN;
3350
3351         /*
3352          * Only run zone reclaim on the local zone or on zones that do not
3353          * have associated processors. This will favor the local processor
3354          * over remote processors and spread off node memory allocations
3355          * as wide as possible.
3356          */
3357         node_id = zone_to_nid(zone);
3358         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3359                 return ZONE_RECLAIM_NOSCAN;
3360
3361         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3362                 return ZONE_RECLAIM_NOSCAN;
3363
3364         ret = __zone_reclaim(zone, gfp_mask, order);
3365         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3366
3367         if (!ret)
3368                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3369
3370         return ret;
3371 }
3372 #endif
3373
3374 /*
3375  * page_evictable - test whether a page is evictable
3376  * @page: the page to test
3377  * @vma: the VMA in which the page is or will be mapped, may be NULL
3378  *
3379  * Test whether page is evictable--i.e., should be placed on active/inactive
3380  * lists vs unevictable list.  The vma argument is !NULL when called from the
3381  * fault path to determine how to instantate a new page.
3382  *
3383  * Reasons page might not be evictable:
3384  * (1) page's mapping marked unevictable
3385  * (2) page is part of an mlocked VMA
3386  *
3387  */
3388 int page_evictable(struct page *page, struct vm_area_struct *vma)
3389 {
3390
3391         if (mapping_unevictable(page_mapping(page)))
3392                 return 0;
3393
3394         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3395                 return 0;
3396
3397         return 1;
3398 }
3399
3400 /**
3401  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3402  * @page: page to check evictability and move to appropriate lru list
3403  * @zone: zone page is in
3404  *
3405  * Checks a page for evictability and moves the page to the appropriate
3406  * zone lru list.
3407  *
3408  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3409  * have PageUnevictable set.
3410  */
3411 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3412 {
3413         VM_BUG_ON(PageActive(page));
3414
3415 retry:
3416         ClearPageUnevictable(page);
3417         if (page_evictable(page, NULL)) {
3418                 enum lru_list l = page_lru_base_type(page);
3419
3420                 __dec_zone_state(zone, NR_UNEVICTABLE);
3421                 list_move(&page->lru, &zone->lru[l].list);
3422                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3423                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3424                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3425         } else {
3426                 /*
3427                  * rotate unevictable list
3428                  */
3429                 SetPageUnevictable(page);
3430                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3431                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3432                 if (page_evictable(page, NULL))
3433                         goto retry;
3434         }
3435 }
3436
3437 /**
3438  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3439  * @mapping: struct address_space to scan for evictable pages
3440  *
3441  * Scan all pages in mapping.  Check unevictable pages for
3442  * evictability and move them to the appropriate zone lru list.
3443  */
3444 void scan_mapping_unevictable_pages(struct address_space *mapping)
3445 {
3446         pgoff_t next = 0;
3447         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3448                          PAGE_CACHE_SHIFT;
3449         struct zone *zone;
3450         struct pagevec pvec;
3451
3452         if (mapping->nrpages == 0)
3453                 return;
3454
3455         pagevec_init(&pvec, 0);
3456         while (next < end &&
3457                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3458                 int i;
3459                 int pg_scanned = 0;
3460
3461                 zone = NULL;
3462
3463                 for (i = 0; i < pagevec_count(&pvec); i++) {
3464                         struct page *page = pvec.pages[i];
3465                         pgoff_t page_index = page->index;
3466                         struct zone *pagezone = page_zone(page);
3467
3468                         pg_scanned++;
3469                         if (page_index > next)
3470                                 next = page_index;
3471                         next++;
3472
3473                         if (pagezone != zone) {
3474                                 if (zone)
3475                                         spin_unlock_irq(&zone->lru_lock);
3476                                 zone = pagezone;
3477                                 spin_lock_irq(&zone->lru_lock);
3478                         }
3479
3480                         if (PageLRU(page) && PageUnevictable(page))
3481                                 check_move_unevictable_page(page, zone);
3482                 }
3483                 if (zone)
3484                         spin_unlock_irq(&zone->lru_lock);
3485                 pagevec_release(&pvec);
3486
3487                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3488         }
3489
3490 }
3491
3492 /**
3493  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3494  * @zone - zone of which to scan the unevictable list
3495  *
3496  * Scan @zone's unevictable LRU lists to check for pages that have become
3497  * evictable.  Move those that have to @zone's inactive list where they
3498  * become candidates for reclaim, unless shrink_inactive_zone() decides
3499  * to reactivate them.  Pages that are still unevictable are rotated
3500  * back onto @zone's unevictable list.
