b4e7cde353658af7dacead300635b0fb44618b75
[firefly-linux-kernel-4.4.55.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
60
61 static DEFINE_RWLOCK(hci_task_lock);
62
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
66
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
70
71 /* HCI protocols */
72 #define HCI_MAX_PROTO   2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
74
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
77
78 /* ---- HCI notifications ---- */
79
80 int hci_register_notifier(struct notifier_block *nb)
81 {
82         return atomic_notifier_chain_register(&hci_notifier, nb);
83 }
84
85 int hci_unregister_notifier(struct notifier_block *nb)
86 {
87         return atomic_notifier_chain_unregister(&hci_notifier, nb);
88 }
89
90 static void hci_notify(struct hci_dev *hdev, int event)
91 {
92         atomic_notifier_call_chain(&hci_notifier, event, hdev);
93 }
94
95 /* ---- HCI requests ---- */
96
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
98 {
99         BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
100
101         /* If this is the init phase check if the completed command matches
102          * the last init command, and if not just return.
103          */
104         if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105                 return;
106
107         if (hdev->req_status == HCI_REQ_PEND) {
108                 hdev->req_result = result;
109                 hdev->req_status = HCI_REQ_DONE;
110                 wake_up_interruptible(&hdev->req_wait_q);
111         }
112 }
113
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
115 {
116         BT_DBG("%s err 0x%2.2x", hdev->name, err);
117
118         if (hdev->req_status == HCI_REQ_PEND) {
119                 hdev->req_result = err;
120                 hdev->req_status = HCI_REQ_CANCELED;
121                 wake_up_interruptible(&hdev->req_wait_q);
122         }
123 }
124
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127                                         unsigned long opt, __u32 timeout)
128 {
129         DECLARE_WAITQUEUE(wait, current);
130         int err = 0;
131
132         BT_DBG("%s start", hdev->name);
133
134         hdev->req_status = HCI_REQ_PEND;
135
136         add_wait_queue(&hdev->req_wait_q, &wait);
137         set_current_state(TASK_INTERRUPTIBLE);
138
139         req(hdev, opt);
140         schedule_timeout(timeout);
141
142         remove_wait_queue(&hdev->req_wait_q, &wait);
143
144         if (signal_pending(current))
145                 return -EINTR;
146
147         switch (hdev->req_status) {
148         case HCI_REQ_DONE:
149                 err = -bt_to_errno(hdev->req_result);
150                 break;
151
152         case HCI_REQ_CANCELED:
153                 err = -hdev->req_result;
154                 break;
155
156         default:
157                 err = -ETIMEDOUT;
158                 break;
159         }
160
161         hdev->req_status = hdev->req_result = 0;
162
163         BT_DBG("%s end: err %d", hdev->name, err);
164
165         return err;
166 }
167
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169                                         unsigned long opt, __u32 timeout)
170 {
171         int ret;
172
173         if (!test_bit(HCI_UP, &hdev->flags))
174                 return -ENETDOWN;
175
176         /* Serialize all requests */
177         hci_req_lock(hdev);
178         ret = __hci_request(hdev, req, opt, timeout);
179         hci_req_unlock(hdev);
180
181         return ret;
182 }
183
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
185 {
186         BT_DBG("%s %ld", hdev->name, opt);
187
188         /* Reset device */
189         set_bit(HCI_RESET, &hdev->flags);
190         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
191 }
192
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
194 {
195         struct hci_cp_delete_stored_link_key cp;
196         struct sk_buff *skb;
197         __le16 param;
198         __u8 flt_type;
199
200         BT_DBG("%s %ld", hdev->name, opt);
201
202         /* Driver initialization */
203
204         /* Special commands */
205         while ((skb = skb_dequeue(&hdev->driver_init))) {
206                 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207                 skb->dev = (void *) hdev;
208
209                 skb_queue_tail(&hdev->cmd_q, skb);
210                 tasklet_schedule(&hdev->cmd_task);
211         }
212         skb_queue_purge(&hdev->driver_init);
213
214         /* Mandatory initialization */
215
216         /* Reset */
217         if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218                         set_bit(HCI_RESET, &hdev->flags);
219                         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
220         }
221
222         /* Read Local Supported Features */
223         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
224
225         /* Read Local Version */
226         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
227
228         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229         hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
230
231 #if 0
232         /* Host buffer size */
233         {
234                 struct hci_cp_host_buffer_size cp;
235                 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236                 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237                 cp.acl_max_pkt = cpu_to_le16(0xffff);
238                 cp.sco_max_pkt = cpu_to_le16(0xffff);
239                 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
240         }
241 #endif
242
243         /* Read BD Address */
244         hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
245
246         /* Read Class of Device */
247         hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
248
249         /* Read Local Name */
250         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
251
252         /* Read Voice Setting */
253         hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
254
255         /* Optional initialization */
256
257         /* Clear Event Filters */
258         flt_type = HCI_FLT_CLEAR_ALL;
259         hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
260
261         /* Connection accept timeout ~20 secs */
262         param = cpu_to_le16(0x7d00);
263         hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
264
265         bacpy(&cp.bdaddr, BDADDR_ANY);
266         cp.delete_all = 1;
267         hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
268 }
269
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
271 {
272         BT_DBG("%s", hdev->name);
273
274         /* Read LE buffer size */
275         hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
276 }
277
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
279 {
280         __u8 scan = opt;
281
282         BT_DBG("%s %x", hdev->name, scan);
283
284         /* Inquiry and Page scans */
285         hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
286 }
287
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
289 {
290         __u8 auth = opt;
291
292         BT_DBG("%s %x", hdev->name, auth);
293
294         /* Authentication */
295         hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
296 }
297
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
299 {
300         __u8 encrypt = opt;
301
302         BT_DBG("%s %x", hdev->name, encrypt);
303
304         /* Encryption */
305         hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
306 }
307
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
309 {
310         __le16 policy = cpu_to_le16(opt);
311
312         BT_DBG("%s %x", hdev->name, policy);
313
314         /* Default link policy */
315         hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
316 }
317
318 /* Get HCI device by index.
319  * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
321 {
322         struct hci_dev *hdev = NULL;
323         struct list_head *p;
324
325         BT_DBG("%d", index);
326
327         if (index < 0)
328                 return NULL;
329
330         read_lock(&hci_dev_list_lock);
331         list_for_each(p, &hci_dev_list) {
332                 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333                 if (d->id == index) {
334                         hdev = hci_dev_hold(d);
335                         break;
336                 }
337         }
338         read_unlock(&hci_dev_list_lock);
339         return hdev;
340 }
341
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
344 {
345         struct inquiry_cache *cache = &hdev->inq_cache;
346         struct inquiry_entry *next  = cache->list, *e;
347
348         BT_DBG("cache %p", cache);
349
350         cache->list = NULL;
351         while ((e = next)) {
352                 next = e->next;
353                 kfree(e);
354         }
355 }
356
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
358 {
359         struct inquiry_cache *cache = &hdev->inq_cache;
360         struct inquiry_entry *e;
361
362         BT_DBG("cache %p, %s", cache, batostr(bdaddr));
363
364         for (e = cache->list; e; e = e->next)
365                 if (!bacmp(&e->data.bdaddr, bdaddr))
366                         break;
367         return e;
368 }
369
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
371 {
372         struct inquiry_cache *cache = &hdev->inq_cache;
373         struct inquiry_entry *ie;
374
375         BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
376
377         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378         if (!ie) {
379                 /* Entry not in the cache. Add new one. */
380                 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381                 if (!ie)
382                         return;
383
384                 ie->next = cache->list;
385                 cache->list = ie;
386         }
387
388         memcpy(&ie->data, data, sizeof(*data));
389         ie->timestamp = jiffies;
390         cache->timestamp = jiffies;
391 }
392
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
394 {
395         struct inquiry_cache *cache = &hdev->inq_cache;
396         struct inquiry_info *info = (struct inquiry_info *) buf;
397         struct inquiry_entry *e;
398         int copied = 0;
399
400         for (e = cache->list; e && copied < num; e = e->next, copied++) {
401                 struct inquiry_data *data = &e->data;
402                 bacpy(&info->bdaddr, &data->bdaddr);
403                 info->pscan_rep_mode    = data->pscan_rep_mode;
404                 info->pscan_period_mode = data->pscan_period_mode;
405                 info->pscan_mode        = data->pscan_mode;
406                 memcpy(info->dev_class, data->dev_class, 3);
407                 info->clock_offset      = data->clock_offset;
408                 info++;
409         }
410
411         BT_DBG("cache %p, copied %d", cache, copied);
412         return copied;
413 }
414
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
416 {
417         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418         struct hci_cp_inquiry cp;
419
420         BT_DBG("%s", hdev->name);
421
422         if (test_bit(HCI_INQUIRY, &hdev->flags))
423                 return;
424
425         /* Start Inquiry */
426         memcpy(&cp.lap, &ir->lap, 3);
427         cp.length  = ir->length;
428         cp.num_rsp = ir->num_rsp;
429         hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
430 }
431
432 int hci_inquiry(void __user *arg)
433 {
434         __u8 __user *ptr = arg;
435         struct hci_inquiry_req ir;
436         struct hci_dev *hdev;
437         int err = 0, do_inquiry = 0, max_rsp;
438         long timeo;
439         __u8 *buf;
440
441         if (copy_from_user(&ir, ptr, sizeof(ir)))
442                 return -EFAULT;
443
444         hdev = hci_dev_get(ir.dev_id);
445         if (!hdev)
446                 return -ENODEV;
447
448         hci_dev_lock_bh(hdev);
449         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450                                 inquiry_cache_empty(hdev) ||
451                                 ir.flags & IREQ_CACHE_FLUSH) {
452                 inquiry_cache_flush(hdev);
453                 do_inquiry = 1;
454         }
455         hci_dev_unlock_bh(hdev);
456
457         timeo = ir.length * msecs_to_jiffies(2000);
458
459         if (do_inquiry) {
460                 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461                 if (err < 0)
462                         goto done;
463         }
464
465         /* for unlimited number of responses we will use buffer with 255 entries */
466         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
467
468         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469          * copy it to the user space.
