Merge remote-tracking branch 'regulator/topic/constraints' into regulator-next
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59         /* Incremented by the number of inactive pages that were scanned */
60         unsigned long nr_scanned;
61
62         /* Number of pages freed so far during a call to shrink_zones() */
63         unsigned long nr_reclaimed;
64
65         /* How many pages shrink_list() should reclaim */
66         unsigned long nr_to_reclaim;
67
68         unsigned long hibernation_mode;
69
70         /* This context's GFP mask */
71         gfp_t gfp_mask;
72
73         int may_writepage;
74
75         /* Can mapped pages be reclaimed? */
76         int may_unmap;
77
78         /* Can pages be swapped as part of reclaim? */
79         int may_swap;
80
81         int order;
82
83         /* Scan (total_size >> priority) pages at once */
84         int priority;
85
86         /*
87          * The memory cgroup that hit its limit and as a result is the
88          * primary target of this reclaim invocation.
89          */
90         struct mem_cgroup *target_mem_cgroup;
91
92         /*
93          * Nodemask of nodes allowed by the caller. If NULL, all nodes
94          * are scanned.
95          */
96         nodemask_t      *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)                    \
103         do {                                                            \
104                 if ((_page)->lru.prev != _base) {                       \
105                         struct page *prev;                              \
106                                                                         \
107                         prev = lru_to_page(&(_page->lru));              \
108                         prefetch(&prev->_field);                        \
109                 }                                                       \
110         } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetchw(&prev->_field);                       \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141         return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146         return true;
147 }
148 #endif
149
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152         int nr;
153
154         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155              zone_page_state(zone, NR_INACTIVE_FILE);
156
157         if (get_nr_swap_pages() > 0)
158                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159                       zone_page_state(zone, NR_INACTIVE_ANON);
160
161         return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171         if (!mem_cgroup_disabled())
172                 return mem_cgroup_get_lru_size(lruvec, lru);
173
174         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182         size_t size = sizeof(*shrinker->nr_deferred);
183
184         /*
185          * If we only have one possible node in the system anyway, save
186          * ourselves the trouble and disable NUMA aware behavior. This way we
187          * will save memory and some small loop time later.
188          */
189         if (nr_node_ids == 1)
190                 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192         if (shrinker->flags & SHRINKER_NUMA_AWARE)
193                 size *= nr_node_ids;
194
195         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196         if (!shrinker->nr_deferred)
197                 return -ENOMEM;
198
199         down_write(&shrinker_rwsem);
200         list_add_tail(&shrinker->list, &shrinker_list);
201         up_write(&shrinker_rwsem);
202         return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211         down_write(&shrinker_rwsem);
212         list_del(&shrinker->list);
213         up_write(&shrinker_rwsem);
214         kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217
218 #define SHRINK_BATCH 128
219
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222                  unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224         unsigned long freed = 0;
225         unsigned long long delta;
226         long total_scan;
227         long freeable;
228         long nr;
229         long new_nr;
230         int nid = shrinkctl->nid;
231         long batch_size = shrinker->batch ? shrinker->batch
232                                           : SHRINK_BATCH;
233
234         freeable = shrinker->count_objects(shrinker, shrinkctl);
235         if (freeable == 0)
236                 return 0;
237
238         /*
239          * copy the current shrinker scan count into a local variable
240          * and zero it so that other concurrent shrinker invocations
241          * don't also do this scanning work.
242          */
243         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245         total_scan = nr;
246         delta = (4 * nr_pages_scanned) / shrinker->seeks;
247         delta *= freeable;
248         do_div(delta, lru_pages + 1);
249         total_scan += delta;
250         if (total_scan < 0) {
251                 printk(KERN_ERR
252                 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253                        shrinker->scan_objects, total_scan);
254                 total_scan = freeable;
255         }
256
257         /*
258          * We need to avoid excessive windup on filesystem shrinkers
259          * due to large numbers of GFP_NOFS allocations causing the
260          * shrinkers to return -1 all the time. This results in a large
261          * nr being built up so when a shrink that can do some work
262          * comes along it empties the entire cache due to nr >>>
263          * freeable. This is bad for sustaining a working set in
264          * memory.
265          *
266          * Hence only allow the shrinker to scan the entire cache when
267          * a large delta change is calculated directly.
268          */
269         if (delta < freeable / 4)
270                 total_scan = min(total_scan, freeable / 2);
271
272         /*
273          * Avoid risking looping forever due to too large nr value:
274          * never try to free more than twice the estimate number of
275          * freeable entries.
276          */
277         if (total_scan > freeable * 2)
278                 total_scan = freeable * 2;
279
280         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281                                 nr_pages_scanned, lru_pages,
282                                 freeable, delta, total_scan);
283
284         /*
285          * Normally, we should not scan less than batch_size objects in one
286          * pass to avoid too frequent shrinker calls, but if the slab has less
287          * than batch_size objects in total and we are really tight on memory,
288          * we will try to reclaim all available objects, otherwise we can end
289          * up failing allocations although there are plenty of reclaimable
290          * objects spread over several slabs with usage less than the
291          * batch_size.
292          *
293          * We detect the "tight on memory" situations by looking at the total
294          * number of objects we want to scan (total_scan). If it is greater
295          * than the total number of objects on slab (freeable), we must be
296          * scanning at high prio and therefore should try to reclaim as much as
297          * possible.
298          */
299         while (total_scan >= batch_size ||
300                total_scan >= freeable) {
301                 unsigned long ret;
302                 unsigned long nr_to_scan = min(batch_size, total_scan);
303
304                 shrinkctl->nr_to_scan = nr_to_scan;
305                 ret = shrinker->scan_objects(shrinker, shrinkctl);
306                 if (ret == SHRINK_STOP)
307                         break;
308                 freed += ret;
309
310                 count_vm_events(SLABS_SCANNED, nr_to_scan);
311                 total_scan -= nr_to_scan;
312
313                 cond_resched();
314         }
315
316         /*
317          * move the unused scan count back into the shrinker in a
318          * manner that handles concurrent updates. If we exhausted the
319          * scan, there is no need to do an update.
320          */
321         if (total_scan > 0)
322                 new_nr = atomic_long_add_return(total_scan,
323                                                 &shrinker->nr_deferred[nid]);
324         else
325                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327         trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328         return freed;
329 }
330
331 /*
332  * Call the shrink functions to age shrinkable caches
333  *
334  * Here we assume it costs one seek to replace a lru page and that it also
335  * takes a seek to recreate a cache object.  With this in mind we age equal
336  * percentages of the lru and ageable caches.  This should balance the seeks
337  * generated by these structures.
338  *
339  * If the vm encountered mapped pages on the LRU it increase the pressure on
340  * slab to avoid swapping.
341  *
342  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343  *
344  * `lru_pages' represents the number of on-LRU pages in all the zones which
345  * are eligible for the caller's allocation attempt.  It is used for balancing
346  * slab reclaim versus page reclaim.
347  *
348  * Returns the number of slab objects which we shrunk.
349  */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351                           unsigned long nr_pages_scanned,
352                           unsigned long lru_pages)
353 {
354         struct shrinker *shrinker;
355         unsigned long freed = 0;
356
357         if (nr_pages_scanned == 0)
358                 nr_pages_scanned = SWAP_CLUSTER_MAX;
359
360         if (!down_read_trylock(&shrinker_rwsem)) {
361                 /*
362                  * If we would return 0, our callers would understand that we
363                  * have nothing else to shrink and give up trying. By returning
364                  * 1 we keep it going and assume we'll be able to shrink next
365                  * time.
366                  */
367                 freed = 1;
368                 goto out;
369         }
370
371         list_for_each_entry(shrinker, &shrinker_list, list) {
372                 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373                         shrinkctl->nid = 0;
374                         freed += shrink_slab_node(shrinkctl, shrinker,
375                                         nr_pages_scanned, lru_pages);
376                         continue;
377                 }
378
379                 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380                         if (node_online(shrinkctl->nid))
381                                 freed += shrink_slab_node(shrinkctl, shrinker,
382                                                 nr_pages_scanned, lru_pages);
383
384                 }
385         }
386         up_read(&shrinker_rwsem);
387 out:
388         cond_resched();
389         return freed;
390 }
391
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394         /*
395          * A freeable page cache page is referenced only by the caller
396          * that isolated the page, the page cache radix tree and
397          * optional buffer heads at page->private.
398          */
399         return page_count(page) - page_has_private(page) == 2;
400 }
401
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403                               struct scan_control *sc)
404 {
405         if (current->flags & PF_SWAPWRITE)
406                 return 1;
407         if (!bdi_write_congested(bdi))
408                 return 1;
409         if (bdi == current->backing_dev_info)
410                 return 1;
411         return 0;
412 }
413
414 /*
415  * We detected a synchronous write error writing a page out.  Probably
416  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
417  * fsync(), msync() or close().
418  *
419  * The tricky part is that after writepage we cannot touch the mapping: nothing
420  * prevents it from being freed up.  But we have a ref on the page and once
421  * that page is locked, the mapping is pinned.
422  *
423  * We're allowed to run sleeping lock_page() here because we know the caller has
424  * __GFP_FS.
425  */
426 static void handle_write_error(struct address_space *mapping,
427                                 struct page *page, int error)
428 {
429         lock_page(page);
430         if (page_mapping(page) == mapping)
431                 mapping_set_error(mapping, error);
432         unlock_page(page);
433 }
434
435 /* possible outcome of pageout() */
436 typedef enum {
437         /* failed to write page out, page is locked */
438         PAGE_KEEP,
439         /* move page to the active list, page is locked */
440         PAGE_ACTIVATE,
441         /* page has been sent to the disk successfully, page is unlocked */
442         PAGE_SUCCESS,
443         /* page is clean and locked */
444         PAGE_CLEAN,
445 } pageout_t;
446
447 /*
448  * pageout is called by shrink_page_list() for each dirty page.
449  * Calls ->writepage().
450  */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452                          struct scan_control *sc)
453 {
454         /*
455          * If the page is dirty, only perform writeback if that write
456          * will be non-blocking.  To prevent this allocation from being
457          * stalled by pagecache activity.  But note that there may be
458          * stalls if we need to run get_block().  We could test
459          * PagePrivate for that.
460          *
461          * If this process is currently in __generic_file_aio_write() against
462          * this page's queue, we can perform writeback even if that
463          * will block.
464          *
465          * If the page is swapcache, write it back even if that would
466          * block, for some throttling. This happens by accident, because
467          * swap_backing_dev_info is bust: it doesn't reflect the
468          * congestion state of the swapdevs.  Easy to fix, if needed.
469          */
470         if (!is_page_cache_freeable(page))
471                 return PAGE_KEEP;
472         if (!mapping) {
473                 /*
474                  * Some data journaling orphaned pages can have
475                  * page->mapping == NULL while being dirty with clean buffers.
476                  */
477                 if (page_has_private(page)) {
478                         if (try_to_free_buffers(page)) {
479                                 ClearPageDirty(page);
480                                 printk("%s: orphaned page\n", __func__);
481                                 return PAGE_CLEAN;
482                         }
483                 }
484                 return PAGE_KEEP;
485         }
486         if (mapping->a_ops->writepage == NULL)
487                 return PAGE_ACTIVATE;
488         if (!may_write_to_queue(mapping->backing_dev_info, sc))
489                 return PAGE_KEEP;
490
491         if (clear_page_dirty_for_io(page)) {
492                 int res;
493                 struct writeback_control wbc = {
494                         .sync_mode = WB_SYNC_NONE,
495                         .nr_to_write = SWAP_CLUSTER_MAX,
496                         .range_start = 0,
497                         .range_end = LLONG_MAX,
498                         .for_reclaim = 1,
499                 };
500
501                 SetPageReclaim(page);
502                 res = mapping->a_ops->writepage(page, &wbc);
503                 if (res < 0)
504                         handle_write_error(mapping, page, res);
505                 if (res == AOP_WRITEPAGE_ACTIVATE) {
506                         ClearPageReclaim(page);
507                         return PAGE_ACTIVATE;
508                 }
509
510                 if (!PageWriteback(page)) {
511                         /* synchronous write or broken a_ops? */
512                         ClearPageReclaim(page);
513                 }
514                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
516                 return PAGE_SUCCESS;
517         }
518
519         return PAGE_CLEAN;
520 }
521
522 /*
523  * Same as remove_mapping, but if the page is removed from the mapping, it
524  * gets returned with a refcount of 0.
525  */
526 static int __remove_mapping(struct address_space *mapping, struct page *page,
527                             bool reclaimed)
528 {
529         BUG_ON(!PageLocked(page));
530         BUG_ON(mapping != page_mapping(page));
531
532         spin_lock_irq(&mapping->tree_lock);
533         /*
534          * The non racy check for a busy page.
535          *
536          * Must be careful with the order of the tests. When someone has
537          * a ref to the page, it may be possible that they dirty it then
538          * drop the reference. So if PageDirty is tested before page_count
539          * here, then the following race may occur:
540          *
541          * get_user_pages(&page);
542          * [user mapping goes away]
543          * write_to(page);
544          *                              !PageDirty(page)    [good]
545          * SetPageDirty(page);
546          * put_page(page);
547          *                              !page_count(page)   [good, discard it]
548          *
549          * [oops, our write_to data is lost]
550          *
551          * Reversing the order of the tests ensures such a situation cannot
552          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553          * load is not satisfied before that of page->_count.
554          *
555          * Note that if SetPageDirty is always performed via set_page_dirty,
556          * and thus under tree_lock, then this ordering is not required.
557          */
558         if (!page_freeze_refs(page, 2))
559                 goto cannot_free;
560         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561         if (unlikely(PageDirty(page))) {
562                 page_unfreeze_refs(page, 2);
563                 goto cannot_free;
564         }
565
566         if (PageSwapCache(page)) {
567                 swp_entry_t swap = { .val = page_private(page) };
568                 __delete_from_swap_cache(page);
569                 spin_unlock_irq(&mapping->tree_lock);
570                 swapcache_free(swap, page);
571         } else {
572                 void (*freepage)(struct page *);
573                 void *shadow = NULL;
574
575                 freepage = mapping->a_ops->freepage;
576                 /*
577                  * Remember a shadow entry for reclaimed file cache in
578                  * order to detect refaults, thus thrashing, later on.
579                  *
580                  * But don't store shadows in an address space that is
581                  * already exiting.  This is not just an optizimation,
582                  * inode reclaim needs to empty out the radix tree or
583                  * the nodes are lost.  Don't plant shadows behind its
584                  * back.