3501  */
3502 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3503 static void scan_zone_unevictable_pages(struct zone *zone)
3504 {
3505         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3506         unsigned long scan;
3507         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3508
3509         while (nr_to_scan > 0) {
3510                 unsigned long batch_size = min(nr_to_scan,
3511                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3512
3513                 spin_lock_irq(&zone->lru_lock);
3514                 for (scan = 0;  scan < batch_size; scan++) {
3515                         struct page *page = lru_to_page(l_unevictable);
3516
3517                         if (!trylock_page(page))
3518                                 continue;
3519
3520                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3521
3522                         if (likely(PageLRU(page) && PageUnevictable(page)))
3523                                 check_move_unevictable_page(page, zone);
3524
3525                         unlock_page(page);
3526                 }
3527                 spin_unlock_irq(&zone->lru_lock);
3528
3529                 nr_to_scan -= batch_size;
3530         }
3531 }
3532
3533
3534 /**
3535  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3536  *
3537  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3538  * pages that have become evictable.  Move those back to the zones'
3539  * inactive list where they become candidates for reclaim.
3540  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3541  * and we add swap to the system.  As such, it runs in the context of a task
3542  * that has possibly/probably made some previously unevictable pages
3543  * evictable.
3544  */
3545 static void scan_all_zones_unevictable_pages(void)
3546 {
3547         struct zone *zone;
3548
3549         for_each_zone(zone) {
3550                 scan_zone_unevictable_pages(zone);
3551         }
3552 }
3553
3554 /*
3555  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3556  * all nodes' unevictable lists for evictable pages
3557  */
3558 unsigned long scan_unevictable_pages;
3559
3560 int scan_unevictable_handler(struct ctl_table *table, int write,
3561                            void __user *buffer,
3562                            size_t *length, loff_t *ppos)
3563 {
3564         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3565
3566         if (write && *(unsigned long *)table->data)
3567                 scan_all_zones_unevictable_pages();
3568
3569         scan_unevictable_pages = 0;
3570         return 0;
3571 }
3572
3573 #ifdef CONFIG_NUMA
3574 /*
3575  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3576  * a specified node's per zone unevictable lists for evictable pages.
3577  */
3578
3579 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3580                                           struct sysdev_attribute *attr,
3581                                           char *buf)
3582 {
3583         return sprintf(buf, "0\n");     /* always zero; should fit... */
3584 }
3585
3586 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3587                                            struct sysdev_attribute *attr,
3588                                         const char *buf, size_t count)
3589 {
3590         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3591         struct zone *zone;
3592         unsigned long res;
3593         unsigned long req = strict_strtoul(buf, 10, &res);
3594
3595         if (!req)
3596                 return 1;       /* zero is no-op */
3597
3598         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3599                 if (!populated_zone(zone))
3600                         continue;
3601                 scan_zone_unevictable_pages(zone);
3602         }
3603         return 1;
3604 }
3605
3606
3607 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3608                         read_scan_unevictable_node,
3609                         write_scan_unevictable_node);
3610
3611 int scan_unevictable_register_node(struct node *node)
3612 {
3613         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3614 }
3615
3616 void scan_unevictable_unregister_node(struct node *node)
3617 {
3618         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3619 }
3620 #endif