470          */
471         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472         if (!buf) {
473                 err = -ENOMEM;
474                 goto done;
475         }
476
477         hci_dev_lock_bh(hdev);
478         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479         hci_dev_unlock_bh(hdev);
480
481         BT_DBG("num_rsp %d", ir.num_rsp);
482
483         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484                 ptr += sizeof(ir);
485                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486                                         ir.num_rsp))
487                         err = -EFAULT;
488         } else
489                 err = -EFAULT;
490
491         kfree(buf);
492
493 done:
494         hci_dev_put(hdev);
495         return err;
496 }
497
498 /* ---- HCI ioctl helpers ---- */
499
500 int hci_dev_open(__u16 dev)
501 {
502         struct hci_dev *hdev;
503         int ret = 0;
504
505         hdev = hci_dev_get(dev);
506         if (!hdev)
507                 return -ENODEV;
508
509         BT_DBG("%s %p", hdev->name, hdev);
510
511         hci_req_lock(hdev);
512
513         if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514                 ret = -ERFKILL;
515                 goto done;
516         }
517
518         if (test_bit(HCI_UP, &hdev->flags)) {
519                 ret = -EALREADY;
520                 goto done;
521         }
522
523         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524                 set_bit(HCI_RAW, &hdev->flags);
525
526         /* Treat all non BR/EDR controllers as raw devices for now */
527         if (hdev->dev_type != HCI_BREDR)
528                 set_bit(HCI_RAW, &hdev->flags);
529
530         if (hdev->open(hdev)) {
531                 ret = -EIO;
532                 goto done;
533         }
534
535         if (!test_bit(HCI_RAW, &hdev->flags)) {
536                 atomic_set(&hdev->cmd_cnt, 1);
537                 set_bit(HCI_INIT, &hdev->flags);
538                 hdev->init_last_cmd = 0;
539
540                 ret = __hci_request(hdev, hci_init_req, 0,
541                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
542
543                 if (lmp_host_le_capable(hdev))
544                         ret = __hci_request(hdev, hci_le_init_req, 0,
545                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
546
547                 clear_bit(HCI_INIT, &hdev->flags);
548         }
549
550         if (!ret) {
551                 hci_dev_hold(hdev);
552                 set_bit(HCI_UP, &hdev->flags);
553                 hci_notify(hdev, HCI_DEV_UP);
554                 if (!test_bit(HCI_SETUP, &hdev->flags))
555                         mgmt_powered(hdev->id, 1);
556         } else {
557                 /* Init failed, cleanup */
558                 tasklet_kill(&hdev->rx_task);
559                 tasklet_kill(&hdev->tx_task);
560                 tasklet_kill(&hdev->cmd_task);
561
562                 skb_queue_purge(&hdev->cmd_q);
563                 skb_queue_purge(&hdev->rx_q);
564
565                 if (hdev->flush)
566                         hdev->flush(hdev);
567
568                 if (hdev->sent_cmd) {
569                         kfree_skb(hdev->sent_cmd);
570                         hdev->sent_cmd = NULL;
571                 }
572
573                 hdev->close(hdev);
574                 hdev->flags = 0;
575         }
576
577 done:
578         hci_req_unlock(hdev);
579         hci_dev_put(hdev);
580         return ret;
581 }
582
583 static int hci_dev_do_close(struct hci_dev *hdev)
584 {
585         BT_DBG("%s %p", hdev->name, hdev);
586
587         hci_req_cancel(hdev, ENODEV);
588         hci_req_lock(hdev);
589
590         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591                 del_timer_sync(&hdev->cmd_timer);
592                 hci_req_unlock(hdev);
593                 return 0;
594         }
595
596         /* Kill RX and TX tasks */
597         tasklet_kill(&hdev->rx_task);
598         tasklet_kill(&hdev->tx_task);
599
600         hci_dev_lock_bh(hdev);
601         inquiry_cache_flush(hdev);
602         hci_conn_hash_flush(hdev);
603         hci_dev_unlock_bh(hdev);
604
605         hci_notify(hdev, HCI_DEV_DOWN);
606
607         if (hdev->flush)
608                 hdev->flush(hdev);
609
610         /* Reset device */
611         skb_queue_purge(&hdev->cmd_q);
612         atomic_set(&hdev->cmd_cnt, 1);
613         if (!test_bit(HCI_RAW, &hdev->flags)) {
614                 set_bit(HCI_INIT, &hdev->flags);
615                 __hci_request(hdev, hci_reset_req, 0,
616                                         msecs_to_jiffies(250));
617                 clear_bit(HCI_INIT, &hdev->flags);
618         }
619
620         /* Kill cmd task */
621         tasklet_kill(&hdev->cmd_task);
622
623         /* Drop queues */
624         skb_queue_purge(&hdev->rx_q);
625         skb_queue_purge(&hdev->cmd_q);
626         skb_queue_purge(&hdev->raw_q);
627
628         /* Drop last sent command */
629         if (hdev->sent_cmd) {
630                 del_timer_sync(&hdev->cmd_timer);
631                 kfree_skb(hdev->sent_cmd);
632                 hdev->sent_cmd = NULL;
633         }
634
635         /* After this point our queues are empty
636          * and no tasks are scheduled. */
637         hdev->close(hdev);
638
639         mgmt_powered(hdev->id, 0);
640
641         /* Clear flags */
642         hdev->flags = 0;
643
644         hci_req_unlock(hdev);
645
646         hci_dev_put(hdev);
647         return 0;
648 }
649
650 int hci_dev_close(__u16 dev)
651 {
652         struct hci_dev *hdev;
653         int err;
654
655         hdev = hci_dev_get(dev);
656         if (!hdev)
657                 return -ENODEV;
658         err = hci_dev_do_close(hdev);
659         hci_dev_put(hdev);
660         return err;
661 }
662
663 int hci_dev_reset(__u16 dev)
664 {
665         struct hci_dev *hdev;
666         int ret = 0;
667
668         hdev = hci_dev_get(dev);
669         if (!hdev)
670                 return -ENODEV;
671
672         hci_req_lock(hdev);
673         tasklet_disable(&hdev->tx_task);
674
675         if (!test_bit(HCI_UP, &hdev->flags))
676                 goto done;
677
678         /* Drop queues */
679         skb_queue_purge(&hdev->rx_q);
680         skb_queue_purge(&hdev->cmd_q);
681
682         hci_dev_lock_bh(hdev);
683         inquiry_cache_flush(hdev);
684         hci_conn_hash_flush(hdev);
685         hci_dev_unlock_bh(hdev);
686
687         if (hdev->flush)
688                 hdev->flush(hdev);
689
690         atomic_set(&hdev->cmd_cnt, 1);
691         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
692
693         if (!test_bit(HCI_RAW, &hdev->flags))
694                 ret = __hci_request(hdev, hci_reset_req, 0,
695                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
696
697 done:
698         tasklet_enable(&hdev->tx_task);
699         hci_req_unlock(hdev);
700         hci_dev_put(hdev);
701         return ret;
702 }
703
704 int hci_dev_reset_stat(__u16 dev)
705 {
706         struct hci_dev *hdev;
707         int ret = 0;
708
709         hdev = hci_dev_get(dev);
710         if (!hdev)
711                 return -ENODEV;
712
713         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
714
715         hci_dev_put(hdev);
716
717         return ret;
718 }
719
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
721 {
722         struct hci_dev *hdev;
723         struct hci_dev_req dr;
724         int err = 0;
725
726         if (copy_from_user(&dr, arg, sizeof(dr)))
727                 return -EFAULT;
728
729         hdev = hci_dev_get(dr.dev_id);
730         if (!hdev)
731                 return -ENODEV;
732
733         switch (cmd) {
734         case HCISETAUTH:
735                 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
737                 break;
738
739         case HCISETENCRYPT:
740                 if (!lmp_encrypt_capable(hdev)) {
741                         err = -EOPNOTSUPP;
742                         break;
743                 }
744
745                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746                         /* Auth must be enabled first */