585                  */
586                 if (reclaimed && page_is_file_cache(page) &&
587                     !mapping_exiting(mapping))
588                         shadow = workingset_eviction(mapping, page);
589                 __delete_from_page_cache(page, shadow);
590                 spin_unlock_irq(&mapping->tree_lock);
591                 mem_cgroup_uncharge_cache_page(page);
592
593                 if (freepage != NULL)
594                         freepage(page);
595         }
596
597         return 1;
598
599 cannot_free:
600         spin_unlock_irq(&mapping->tree_lock);
601         return 0;
602 }
603
604 /*
605  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606  * someone else has a ref on the page, abort and return 0.  If it was
607  * successfully detached, return 1.  Assumes the caller has a single ref on
608  * this page.
609  */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612         if (__remove_mapping(mapping, page, false)) {
613                 /*
614                  * Unfreezing the refcount with 1 rather than 2 effectively
615                  * drops the pagecache ref for us without requiring another
616                  * atomic operation.
617                  */
618                 page_unfreeze_refs(page, 1);
619                 return 1;
620         }
621         return 0;
622 }
623
624 /**
625  * putback_lru_page - put previously isolated page onto appropriate LRU list
626  * @page: page to be put back to appropriate lru list
627  *
628  * Add previously isolated @page to appropriate LRU list.
629  * Page may still be unevictable for other reasons.
630  *
631  * lru_lock must not be held, interrupts must be enabled.
632  */
633 void putback_lru_page(struct page *page)
634 {
635         bool is_unevictable;
636         int was_unevictable = PageUnevictable(page);
637
638         VM_BUG_ON_PAGE(PageLRU(page), page);
639
640 redo:
641         ClearPageUnevictable(page);
642
643         if (page_evictable(page)) {
644                 /*
645                  * For evictable pages, we can use the cache.
646                  * In event of a race, worst case is we end up with an
647                  * unevictable page on [in]active list.
648                  * We know how to handle that.
649                  */
650                 is_unevictable = false;
651                 lru_cache_add(page);
652         } else {
653                 /*
654                  * Put unevictable pages directly on zone's unevictable
655                  * list.
656                  */
657                 is_unevictable = true;
658                 add_page_to_unevictable_list(page);
659                 /*
660                  * When racing with an mlock or AS_UNEVICTABLE clearing
661                  * (page is unlocked) make sure that if the other thread
662                  * does not observe our setting of PG_lru and fails
663                  * isolation/check_move_unevictable_pages,
664                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665                  * the page back to the evictable list.
666                  *
667                  * The other side is TestClearPageMlocked() or shmem_lock().
668                  */
669                 smp_mb();
670         }
671
672         /*
673          * page's status can change while we move it among lru. If an evictable
674          * page is on unevictable list, it never be freed. To avoid that,
675          * check after we added it to the list, again.
676          */
677         if (is_unevictable && page_evictable(page)) {
678                 if (!isolate_lru_page(page)) {
679                         put_page(page);
680                         goto redo;
681                 }
682                 /* This means someone else dropped this page from LRU
683                  * So, it will be freed or putback to LRU again. There is
684                  * nothing to do here.
685                  */
686         }
687
688         if (was_unevictable && !is_unevictable)
689                 count_vm_event(UNEVICTABLE_PGRESCUED);
690         else if (!was_unevictable && is_unevictable)
691                 count_vm_event(UNEVICTABLE_PGCULLED);
692
693         put_page(page);         /* drop ref from isolate */
694 }
695
696 enum page_references {
697         PAGEREF_RECLAIM,
698         PAGEREF_RECLAIM_CLEAN,
699         PAGEREF_KEEP,
700         PAGEREF_ACTIVATE,
701 };
702
703 static enum page_references page_check_references(struct page *page,
704                                                   struct scan_control *sc)
705 {
706         int referenced_ptes, referenced_page;
707         unsigned long vm_flags;
708
709         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
710                                           &vm_flags);
711         referenced_page = TestClearPageReferenced(page);
712
713         /*
714          * Mlock lost the isolation race with us.  Let try_to_unmap()
715          * move the page to the unevictable list.
716          */
717         if (vm_flags & VM_LOCKED)
718                 return PAGEREF_RECLAIM;
719
720         if (referenced_ptes) {
721                 if (PageSwapBacked(page))
722                         return PAGEREF_ACTIVATE;
723                 /*
724                  * All mapped pages start out with page table
725                  * references from the instantiating fault, so we need
726                  * to look twice if a mapped file page is used more
727                  * than once.
728                  *
729                  * Mark it and spare it for another trip around the
730                  * inactive list.  Another page table reference will
731                  * lead to its activation.
732                  *
733                  * Note: the mark is set for activated pages as well
734                  * so that recently deactivated but used pages are
735                  * quickly recovered.
736                  */
737                 SetPageReferenced(page);
738
739                 if (referenced_page || referenced_ptes > 1)
740                         return PAGEREF_ACTIVATE;
741
742                 /*
743                  * Activate file-backed executable pages after first usage.
744                  */
745                 if (vm_flags & VM_EXEC)
746                         return PAGEREF_ACTIVATE;
747
748                 return PAGEREF_KEEP;
749         }
750
751         /* Reclaim if clean, defer dirty pages to writeback */
752         if (referenced_page && !PageSwapBacked(page))
753                 return PAGEREF_RECLAIM_CLEAN;
754
755         return PAGEREF_RECLAIM;
756 }
757
758 /* Check if a page is dirty or under writeback */
759 static void page_check_dirty_writeback(struct page *page,
760                                        bool *dirty, bool *writeback)
761 {
762         struct address_space *mapping;
763
764         /*
765          * Anonymous pages are not handled by flushers and must be written
766          * from reclaim context. Do not stall reclaim based on them
767          */
768         if (!page_is_file_cache(page)) {
769                 *dirty = false;
770                 *writeback = false;
771                 return;
772         }
773
774         /* By default assume that the page flags are accurate */
775         *dirty = PageDirty(page);
776         *writeback = PageWriteback(page);
777
778         /* Verify dirty/writeback state if the filesystem supports it */
779         if (!page_has_private(page))
780                 return;
781
782         mapping = page_mapping(page);
783         if (mapping && mapping->a_ops->is_dirty_writeback)
784                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 }
786
787 /*
788  * shrink_page_list() returns the number of reclaimed pages
789  */
790 static unsigned long shrink_page_list(struct list_head *page_list,
791                                       struct zone *zone,
792                                       struct scan_control *sc,
793                                       enum ttu_flags ttu_flags,
794                                       unsigned long *ret_nr_dirty,
795                                       unsigned long *ret_nr_unqueued_dirty,
796                                       unsigned long *ret_nr_congested,
797                                       unsigned long *ret_nr_writeback,
798                                       unsigned long *ret_nr_immediate,
799                                       bool force_reclaim)
800 {
801         LIST_HEAD(ret_pages);
802         LIST_HEAD(free_pages);
803         int pgactivate = 0;
804         unsigned long nr_unqueued_dirty = 0;
805         unsigned long nr_dirty = 0;
806         unsigned long nr_congested = 0;
807         unsigned long nr_reclaimed = 0;
808         unsigned long nr_writeback = 0;
809         unsigned long nr_immediate = 0;
810
811         cond_resched();
812
813         mem_cgroup_uncharge_start();
814         while (!list_empty(page_list)) {
815                 struct address_space *mapping;
816                 struct page *page;
817                 int may_enter_fs;
818                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
819                 bool dirty, writeback;
820
821                 cond_resched();
822
823                 page = lru_to_page(page_list);
824                 list_del(&page->lru);
825
826                 if (!trylock_page(page))
827                         goto keep;
828
829                 VM_BUG_ON_PAGE(PageActive(page), page);
830                 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
831
832                 sc->nr_scanned++;
833
834                 if (unlikely(!page_evictable(page)))
835                         goto cull_mlocked;
836
837                 if (!sc->may_unmap && page_mapped(page))
838                         goto keep_locked;
839
840                 /* Double the slab pressure for mapped and swapcache pages */
841                 if (page_mapped(page) || PageSwapCache(page))
842                         sc->nr_scanned++;
843
844                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
845                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
846
847                 /*
848                  * The number of dirty pages determines if a zone is marked
849                  * reclaim_congested which affects wait_iff_congested. kswapd
850                  * will stall and start writing pages if the tail of the LRU
851                  * is all dirty unqueued pages.
852                  */
853                 page_check_dirty_writeback(page, &dirty, &writeback);
854                 if (dirty || writeback)
855                         nr_dirty++;
856
857                 if (dirty && !writeback)
858                         nr_unqueued_dirty++;
859
860                 /*
861                  * Treat this page as congested if the underlying BDI is or if
862                  * pages are cycling through the LRU so quickly that the
863                  * pages marked for immediate reclaim are making it to the
864                  * end of the LRU a second time.
865                  */
866                 mapping = page_mapping(page);
867                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
868                     (writeback && PageReclaim(page)))
869                         nr_congested++;
870
871                 /*
872                  * If a page at the tail of the LRU is under writeback, there
873                  * are three cases to consider.
874                  *
875                  * 1) If reclaim is encountering an excessive number of pages
876                  *    under writeback and this page is both under writeback and
877                  *    PageReclaim then it indicates that pages are being queued
878                  *    for IO but are being recycled through the LRU before the
879                  *    IO can complete. Waiting on the page itself risks an
880                  *    indefinite stall if it is impossible to writeback the
881                  *    page due to IO error or disconnected storage so instead
882                  *    note that the LRU is being scanned too quickly and the
883                  *    caller can stall after page list has been processed.
884                  *
885                  * 2) Global reclaim encounters a page, memcg encounters a
886                  *    page that is not marked for immediate reclaim or
887                  *    the caller does not have __GFP_IO. In this case mark
888                  *    the page for immediate reclaim and continue scanning.
889                  *
890                  *    __GFP_IO is checked  because a loop driver thread might
891                  *    enter reclaim, and deadlock if it waits on a page for
892                  *    which it is needed to do the write (loop masks off
893                  *    __GFP_IO|__GFP_FS for this reason); but more thought
894                  *    would probably show more reasons.
895                  *
896                  *    Don't require __GFP_FS, since we're not going into the
897                  *    FS, just waiting on its writeback completion. Worryingly,
898                  *    ext4 gfs2 and xfs allocate pages with
899                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
900                  *    may_enter_fs here is liable to OOM on them.
901                  *
902                  * 3) memcg encounters a page that is not already marked
903                  *    PageReclaim. memcg does not have any dirty pages
904                  *    throttling so we could easily OOM just because too many
905                  *    pages are in writeback and there is nothing else to
906                  *    reclaim. Wait for the writeback to complete.
907                  */
908                 if (PageWriteback(page)) {
909                         /* Case 1 above */
910                         if (current_is_kswapd() &&
911                             PageReclaim(page) &&
912                             zone_is_reclaim_writeback(zone)) {
913                                 nr_immediate++;
914                                 goto keep_locked;
915
916                         /* Case 2 above */
917                         } else if (global_reclaim(sc) ||
918                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
919                                 /*
920                                  * This is slightly racy - end_page_writeback()
921                                  * might have just cleared PageReclaim, then
922                                  * setting PageReclaim here end up interpreted
923                                  * as PageReadahead - but that does not matter
924                                  * enough to care.  What we do want is for this
925                                  * page to have PageReclaim set next time memcg
926                                  * reclaim reaches the tests above, so it will
927                                  * then wait_on_page_writeback() to avoid OOM;
928                                  * and it's also appropriate in global reclaim.
929                                  */
930                                 SetPageReclaim(page);
931                                 nr_writeback++;
932
933                                 goto keep_locked;
934
935                         /* Case 3 above */
936                         } else {
937                                 wait_on_page_writeback(page);
938                         }
939                 }
940
941                 if (!force_reclaim)
942                         references = page_check_references(page, sc);
943
944                 switch (references) {
945                 case PAGEREF_ACTIVATE:
946                         goto activate_locked;
947                 case PAGEREF_KEEP:
948                         goto keep_locked;
949                 case PAGEREF_RECLAIM:
950                 case PAGEREF_RECLAIM_CLEAN:
951                         ; /* try to reclaim the page below */
952                 }
953
954                 /*
955                  * Anonymous process memory has backing store?
956                  * Try to allocate it some swap space here.
957                  */
958                 if (PageAnon(page) && !PageSwapCache(page)) {
959                         if (!(sc->gfp_mask & __GFP_IO))
960                                 goto keep_locked;
961                         if (!add_to_swap(page, page_list))
962                                 goto activate_locked;
963                         may_enter_fs = 1;
964
965                         /* Adding to swap updated mapping */
966                         mapping = page_mapping(page);
967                 }
968
969                 /*
970                  * The page is mapped into the page tables of one or more
971                  * processes. Try to unmap it here.
972                  */
973                 if (page_mapped(page) && mapping) {
974                         switch (try_to_unmap(page, ttu_flags)) {
975                         case SWAP_FAIL:
976                                 goto activate_locked;
977                         case SWAP_AGAIN:
978                                 goto keep_locked;
979                         case SWAP_MLOCK:
980                                 goto cull_mlocked;
981                         case SWAP_SUCCESS:
982                                 ; /* try to free the page below */
983                         }
984                 }
985
986                 if (PageDirty(page)) {
987                         /*
988                          * Only kswapd can writeback filesystem pages to
989                          * avoid risk of stack overflow but only writeback
990                          * if many dirty pages have been encountered.
991                          */
992                         if (page_is_file_cache(page) &&
993                                         (!current_is_kswapd() ||
994                                          !zone_is_reclaim_dirty(zone))) {
995                                 /*
996                                  * Immediately reclaim when written back.
997                                  * Similar in principal to deactivate_page()
998                                  * except we already have the page isolated
999                                  * and know it's dirty
1000                                  */
1001                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002                                 SetPageReclaim(page);
1003
1004                                 goto keep_locked;
1005                         }
1006
1007                         if (references == PAGEREF_RECLAIM_CLEAN)
1008                                 goto keep_locked;
1009                         if (!may_enter_fs)
1010                                 goto keep_locked;
1011                         if (!sc->may_writepage)
1012                                 goto keep_locked;
1013
1014                         /* Page is dirty, try to write it out here */
1015                         switch (pageout(page, mapping, sc)) {
1016                         case PAGE_KEEP:
1017                                 goto keep_locked;
1018                         case PAGE_ACTIVATE:
1019                                 goto activate_locked;
1020                         case PAGE_SUCCESS:
1021                                 if (PageWriteback(page))
1022                                         goto keep;
1023                                 if (PageDirty(page))
1024                                         goto keep;
1025
1026                                 /*
1027                                  * A synchronous write - probably a ramdisk.  Go
1028                                  * ahead and try to reclaim the page.
1029                                  */
1030                                 if (!trylock_page(page))
1031                                         goto keep;
1032                                 if (PageDirty(page) || PageWriteback(page))
1033                                         goto keep_locked;
1034                                 mapping = page_mapping(page);
1035                         case PAGE_CLEAN:
1036                                 ; /* try to free the page below */
1037                         }
1038                 }
1039
1040                 /*
1041                  * If the page has buffers, try to free the buffer mappings
1042                  * associated with this page. If we succeed we try to free
1043                  * the page as well.
1044                  *
1045                  * We do this even if the page is PageDirty().
1046                  * try_to_release_page() does not perform I/O, but it is
1047                  * possible for a page to have PageDirty set, but it is actually
1048                  * clean (all its buffers are clean).  This happens if the
1049                  * buffers were written out directly, with submit_bh(). ext3
1050                  * will do this, as well as the blockdev mapping.
1051                  * try_to_release_page() will discover that cleanness and will
1052                  * drop the buffers and mark the page clean - it can be freed.
1053                  *
1054                  * Rarely, pages can have buffers and no ->mapping.  These are
1055                  * the pages which were not successfully invalidated in
1056                  * truncate_complete_page().  We try to drop those buffers here
1057                  * and if that worked, and the page is no longer mapped into
1058                  * process address space (page_count == 1) it can be freed.
1059                  * Otherwise, leave the page on the LRU so it is swappable.
1060                  */
1061                 if (page_has_private(page)) {
1062                         if (!try_to_release_page(page, sc->gfp_mask))
1063                                 goto activate_locked;
1064                         if (!mapping && page_count(page) == 1) {
1065                                 unlock_page(page);
1066                                 if (put_page_testzero(page))
1067                                         goto free_it;
1068                                 else {
1069                                         /*
1070                                          * rare race with speculative reference.
1071                                          * the speculative reference will free
1072                                          * this page shortly, so we may
1073                                          * increment nr_reclaimed here (and
1074                                          * leave it off the LRU).
1075                                          */
1076                                         nr_reclaimed++;
1077                                         continue;
1078                                 }
1079                         }
1080                 }
1081
1082                 if (!mapping || !__remove_mapping(mapping, page, true))
1083                         goto keep_locked;
1084
1085                 /*
1086                  * At this point, we have no other references and there is
1087                  * no way to pick any more up (removed from LRU, removed
1088                  * from pagecache). Can use non-atomic bitops now (and
1089                  * we obviously don't have to worry about waking up a process
1090                  * waiting on the page lock, because there are no references.
1091                  */
1092                 __clear_page_locked(page);
1093 free_it:
1094                 nr_reclaimed++;
1095
1096                 /*
1097                  * Is there need to periodically free_page_list? It would
1098                  * appear not as the counts should be low
1099                  */
1100                 list_add(&page->lru, &free_pages);
1101                 continue;
1102
1103 cull_mlocked:
1104                 if (PageSwapCache(page))
1105                         try_to_free_swap(page);
1106                 unlock_page(page);
1107                 putback_lru_page(page);
1108                 continue;
1109
1110 activate_locked:
1111                 /* Not a candidate for swapping, so reclaim swap space. */
1112                 if (PageSwapCache(page) && vm_swap_full())
1113                         try_to_free_swap(page);
1114                 VM_BUG_ON_PAGE(PageActive(page), page);
1115                 SetPageActive(page);
1116                 pgactivate++;
1117 keep_locked:
1118                 unlock_page(page);
1119 keep:
1120                 list_add(&page->lru, &ret_pages);
1121                 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122         }
1123
1124         free_hot_cold_page_list(&free_pages, 1);
1125
1126         list_splice(&ret_pages, page_list);
1127         count_vm_events(PGACTIVATE, pgactivate);
1128         mem_cgroup_uncharge_end();
1129         *ret_nr_dirty += nr_dirty;
1130         *ret_nr_congested += nr_congested;
1131         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132         *ret_nr_writeback += nr_writeback;
1133         *ret_nr_immediate += nr_immediate;
1134         return nr_reclaimed;
1135 }
1136
1137 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138                                             struct list_head *page_list)
1139 {
1140         struct scan_control sc = {
1141                 .gfp_mask = GFP_KERNEL,
1142                 .priority = DEF_PRIORITY,
1143                 .may_unmap = 1,
1144         };
1145         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146         struct page *page, *next;
1147         LIST_HEAD(clean_pages);
1148
1149         list_for_each_entry_safe(page, next, page_list, lru) {
1150                 if (page_is_file_cache(page) && !PageDirty(page) &&
1151                     !isolated_balloon_page(page)) {
1152                         ClearPageActive(page);
1153                         list_move(&page->lru, &clean_pages);
1154                 }
1155         }
1156
1157         ret = shrink_page_list(&clean_pages, zone, &sc,
1158                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1159                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160         list_splice(&clean_pages, page_list);
1161         mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162         return ret;
1163 }
1164
1165 /*
1166  * Attempt to remove the specified page from its LRU.  Only take this page
1167  * if it is of the appropriate PageActive status.  Pages which are being
1168  * freed elsewhere are also ignored.
1169  *
1170  * page:        page to consider
1171  * mode:        one of the LRU isolation modes defined above
1172  *
1173  * returns 0 on success, -ve errno on failure.
1174  */
1175 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176 {
1177         int ret = -EINVAL;
1178
1179         /* Only take pages on the LRU. */
1180         if (!PageLRU(page))
1181                 return ret;
1182
1183         /* Compaction should not handle unevictable pages but CMA can do so */
1184         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185                 return ret;
1186
1187         ret = -EBUSY;
1188
1189         /*
1190          * To minimise LRU disruption, the caller can indicate that it only
1191          * wants to isolate pages it will be able to operate on without
1192          * blocking - clean pages for the most part.
1193          *
1194          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195          * is used by reclaim when it is cannot write to backing storage
1196          *
1197          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198          * that it is possible to migrate without blocking
1199          */
1200         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201                 /* All the caller can do on PageWriteback is block */
1202                 if (PageWriteback(page))
1203                         return ret;
1204
1205                 if (PageDirty(page)) {
1206                         struct address_space *mapping;
1207
1208                         /* ISOLATE_CLEAN means only clean pages */
1209                         if (mode & ISOLATE_CLEAN)
1210                                 return ret;
1211
1212                         /*
1213                          * Only pages without mappings or that have a
1214                          * ->migratepage callback are possible to migrate
1215                          * without blocking
1216                          */
1217                         mapping = page_mapping(page);
1218                         if (mapping && !mapping->a_ops->migratepage)
1219                                 return ret;
1220                 }
1221         }
1222
1223         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224                 return ret;
1225
1226         if (likely(get_page_unless_zero(page))) {
1227                 /*
1228                  * Be careful not to clear PageLRU until after we're
1229                  * sure the page is not being freed elsewhere -- the
1230                  * page release code relies on it.
1231                  */
1232                 ClearPageLRU(page);
1233                 ret = 0;
1234         }
1235
1236         return ret;
1237 }
1238
1239 /*
1240  * zone->lru_lock is heavily contended.  Some of the functions that
1241  * shrink the lists perform better by taking out a batch of pages
1242  * and working on them outside the LRU lock.
1243  *
1244  * For pagecache intensive workloads, this function is the hottest
1245  * spot in the kernel (apart from copy_*_user functions).
1246  *
1247  * Appropriate locks must be held before calling this function.
1248  *
1249  * @nr_to_scan: The number of pages to look through on the list.
1250  * @lruvec:     The LRU vector to pull pages from.
1251  * @dst:        The temp list to put pages on to.
1252  * @nr_scanned: The number of pages that were scanned.
1253  * @sc:         The scan_control struct for this reclaim session
1254  * @mode:       One of the LRU isolation modes
1255  * @lru:        LRU list id for isolating
1256  *
1257  * returns how many pages were moved onto *@dst.
1258  */
1259 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260                 struct lruvec *lruvec, struct list_head *dst,
1261                 unsigned long *nr_scanned, struct scan_control *sc,
1262                 isolate_mode_t mode, enum lru_list lru)
1263 {
1264         struct list_head *src = &lruvec->lists[lru];
1265         unsigned long nr_taken = 0;
1266         unsigned long scan;
1267
1268         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1269                 struct page *page;
1270                 int nr_pages;
1271
1272                 page = lru_to_page(src);
1273                 prefetchw_prev_lru_page(page, src, flags);
1274
1275                 VM_BUG_ON_PAGE(!PageLRU(page), page);
1276
1277                 switch (__isolate_lru_page(page, mode)) {
1278                 case 0:
1279                         nr_pages = hpage_nr_pages(page);
1280                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281                         list_move(&page->lru, dst);
1282                         nr_taken += nr_pages;
1283                         break;
1284
1285                 case -EBUSY:
1286                         /* else it is being freed elsewhere */
1287                         list_move(&page->lru, src);
1288                         continue;
1289
1290                 default:
1291                         BUG();
1292                 }
1293         }
1294
1295         *nr_scanned = scan;
1296         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297                                     nr_taken, mode, is_file_lru(lru));
1298         return nr_taken;
1299 }
1300
1301 /**
1302  * isolate_lru_page - tries to isolate a page from its LRU list
1303  * @page: page to isolate from its LRU list
1304  *
1305  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306  * vmstat statistic corresponding to whatever LRU list the page was on.
1307  *
1308  * Returns 0 if the page was removed from an LRU list.
1309  * Returns -EBUSY if the page was not on an LRU list.
1310  *
1311  * The returned page will have PageLRU() cleared.  If it was found on
1312  * the active list, it will have PageActive set.  If it was found on
1313  * the unevictable list, it will have the PageUnevictable bit set. That flag
1314  * may need to be cleared by the caller before letting the page go.
1315  *
1316  * The vmstat statistic corresponding to the list on which the page was
1317  * found will be decremented.
1318  *
1319  * Restrictions:
1320  * (1) Must be called with an elevated refcount on the page. This is a
1321  *     fundamentnal difference from isolate_lru_pages (which is called
1322  *     without a stable reference).
1323  * (2) the lru_lock must not be held.
1324  * (3) interrupts must be enabled.
1325  */
1326 int isolate_lru_page(struct page *page)
1327 {
1328         int ret = -EBUSY;
1329
1330         VM_BUG_ON_PAGE(!page_count(page), page);
1331
1332         if (PageLRU(page)) {
1333                 struct zone *zone = page_zone(page);
1334                 struct lruvec *lruvec;
1335
1336                 spin_lock_irq(&zone->lru_lock);
1337                 lruvec = mem_cgroup_page_lruvec(page, zone);
1338                 if (PageLRU(page)) {
1339                         int lru = page_lru(page);
1340                         get_page(page);
1341                         ClearPageLRU(page);
1342                         del_page_from_lru_list(page, lruvec, lru);
1343                         ret = 0;
1344                 }
1345                 spin_unlock_irq(&zone->lru_lock);
1346         }
1347         return ret;
1348 }
1349
1350 /*
1351  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352  * then get resheduled. When there are massive number of tasks doing page
1353  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354  * the LRU list will go small and be scanned faster than necessary, leading to
1355  * unnecessary swapping, thrashing and OOM.
1356  */
1357 static int too_many_isolated(struct zone *zone, int file,
1358                 struct scan_control *sc)
1359 {
1360         unsigned long inactive, isolated;
1361
1362         if (current_is_kswapd())
1363                 return 0;
1364
1365         if (!global_reclaim(sc))
1366                 return 0;
1367
1368         if (file) {
1369                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371         } else {
1372                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374         }
1375
1376         /*
1377          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378          * won't get blocked by normal direct-reclaimers, forming a circular
1379          * deadlock.
1380          */
1381         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382                 inactive >>= 3;
1383
1384         return isolated > inactive;
1385 }
1386
1387 static noinline_for_stack void
1388 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389 {
1390         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391         struct zone *zone = lruvec_zone(lruvec);
1392         LIST_HEAD(pages_to_free);
1393
1394         /*
1395          * Put back any unfreeable pages.
1396          */
1397         while (!list_empty(page_list)) {
1398                 struct page *page = lru_to_page(page_list);
1399                 int lru;
1400
1401                 VM_BUG_ON_PAGE(PageLRU(page), page);
1402                 list_del(&page->lru);
1403                 if (unlikely(!page_evictable(page))) {
1404                         spin_unlock_irq(&zone->lru_lock);
1405                         putback_lru_page(page);
1406                         spin_lock_irq(&zone->lru_lock);
1407                         continue;
1408                 }
1409
1410                 lruvec = mem_cgroup_page_lruvec(page, zone);
1411
1412                 SetPageLRU(page);
1413                 lru = page_lru(page);
1414                 add_page_to_lru_list(page, lruvec, lru);
1415
1416                 if (is_active_lru(lru)) {
1417                         int file = is_file_lru(lru);
1418                         int numpages = hpage_nr_pages(page);
1419                         reclaim_stat->recent_rotated[file] += numpages;
1420                 }
1421                 if (put_page_testzero(page)) {
1422                         __ClearPageLRU(page);
1423                         __ClearPageActive(page);
1424                         del_page_from_lru_list(page, lruvec, lru);
1425
1426                         if (unlikely(PageCompound(page))) {
1427                                 spin_unlock_irq(&zone->lru_lock);
1428                                 (*get_compound_page_dtor(page))(page);
1429                                 spin_lock_irq(&zone->lru_lock);
1430                         } else
1431                                 list_add(&page->lru, &pages_to_free);
1432                 }
1433         }
1434
1435         /*
1436          * To save our caller's stack, now use input list for pages to free.