747                         err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
749                         if (err)
750                                 break;
751                 }
752
753                 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
755                 break;
756
757         case HCISETSCAN:
758                 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
760                 break;
761
762         case HCISETLINKPOL:
763                 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
765                 break;
766
767         case HCISETLINKMODE:
768                 hdev->link_mode = ((__u16) dr.dev_opt) &
769                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
770                 break;
771
772         case HCISETPTYPE:
773                 hdev->pkt_type = (__u16) dr.dev_opt;
774                 break;
775
776         case HCISETACLMTU:
777                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
778                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779                 break;
780
781         case HCISETSCOMTU:
782                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
783                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784                 break;
785
786         default:
787                 err = -EINVAL;
788                 break;
789         }
790
791         hci_dev_put(hdev);
792         return err;
793 }
794
795 int hci_get_dev_list(void __user *arg)
796 {
797         struct hci_dev_list_req *dl;
798         struct hci_dev_req *dr;
799         struct list_head *p;
800         int n = 0, size, err;
801         __u16 dev_num;
802
803         if (get_user(dev_num, (__u16 __user *) arg))
804                 return -EFAULT;
805
806         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807                 return -EINVAL;
808
809         size = sizeof(*dl) + dev_num * sizeof(*dr);
810
811         dl = kzalloc(size, GFP_KERNEL);
812         if (!dl)
813                 return -ENOMEM;
814
815         dr = dl->dev_req;
816
817         read_lock_bh(&hci_dev_list_lock);
818         list_for_each(p, &hci_dev_list) {
819                 struct hci_dev *hdev;
820
821                 hdev = list_entry(p, struct hci_dev, list);
822
823                 hci_del_off_timer(hdev);
824
825                 if (!test_bit(HCI_MGMT, &hdev->flags))
826                         set_bit(HCI_PAIRABLE, &hdev->flags);
827
828                 (dr + n)->dev_id  = hdev->id;
829                 (dr + n)->dev_opt = hdev->flags;
830
831                 if (++n >= dev_num)
832                         break;
833         }
834         read_unlock_bh(&hci_dev_list_lock);
835
836         dl->dev_num = n;
837         size = sizeof(*dl) + n * sizeof(*dr);
838
839         err = copy_to_user(arg, dl, size);
840         kfree(dl);
841
842         return err ? -EFAULT : 0;
843 }
844
845 int hci_get_dev_info(void __user *arg)
846 {
847         struct hci_dev *hdev;
848         struct hci_dev_info di;
849         int err = 0;
850
851         if (copy_from_user(&di, arg, sizeof(di)))
852                 return -EFAULT;
853
854         hdev = hci_dev_get(di.dev_id);
855         if (!hdev)
856                 return -ENODEV;
857
858         hci_del_off_timer(hdev);
859
860         if (!test_bit(HCI_MGMT, &hdev->flags))
861                 set_bit(HCI_PAIRABLE, &hdev->flags);
862
863         strcpy(di.name, hdev->name);
864         di.bdaddr   = hdev->bdaddr;
865         di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866         di.flags    = hdev->flags;
867         di.pkt_type = hdev->pkt_type;
868         di.acl_mtu  = hdev->acl_mtu;
869         di.acl_pkts = hdev->acl_pkts;
870         di.sco_mtu  = hdev->sco_mtu;
871         di.sco_pkts = hdev->sco_pkts;
872         di.link_policy = hdev->link_policy;
873         di.link_mode   = hdev->link_mode;
874
875         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876         memcpy(&di.features, &hdev->features, sizeof(di.features));
877
878         if (copy_to_user(arg, &di, sizeof(di)))
879                 err = -EFAULT;
880
881         hci_dev_put(hdev);
882
883         return err;
884 }
885
886 /* ---- Interface to HCI drivers ---- */
887
888 static int hci_rfkill_set_block(void *data, bool blocked)
889 {
890         struct hci_dev *hdev = data;
891
892         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
893
894         if (!blocked)
895                 return 0;
896
897         hci_dev_do_close(hdev);
898
899         return 0;
900 }
901
902 static const struct rfkill_ops hci_rfkill_ops = {
903         .set_block = hci_rfkill_set_block,
904 };
905
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
908 {
909         struct hci_dev *hdev;
910
911         hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912         if (!hdev)
913                 return NULL;
914
915         skb_queue_head_init(&hdev->driver_init);
916
917         return hdev;
918 }
919 EXPORT_SYMBOL(hci_alloc_dev);
920
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
923 {
924         skb_queue_purge(&hdev->driver_init);
925
926         /* will free via device release */
927         put_device(&hdev->dev);
928 }
929 EXPORT_SYMBOL(hci_free_dev);
930
931 static void hci_power_on(struct work_struct *work)
932 {
933         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
934
935         BT_DBG("%s", hdev->name);
936
937         if (hci_dev_open(hdev->id) < 0)
938                 return;
939
940         if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941                 mod_timer(&hdev->off_timer,
942                                 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
943
944         if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945                 mgmt_index_added(hdev->id);
946 }
947
948 static void hci_power_off(struct work_struct *work)
949 {
950         struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
951
952         BT_DBG("%s", hdev->name);
953
954         hci_dev_close(hdev->id);
955 }
956
957 static void hci_auto_off(unsigned long data)
958 {
959         struct hci_dev *hdev = (struct hci_dev *) data;
960
961         BT_DBG("%s", hdev->name);
962
963         clear_bit(HCI_AUTO_OFF, &hdev->flags);
964
965         queue_work(hdev->workqueue, &hdev->power_off);
966 }
967
968 void hci_del_off_timer(struct hci_dev *hdev)
969 {
970         BT_DBG("%s", hdev->name);
971
972         clear_bit(HCI_AUTO_OFF, &hdev->flags);
973         del_timer(&hdev->off_timer);
974 }
975
976 int hci_uuids_clear(struct hci_dev *hdev)
977 {
978         struct list_head *p, *n;
979
980         list_for_each_safe(p, n, &hdev->uuids) {
981                 struct bt_uuid *uuid;
982
983                 uuid = list_entry(p, struct bt_uuid, list);
984
985                 list_del(p);
986                 kfree(uuid);
987         }
988
989         return 0;
990 }
991
992 int hci_link_keys_clear(struct hci_dev *hdev)
993 {
994         struct list_head *p, *n;
995
996         list_for_each_safe(p, n, &hdev->link_keys) {
997                 struct link_key *key;
998
999                 key = list_entry(p, struct link_key, list);
1000
1001                 list_del(p);
1002                 kfree(key);
1003         }
1004
1005         return 0;
1006 }
1007
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009 {
1010         struct list_head *p;
1011
1012         list_for_each(p, &hdev->link_keys) {
1013                 struct link_key *k;
1014
1015                 k = list_entry(p, struct link_key, list);
1016
1017                 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018                         return k;
1019         }
1020
1021         return NULL;
1022 }
1023
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025                                                 u8 key_type, u8 old_key_type)
1026 {
1027         /* Legacy key */
1028         if (key_type < 0x03)
1029                 return 1;
1030
1031         /* Debug keys are insecure so don't store them persistently */
1032         if (key_type == HCI_LK_DEBUG_COMBINATION)
1033                 return 0;
1034
1035         /* Changed combination key and there's no previous one */
1036         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037                 return 0;