1437          */
1438         list_splice(&pages_to_free, page_list);
1439 }
1440
1441 /*
1442  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1443  * of reclaimed pages
1444  */
1445 static noinline_for_stack unsigned long
1446 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447                      struct scan_control *sc, enum lru_list lru)
1448 {
1449         LIST_HEAD(page_list);
1450         unsigned long nr_scanned;
1451         unsigned long nr_reclaimed = 0;
1452         unsigned long nr_taken;
1453         unsigned long nr_dirty = 0;
1454         unsigned long nr_congested = 0;
1455         unsigned long nr_unqueued_dirty = 0;
1456         unsigned long nr_writeback = 0;
1457         unsigned long nr_immediate = 0;
1458         isolate_mode_t isolate_mode = 0;
1459         int file = is_file_lru(lru);
1460         struct zone *zone = lruvec_zone(lruvec);
1461         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462
1463         while (unlikely(too_many_isolated(zone, file, sc))) {
1464                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1465
1466                 /* We are about to die and free our memory. Return now. */
1467                 if (fatal_signal_pending(current))
1468                         return SWAP_CLUSTER_MAX;
1469         }
1470
1471         lru_add_drain();
1472
1473         if (!sc->may_unmap)
1474                 isolate_mode |= ISOLATE_UNMAPPED;
1475         if (!sc->may_writepage)
1476                 isolate_mode |= ISOLATE_CLEAN;
1477
1478         spin_lock_irq(&zone->lru_lock);
1479
1480         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481                                      &nr_scanned, sc, isolate_mode, lru);
1482
1483         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485
1486         if (global_reclaim(sc)) {
1487                 zone->pages_scanned += nr_scanned;
1488                 if (current_is_kswapd())
1489                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490                 else
1491                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492         }
1493         spin_unlock_irq(&zone->lru_lock);
1494
1495         if (nr_taken == 0)
1496                 return 0;
1497
1498         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500                                 &nr_writeback, &nr_immediate,
1501                                 false);
1502
1503         spin_lock_irq(&zone->lru_lock);
1504
1505         reclaim_stat->recent_scanned[file] += nr_taken;
1506
1507         if (global_reclaim(sc)) {
1508                 if (current_is_kswapd())
1509                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510                                                nr_reclaimed);
1511                 else
1512                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513                                                nr_reclaimed);
1514         }
1515
1516         putback_inactive_pages(lruvec, &page_list);
1517
1518         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519
1520         spin_unlock_irq(&zone->lru_lock);
1521
1522         free_hot_cold_page_list(&page_list, 1);
1523
1524         /*
1525          * If reclaim is isolating dirty pages under writeback, it implies
1526          * that the long-lived page allocation rate is exceeding the page
1527          * laundering rate. Either the global limits are not being effective
1528          * at throttling processes due to the page distribution throughout
1529          * zones or there is heavy usage of a slow backing device. The
1530          * only option is to throttle from reclaim context which is not ideal
1531          * as there is no guarantee the dirtying process is throttled in the
1532          * same way balance_dirty_pages() manages.
1533          *
1534          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535          * of pages under pages flagged for immediate reclaim and stall if any
1536          * are encountered in the nr_immediate check below.
1537          */
1538         if (nr_writeback && nr_writeback == nr_taken)
1539                 zone_set_flag(zone, ZONE_WRITEBACK);
1540
1541         /*
1542          * memcg will stall in page writeback so only consider forcibly
1543          * stalling for global reclaim
1544          */
1545         if (global_reclaim(sc)) {
1546                 /*
1547                  * Tag a zone as congested if all the dirty pages scanned were
1548                  * backed by a congested BDI and wait_iff_congested will stall.
1549                  */
1550                 if (nr_dirty && nr_dirty == nr_congested)
1551                         zone_set_flag(zone, ZONE_CONGESTED);
1552
1553                 /*
1554                  * If dirty pages are scanned that are not queued for IO, it
1555                  * implies that flushers are not keeping up. In this case, flag
1556                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557                  * pages from reclaim context. It will forcibly stall in the
1558                  * next check.
1559                  */
1560                 if (nr_unqueued_dirty == nr_taken)
1561                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562
1563                 /*
1564                  * In addition, if kswapd scans pages marked marked for
1565                  * immediate reclaim and under writeback (nr_immediate), it
1566                  * implies that pages are cycling through the LRU faster than
1567                  * they are written so also forcibly stall.
1568                  */
1569                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1571         }
1572
1573         /*
1574          * Stall direct reclaim for IO completions if underlying BDIs or zone
1575          * is congested. Allow kswapd to continue until it starts encountering
1576          * unqueued dirty pages or cycling through the LRU too quickly.
1577          */
1578         if (!sc->hibernation_mode && !current_is_kswapd())
1579                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582                 zone_idx(zone),
1583                 nr_scanned, nr_reclaimed,
1584                 sc->priority,
1585                 trace_shrink_flags(file));
1586         return nr_reclaimed;
1587 }
1588
1589 /*
1590  * This moves pages from the active list to the inactive list.
1591  *
1592  * We move them the other way if the page is referenced by one or more
1593  * processes, from rmap.
1594  *
1595  * If the pages are mostly unmapped, the processing is fast and it is
1596  * appropriate to hold zone->lru_lock across the whole operation.  But if
1597  * the pages are mapped, the processing is slow (page_referenced()) so we
1598  * should drop zone->lru_lock around each page.  It's impossible to balance
1599  * this, so instead we remove the pages from the LRU while processing them.
1600  * It is safe to rely on PG_active against the non-LRU pages in here because
1601  * nobody will play with that bit on a non-LRU page.
1602  *
1603  * The downside is that we have to touch page->_count against each page.
1604  * But we had to alter page->flags anyway.
1605  */
1606
1607 static void move_active_pages_to_lru(struct lruvec *lruvec,
1608                                      struct list_head *list,
1609                                      struct list_head *pages_to_free,
1610                                      enum lru_list lru)
1611 {
1612         struct zone *zone = lruvec_zone(lruvec);
1613         unsigned long pgmoved = 0;
1614         struct page *page;
1615         int nr_pages;
1616
1617         while (!list_empty(list)) {
1618                 page = lru_to_page(list);
1619                 lruvec = mem_cgroup_page_lruvec(page, zone);
1620
1621                 VM_BUG_ON_PAGE(PageLRU(page), page);
1622                 SetPageLRU(page);
1623
1624                 nr_pages = hpage_nr_pages(page);
1625                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626                 list_move(&page->lru, &lruvec->lists[lru]);
1627                 pgmoved += nr_pages;
1628
1629                 if (put_page_testzero(page)) {
1630                         __ClearPageLRU(page);
1631                         __ClearPageActive(page);
1632                         del_page_from_lru_list(page, lruvec, lru);
1633
1634                         if (unlikely(PageCompound(page))) {
1635                                 spin_unlock_irq(&zone->lru_lock);
1636                                 (*get_compound_page_dtor(page))(page);
1637                                 spin_lock_irq(&zone->lru_lock);
1638                         } else
1639                                 list_add(&page->lru, pages_to_free);
1640                 }
1641         }
1642         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643         if (!is_active_lru(lru))
1644                 __count_vm_events(PGDEACTIVATE, pgmoved);
1645 }
1646
1647 static void shrink_active_list(unsigned long nr_to_scan,
1648                                struct lruvec *lruvec,
1649                                struct scan_control *sc,
1650                                enum lru_list lru)
1651 {
1652         unsigned long nr_taken;
1653         unsigned long nr_scanned;
1654         unsigned long vm_flags;
1655         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1656         LIST_HEAD(l_active);
1657         LIST_HEAD(l_inactive);
1658         struct page *page;
1659         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660         unsigned long nr_rotated = 0;
1661         isolate_mode_t isolate_mode = 0;
1662         int file = is_file_lru(lru);
1663         struct zone *zone = lruvec_zone(lruvec);
1664
1665         lru_add_drain();
1666
1667         if (!sc->may_unmap)
1668                 isolate_mode |= ISOLATE_UNMAPPED;
1669         if (!sc->may_writepage)
1670                 isolate_mode |= ISOLATE_CLEAN;
1671
1672         spin_lock_irq(&zone->lru_lock);
1673
1674         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675                                      &nr_scanned, sc, isolate_mode, lru);
1676         if (global_reclaim(sc))
1677                 zone->pages_scanned += nr_scanned;
1678
1679         reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1683         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684         spin_unlock_irq(&zone->lru_lock);
1685
1686         while (!list_empty(&l_hold)) {
1687                 cond_resched();
1688                 page = lru_to_page(&l_hold);
1689                 list_del(&page->lru);
1690
1691                 if (unlikely(!page_evictable(page))) {
1692                         putback_lru_page(page);
1693                         continue;
1694                 }
1695
1696                 if (unlikely(buffer_heads_over_limit)) {
1697                         if (page_has_private(page) && trylock_page(page)) {
1698                                 if (page_has_private(page))
1699                                         try_to_release_page(page, 0);
1700                                 unlock_page(page);
1701                         }
1702                 }
1703
1704                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1705                                     &vm_flags)) {
1706                         nr_rotated += hpage_nr_pages(page);
1707                         /*
1708                          * Identify referenced, file-backed active pages and
1709                          * give them one more trip around the active list. So
1710                          * that executable code get better chances to stay in
1711                          * memory under moderate memory pressure.  Anon pages
1712                          * are not likely to be evicted by use-once streaming
1713                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1714                          * so we ignore them here.
1715                          */
1716                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717                                 list_add(&page->lru, &l_active);
1718                                 continue;
1719                         }
1720                 }
1721
1722                 ClearPageActive(page);  /* we are de-activating */
1723                 list_add(&page->lru, &l_inactive);
1724         }
1725
1726         /*
1727          * Move pages back to the lru list.
1728          */
1729         spin_lock_irq(&zone->lru_lock);
1730         /*
1731          * Count referenced pages from currently used mappings as rotated,
1732          * even though only some of them are actually re-activated.  This
1733          * helps balance scan pressure between file and anonymous pages in
1734          * get_scan_ratio.
1735          */
1736         reclaim_stat->recent_rotated[file] += nr_rotated;
1737
1738         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1740         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741         spin_unlock_irq(&zone->lru_lock);
1742
1743         free_hot_cold_page_list(&l_hold, 1);
1744 }
1745
1746 #ifdef CONFIG_SWAP
1747 static int inactive_anon_is_low_global(struct zone *zone)
1748 {
1749         unsigned long active, inactive;
1750
1751         active = zone_page_state(zone, NR_ACTIVE_ANON);
1752         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754         if (inactive * zone->inactive_ratio < active)
1755                 return 1;
1756
1757         return 0;
1758 }
1759
1760 /**
1761  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762  * @lruvec: LRU vector to check
1763  *
1764  * Returns true if the zone does not have enough inactive anon pages,
1765  * meaning some active anon pages need to be deactivated.
1766  */
1767 static int inactive_anon_is_low(struct lruvec *lruvec)
1768 {
1769         /*
1770          * If we don't have swap space, anonymous page deactivation
1771          * is pointless.
1772          */
1773         if (!total_swap_pages)
1774                 return 0;
1775
1776         if (!mem_cgroup_disabled())
1777                 return mem_cgroup_inactive_anon_is_low(lruvec);
1778
1779         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780 }
1781 #else
1782 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783 {
1784         return 0;
1785 }
1786 #endif
1787
1788 /**
1789  * inactive_file_is_low - check if file pages need to be deactivated
1790  * @lruvec: LRU vector to check
1791  *
1792  * When the system is doing streaming IO, memory pressure here
1793  * ensures that active file pages get deactivated, until more
1794  * than half of the file pages are on the inactive list.
1795  *
1796  * Once we get to that situation, protect the system's working
1797  * set from being evicted by disabling active file page aging.
1798  *
1799  * This uses a different ratio than the anonymous pages, because
1800  * the page cache uses a use-once replacement algorithm.
1801  */
1802 static int inactive_file_is_low(struct lruvec *lruvec)
1803 {
1804         unsigned long inactive;
1805         unsigned long active;
1806
1807         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809
1810         return active > inactive;
1811 }
1812
1813 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814 {
1815         if (is_file_lru(lru))
1816                 return inactive_file_is_low(lruvec);
1817         else
1818                 return inactive_anon_is_low(lruvec);
1819 }
1820
1821 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822                                  struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824         if (is_active_lru(lru)) {
1825                 if (inactive_list_is_low(lruvec, lru))
1826                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827                 return 0;
1828         }
1829
1830         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831 }
1832
1833 static int vmscan_swappiness(struct scan_control *sc)
1834 {
1835         if (global_reclaim(sc))
1836                 return vm_swappiness;
1837         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838 }
1839
1840 enum scan_balance {
1841         SCAN_EQUAL,
1842         SCAN_FRACT,
1843         SCAN_ANON,
1844         SCAN_FILE,
1845 };
1846
1847 /*
1848  * Determine how aggressively the anon and file LRU lists should be
1849  * scanned.  The relative value of each set of LRU lists is determined
1850  * by looking at the fraction of the pages scanned we did rotate back
1851  * onto the active list instead of evict.
1852  *
1853  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855  */
1856 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857                            unsigned long *nr)
1858 {
1859         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860         u64 fraction[2];
1861         u64 denominator = 0;    /* gcc */
1862         struct zone *zone = lruvec_zone(lruvec);
1863         unsigned long anon_prio, file_prio;
1864         enum scan_balance scan_balance;
1865         unsigned long anon, file;
1866         bool force_scan = false;
1867         unsigned long ap, fp;
1868         enum lru_list lru;
1869
1870         /*
1871          * If the zone or memcg is small, nr[l] can be 0.  This
1872          * results in no scanning on this priority and a potential
1873          * priority drop.  Global direct reclaim can go to the next
1874          * zone and tends to have no problems. Global kswapd is for
1875          * zone balancing and it needs to scan a minimum amount. When
1876          * reclaiming for a memcg, a priority drop can cause high
1877          * latencies, so it's better to scan a minimum amount there as
1878          * well.
1879          */
1880         if (current_is_kswapd() && !zone_reclaimable(zone))
1881                 force_scan = true;
1882         if (!global_reclaim(sc))
1883                 force_scan = true;
1884
1885         /* If we have no swap space, do not bother scanning anon pages. */
1886         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887                 scan_balance = SCAN_FILE;
1888                 goto out;
1889         }
1890
1891         /*
1892          * Global reclaim will swap to prevent OOM even with no
1893          * swappiness, but memcg users want to use this knob to
1894          * disable swapping for individual groups completely when
1895          * using the memory controller's swap limit feature would be
1896          * too expensive.
1897          */
1898         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899                 scan_balance = SCAN_FILE;
1900                 goto out;
1901         }
1902
1903         /*
1904          * Do not apply any pressure balancing cleverness when the
1905          * system is close to OOM, scan both anon and file equally
1906          * (unless the swappiness setting disagrees with swapping).
1907          */
1908         if (!sc->priority && vmscan_swappiness(sc)) {
1909                 scan_balance = SCAN_EQUAL;
1910                 goto out;
1911         }
1912
1913         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917
1918         /*
1919          * Prevent the reclaimer from falling into the cache trap: as
1920          * cache pages start out inactive, every cache fault will tip
1921          * the scan balance towards the file LRU.  And as the file LRU
1922          * shrinks, so does the window for rotation from references.
1923          * This means we have a runaway feedback loop where a tiny
1924          * thrashing file LRU becomes infinitely more attractive than
1925          * anon pages.  Try to detect this based on file LRU size.
1926          */
1927         if (global_reclaim(sc)) {
1928                 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1929
1930                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1931                         scan_balance = SCAN_ANON;
1932                         goto out;
1933                 }
1934         }
1935
1936         /*
1937          * There is enough inactive page cache, do not reclaim
1938          * anything from the anonymous working set right now.
1939          */
1940         if (!inactive_file_is_low(lruvec)) {
1941                 scan_balance = SCAN_FILE;
1942                 goto out;
1943         }
1944
1945         scan_balance = SCAN_FRACT;
1946
1947         /*
1948          * With swappiness at 100, anonymous and file have the same priority.
1949          * This scanning priority is essentially the inverse of IO cost.
1950          */
1951         anon_prio = vmscan_swappiness(sc);
1952         file_prio = 200 - anon_prio;
1953
1954         /*
1955          * OK, so we have swap space and a fair amount of page cache
1956          * pages.  We use the recently rotated / recently scanned
1957          * ratios to determine how valuable each cache is.
1958          *
1959          * Because workloads change over time (and to avoid overflow)
1960          * we keep these statistics as a floating average, which ends
1961          * up weighing recent references more than old ones.
1962          *
1963          * anon in [0], file in [1]
1964          */
1965         spin_lock_irq(&zone->lru_lock);
1966         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1967                 reclaim_stat->recent_scanned[0] /= 2;
1968                 reclaim_stat->recent_rotated[0] /= 2;
1969         }
1970
1971         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1972                 reclaim_stat->recent_scanned[1] /= 2;
1973                 reclaim_stat->recent_rotated[1] /= 2;
1974         }
1975
1976         /*
1977          * The amount of pressure on anon vs file pages is inversely
1978          * proportional to the fraction of recently scanned pages on
1979          * each list that were recently referenced and in active use.
1980          */
1981         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1982         ap /= reclaim_stat->recent_rotated[0] + 1;
1983
1984         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1985         fp /= reclaim_stat->recent_rotated[1] + 1;
1986         spin_unlock_irq(&zone->lru_lock);
1987
1988         fraction[0] = ap;
1989         fraction[1] = fp;
1990         denominator = ap + fp + 1;
1991 out:
1992         for_each_evictable_lru(lru) {
1993                 int file = is_file_lru(lru);
1994                 unsigned long size;
1995                 unsigned long scan;
1996
1997                 size = get_lru_size(lruvec, lru);
1998                 scan = size >> sc->priority;
1999
2000                 if (!scan && force_scan)
2001                         scan = min(size, SWAP_CLUSTER_MAX);
2002
2003                 switch (scan_balance) {
2004                 case SCAN_EQUAL:
2005                         /* Scan lists relative to size */
2006                         break;
2007                 case SCAN_FRACT:
2008                         /*
2009                          * Scan types proportional to swappiness and
2010                          * their relative recent reclaim efficiency.
2011                          */
2012                         scan = div64_u64(scan * fraction[file], denominator);
2013                         break;
2014                 case SCAN_FILE:
2015                 case SCAN_ANON:
2016                         /* Scan one type exclusively */
2017                         if ((scan_balance == SCAN_FILE) != file)
2018                                 scan = 0;
2019                         break;
2020                 default:
2021                         /* Look ma, no brain */
2022                         BUG();
2023                 }
2024                 nr[lru] = scan;
2025         }
2026 }
2027
2028 /*
2029  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030  */
2031 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2032 {
2033         unsigned long nr[NR_LRU_LISTS];
2034         unsigned long targets[NR_LRU_LISTS];
2035         unsigned long nr_to_scan;
2036         enum lru_list lru;
2037         unsigned long nr_reclaimed = 0;
2038         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039         struct blk_plug plug;
2040         bool scan_adjusted = false;
2041
2042         get_scan_count(lruvec, sc, nr);
2043
2044         /* Record the original scan target for proportional adjustments later */
2045         memcpy(targets, nr, sizeof(nr));
2046
2047         blk_start_plug(&plug);
2048         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2049                                         nr[LRU_INACTIVE_FILE]) {
2050                 unsigned long nr_anon, nr_file, percentage;
2051                 unsigned long nr_scanned;
2052
2053                 for_each_evictable_lru(lru) {
2054                         if (nr[lru]) {
2055                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2056                                 nr[lru] -= nr_to_scan;
2057
2058                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2059                                                             lruvec, sc);
2060                         }
2061                 }
2062
2063                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2064                         continue;
2065
2066                 /*
2067                  * For global direct reclaim, reclaim only the number of pages
2068                  * requested. Less care is taken to scan proportionally as it
2069                  * is more important to minimise direct reclaim stall latency
2070                  * than it is to properly age the LRU lists.
2071                  */
2072                 if (global_reclaim(sc) && !current_is_kswapd())
2073                         break;
2074
2075                 /*
2076                  * For kswapd and memcg, reclaim at least the number of pages
2077                  * requested. Ensure that the anon and file LRUs shrink
2078                  * proportionally what was requested by get_scan_count(). We
2079                  * stop reclaiming one LRU and reduce the amount scanning
2080                  * proportional to the original scan target.
2081                  */
2082                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2083                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2084
2085                 if (nr_file > nr_anon) {
2086                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2087                                                 targets[LRU_ACTIVE_ANON] + 1;
2088                         lru = LRU_BASE;
2089                         percentage = nr_anon * 100 / scan_target;
2090                 } else {
2091                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2092                                                 targets[LRU_ACTIVE_FILE] + 1;
2093                         lru = LRU_FILE;
2094                         percentage = nr_file * 100 / scan_target;
2095                 }
2096
2097                 /* Stop scanning the smaller of the LRU */
2098                 nr[lru] = 0;
2099                 nr[lru + LRU_ACTIVE] = 0;
2100
2101                 /*
2102                  * Recalculate the other LRU scan count based on its original
2103                  * scan target and the percentage scanning already complete
2104                  */
2105                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2106                 nr_scanned = targets[lru] - nr[lru];
2107                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2108                 nr[lru] -= min(nr[lru], nr_scanned);
2109
2110                 lru += LRU_ACTIVE;
2111                 nr_scanned = targets[lru] - nr[lru];
2112                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2113                 nr[lru] -= min(nr[lru], nr_scanned);
2114
2115                 scan_adjusted = true;
2116         }
2117         blk_finish_plug(&plug);
2118         sc->nr_reclaimed += nr_reclaimed;
2119
2120         /*
2121          * Even if we did not try to evict anon pages at all, we want to
2122          * rebalance the anon lru active/inactive ratio.
2123          */
2124         if (inactive_anon_is_low(lruvec))
2125                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2126                                    sc, LRU_ACTIVE_ANON);
2127
2128         throttle_vm_writeout(sc->gfp_mask);
2129 }
2130
2131 /* Use reclaim/compaction for costly allocs or under memory pressure */
2132 static bool in_reclaim_compaction(struct scan_control *sc)
2133 {
2134         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2135                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2136                          sc->priority < DEF_PRIORITY - 2))
2137                 return true;
2138
2139         return false;
2140 }
2141
2142 /*
2143  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2144  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2145  * true if more pages should be reclaimed such that when the page allocator
2146  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2147  * It will give up earlier than that if there is difficulty reclaiming pages.
2148  */
2149 static inline bool should_continue_reclaim(struct zone *zone,
2150                                         unsigned long nr_reclaimed,
2151                                         unsigned long nr_scanned,
2152                                         struct scan_control *sc)
2153 {
2154         unsigned long pages_for_compaction;
2155         unsigned long inactive_lru_pages;
2156
2157         /* If not in reclaim/compaction mode, stop */
2158         if (!in_reclaim_compaction(sc))
2159                 return false;
2160
2161         /* Consider stopping depending on scan and reclaim activity */
2162         if (sc->gfp_mask & __GFP_REPEAT) {
2163                 /*
2164                  * For __GFP_REPEAT allocations, stop reclaiming if the
2165                  * full LRU list has been scanned and we are still failing
2166                  * to reclaim pages. This full LRU scan is potentially
2167                  * expensive but a __GFP_REPEAT caller really wants to succeed
2168                  */
2169                 if (!nr_reclaimed && !nr_scanned)
2170                         return false;
2171         } else {
2172                 /*
2173                  * For non-__GFP_REPEAT allocations which can presumably
2174                  * fail without consequence, stop if we failed to reclaim
2175                  * any pages from the last SWAP_CLUSTER_MAX number of
2176                  * pages that were scanned. This will return to the
2177                  * caller faster at the risk reclaim/compaction and
2178                  * the resulting allocation attempt fails
2179                  */
2180                 if (!nr_reclaimed)
2181                         return false;
2182         }
2183
2184         /*
2185          * If we have not reclaimed enough pages for compaction and the
2186          * inactive lists are large enough, continue reclaiming
2187          */
2188         pages_for_compaction = (2UL << sc->order);
2189         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2190         if (get_nr_swap_pages() > 0)
2191                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2192         if (sc->nr_reclaimed < pages_for_compaction &&
2193                         inactive_lru_pages > pages_for_compaction)
2194                 return true;
2195
2196         /* If compaction would go ahead or the allocation would succeed, stop */
2197         switch (compaction_suitable(zone, sc->order)) {
2198         case COMPACT_PARTIAL:
2199         case COMPACT_CONTINUE:
2200                 return false;
2201         default:
2202                 return true;
2203         }
2204 }
2205
2206 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2207 {
2208         unsigned long nr_reclaimed, nr_scanned;
2209
2210         do {
2211                 struct mem_cgroup *root = sc->target_mem_cgroup;
2212                 struct mem_cgroup_reclaim_cookie reclaim = {
2213                         .zone = zone,
2214                         .priority = sc->priority,
2215                 };
2216                 struct mem_cgroup *memcg;
2217
2218                 nr_reclaimed = sc->nr_reclaimed;
2219                 nr_scanned = sc->nr_scanned;
2220
2221                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2222                 do {
2223                         struct lruvec *lruvec;
2224
2225                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2226
2227                         shrink_lruvec(lruvec, sc);
2228
2229                         /*
2230                          * Direct reclaim and kswapd have to scan all memory
2231                          * cgroups to fulfill the overall scan target for the
2232                          * zone.
2233                          *
2234                          * Limit reclaim, on the other hand, only cares about
2235                          * nr_to_reclaim pages to be reclaimed and it will
2236                          * retry with decreasing priority if one round over the
2237                          * whole hierarchy is not sufficient.
2238                          */
2239                         if (!global_reclaim(sc) &&
2240                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2241                                 mem_cgroup_iter_break(root, memcg);
2242                                 break;
2243                         }
2244                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2245                 } while (memcg);
2246
2247                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2248                            sc->nr_scanned - nr_scanned,
2249                            sc->nr_reclaimed - nr_reclaimed);
2250
2251         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2252                                          sc->nr_scanned - nr_scanned, sc));
2253 }
2254
2255 /* Returns true if compaction should go ahead for a high-order request */
2256 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2257 {
2258         unsigned long balance_gap, watermark;
2259         bool watermark_ok;
2260
2261         /* Do not consider compaction for orders reclaim is meant to satisfy */
2262         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2263                 return false;
2264
2265         /*
2266          * Compaction takes time to run and there are potentially other
2267          * callers using the pages just freed. Continue reclaiming until
2268          * there is a buffer of free pages available to give compaction
2269          * a reasonable chance of completing and allocating the page
2270          */
2271         balance_gap = min(low_wmark_pages(zone),
2272                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2273                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2274         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2275         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2276
2277         /*
2278          * If compaction is deferred, reclaim up to a point where
2279          * compaction will have a chance of success when re-enabled
2280          */
2281         if (compaction_deferred(zone, sc->order))
2282                 return watermark_ok;
2283
2284         /* If compaction is not ready to start, keep reclaiming */
2285         if (!compaction_suitable(zone, sc->order))
2286                 return false;
2287
2288         return watermark_ok;
2289 }
2290
2291 /*
2292  * This is the direct reclaim path, for page-allocating processes.  We only
2293  * try to reclaim pages from zones which will satisfy the caller's allocation
2294  * request.
2295  *
2296  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2297  * Because:
2298  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2299  *    allocation or
2300  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2301  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2302  *    zone defense algorithm.
2303  *
2304  * If a zone is deemed to be full of pinned pages then just give it a light
2305  * scan then give up on it.
2306  *
2307  * This function returns true if a zone is being reclaimed for a costly
2308  * high-order allocation and compaction is ready to begin. This indicates to
2309  * the caller that it should consider retrying the allocation instead of
2310  * further reclaim.
2311  */
2312 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2313 {
2314         struct zoneref *z;
2315         struct zone *zone;
2316         unsigned long nr_soft_reclaimed;
2317         unsigned long nr_soft_scanned;
2318         unsigned long lru_pages = 0;
2319         bool aborted_reclaim = false;
2320         struct reclaim_state *reclaim_state = current->reclaim_state;
2321         gfp_t orig_mask;
2322         struct shrink_control shrink = {
2323                 .gfp_mask = sc->gfp_mask,
2324         };
2325         enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2326
2327         /*
2328          * If the number of buffer_heads in the machine exceeds the maximum
2329          * allowed level, force direct reclaim to scan the highmem zone as
2330          * highmem pages could be pinning lowmem pages storing buffer_heads
2331          */
2332         orig_mask = sc->gfp_mask;
2333         if (buffer_heads_over_limit)
2334                 sc->gfp_mask |= __GFP_HIGHMEM;
2335
2336         nodes_clear(shrink.nodes_to_scan);
2337
2338         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2339                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2340                 if (!populated_zone(zone))
2341                         continue;
2342                 /*
2343                  * Take care memory controller reclaiming has small influence
2344                  * to global LRU.
2345                  */
2346                 if (global_reclaim(sc)) {
2347                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2348                                 continue;
2349
2350                         lru_pages += zone_reclaimable_pages(zone);
2351                         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2352
2353                         if (sc->priority != DEF_PRIORITY &&
2354                             !zone_reclaimable(zone))
2355                                 continue;       /* Let kswapd poll it */
2356                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2357                                 /*
2358                                  * If we already have plenty of memory free for
2359                                  * compaction in this zone, don't free any more.
2360                                  * Even though compaction is invoked for any
2361                                  * non-zero order, only frequent costly order
2362                                  * reclamation is disruptive enough to become a
2363                                  * noticeable problem, like transparent huge
2364                                  * page allocations.
2365                                  */
2366                                 if ((zonelist_zone_idx(z) <= requested_highidx)
2367                                     && compaction_ready(zone, sc)) {
2368                                         aborted_reclaim = true;
2369                                         continue;
2370                                 }
2371                         }
2372                         /*
2373                          * This steals pages from memory cgroups over softlimit
2374                          * and returns the number of reclaimed pages and
2375                          * scanned pages. This works for global memory pressure
2376                          * and balancing, not for a memcg's limit.