1038
1039         /* Security mode 3 case */
1040         if (!conn)
1041                 return 1;
1042
1043         /* Neither local nor remote side had no-bonding as requirement */
1044         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045                 return 1;
1046
1047         /* Local side had dedicated bonding as requirement */
1048         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049                 return 1;
1050
1051         /* Remote side had dedicated bonding as requirement */
1052         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053                 return 1;
1054
1055         /* If none of the above criteria match, then don't store the key
1056          * persistently */
1057         return 0;
1058 }
1059
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061 {
1062         struct link_key *k;
1063
1064         list_for_each_entry(k, &hdev->link_keys, list) {
1065                 struct key_master_id *id;
1066
1067                 if (k->type != HCI_LK_SMP_LTK)
1068                         continue;
1069
1070                 if (k->dlen != sizeof(*id))
1071                         continue;
1072
1073                 id = (void *) &k->data;
1074                 if (id->ediv == ediv &&
1075                                 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076                         return k;
1077         }
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(hci_find_ltk);
1082
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084                                         bdaddr_t *bdaddr, u8 type)
1085 {
1086         struct link_key *k;
1087
1088         list_for_each_entry(k, &hdev->link_keys, list)
1089                 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090                         return k;
1091
1092         return NULL;
1093 }
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097                                 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1098 {
1099         struct link_key *key, *old_key;
1100         u8 old_key_type, persistent;
1101
1102         old_key = hci_find_link_key(hdev, bdaddr);
1103         if (old_key) {
1104                 old_key_type = old_key->type;
1105                 key = old_key;
1106         } else {
1107                 old_key_type = conn ? conn->key_type : 0xff;
1108                 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109                 if (!key)
1110                         return -ENOMEM;
1111                 list_add(&key->list, &hdev->link_keys);
1112         }
1113
1114         BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116         /* Some buggy controller combinations generate a changed
1117          * combination key for legacy pairing even when there's no
1118          * previous key */
1119         if (type == HCI_LK_CHANGED_COMBINATION &&
1120                                         (!conn || conn->remote_auth == 0xff) &&
1121                                         old_key_type == 0xff) {
1122                 type = HCI_LK_COMBINATION;
1123                 if (conn)
1124                         conn->key_type = type;
1125         }
1126
1127         bacpy(&key->bdaddr, bdaddr);
1128         memcpy(key->val, val, 16);
1129         key->pin_len = pin_len;
1130
1131         if (type == HCI_LK_CHANGED_COMBINATION)
1132                 key->type = old_key_type;
1133         else
1134                 key->type = type;
1135
1136         if (!new_key)
1137                 return 0;
1138
1139         persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1140
1141         mgmt_new_key(hdev->id, key, persistent);
1142
1143         if (!persistent) {
1144                 list_del(&key->list);
1145                 kfree(key);
1146         }
1147
1148         return 0;
1149 }
1150
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152                         u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153 {
1154         struct link_key *key, *old_key;
1155         struct key_master_id *id;
1156         u8 old_key_type;
1157
1158         BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1159
1160         old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161         if (old_key) {
1162                 key = old_key;
1163                 old_key_type = old_key->type;
1164         } else {
1165                 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166                 if (!key)
1167                         return -ENOMEM;
1168                 list_add(&key->list, &hdev->link_keys);
1169                 old_key_type = 0xff;
1170         }
1171
1172         key->dlen = sizeof(*id);
1173
1174         bacpy(&key->bdaddr, bdaddr);
1175         memcpy(key->val, ltk, sizeof(key->val));
1176         key->type = HCI_LK_SMP_LTK;
1177         key->pin_len = key_size;
1178
1179         id = (void *) &key->data;
1180         id->ediv = ediv;
1181         memcpy(id->rand, rand, sizeof(id->rand));
1182
1183         if (new_key)
1184                 mgmt_new_key(hdev->id, key, old_key_type);
1185
1186         return 0;
1187 }
1188
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190 {
1191         struct link_key *key;
1192
1193         key = hci_find_link_key(hdev, bdaddr);
1194         if (!key)
1195                 return -ENOENT;
1196
1197         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199         list_del(&key->list);
1200         kfree(key);
1201
1202         return 0;
1203 }
1204
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1207 {
1208         struct hci_dev *hdev = (void *) arg;
1209
1210         BT_ERR("%s command tx timeout", hdev->name);
1211         atomic_set(&hdev->cmd_cnt, 1);
1212         tasklet_schedule(&hdev->cmd_task);
1213 }
1214
1215 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216                                                         bdaddr_t *bdaddr)
1217 {
1218         struct oob_data *data;
1219
1220         list_for_each_entry(data, &hdev->remote_oob_data, list)
1221                 if (bacmp(bdaddr, &data->bdaddr) == 0)
1222                         return data;
1223
1224         return NULL;
1225 }
1226
1227 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1228 {
1229         struct oob_data *data;
1230
1231         data = hci_find_remote_oob_data(hdev, bdaddr);
1232         if (!data)
1233                 return -ENOENT;
1234
1235         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1236
1237         list_del(&data->list);
1238         kfree(data);
1239
1240         return 0;
1241 }
1242
1243 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1244 {
1245         struct oob_data *data, *n;
1246
1247         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248                 list_del(&data->list);
1249                 kfree(data);
1250         }
1251
1252         return 0;
1253 }
1254
1255 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256                                                                 u8 *randomizer)
1257 {
1258         struct oob_data *data;
1259
1260         data = hci_find_remote_oob_data(hdev, bdaddr);
1261
1262         if (!data) {
1263                 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264                 if (!data)
1265                         return -ENOMEM;
1266
1267                 bacpy(&data->bdaddr, bdaddr);
1268                 list_add(&data->list, &hdev->remote_oob_data);
1269         }
1270
1271         memcpy(data->hash, hash, sizeof(data->hash));
1272         memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1273
1274         BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1275
1276         return 0;
1277 }
1278
1279 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280                                                 bdaddr_t *bdaddr)
1281 {
1282         struct list_head *p;
1283
1284         list_for_each(p, &hdev->blacklist) {
1285                 struct bdaddr_list *b;
1286
1287                 b = list_entry(p, struct bdaddr_list, list);
1288
1289                 if (bacmp(bdaddr, &b->bdaddr) == 0)
1290                         return b;
1291         }
1292
1293         return NULL;
1294 }
1295
1296 int hci_blacklist_clear(struct hci_dev *hdev)