2377                          */
2378                         nr_soft_scanned = 0;
2379                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2380                                                 sc->order, sc->gfp_mask,
2381                                                 &nr_soft_scanned);
2382                         sc->nr_reclaimed += nr_soft_reclaimed;
2383                         sc->nr_scanned += nr_soft_scanned;
2384                         /* need some check for avoid more shrink_zone() */
2385                 }
2386
2387                 shrink_zone(zone, sc);
2388         }
2389
2390         /*
2391          * Don't shrink slabs when reclaiming memory from over limit cgroups
2392          * but do shrink slab at least once when aborting reclaim for
2393          * compaction to avoid unevenly scanning file/anon LRU pages over slab
2394          * pages.
2395          */
2396         if (global_reclaim(sc)) {
2397                 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2398                 if (reclaim_state) {
2399                         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2400                         reclaim_state->reclaimed_slab = 0;
2401                 }
2402         }
2403
2404         /*
2405          * Restore to original mask to avoid the impact on the caller if we
2406          * promoted it to __GFP_HIGHMEM.
2407          */
2408         sc->gfp_mask = orig_mask;
2409
2410         return aborted_reclaim;
2411 }
2412
2413 /* All zones in zonelist are unreclaimable? */
2414 static bool all_unreclaimable(struct zonelist *zonelist,
2415                 struct scan_control *sc)
2416 {
2417         struct zoneref *z;
2418         struct zone *zone;
2419
2420         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2421                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2422                 if (!populated_zone(zone))
2423                         continue;
2424                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2425                         continue;
2426                 if (zone_reclaimable(zone))
2427                         return false;
2428         }
2429
2430         return true;
2431 }
2432
2433 /*
2434  * This is the main entry point to direct page reclaim.
2435  *
2436  * If a full scan of the inactive list fails to free enough memory then we
2437  * are "out of memory" and something needs to be killed.
2438  *
2439  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2440  * high - the zone may be full of dirty or under-writeback pages, which this
2441  * caller can't do much about.  We kick the writeback threads and take explicit
2442  * naps in the hope that some of these pages can be written.  But if the
2443  * allocating task holds filesystem locks which prevent writeout this might not
2444  * work, and the allocation attempt will fail.
2445  *
2446  * returns:     0, if no pages reclaimed
2447  *              else, the number of pages reclaimed
2448  */
2449 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2450                                           struct scan_control *sc)
2451 {
2452         unsigned long total_scanned = 0;
2453         unsigned long writeback_threshold;
2454         bool aborted_reclaim;
2455
2456         delayacct_freepages_start();
2457
2458         if (global_reclaim(sc))
2459                 count_vm_event(ALLOCSTALL);
2460
2461         do {
2462                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2463                                 sc->priority);
2464                 sc->nr_scanned = 0;
2465                 aborted_reclaim = shrink_zones(zonelist, sc);
2466
2467                 total_scanned += sc->nr_scanned;
2468                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2469                         goto out;
2470
2471                 /*
2472                  * If we're getting trouble reclaiming, start doing
2473                  * writepage even in laptop mode.
2474                  */
2475                 if (sc->priority < DEF_PRIORITY - 2)
2476                         sc->may_writepage = 1;
2477
2478                 /*
2479                  * Try to write back as many pages as we just scanned.  This
2480                  * tends to cause slow streaming writers to write data to the
2481                  * disk smoothly, at the dirtying rate, which is nice.   But
2482                  * that's undesirable in laptop mode, where we *want* lumpy
2483                  * writeout.  So in laptop mode, write out the whole world.
2484                  */
2485                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2486                 if (total_scanned > writeback_threshold) {
2487                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2488                                                 WB_REASON_TRY_TO_FREE_PAGES);
2489                         sc->may_writepage = 1;
2490                 }
2491         } while (--sc->priority >= 0 && !aborted_reclaim);
2492
2493 out:
2494         delayacct_freepages_end();
2495
2496         if (sc->nr_reclaimed)
2497                 return sc->nr_reclaimed;
2498
2499         /*
2500          * As hibernation is going on, kswapd is freezed so that it can't mark
2501          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2502          * check.
2503          */
2504         if (oom_killer_disabled)
2505                 return 0;
2506
2507         /* Aborted reclaim to try compaction? don't OOM, then */
2508         if (aborted_reclaim)
2509                 return 1;
2510
2511         /* top priority shrink_zones still had more to do? don't OOM, then */
2512         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2513                 return 1;
2514
2515         return 0;
2516 }
2517
2518 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2519 {
2520         struct zone *zone;
2521         unsigned long pfmemalloc_reserve = 0;
2522         unsigned long free_pages = 0;
2523         int i;
2524         bool wmark_ok;
2525
2526         for (i = 0; i <= ZONE_NORMAL; i++) {
2527                 zone = &pgdat->node_zones[i];
2528                 pfmemalloc_reserve += min_wmark_pages(zone);
2529                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2530         }
2531
2532         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2533
2534         /* kswapd must be awake if processes are being throttled */
2535         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2536                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2537                                                 (enum zone_type)ZONE_NORMAL);
2538                 wake_up_interruptible(&pgdat->kswapd_wait);
2539         }
2540
2541         return wmark_ok;
2542 }
2543
2544 /*
2545  * Throttle direct reclaimers if backing storage is backed by the network
2546  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2547  * depleted. kswapd will continue to make progress and wake the processes
2548  * when the low watermark is reached.
2549  *
2550  * Returns true if a fatal signal was delivered during throttling. If this
2551  * happens, the page allocator should not consider triggering the OOM killer.
2552  */
2553 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2554                                         nodemask_t *nodemask)
2555 {
2556         struct zone *zone;
2557         int high_zoneidx = gfp_zone(gfp_mask);
2558         pg_data_t *pgdat;
2559
2560         /*
2561          * Kernel threads should not be throttled as they may be indirectly
2562          * responsible for cleaning pages necessary for reclaim to make forward
2563          * progress. kjournald for example may enter direct reclaim while
2564          * committing a transaction where throttling it could forcing other
2565          * processes to block on log_wait_commit().
2566          */
2567         if (current->flags & PF_KTHREAD)
2568                 goto out;
2569
2570         /*
2571          * If a fatal signal is pending, this process should not throttle.
2572          * It should return quickly so it can exit and free its memory
2573          */
2574         if (fatal_signal_pending(current))
2575                 goto out;
2576
2577         /* Check if the pfmemalloc reserves are ok */
2578         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2579         pgdat = zone->zone_pgdat;
2580         if (pfmemalloc_watermark_ok(pgdat))
2581                 goto out;
2582
2583         /* Account for the throttling */
2584         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2585
2586         /*
2587          * If the caller cannot enter the filesystem, it's possible that it
2588          * is due to the caller holding an FS lock or performing a journal
2589          * transaction in the case of a filesystem like ext[3|4]. In this case,
2590          * it is not safe to block on pfmemalloc_wait as kswapd could be
2591          * blocked waiting on the same lock. Instead, throttle for up to a
2592          * second before continuing.
2593          */
2594         if (!(gfp_mask & __GFP_FS)) {
2595                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2596                         pfmemalloc_watermark_ok(pgdat), HZ);
2597
2598                 goto check_pending;
2599         }
2600
2601         /* Throttle until kswapd wakes the process */
2602         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2603                 pfmemalloc_watermark_ok(pgdat));
2604
2605 check_pending:
2606         if (fatal_signal_pending(current))
2607                 return true;
2608
2609 out:
2610         return false;
2611 }
2612
2613 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2614                                 gfp_t gfp_mask, nodemask_t *nodemask)
2615 {
2616         unsigned long nr_reclaimed;
2617         struct scan_control sc = {
2618                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2619                 .may_writepage = !laptop_mode,
2620                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2621                 .may_unmap = 1,
2622                 .may_swap = 1,
2623                 .order = order,
2624                 .priority = DEF_PRIORITY,
2625                 .target_mem_cgroup = NULL,
2626                 .nodemask = nodemask,
2627         };
2628
2629         /*
2630          * Do not enter reclaim if fatal signal was delivered while throttled.
2631          * 1 is returned so that the page allocator does not OOM kill at this
2632          * point.
2633          */
2634         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2635                 return 1;
2636
2637         trace_mm_vmscan_direct_reclaim_begin(order,
2638                                 sc.may_writepage,
2639                                 gfp_mask);
2640
2641         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2642
2643         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2644
2645         return nr_reclaimed;
2646 }
2647
2648 #ifdef CONFIG_MEMCG
2649
2650 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2651                                                 gfp_t gfp_mask, bool noswap,
2652                                                 struct zone *zone,
2653                                                 unsigned long *nr_scanned)
2654 {
2655         struct scan_control sc = {
2656                 .nr_scanned = 0,
2657                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2658                 .may_writepage = !laptop_mode,
2659                 .may_unmap = 1,
2660                 .may_swap = !noswap,
2661                 .order = 0,
2662                 .priority = 0,
2663                 .target_mem_cgroup = memcg,
2664         };
2665         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2666
2667         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2669
2670         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2671                                                       sc.may_writepage,
2672                                                       sc.gfp_mask);
2673
2674         /*
2675          * NOTE: Although we can get the priority field, using it
2676          * here is not a good idea, since it limits the pages we can scan.
2677          * if we don't reclaim here, the shrink_zone from balance_pgdat
2678          * will pick up pages from other mem cgroup's as well. We hack
2679          * the priority and make it zero.
2680          */
2681         shrink_lruvec(lruvec, &sc);
2682
2683         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2684
2685         *nr_scanned = sc.nr_scanned;
2686         return sc.nr_reclaimed;
2687 }
2688
2689 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2690                                            gfp_t gfp_mask,
2691                                            bool noswap)
2692 {
2693         struct zonelist *zonelist;
2694         unsigned long nr_reclaimed;
2695         int nid;
2696         struct scan_control sc = {
2697                 .may_writepage = !laptop_mode,
2698                 .may_unmap = 1,
2699                 .may_swap = !noswap,
2700                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2701                 .order = 0,
2702                 .priority = DEF_PRIORITY,
2703                 .target_mem_cgroup = memcg,
2704                 .nodemask = NULL, /* we don't care the placement */
2705                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2706                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2707         };
2708
2709         /*
2710          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2711          * take care of from where we get pages. So the node where we start the
2712          * scan does not need to be the current node.
2713          */
2714         nid = mem_cgroup_select_victim_node(memcg);
2715
2716         zonelist = NODE_DATA(nid)->node_zonelists;
2717
2718         trace_mm_vmscan_memcg_reclaim_begin(0,
2719                                             sc.may_writepage,
2720                                             sc.gfp_mask);
2721
2722         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2723
2724         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2725
2726         return nr_reclaimed;
2727 }
2728 #endif
2729
2730 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2731 {
2732         struct mem_cgroup *memcg;
2733
2734         if (!total_swap_pages)
2735                 return;
2736
2737         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2738         do {
2739                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2740
2741                 if (inactive_anon_is_low(lruvec))
2742                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2743                                            sc, LRU_ACTIVE_ANON);
2744
2745                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2746         } while (memcg);
2747 }
2748
2749 static bool zone_balanced(struct zone *zone, int order,
2750                           unsigned long balance_gap, int classzone_idx)
2751 {
2752         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2753                                     balance_gap, classzone_idx, 0))
2754                 return false;
2755
2756         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2757             !compaction_suitable(zone, order))
2758                 return false;
2759
2760         return true;
2761 }
2762
2763 /*
2764  * pgdat_balanced() is used when checking if a node is balanced.
2765  *
2766  * For order-0, all zones must be balanced!
2767  *
2768  * For high-order allocations only zones that meet watermarks and are in a
2769  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2770  * total of balanced pages must be at least 25% of the zones allowed by
2771  * classzone_idx for the node to be considered balanced. Forcing all zones to
2772  * be balanced for high orders can cause excessive reclaim when there are
2773  * imbalanced zones.
2774  * The choice of 25% is due to
2775  *   o a 16M DMA zone that is balanced will not balance a zone on any
2776  *     reasonable sized machine
2777  *   o On all other machines, the top zone must be at least a reasonable
2778  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2779  *     would need to be at least 256M for it to be balance a whole node.
2780  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2781  *     to balance a node on its own. These seemed like reasonable ratios.
2782  */
2783 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2784 {
2785         unsigned long managed_pages = 0;
2786         unsigned long balanced_pages = 0;
2787         int i;
2788
2789         /* Check the watermark levels */
2790         for (i = 0; i <= classzone_idx; i++) {
2791                 struct zone *zone = pgdat->node_zones + i;
2792
2793                 if (!populated_zone(zone))
2794                         continue;
2795
2796                 managed_pages += zone->managed_pages;
2797
2798                 /*
2799                  * A special case here:
2800                  *
2801                  * balance_pgdat() skips over all_unreclaimable after
2802                  * DEF_PRIORITY. Effectively, it considers them balanced so
2803                  * they must be considered balanced here as well!
2804                  */
2805                 if (!zone_reclaimable(zone)) {
2806                         balanced_pages += zone->managed_pages;
2807                         continue;
2808                 }
2809
2810                 if (zone_balanced(zone, order, 0, i))
2811                         balanced_pages += zone->managed_pages;
2812                 else if (!order)
2813                         return false;
2814         }
2815
2816         if (order)
2817                 return balanced_pages >= (managed_pages >> 2);
2818         else
2819                 return true;
2820 }
2821
2822 /*
2823  * Prepare kswapd for sleeping. This verifies that there are no processes
2824  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2825  *
2826  * Returns true if kswapd is ready to sleep
2827  */
2828 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2829                                         int classzone_idx)
2830 {
2831         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2832         if (remaining)
2833                 return false;
2834
2835         /*
2836          * There is a potential race between when kswapd checks its watermarks
2837          * and a process gets throttled. There is also a potential race if
2838          * processes get throttled, kswapd wakes, a large process exits therby
2839          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2840          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2841          * so wake them now if necessary. If necessary, processes will wake
2842          * kswapd and get throttled again
2843          */
2844         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2845                 wake_up(&pgdat->pfmemalloc_wait);
2846                 return false;
2847         }
2848
2849         return pgdat_balanced(pgdat, order, classzone_idx);
2850 }
2851
2852 /*
2853  * kswapd shrinks the zone by the number of pages required to reach
2854  * the high watermark.
2855  *
2856  * Returns true if kswapd scanned at least the requested number of pages to
2857  * reclaim or if the lack of progress was due to pages under writeback.