1297 {
1298         struct list_head *p, *n;
1299
1300         list_for_each_safe(p, n, &hdev->blacklist) {
1301                 struct bdaddr_list *b;
1302
1303                 b = list_entry(p, struct bdaddr_list, list);
1304
1305                 list_del(p);
1306                 kfree(b);
1307         }
1308
1309         return 0;
1310 }
1311
1312 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1313 {
1314         struct bdaddr_list *entry;
1315         int err;
1316
1317         if (bacmp(bdaddr, BDADDR_ANY) == 0)
1318                 return -EBADF;
1319
1320         hci_dev_lock_bh(hdev);
1321
1322         if (hci_blacklist_lookup(hdev, bdaddr)) {
1323                 err = -EEXIST;
1324                 goto err;
1325         }
1326
1327         entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328         if (!entry) {
1329                 err = -ENOMEM;
1330                 goto err;
1331         }
1332
1333         bacpy(&entry->bdaddr, bdaddr);
1334
1335         list_add(&entry->list, &hdev->blacklist);
1336
1337         err = 0;
1338
1339 err:
1340         hci_dev_unlock_bh(hdev);
1341         return err;
1342 }
1343
1344 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1345 {
1346         struct bdaddr_list *entry;
1347         int err = 0;
1348
1349         hci_dev_lock_bh(hdev);
1350
1351         if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1352                 hci_blacklist_clear(hdev);
1353                 goto done;
1354         }
1355
1356         entry = hci_blacklist_lookup(hdev, bdaddr);
1357         if (!entry) {
1358                 err = -ENOENT;
1359                 goto done;
1360         }
1361
1362         list_del(&entry->list);
1363         kfree(entry);
1364
1365 done:
1366         hci_dev_unlock_bh(hdev);
1367         return err;
1368 }
1369
1370 static void hci_clear_adv_cache(unsigned long arg)
1371 {
1372         struct hci_dev *hdev = (void *) arg;
1373
1374         hci_dev_lock(hdev);
1375
1376         hci_adv_entries_clear(hdev);
1377
1378         hci_dev_unlock(hdev);
1379 }
1380
1381 int hci_adv_entries_clear(struct hci_dev *hdev)
1382 {
1383         struct adv_entry *entry, *tmp;
1384
1385         list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1386                 list_del(&entry->list);
1387                 kfree(entry);
1388         }
1389
1390         BT_DBG("%s adv cache cleared", hdev->name);
1391
1392         return 0;
1393 }
1394
1395 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1396 {
1397         struct adv_entry *entry;
1398
1399         list_for_each_entry(entry, &hdev->adv_entries, list)
1400                 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1401                         return entry;
1402
1403         return NULL;
1404 }
1405
1406 static inline int is_connectable_adv(u8 evt_type)
1407 {
1408         if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1409                 return 1;
1410
1411         return 0;
1412 }
1413
1414 int hci_add_adv_entry(struct hci_dev *hdev,
1415                                         struct hci_ev_le_advertising_info *ev)
1416 {
1417         struct adv_entry *entry;
1418
1419         if (!is_connectable_adv(ev->evt_type))
1420                 return -EINVAL;
1421
1422         /* Only new entries should be added to adv_entries. So, if
1423          * bdaddr was found, don't add it. */
1424         if (hci_find_adv_entry(hdev, &ev->bdaddr))
1425                 return 0;
1426
1427         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1428         if (!entry)
1429                 return -ENOMEM;
1430
1431         bacpy(&entry->bdaddr, &ev->bdaddr);
1432         entry->bdaddr_type = ev->bdaddr_type;
1433
1434         list_add(&entry->list, &hdev->adv_entries);
1435
1436         BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1437                                 batostr(&entry->bdaddr), entry->bdaddr_type);
1438
1439         return 0;
1440 }
1441
1442 /* Register HCI device */
1443 int hci_register_dev(struct hci_dev *hdev)
1444 {
1445         struct list_head *head = &hci_dev_list, *p;
1446         int i, id = 0;
1447
1448         BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1449                                                 hdev->bus, hdev->owner);
1450
1451         if (!hdev->open || !hdev->close || !hdev->destruct)
1452                 return -EINVAL;
1453
1454         write_lock_bh(&hci_dev_list_lock);
1455
1456         /* Find first available device id */
1457         list_for_each(p, &hci_dev_list) {
1458                 if (list_entry(p, struct hci_dev, list)->id != id)
1459                         break;
1460                 head = p; id++;
1461         }
1462
1463         sprintf(hdev->name, "hci%d", id);
1464         hdev->id = id;
1465         list_add(&hdev->list, head);
1466
1467         atomic_set(&hdev->refcnt, 1);
1468         spin_lock_init(&hdev->lock);
1469
1470         hdev->flags = 0;
1471         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1472         hdev->esco_type = (ESCO_HV1);
1473         hdev->link_mode = (HCI_LM_ACCEPT);
1474         hdev->io_capability = 0x03; /* No Input No Output */
1475
1476         hdev->idle_timeout = 0;
1477         hdev->sniff_max_interval = 800;
1478         hdev->sniff_min_interval = 80;
1479
1480         tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1481         tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1482         tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1483
1484         skb_queue_head_init(&hdev->rx_q);
1485         skb_queue_head_init(&hdev->cmd_q);
1486         skb_queue_head_init(&hdev->raw_q);
1487
1488         setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1489
1490         for (i = 0; i < NUM_REASSEMBLY; i++)
1491                 hdev->reassembly[i] = NULL;
1492
1493         init_waitqueue_head(&hdev->req_wait_q);
1494         mutex_init(&hdev->req_lock);
1495
1496         inquiry_cache_init(hdev);
1497
1498         hci_conn_hash_init(hdev);
1499
1500         INIT_LIST_HEAD(&hdev->blacklist);
1501
1502         INIT_LIST_HEAD(&hdev->uuids);
1503
1504         INIT_LIST_HEAD(&hdev->link_keys);
1505
1506         INIT_LIST_HEAD(&hdev->remote_oob_data);
1507
1508         INIT_LIST_HEAD(&hdev->adv_entries);
1509         setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1510                                                 (unsigned long) hdev);
1511
1512         INIT_WORK(&hdev->power_on, hci_power_on);
1513         INIT_WORK(&hdev->power_off, hci_power_off);
1514         setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1515
1516         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1517
1518         atomic_set(&hdev->promisc, 0);
1519
1520         write_unlock_bh(&hci_dev_list_lock);
1521
1522         hdev->workqueue = create_singlethread_workqueue(hdev->name);
1523         if (!hdev->workqueue)
1524                 goto nomem;
1525
1526         hci_register_sysfs(hdev);
1527
1528         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1529                                 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1530         if (hdev->rfkill) {
1531                 if (rfkill_register(hdev->rfkill) < 0) {
1532                         rfkill_destroy(hdev->rfkill);
1533                         hdev->rfkill = NULL;
1534                 }
1535         }
1536
1537         set_bit(HCI_AUTO_OFF, &hdev->flags);
1538         set_bit(HCI_SETUP, &hdev->flags);
1539         queue_work(hdev->workqueue, &hdev->power_on);
1540
1541         hci_notify(hdev, HCI_DEV_REG);
1542
1543         return id;
1544
1545 nomem:
1546         write_lock_bh(&hci_dev_list_lock);
1547         list_del(&hdev->list);
1548         write_unlock_bh(&hci_dev_list_lock);
1549
1550         return -ENOMEM;
1551 }
1552 EXPORT_SYMBOL(hci_register_dev);
1553
1554 /* Unregister HCI device */
1555 int hci_unregister_dev(struct hci_dev *hdev)
1556 {
1557         int i;
1558
1559         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1560
1561         write_lock_bh(&hci_dev_list_lock);
1562         list_del(&hdev->list);
1563         write_unlock_bh(&hci_dev_list_lock);
1564
1565         hci_dev_do_close(hdev);
1566
1567         for (i = 0; i < NUM_REASSEMBLY; i++)
1568                 kfree_skb(hdev->reassembly[i]);
1569
1570         if (!test_bit(HCI_INIT, &hdev->flags) &&
1571                                         !test_bit(HCI_SETUP, &hdev->flags))
1572                 mgmt_index_removed(hdev->id);
1573
1574         hci_notify(hdev, HCI_DEV_UNREG);
1575
1576         if (hdev->rfkill) {
1577                 rfkill_unregister(hdev->rfkill);
1578                 rfkill_destroy(hdev->rfkill);
1579         }
1580
1581         hci_unregister_sysfs(hdev);
1582
1583         hci_del_off_timer(hdev);
1584         del_timer(&hdev->adv_timer);
1585
1586         destroy_workqueue(hdev->workqueue);
1587
1588         hci_dev_lock_bh(hdev);
1589         hci_blacklist_clear(hdev);
1590         hci_uuids_clear(hdev);
1591         hci_link_keys_clear(hdev);
1592         hci_remote_oob_data_clear(hdev);
1593         hci_adv_entries_clear(hdev);
1594         hci_dev_unlock_bh(hdev);
1595
1596         __hci_dev_put(hdev);
1597
1598         return 0;
1599 }
1600 EXPORT_SYMBOL(hci_unregister_dev);
1601
1602 /* Suspend HCI device */
1603 int hci_suspend_dev(struct hci_dev *hdev)
1604 {
1605         hci_notify(hdev, HCI_DEV_SUSPEND);
1606         return 0;
1607 }
1608 EXPORT_SYMBOL(hci_suspend_dev);
1609
1610 /* Resume HCI device */
1611 int hci_resume_dev(struct hci_dev *hdev)
1612 {
1613         hci_notify(hdev, HCI_DEV_RESUME);
1614         return 0;
1615 }
1616 EXPORT_SYMBOL(hci_resume_dev);
1617
1618 /* Receive frame from HCI drivers */
1619 int hci_recv_frame(struct sk_buff *skb)
1620 {
1621         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1622         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1623                                 && !test_bit(HCI_INIT, &hdev->flags))) {
1624                 kfree_skb(skb);
1625                 return -ENXIO;
1626         }
1627
1628         /* Incomming skb */
1629         bt_cb(skb)->incoming = 1;
1630
1631         /* Time stamp */
1632         __net_timestamp(skb);
1633
1634         /* Queue frame for rx task */
1635         skb_queue_tail(&hdev->rx_q, skb);
1636         tasklet_schedule(&hdev->rx_task);
1637
1638         return 0;
1639 }
1640 EXPORT_SYMBOL(hci_recv_frame);
1641
1642 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1643                                                   int count, __u8 index)
1644 {
1645         int len = 0;
1646         int hlen = 0;
1647         int remain = count;
1648         struct sk_buff *skb;
1649         struct bt_skb_cb *scb;
1650
1651         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1652                                 index >= NUM_REASSEMBLY)
1653                 return -EILSEQ;
1654
1655         skb = hdev->reassembly[index];
1656
1657         if (!skb) {
1658                 switch (type) {
1659                 case HCI_ACLDATA_PKT:
1660                         len = HCI_MAX_FRAME_SIZE;
1661                         hlen = HCI_ACL_HDR_SIZE;
1662                         break;
1663                 case HCI_EVENT_PKT:
1664                         len = HCI_MAX_EVENT_SIZE;
1665                         hlen = HCI_EVENT_HDR_SIZE;
1666                         break;
1667                 case HCI_SCODATA_PKT:
1668                         len = HCI_MAX_SCO_SIZE;
1669                         hlen = HCI_SCO_HDR_SIZE;
1670                         break;
1671                 }
1672
1673                 skb = bt_skb_alloc(len, GFP_ATOMIC);
1674                 if (!skb)
1675                         return -ENOMEM;
1676
1677                 scb = (void *) skb->cb;
1678                 scb->expect = hlen;
1679                 scb->pkt_type = type;
1680
1681                 skb->dev = (void *) hdev;
1682                 hdev->reassembly[index] = skb;
1683         }
1684
1685         while (count) {
1686                 scb = (void *) skb->cb;
1687                 len = min(scb->expect, (__u16)count);
1688
1689                 memcpy(skb_put(skb, len), data, len);
1690
1691                 count -= len;
1692                 data += len;
1693                 scb->expect -= len;
1694                 remain = count;
1695
1696                 switch (type) {
1697                 case HCI_EVENT_PKT:
1698                         if (skb->len == HCI_EVENT_HDR_SIZE) {
1699                                 struct hci_event_hdr *h = hci_event_hdr(skb);
1700                                 scb->expect = h->plen;
1701
1702                                 if (skb_tailroom(skb) < scb->expect) {
1703                                         kfree_skb(skb);
1704                                         hdev->reassembly[index] = NULL;
1705                                         return -ENOMEM;
1706                                 }
1707                         }
1708                         break;
1709
1710                 case HCI_ACLDATA_PKT:
1711                         if (skb->len  == HCI_ACL_HDR_SIZE) {
1712                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1713                                 scb->expect = __le16_to_cpu(h->dlen);
1714
1715                                 if (skb_tailroom(skb) < scb->expect) {
1716                                         kfree_skb(skb);
1717                                         hdev->reassembly[index] = NULL;
1718                                         return -ENOMEM;
1719                                 }
1720                         }
1721                         break;
1722
1723                 case HCI_SCODATA_PKT:
1724                         if (skb->len == HCI_SCO_HDR_SIZE) {
1725                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1726                                 scb->expect = h->dlen;
1727
1728                                 if (skb_tailroom(skb) < scb->expect) {
1729                                         kfree_skb(skb);
1730                                         hdev->reassembly[index] = NULL;
1731                                         return -ENOMEM;
1732                                 }
1733                         }
1734                         break;
1735                 }
1736
1737                 if (scb->expect == 0) {
1738                         /* Complete frame */
1739
1740                         bt_cb(skb)->pkt_type = type;
1741                         hci_recv_frame(skb);
1742
1743                         hdev->reassembly[index] = NULL;
1744                         return remain;
1745                 }
1746         }
1747
1748         return remain;
1749 }
1750
1751 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1752 {
1753         int rem = 0;
1754
1755         if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1756                 return -EILSEQ;
1757
1758         while (count) {
1759                 rem = hci_reassembly(hdev, type, data, count, type - 1);
1760                 if (rem < 0)
1761                         return rem;
1762
1763                 data += (count - rem);
1764                 count = rem;
1765         }
1766
1767         return rem;
1768 }
1769 EXPORT_SYMBOL(hci_recv_fragment);
1770
1771 #define STREAM_REASSEMBLY 0
1772
1773 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1774 {
1775         int type;
1776         int rem = 0;
1777
1778         while (count) {
1779                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1780
1781                 if (!skb) {
1782                         struct { char type; } *pkt;
1783
1784                         /* Start of the frame */
1785                         pkt = data;
1786                         type = pkt->type;
1787
1788                         data++;
1789                         count--;
1790                 } else
1791                         type = bt_cb(skb)->pkt_type;
1792
1793                 rem = hci_reassembly(hdev, type, data, count,
1794                                                         STREAM_REASSEMBLY);
1795                 if (rem < 0)
1796                         return rem;
1797
1798                 data += (count - rem);
1799                 count = rem;
1800         }
1801
1802         return rem;
1803 }
1804 EXPORT_SYMBOL(hci_recv_stream_fragment);
1805
1806 /* ---- Interface to upper protocols ---- */
1807
1808 /* Register/Unregister protocols.