2858  * This is used to determine if the scanning priority needs to be raised.
2859  */
2860 static bool kswapd_shrink_zone(struct zone *zone,
2861                                int classzone_idx,
2862                                struct scan_control *sc,
2863                                unsigned long lru_pages,
2864                                unsigned long *nr_attempted)
2865 {
2866         int testorder = sc->order;
2867         unsigned long balance_gap;
2868         struct reclaim_state *reclaim_state = current->reclaim_state;
2869         struct shrink_control shrink = {
2870                 .gfp_mask = sc->gfp_mask,
2871         };
2872         bool lowmem_pressure;
2873
2874         /* Reclaim above the high watermark. */
2875         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2876
2877         /*
2878          * Kswapd reclaims only single pages with compaction enabled. Trying
2879          * too hard to reclaim until contiguous free pages have become
2880          * available can hurt performance by evicting too much useful data
2881          * from memory. Do not reclaim more than needed for compaction.
2882          */
2883         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2884                         compaction_suitable(zone, sc->order) !=
2885                                 COMPACT_SKIPPED)
2886                 testorder = 0;
2887
2888         /*
2889          * We put equal pressure on every zone, unless one zone has way too
2890          * many pages free already. The "too many pages" is defined as the
2891          * high wmark plus a "gap" where the gap is either the low
2892          * watermark or 1% of the zone, whichever is smaller.
2893          */
2894         balance_gap = min(low_wmark_pages(zone),
2895                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2896                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2897
2898         /*
2899          * If there is no low memory pressure or the zone is balanced then no
2900          * reclaim is necessary
2901          */
2902         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2903         if (!lowmem_pressure && zone_balanced(zone, testorder,
2904                                                 balance_gap, classzone_idx))
2905                 return true;
2906
2907         shrink_zone(zone, sc);
2908         nodes_clear(shrink.nodes_to_scan);
2909         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2910
2911         reclaim_state->reclaimed_slab = 0;
2912         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2913         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2914
2915         /* Account for the number of pages attempted to reclaim */
2916         *nr_attempted += sc->nr_to_reclaim;
2917
2918         zone_clear_flag(zone, ZONE_WRITEBACK);
2919
2920         /*
2921          * If a zone reaches its high watermark, consider it to be no longer
2922          * congested. It's possible there are dirty pages backed by congested
2923          * BDIs but as pressure is relieved, speculatively avoid congestion
2924          * waits.
2925          */
2926         if (zone_reclaimable(zone) &&
2927             zone_balanced(zone, testorder, 0, classzone_idx)) {
2928                 zone_clear_flag(zone, ZONE_CONGESTED);
2929                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2930         }
2931
2932         return sc->nr_scanned >= sc->nr_to_reclaim;
2933 }
2934
2935 /*
2936  * For kswapd, balance_pgdat() will work across all this node's zones until
2937  * they are all at high_wmark_pages(zone).
2938  *
2939  * Returns the final order kswapd was reclaiming at
2940  *
2941  * There is special handling here for zones which are full of pinned pages.
2942  * This can happen if the pages are all mlocked, or if they are all used by
2943  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2944  * What we do is to detect the case where all pages in the zone have been
2945  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2946  * dead and from now on, only perform a short scan.  Basically we're polling
2947  * the zone for when the problem goes away.
2948  *
2949  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2950  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2951  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2952  * lower zones regardless of the number of free pages in the lower zones. This
2953  * interoperates with the page allocator fallback scheme to ensure that aging
2954  * of pages is balanced across the zones.
2955  */
2956 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2957                                                         int *classzone_idx)
2958 {
2959         int i;
2960         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2961         unsigned long nr_soft_reclaimed;
2962         unsigned long nr_soft_scanned;
2963         struct scan_control sc = {
2964                 .gfp_mask = GFP_KERNEL,
2965                 .priority = DEF_PRIORITY,
2966                 .may_unmap = 1,
2967                 .may_swap = 1,
2968                 .may_writepage = !laptop_mode,
2969                 .order = order,
2970                 .target_mem_cgroup = NULL,
2971         };
2972         count_vm_event(PAGEOUTRUN);
2973
2974         do {
2975                 unsigned long lru_pages = 0;
2976                 unsigned long nr_attempted = 0;
2977                 bool raise_priority = true;
2978                 bool pgdat_needs_compaction = (order > 0);
2979
2980                 sc.nr_reclaimed = 0;
2981
2982                 /*
2983                  * Scan in the highmem->dma direction for the highest
2984                  * zone which needs scanning
2985                  */
2986                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2987                         struct zone *zone = pgdat->node_zones + i;
2988
2989                         if (!populated_zone(zone))
2990                                 continue;
2991
2992                         if (sc.priority != DEF_PRIORITY &&
2993                             !zone_reclaimable(zone))
2994                                 continue;
2995
2996                         /*
2997                          * Do some background aging of the anon list, to give
2998                          * pages a chance to be referenced before reclaiming.
2999                          */
3000                         age_active_anon(zone, &sc);
3001
3002                         /*
3003                          * If the number of buffer_heads in the machine
3004                          * exceeds the maximum allowed level and this node
3005                          * has a highmem zone, force kswapd to reclaim from
3006                          * it to relieve lowmem pressure.
3007                          */
3008                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
3009                                 end_zone = i;
3010                                 break;
3011                         }
3012
3013                         if (!zone_balanced(zone, order, 0, 0)) {
3014                                 end_zone = i;
3015                                 break;
3016                         } else {
3017                                 /*
3018                                  * If balanced, clear the dirty and congested
3019                                  * flags
3020                                  */
3021                                 zone_clear_flag(zone, ZONE_CONGESTED);
3022                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3023                         }
3024                 }
3025
3026                 if (i < 0)
3027                         goto out;
3028
3029                 for (i = 0; i <= end_zone; i++) {
3030                         struct zone *zone = pgdat->node_zones + i;
3031
3032                         if (!populated_zone(zone))
3033                                 continue;
3034
3035                         lru_pages += zone_reclaimable_pages(zone);
3036
3037                         /*
3038                          * If any zone is currently balanced then kswapd will
3039                          * not call compaction as it is expected that the
3040                          * necessary pages are already available.
3041                          */
3042                         if (pgdat_needs_compaction &&
3043                                         zone_watermark_ok(zone, order,
3044                                                 low_wmark_pages(zone),
3045                                                 *classzone_idx, 0))
3046                                 pgdat_needs_compaction = false;
3047                 }
3048
3049                 /*
3050                  * If we're getting trouble reclaiming, start doing writepage
3051                  * even in laptop mode.
3052                  */
3053                 if (sc.priority < DEF_PRIORITY - 2)
3054                         sc.may_writepage = 1;
3055
3056                 /*
3057                  * Now scan the zone in the dma->highmem direction, stopping
3058                  * at the last zone which needs scanning.
3059                  *
3060                  * We do this because the page allocator works in the opposite
3061                  * direction.  This prevents the page allocator from allocating
3062                  * pages behind kswapd's direction of progress, which would
3063                  * cause too much scanning of the lower zones.
3064                  */
3065                 for (i = 0; i <= end_zone; i++) {
3066                         struct zone *zone = pgdat->node_zones + i;
3067
3068                         if (!populated_zone(zone))
3069                                 continue;
3070
3071                         if (sc.priority != DEF_PRIORITY &&
3072                             !zone_reclaimable(zone))
3073                                 continue;
3074
3075                         sc.nr_scanned = 0;
3076
3077                         nr_soft_scanned = 0;
3078                         /*
3079                          * Call soft limit reclaim before calling shrink_zone.
3080                          */
3081                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3082                                                         order, sc.gfp_mask,
3083                                                         &nr_soft_scanned);
3084                         sc.nr_reclaimed += nr_soft_reclaimed;
3085
3086                         /*
3087                          * There should be no need to raise the scanning
3088                          * priority if enough pages are already being scanned
3089                          * that that high watermark would be met at 100%
3090                          * efficiency.
3091                          */
3092                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3093                                         lru_pages, &nr_attempted))
3094                                 raise_priority = false;
3095                 }
3096
3097                 /*
3098                  * If the low watermark is met there is no need for processes
3099                  * to be throttled on pfmemalloc_wait as they should not be
3100                  * able to safely make forward progress. Wake them
3101                  */
3102                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3103                                 pfmemalloc_watermark_ok(pgdat))
3104                         wake_up(&pgdat->pfmemalloc_wait);
3105
3106                 /*
3107                  * Fragmentation may mean that the system cannot be rebalanced
3108                  * for high-order allocations in all zones. If twice the
3109                  * allocation size has been reclaimed and the zones are still
3110                  * not balanced then recheck the watermarks at order-0 to
3111                  * prevent kswapd reclaiming excessively. Assume that a
3112                  * process requested a high-order can direct reclaim/compact.
3113                  */
3114                 if (order && sc.nr_reclaimed >= 2UL << order)
3115                         order = sc.order = 0;
3116
3117                 /* Check if kswapd should be suspending */
3118                 if (try_to_freeze() || kthread_should_stop())
3119                         break;
3120
3121                 /*
3122                  * Compact if necessary and kswapd is reclaiming at least the
3123                  * high watermark number of pages as requsted
3124                  */
3125                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3126                         compact_pgdat(pgdat, order);
3127
3128                 /*
3129                  * Raise priority if scanning rate is too low or there was no
3130                  * progress in reclaiming pages
3131                  */
3132                 if (raise_priority || !sc.nr_reclaimed)
3133                         sc.priority--;
3134         } while (sc.priority >= 1 &&
3135                  !pgdat_balanced(pgdat, order, *classzone_idx));
3136
3137 out:
3138         /*
3139          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3140          * makes a decision on the order we were last reclaiming at. However,
3141          * if another caller entered the allocator slow path while kswapd
3142          * was awake, order will remain at the higher level
3143          */
3144         *classzone_idx = end_zone;
3145         return order;
3146 }
3147
3148 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3149 {
3150         long remaining = 0;
3151         DEFINE_WAIT(wait);
3152
3153         if (freezing(current) || kthread_should_stop())
3154                 return;
3155
3156         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3157
3158         /* Try to sleep for a short interval */
3159         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3160                 remaining = schedule_timeout(HZ/10);
3161                 finish_wait(&pgdat->kswapd_wait, &wait);
3162                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3163         }
3164
3165         /*
3166          * After a short sleep, check if it was a premature sleep. If not, then
3167          * go fully to sleep until explicitly woken up.
3168          */
3169         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3170                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3171
3172                 /*
3173                  * vmstat counters are not perfectly accurate and the estimated
3174                  * value for counters such as NR_FREE_PAGES can deviate from the
3175                  * true value by nr_online_cpus * threshold. To avoid the zone
3176                  * watermarks being breached while under pressure, we reduce the
3177                  * per-cpu vmstat threshold while kswapd is awake and restore
3178                  * them before going back to sleep.
3179                  */
3180                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3181
3182                 /*
3183                  * Compaction records what page blocks it recently failed to
3184                  * isolate pages from and skips them in the future scanning.
3185                  * When kswapd is going to sleep, it is reasonable to assume
3186                  * that pages and compaction may succeed so reset the cache.
3187                  */
3188                 reset_isolation_suitable(pgdat);
3189
3190                 if (!kthread_should_stop())
3191                         schedule();
3192
3193                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3194         } else {
3195                 if (remaining)
3196                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3197                 else
3198                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3199         }
3200         finish_wait(&pgdat->kswapd_wait, &wait);
3201 }
3202
3203 /*
3204  * The background pageout daemon, started as a kernel thread
3205  * from the init process.
3206  *
3207  * This basically trickles out pages so that we have _some_
3208  * free memory available even if there is no other activity
3209  * that frees anything up. This is needed for things like routing
3210  * etc, where we otherwise might have all activity going on in
3211  * asynchronous contexts that cannot page things out.
3212  *
3213  * If there are applications that are active memory-allocators
3214  * (most normal use), this basically shouldn't matter.
3215  */
3216 static int kswapd(void *p)
3217 {
3218         unsigned long order, new_order;
3219         unsigned balanced_order;
3220         int classzone_idx, new_classzone_idx;
3221         int balanced_classzone_idx;
3222         pg_data_t *pgdat = (pg_data_t*)p;
3223         struct task_struct *tsk = current;
3224
3225         struct reclaim_state reclaim_state = {
3226                 .reclaimed_slab = 0,
3227         };
3228         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3229
3230         lockdep_set_current_reclaim_state(GFP_KERNEL);
3231
3232         if (!cpumask_empty(cpumask))
3233                 set_cpus_allowed_ptr(tsk, cpumask);
3234         current->reclaim_state = &reclaim_state;
3235
3236         /*
3237          * Tell the memory management that we're a "memory allocator",
3238          * and that if we need more memory we should get access to it
3239          * regardless (see "__alloc_pages()"). "kswapd" should
3240          * never get caught in the normal page freeing logic.
3241          *
3242          * (Kswapd normally doesn't need memory anyway, but sometimes
3243          * you need a small amount of memory in order to be able to
3244          * page out something else, and this flag essentially protects
3245          * us from recursively trying to free more memory as we're
3246          * trying to free the first piece of memory in the first place).
3247          */
3248         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3249         set_freezable();
3250
3251         order = new_order = 0;
3252         balanced_order = 0;
3253         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3254         balanced_classzone_idx = classzone_idx;
3255         for ( ; ; ) {
3256                 bool ret;
3257
3258                 /*
3259                  * If the last balance_pgdat was unsuccessful it's unlikely a
3260                  * new request of a similar or harder type will succeed soon
3261                  * so consider going to sleep on the basis we reclaimed at
3262                  */
3263                 if (balanced_classzone_idx >= new_classzone_idx &&
3264                                         balanced_order == new_order) {
3265                         new_order = pgdat->kswapd_max_order;
3266                         new_classzone_idx = pgdat->classzone_idx;
3267                         pgdat->kswapd_max_order =  0;
3268                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3269                 }
3270
3271                 if (order < new_order || classzone_idx > new_classzone_idx) {
3272                         /*
3273                          * Don't sleep if someone wants a larger 'order'
3274                          * allocation or has tigher zone constraints
3275                          */
3276                         order = new_order;
3277                         classzone_idx = new_classzone_idx;
3278                 } else {
3279                         kswapd_try_to_sleep(pgdat, balanced_order,
3280                                                 balanced_classzone_idx);
3281                         order = pgdat->kswapd_max_order;
3282                         classzone_idx = pgdat->classzone_idx;
3283                         new_order = order;
3284                         new_classzone_idx = classzone_idx;
3285                         pgdat->kswapd_max_order = 0;
3286                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3287                 }
3288
3289                 ret = try_to_freeze();
3290                 if (kthread_should_stop())
3291                         break;
3292
3293                 /*
3294                  * We can speed up thawing tasks if we don't call balance_pgdat
3295                  * after returning from the refrigerator
3296                  */
3297                 if (!ret) {
3298                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3299                         balanced_classzone_idx = classzone_idx;
3300                         balanced_order = balance_pgdat(pgdat, order,
3301                                                 &balanced_classzone_idx);
3302                 }
3303         }
3304
3305         current->reclaim_state = NULL;
3306         return 0;
3307 }
3308
3309 /*
3310  * A zone is low on free memory, so wake its kswapd task to service it.