1809  * hci_task_lock is used to ensure that no tasks are running. */
1810 int hci_register_proto(struct hci_proto *hp)
1811 {
1812         int err = 0;
1813
1814         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1815
1816         if (hp->id >= HCI_MAX_PROTO)
1817                 return -EINVAL;
1818
1819         write_lock_bh(&hci_task_lock);
1820
1821         if (!hci_proto[hp->id])
1822                 hci_proto[hp->id] = hp;
1823         else
1824                 err = -EEXIST;
1825
1826         write_unlock_bh(&hci_task_lock);
1827
1828         return err;
1829 }
1830 EXPORT_SYMBOL(hci_register_proto);
1831
1832 int hci_unregister_proto(struct hci_proto *hp)
1833 {
1834         int err = 0;
1835
1836         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1837
1838         if (hp->id >= HCI_MAX_PROTO)
1839                 return -EINVAL;
1840
1841         write_lock_bh(&hci_task_lock);
1842
1843         if (hci_proto[hp->id])
1844                 hci_proto[hp->id] = NULL;
1845         else
1846                 err = -ENOENT;
1847
1848         write_unlock_bh(&hci_task_lock);
1849
1850         return err;
1851 }
1852 EXPORT_SYMBOL(hci_unregister_proto);
1853
1854 int hci_register_cb(struct hci_cb *cb)
1855 {
1856         BT_DBG("%p name %s", cb, cb->name);
1857
1858         write_lock_bh(&hci_cb_list_lock);
1859         list_add(&cb->list, &hci_cb_list);
1860         write_unlock_bh(&hci_cb_list_lock);
1861
1862         return 0;
1863 }
1864 EXPORT_SYMBOL(hci_register_cb);
1865
1866 int hci_unregister_cb(struct hci_cb *cb)
1867 {
1868         BT_DBG("%p name %s", cb, cb->name);
1869
1870         write_lock_bh(&hci_cb_list_lock);
1871         list_del(&cb->list);
1872         write_unlock_bh(&hci_cb_list_lock);
1873
1874         return 0;
1875 }
1876 EXPORT_SYMBOL(hci_unregister_cb);
1877
1878 static int hci_send_frame(struct sk_buff *skb)
1879 {
1880         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1881
1882         if (!hdev) {
1883                 kfree_skb(skb);
1884                 return -ENODEV;
1885         }
1886
1887         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1888
1889         if (atomic_read(&hdev->promisc)) {
1890                 /* Time stamp */
1891                 __net_timestamp(skb);
1892
1893                 hci_send_to_sock(hdev, skb, NULL);
1894         }
1895
1896         /* Get rid of skb owner, prior to sending to the driver. */
1897         skb_orphan(skb);
1898
1899         return hdev->send(skb);
1900 }
1901
1902 /* Send HCI command */
1903 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1904 {
1905         int len = HCI_COMMAND_HDR_SIZE + plen;
1906         struct hci_command_hdr *hdr;
1907         struct sk_buff *skb;
1908
1909         BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1910
1911         skb = bt_skb_alloc(len, GFP_ATOMIC);
1912         if (!skb) {
1913                 BT_ERR("%s no memory for command", hdev->name);
1914                 return -ENOMEM;
1915         }
1916
1917         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1918         hdr->opcode = cpu_to_le16(opcode);
1919         hdr->plen   = plen;
1920
1921         if (plen)
1922                 memcpy(skb_put(skb, plen), param, plen);
1923
1924         BT_DBG("skb len %d", skb->len);
1925
1926         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1927         skb->dev = (void *) hdev;
1928
1929         if (test_bit(HCI_INIT, &hdev->flags))
1930                 hdev->init_last_cmd = opcode;
1931
1932         skb_queue_tail(&hdev->cmd_q, skb);
1933         tasklet_schedule(&hdev->cmd_task);
1934
1935         return 0;
1936 }
1937
1938 /* Get data from the previously sent command */
1939 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1940 {
1941         struct hci_command_hdr *hdr;
1942
1943         if (!hdev->sent_cmd)
1944                 return NULL;
1945
1946         hdr = (void *) hdev->sent_cmd->data;
1947
1948         if (hdr->opcode != cpu_to_le16(opcode))
1949                 return NULL;
1950
1951         BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1952
1953         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1954 }
1955
1956 /* Send ACL data */
1957 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1958 {
1959         struct hci_acl_hdr *hdr;
1960         int len = skb->len;
1961
1962         skb_push(skb, HCI_ACL_HDR_SIZE);
1963         skb_reset_transport_header(skb);
1964         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1965         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1966         hdr->dlen   = cpu_to_le16(len);
1967 }
1968
1969 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1970 {
1971         struct hci_dev *hdev = conn->hdev;
1972         struct sk_buff *list;
1973
1974         BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1975
1976         skb->dev = (void *) hdev;
1977         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1978         hci_add_acl_hdr(skb, conn->handle, flags);
1979
1980         list = skb_shinfo(skb)->frag_list;
1981         if (!list) {
1982                 /* Non fragmented */
1983                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1984
1985                 skb_queue_tail(&conn->data_q, skb);
1986         } else {
1987                 /* Fragmented */
1988                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1989
1990                 skb_shinfo(skb)->frag_list = NULL;
1991
1992                 /* Queue all fragments atomically */
1993                 spin_lock_bh(&conn->data_q.lock);
1994
1995                 __skb_queue_tail(&conn->data_q, skb);
1996
1997                 flags &= ~ACL_START;
1998                 flags |= ACL_CONT;
1999                 do {
2000                         skb = list; list = list->next;
2001
2002                         skb->dev = (void *) hdev;
2003                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2004                         hci_add_acl_hdr(skb, conn->handle, flags);
2005
2006                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2007
2008                         __skb_queue_tail(&conn->data_q, skb);
2009                 } while (list);
2010
2011                 spin_unlock_bh(&conn->data_q.lock);
2012         }
2013
2014         tasklet_schedule(&hdev->tx_task);
2015 }
2016 EXPORT_SYMBOL(hci_send_acl);
2017
2018 /* Send SCO data */
2019 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2020 {
2021         struct hci_dev *hdev = conn->hdev;
2022         struct hci_sco_hdr hdr;
2023
2024         BT_DBG("%s len %d", hdev->name, skb->len);
2025
2026         hdr.handle = cpu_to_le16(conn->handle);
2027         hdr.dlen   = skb->len;
2028
2029         skb_push(skb, HCI_SCO_HDR_SIZE);
2030         skb_reset_transport_header(skb);
2031         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2032
2033         skb->dev = (void *) hdev;
2034         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2035
2036         skb_queue_tail(&conn->data_q, skb);
2037         tasklet_schedule(&hdev->tx_task);
2038 }
2039 EXPORT_SYMBOL(hci_send_sco);
2040
2041 /* ---- HCI TX task (outgoing data) ---- */
2042
2043 /* HCI Connection scheduler */
2044 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2045 {
2046         struct hci_conn_hash *h = &hdev->conn_hash;
2047         struct hci_conn *conn = NULL;
2048         int num = 0, min = ~0;
2049         struct list_head *p;
2050
2051         /* We don't have to lock device here. Connections are always
2052          * added and removed with TX task disabled. */
2053         list_for_each(p, &h->list) {
2054                 struct hci_conn *c;
2055                 c = list_entry(p, struct hci_conn, list);
2056
2057                 if (c->type != type || skb_queue_empty(&c->data_q))
2058                         continue;
2059
2060                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2061                         continue;
2062
2063                 num++;
2064
2065                 if (c->sent < min) {
2066                         min  = c->sent;
2067                         conn = c;
2068                 }
2069
2070                 if (hci_conn_num(hdev, type) == num)
2071                         break;
2072         }
2073
2074         if (conn) {
2075                 int cnt, q;
2076
2077                 switch (conn->type) {
2078                 case ACL_LINK:
2079                         cnt = hdev->acl_cnt;
2080                         break;
2081                 case SCO_LINK:
2082                 case ESCO_LINK:
2083                         cnt = hdev->sco_cnt;
2084                         break;
2085                 case LE_LINK:
2086                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2087                         break;
2088                 default:
2089                         cnt = 0;
2090                         BT_ERR("Unknown link type");
2091                 }
2092
2093                 q = cnt / num;
2094                 *quote = q ? q : 1;
2095         } else
2096                 *quote = 0;
2097
2098         BT_DBG("conn %p quote %d", conn, *quote);
2099         return conn;
2100 }
2101
2102 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2103 {
2104         struct hci_conn_hash *h = &hdev->conn_hash;
2105         struct list_head *p;
2106         struct hci_conn  *c;
2107
2108         BT_ERR("%s link tx timeout", hdev->name);
2109
2110         /* Kill stalled connections */
2111         list_for_each(p, &h->list) {
2112                 c = list_entry(p, struct hci_conn, list);
2113                 if (c->type == type && c->sent) {
2114                         BT_ERR("%s killing stalled connection %s",
2115                                 hdev->name, batostr(&c->dst));
2116                         hci_acl_disconn(c, 0x13);
2117                 }
2118         }
2119 }
2120
2121 static inline void hci_sched_acl(struct hci_dev *hdev)
2122 {
2123         struct hci_conn *conn;
2124         struct sk_buff *skb;
2125         int quote;
2126
2127         BT_DBG("%s", hdev->name);
2128
2129         if (!hci_conn_num(hdev, ACL_LINK))
2130                 return;
2131
2132         if (!test_bit(HCI_RAW, &hdev->flags)) {