3311  */
3312 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3313 {
3314         pg_data_t *pgdat;
3315
3316         if (!populated_zone(zone))
3317                 return;
3318
3319         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3320                 return;
3321         pgdat = zone->zone_pgdat;
3322         if (pgdat->kswapd_max_order < order) {
3323                 pgdat->kswapd_max_order = order;
3324                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3325         }
3326         if (!waitqueue_active(&pgdat->kswapd_wait))
3327                 return;
3328         if (zone_balanced(zone, order, 0, 0))
3329                 return;
3330
3331         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3332         wake_up_interruptible(&pgdat->kswapd_wait);
3333 }
3334
3335 #ifdef CONFIG_HIBERNATION
3336 /*
3337  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3338  * freed pages.
3339  *
3340  * Rather than trying to age LRUs the aim is to preserve the overall
3341  * LRU order by reclaiming preferentially
3342  * inactive > active > active referenced > active mapped
3343  */
3344 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3345 {
3346         struct reclaim_state reclaim_state;
3347         struct scan_control sc = {
3348                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3349                 .may_swap = 1,
3350                 .may_unmap = 1,
3351                 .may_writepage = 1,
3352                 .nr_to_reclaim = nr_to_reclaim,
3353                 .hibernation_mode = 1,
3354                 .order = 0,
3355                 .priority = DEF_PRIORITY,
3356         };
3357         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358         struct task_struct *p = current;
3359         unsigned long nr_reclaimed;
3360
3361         p->flags |= PF_MEMALLOC;
3362         lockdep_set_current_reclaim_state(sc.gfp_mask);
3363         reclaim_state.reclaimed_slab = 0;
3364         p->reclaim_state = &reclaim_state;
3365
3366         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367
3368         p->reclaim_state = NULL;
3369         lockdep_clear_current_reclaim_state();
3370         p->flags &= ~PF_MEMALLOC;
3371
3372         return nr_reclaimed;
3373 }
3374 #endif /* CONFIG_HIBERNATION */
3375
3376 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3377    not required for correctness.  So if the last cpu in a node goes
3378    away, we get changed to run anywhere: as the first one comes back,
3379    restore their cpu bindings. */
3380 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3381                         void *hcpu)
3382 {
3383         int nid;
3384
3385         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3386                 for_each_node_state(nid, N_MEMORY) {
3387                         pg_data_t *pgdat = NODE_DATA(nid);
3388                         const struct cpumask *mask;
3389
3390                         mask = cpumask_of_node(pgdat->node_id);
3391
3392                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3393                                 /* One of our CPUs online: restore mask */
3394                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3395                 }
3396         }
3397         return NOTIFY_OK;
3398 }
3399
3400 /*
3401  * This kswapd start function will be called by init and node-hot-add.
3402  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3403  */
3404 int kswapd_run(int nid)
3405 {
3406         pg_data_t *pgdat = NODE_DATA(nid);
3407         int ret = 0;
3408
3409         if (pgdat->kswapd)
3410                 return 0;
3411
3412         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3413         if (IS_ERR(pgdat->kswapd)) {
3414                 /* failure at boot is fatal */
3415                 BUG_ON(system_state == SYSTEM_BOOTING);
3416                 pr_err("Failed to start kswapd on node %d\n", nid);
3417                 ret = PTR_ERR(pgdat->kswapd);
3418                 pgdat->kswapd = NULL;
3419         }
3420         return ret;
3421 }
3422
3423 /*
3424  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3425  * hold lock_memory_hotplug().
3426  */
3427 void kswapd_stop(int nid)
3428 {
3429         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3430
3431         if (kswapd) {
3432                 kthread_stop(kswapd);
3433                 NODE_DATA(nid)->kswapd = NULL;
3434         }
3435 }
3436
3437 static int __init kswapd_init(void)
3438 {
3439         int nid;
3440
3441         swap_setup();
3442         for_each_node_state(nid, N_MEMORY)
3443                 kswapd_run(nid);
3444         hotcpu_notifier(cpu_callback, 0);
3445         return 0;
3446 }
3447
3448 module_init(kswapd_init)
3449
3450 #ifdef CONFIG_NUMA
3451 /*
3452  * Zone reclaim mode
3453  *
3454  * If non-zero call zone_reclaim when the number of free pages falls below
3455  * the watermarks.
3456  */
3457 int zone_reclaim_mode __read_mostly;
3458
3459 #define RECLAIM_OFF 0
3460 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3461 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3462 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3463
3464 /*
3465  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3466  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3467  * a zone.
3468  */
3469 #define ZONE_RECLAIM_PRIORITY 4
3470
3471 /*
3472  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3473  * occur.
3474  */
3475 int sysctl_min_unmapped_ratio = 1;
3476
3477 /*
3478  * If the number of slab pages in a zone grows beyond this percentage then
3479  * slab reclaim needs to occur.
3480  */
3481 int sysctl_min_slab_ratio = 5;
3482
3483 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3484 {
3485         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3486         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3487                 zone_page_state(zone, NR_ACTIVE_FILE);
3488
3489         /*
3490          * It's possible for there to be more file mapped pages than
3491          * accounted for by the pages on the file LRU lists because
3492          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3493          */
3494         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3495 }
3496
3497 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3498 static long zone_pagecache_reclaimable(struct zone *zone)
3499 {
3500         long nr_pagecache_reclaimable;
3501         long delta = 0;
3502
3503         /*
3504          * If RECLAIM_SWAP is set, then all file pages are considered
3505          * potentially reclaimable. Otherwise, we have to worry about
3506          * pages like swapcache and zone_unmapped_file_pages() provides
3507          * a better estimate
3508          */
3509         if (zone_reclaim_mode & RECLAIM_SWAP)
3510                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3511         else
3512                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3513
3514         /* If we can't clean pages, remove dirty pages from consideration */
3515         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3516                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3517
3518         /* Watch for any possible underflows due to delta */
3519         if (unlikely(delta > nr_pagecache_reclaimable))
3520                 delta = nr_pagecache_reclaimable;
3521
3522         return nr_pagecache_reclaimable - delta;
3523 }
3524
3525 /*
3526  * Try to free up some pages from this zone through reclaim.
3527  */
3528 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3529 {
3530         /* Minimum pages needed in order to stay on node */
3531         const unsigned long nr_pages = 1 << order;
3532         struct task_struct *p = current;
3533         struct reclaim_state reclaim_state;
3534         struct scan_control sc = {
3535                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3536                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3537                 .may_swap = 1,
3538                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3540                 .order = order,
3541                 .priority = ZONE_RECLAIM_PRIORITY,
3542         };
3543         struct shrink_control shrink = {
3544                 .gfp_mask = sc.gfp_mask,
3545         };
3546         unsigned long nr_slab_pages0, nr_slab_pages1;
3547
3548         cond_resched();
3549         /*
3550          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3551          * and we also need to be able to write out pages for RECLAIM_WRITE
3552          * and RECLAIM_SWAP.
3553          */
3554         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3555         lockdep_set_current_reclaim_state(gfp_mask);
3556         reclaim_state.reclaimed_slab = 0;
3557         p->reclaim_state = &reclaim_state;
3558
3559         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3560                 /*
3561                  * Free memory by calling shrink zone with increasing
3562                  * priorities until we have enough memory freed.
3563                  */
3564                 do {
3565                         shrink_zone(zone, &sc);
3566                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3567         }
3568
3569         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3570         if (nr_slab_pages0 > zone->min_slab_pages) {
3571                 /*
3572                  * shrink_slab() does not currently allow us to determine how
3573                  * many pages were freed in this zone. So we take the current
3574                  * number of slab pages and shake the slab until it is reduced
3575                  * by the same nr_pages that we used for reclaiming unmapped
3576                  * pages.
3577                  */
3578                 nodes_clear(shrink.nodes_to_scan);
3579                 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3580                 for (;;) {
3581                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3582
3583                         /* No reclaimable slab or very low memory pressure */
3584                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3585                                 break;
3586
3587                         /* Freed enough memory */
3588                         nr_slab_pages1 = zone_page_state(zone,
3589                                                         NR_SLAB_RECLAIMABLE);
3590                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3591                                 break;
3592                 }
3593
3594                 /*
3595                  * Update nr_reclaimed by the number of slab pages we
3596                  * reclaimed from this zone.
3597                  */
3598                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3599                 if (nr_slab_pages1 < nr_slab_pages0)
3600                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3601         }
3602
3603         p->reclaim_state = NULL;
3604         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3605         lockdep_clear_current_reclaim_state();
3606         return sc.nr_reclaimed >= nr_pages;
3607 }
3608
3609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3610 {
3611         int node_id;
3612         int ret;
3613
3614         /*
3615          * Zone reclaim reclaims unmapped file backed pages and
3616          * slab pages if we are over the defined limits.
3617          *
3618          * A small portion of unmapped file backed pages is needed for
3619          * file I/O otherwise pages read by file I/O will be immediately
3620          * thrown out if the zone is overallocated. So we do not reclaim
3621          * if less than a specified percentage of the zone is used by
3622          * unmapped file backed pages.
3623          */
3624         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3625             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3626                 return ZONE_RECLAIM_FULL;
3627
3628         if (!zone_reclaimable(zone))
3629                 return ZONE_RECLAIM_FULL;
3630
3631         /*
3632          * Do not scan if the allocation should not be delayed.
3633          */
3634         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3635                 return ZONE_RECLAIM_NOSCAN;
3636
3637         /*
3638          * Only run zone reclaim on the local zone or on zones that do not
3639          * have associated processors. This will favor the local processor
3640          * over remote processors and spread off node memory allocations
3641          * as wide as possible.
3642          */
3643         node_id = zone_to_nid(zone);
3644         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3645                 return ZONE_RECLAIM_NOSCAN;
3646
3647         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3648                 return ZONE_RECLAIM_NOSCAN;
3649
3650         ret = __zone_reclaim(zone, gfp_mask, order);
3651         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3652
3653         if (!ret)
3654                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3655
3656         return ret;
3657 }
3658 #endif
3659
3660 /*
3661  * page_evictable - test whether a page is evictable
3662  * @page: the page to test
3663  *
3664  * Test whether page is evictable--i.e., should be placed on active/inactive
3665  * lists vs unevictable list.
3666  *
3667  * Reasons page might not be evictable:
3668  * (1) page's mapping marked unevictable
3669  * (2) page is part of an mlocked VMA
3670  *
3671  */
3672 int page_evictable(struct page *page)
3673 {
3674         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3675 }
3676
3677 #ifdef CONFIG_SHMEM
3678 /**
3679  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3680  * @pages:      array of pages to check
3681  * @nr_pages:   number of pages to check
3682  *
3683  * Checks pages for evictability and moves them to the appropriate lru list.
3684  *
3685  * This function is only used for SysV IPC SHM_UNLOCK.
3686  */
3687 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3688 {
3689         struct lruvec *lruvec;
3690         struct zone *zone = NULL;
3691         int pgscanned = 0;
3692         int pgrescued = 0;
3693         int i;
3694
3695         for (i = 0; i < nr_pages; i++) {
3696                 struct page *page = pages[i];
3697                 struct zone *pagezone;
3698
3699                 pgscanned++;
3700                 pagezone = page_zone(page);
3701                 if (pagezone != zone) {
3702                         if (zone)
3703                                 spin_unlock_irq(&zone->lru_lock);
3704                         zone = pagezone;
3705                         spin_lock_irq(&zone->lru_lock);
3706                 }
3707                 lruvec = mem_cgroup_page_lruvec(page, zone);
3708
3709                 if (!PageLRU(page) || !PageUnevictable(page))
3710                         continue;
3711
3712                 if (page_evictable(page)) {
3713                         enum lru_list lru = page_lru_base_type(page);
3714
3715                         VM_BUG_ON_PAGE(PageActive(page), page);
3716                         ClearPageUnevictable(page);
3717                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3718                         add_page_to_lru_list(page, lruvec, lru);
3719                         pgrescued++;
3720                 }
3721         }
3722
3723         if (zone) {
3724                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3725                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3726                 spin_unlock_irq(&zone->lru_lock);
3727         }
3728 }
3729 #endif /* CONFIG_SHMEM */
3730
3731 static void warn_scan_unevictable_pages(void)
3732 {
3733         printk_once(KERN_WARNING
3734                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3735                     "disabled for lack of a legitimate use case.  If you have "
3736                     "one, please send an email to linux-mm@kvack.org.\n",
3737                     current->comm);
3738 }
3739
3740 /*
3741  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3742  * all nodes' unevictable lists for evictable pages
3743  */
3744 unsigned long scan_unevictable_pages;
3745
3746 int scan_unevictable_handler(struct ctl_table *table, int write,
3747                            void __user *buffer,
3748                            size_t *length, loff_t *ppos)
3749 {
3750         warn_scan_unevictable_pages();
3751         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3752         scan_unevictable_pages = 0;
3753         return 0;
3754 }
3755
3756 #ifdef CONFIG_NUMA
3757 /*
3758  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3759  * a specified node's per zone unevictable lists for evictable pages.
3760  */
3761
3762 static ssize_t read_scan_unevictable_node(struct device *dev,
3763                                           struct device_attribute *attr,
3764                                           char *buf)
3765 {
3766         warn_scan_unevictable_pages();
3767         return sprintf(buf, "0\n");     /* always zero; should fit... */
3768 }
3769
3770 static ssize_t write_scan_unevictable_node(struct device *dev,
3771                                            struct device_attribute *attr,
3772                                         const char *buf, size_t count)
3773 {
3774         warn_scan_unevictable_pages();
3775         return 1;
3776 }
3777
3778
3779 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3780                         read_scan_unevictable_node,
3781                         write_scan_unevictable_node);
3782
3783 int scan_unevictable_register_node(struct node *node)
3784 {
3785         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3786 }
3787
3788 void scan_unevictable_unregister_node(struct node *node)
3789 {
3790         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3791 }
3792 #endif