2133                 /* ACL tx timeout must be longer than maximum
2134                  * link supervision timeout (40.9 seconds) */
2135                 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2136                         hci_link_tx_to(hdev, ACL_LINK);
2137         }
2138
2139         while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2140                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2141                         BT_DBG("skb %p len %d", skb, skb->len);
2142
2143                         hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2144
2145                         hci_send_frame(skb);
2146                         hdev->acl_last_tx = jiffies;
2147
2148                         hdev->acl_cnt--;
2149                         conn->sent++;
2150                 }
2151         }
2152 }
2153
2154 /* Schedule SCO */
2155 static inline void hci_sched_sco(struct hci_dev *hdev)
2156 {
2157         struct hci_conn *conn;
2158         struct sk_buff *skb;
2159         int quote;
2160
2161         BT_DBG("%s", hdev->name);
2162
2163         if (!hci_conn_num(hdev, SCO_LINK))
2164                 return;
2165
2166         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2167                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2168                         BT_DBG("skb %p len %d", skb, skb->len);
2169                         hci_send_frame(skb);
2170
2171                         conn->sent++;
2172                         if (conn->sent == ~0)
2173                                 conn->sent = 0;
2174                 }
2175         }
2176 }
2177
2178 static inline void hci_sched_esco(struct hci_dev *hdev)
2179 {
2180         struct hci_conn *conn;
2181         struct sk_buff *skb;
2182         int quote;
2183
2184         BT_DBG("%s", hdev->name);
2185
2186         if (!hci_conn_num(hdev, ESCO_LINK))
2187                 return;
2188
2189         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2190                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2191                         BT_DBG("skb %p len %d", skb, skb->len);
2192                         hci_send_frame(skb);
2193
2194                         conn->sent++;
2195                         if (conn->sent == ~0)
2196                                 conn->sent = 0;
2197                 }
2198         }
2199 }
2200
2201 static inline void hci_sched_le(struct hci_dev *hdev)
2202 {
2203         struct hci_conn *conn;
2204         struct sk_buff *skb;
2205         int quote, cnt;
2206
2207         BT_DBG("%s", hdev->name);
2208
2209         if (!hci_conn_num(hdev, LE_LINK))
2210                 return;
2211
2212         if (!test_bit(HCI_RAW, &hdev->flags)) {
2213                 /* LE tx timeout must be longer than maximum
2214                  * link supervision timeout (40.9 seconds) */
2215                 if (!hdev->le_cnt && hdev->le_pkts &&
2216                                 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2217                         hci_link_tx_to(hdev, LE_LINK);
2218         }
2219
2220         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2221         while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2222                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2223                         BT_DBG("skb %p len %d", skb, skb->len);
2224
2225                         hci_send_frame(skb);
2226                         hdev->le_last_tx = jiffies;
2227
2228                         cnt--;
2229                         conn->sent++;
2230                 }
2231         }
2232         if (hdev->le_pkts)
2233                 hdev->le_cnt = cnt;
2234         else
2235                 hdev->acl_cnt = cnt;
2236 }
2237
2238 static void hci_tx_task(unsigned long arg)
2239 {
2240         struct hci_dev *hdev = (struct hci_dev *) arg;
2241         struct sk_buff *skb;
2242
2243         read_lock(&hci_task_lock);
2244
2245         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2246                 hdev->sco_cnt, hdev->le_cnt);
2247
2248         /* Schedule queues and send stuff to HCI driver */
2249
2250         hci_sched_acl(hdev);
2251
2252         hci_sched_sco(hdev);
2253
2254         hci_sched_esco(hdev);
2255
2256         hci_sched_le(hdev);
2257
2258         /* Send next queued raw (unknown type) packet */
2259         while ((skb = skb_dequeue(&hdev->raw_q)))
2260                 hci_send_frame(skb);
2261
2262         read_unlock(&hci_task_lock);
2263 }
2264
2265 /* ----- HCI RX task (incoming data processing) ----- */
2266
2267 /* ACL data packet */
2268 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2269 {
2270         struct hci_acl_hdr *hdr = (void *) skb->data;
2271         struct hci_conn *conn;
2272         __u16 handle, flags;
2273
2274         skb_pull(skb, HCI_ACL_HDR_SIZE);
2275
2276         handle = __le16_to_cpu(hdr->handle);
2277         flags  = hci_flags(handle);
2278         handle = hci_handle(handle);
2279
2280         BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2281
2282         hdev->stat.acl_rx++;
2283
2284         hci_dev_lock(hdev);
2285         conn = hci_conn_hash_lookup_handle(hdev, handle);
2286         hci_dev_unlock(hdev);
2287
2288         if (conn) {
2289                 register struct hci_proto *hp;
2290
2291                 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2292
2293                 /* Send to upper protocol */
2294                 hp = hci_proto[HCI_PROTO_L2CAP];
2295                 if (hp && hp->recv_acldata) {
2296                         hp->recv_acldata(conn, skb, flags);
2297                         return;
2298                 }
2299         } else {
2300                 BT_ERR("%s ACL packet for unknown connection handle %d",
2301                         hdev->name, handle);
2302         }
2303
2304         kfree_skb(skb);
2305 }
2306
2307 /* SCO data packet */
2308 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2309 {
2310         struct hci_sco_hdr *hdr = (void *) skb->data;
2311         struct hci_conn *conn;
2312         __u16 handle;
2313
2314         skb_pull(skb, HCI_SCO_HDR_SIZE);
2315
2316         handle = __le16_to_cpu(hdr->handle);
2317
2318         BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2319
2320         hdev->stat.sco_rx++;
2321
2322         hci_dev_lock(hdev);
2323         conn = hci_conn_hash_lookup_handle(hdev, handle);
2324         hci_dev_unlock(hdev);
2325
2326         if (conn) {
2327                 register struct hci_proto *hp;
2328
2329                 /* Send to upper protocol */
2330                 hp = hci_proto[HCI_PROTO_SCO];
2331                 if (hp && hp->recv_scodata) {
2332                         hp->recv_scodata(conn, skb);
2333                         return;
2334                 }
2335         } else {
2336                 BT_ERR("%s SCO packet for unknown connection handle %d",
2337                         hdev->name, handle);
2338         }
2339
2340         kfree_skb(skb);
2341 }
2342
2343 static void hci_rx_task(unsigned long arg)
2344 {
2345         struct hci_dev *hdev = (struct hci_dev *) arg;
2346         struct sk_buff *skb;
2347
2348         BT_DBG("%s", hdev->name);
2349
2350         read_lock(&hci_task_lock);
2351
2352         while ((skb = skb_dequeue(&hdev->rx_q))) {
2353                 if (atomic_read(&hdev->promisc)) {
2354                         /* Send copy to the sockets */
2355                         hci_send_to_sock(hdev, skb, NULL);
2356                 }
2357
2358                 if (test_bit(HCI_RAW, &hdev->flags)) {
2359                         kfree_skb(skb);
2360                         continue;
2361                 }
2362
2363                 if (test_bit(HCI_INIT, &hdev->flags)) {
2364                         /* Don't process data packets in this states. */
2365                         switch (bt_cb(skb)->pkt_type) {
2366                         case HCI_ACLDATA_PKT:
2367                         case HCI_SCODATA_PKT:
2368                                 kfree_skb(skb);
2369                                 continue;
2370                         }
2371                 }
2372
2373                 /* Process frame */
2374                 switch (bt_cb(skb)->pkt_type) {
2375                 case HCI_EVENT_PKT:
2376                         hci_event_packet(hdev, skb);
2377                         break;
2378
2379                 case HCI_ACLDATA_PKT:
2380                         BT_DBG("%s ACL data packet", hdev->name);
2381                         hci_acldata_packet(hdev, skb);
2382                         break;
2383
2384                 case HCI_SCODATA_PKT:
2385                         BT_DBG("%s SCO data packet", hdev->name);
2386                         hci_scodata_packet(hdev, skb);
2387                         break;
2388
2389                 default:
2390                         kfree_skb(skb);
2391                         break;
2392                 }
2393         }
2394
2395         read_unlock(&hci_task_lock);
2396 }
2397
2398 static void hci_cmd_task(unsigned long arg)
2399 {
2400         struct hci_dev *hdev = (struct hci_dev *) arg;
2401         struct sk_buff *skb;
2402
2403         BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2404
2405         /* Send queued commands */
2406         if (atomic_read(&hdev->cmd_cnt)) {
2407                 skb = skb_dequeue(&hdev->cmd_q);
2408                 if (!skb)
2409                         return;
2410
2411                 kfree_skb(hdev->sent_cmd);
2412
2413                 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2414                 if (hdev->sent_cmd) {
2415                         atomic_dec(&hdev->cmd_cnt);
2416                         hci_send_frame(skb);
2417                         if (test_bit(HCI_RESET, &hdev->flags))
2418                                 del_timer(&hdev->cmd_timer);
2419                         else
2420                                 mod_timer(&hdev->cmd_timer,
2421                                   jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2422                 } else {
2423                         skb_queue_head(&hdev->cmd_q, skb);
2424                         tasklet_schedule(&hdev->cmd_task);
2425                 }
2426         }
2427 }