Bluetooth: Introduce hci_dev_test_and_set_flag helper macro
[firefly-linux-kernel-4.4.55.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43
44 static void hci_rx_work(struct work_struct *work);
45 static void hci_cmd_work(struct work_struct *work);
46 static void hci_tx_work(struct work_struct *work);
47
48 /* HCI device list */
49 LIST_HEAD(hci_dev_list);
50 DEFINE_RWLOCK(hci_dev_list_lock);
51
52 /* HCI callback list */
53 LIST_HEAD(hci_cb_list);
54 DEFINE_MUTEX(hci_cb_list_lock);
55
56 /* HCI ID Numbering */
57 static DEFINE_IDA(hci_index_ida);
58
59 /* ----- HCI requests ----- */
60
61 #define HCI_REQ_DONE      0
62 #define HCI_REQ_PEND      1
63 #define HCI_REQ_CANCELED  2
64
65 #define hci_req_lock(d)         mutex_lock(&d->req_lock)
66 #define hci_req_unlock(d)       mutex_unlock(&d->req_lock)
67
68 /* ---- HCI notifications ---- */
69
70 static void hci_notify(struct hci_dev *hdev, int event)
71 {
72         hci_sock_dev_event(hdev, event);
73 }
74
75 /* ---- HCI debugfs entries ---- */
76
77 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
78                              size_t count, loff_t *ppos)
79 {
80         struct hci_dev *hdev = file->private_data;
81         char buf[3];
82
83         buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N';
84         buf[1] = '\n';
85         buf[2] = '\0';
86         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
87 }
88
89 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
90                               size_t count, loff_t *ppos)
91 {
92         struct hci_dev *hdev = file->private_data;
93         struct sk_buff *skb;
94         char buf[32];
95         size_t buf_size = min(count, (sizeof(buf)-1));
96         bool enable;
97         int err;
98
99         if (!test_bit(HCI_UP, &hdev->flags))
100                 return -ENETDOWN;
101
102         if (copy_from_user(buf, user_buf, buf_size))
103                 return -EFAULT;
104
105         buf[buf_size] = '\0';
106         if (strtobool(buf, &enable))
107                 return -EINVAL;
108
109         if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags))
110                 return -EALREADY;
111
112         hci_req_lock(hdev);
113         if (enable)
114                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
115                                      HCI_CMD_TIMEOUT);
116         else
117                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
118                                      HCI_CMD_TIMEOUT);
119         hci_req_unlock(hdev);
120
121         if (IS_ERR(skb))
122                 return PTR_ERR(skb);
123
124         err = -bt_to_errno(skb->data[0]);
125         kfree_skb(skb);
126
127         if (err < 0)
128                 return err;
129
130         change_bit(HCI_DUT_MODE, &hdev->dbg_flags);
131
132         return count;
133 }
134
135 static const struct file_operations dut_mode_fops = {
136         .open           = simple_open,
137         .read           = dut_mode_read,
138         .write          = dut_mode_write,
139         .llseek         = default_llseek,
140 };
141
142 /* ---- HCI requests ---- */
143
144 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode)
145 {
146         BT_DBG("%s result 0x%2.2x", hdev->name, result);
147
148         if (hdev->req_status == HCI_REQ_PEND) {
149                 hdev->req_result = result;
150                 hdev->req_status = HCI_REQ_DONE;
151                 wake_up_interruptible(&hdev->req_wait_q);
152         }
153 }
154
155 static void hci_req_cancel(struct hci_dev *hdev, int err)
156 {
157         BT_DBG("%s err 0x%2.2x", hdev->name, err);
158
159         if (hdev->req_status == HCI_REQ_PEND) {
160                 hdev->req_result = err;
161                 hdev->req_status = HCI_REQ_CANCELED;
162                 wake_up_interruptible(&hdev->req_wait_q);
163         }
164 }
165
166 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
167                                             u8 event)
168 {
169         struct hci_ev_cmd_complete *ev;
170         struct hci_event_hdr *hdr;
171         struct sk_buff *skb;
172
173         hci_dev_lock(hdev);
174
175         skb = hdev->recv_evt;
176         hdev->recv_evt = NULL;
177
178         hci_dev_unlock(hdev);
179
180         if (!skb)
181                 return ERR_PTR(-ENODATA);
182
183         if (skb->len < sizeof(*hdr)) {
184                 BT_ERR("Too short HCI event");
185                 goto failed;
186         }
187
188         hdr = (void *) skb->data;
189         skb_pull(skb, HCI_EVENT_HDR_SIZE);
190
191         if (event) {
192                 if (hdr->evt != event)
193                         goto failed;
194                 return skb;
195         }
196
197         if (hdr->evt != HCI_EV_CMD_COMPLETE) {
198                 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
199                 goto failed;
200         }
201
202         if (skb->len < sizeof(*ev)) {
203                 BT_ERR("Too short cmd_complete event");
204                 goto failed;
205         }
206
207         ev = (void *) skb->data;
208         skb_pull(skb, sizeof(*ev));
209
210         if (opcode == __le16_to_cpu(ev->opcode))
211                 return skb;
212
213         BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
214                __le16_to_cpu(ev->opcode));
215
216 failed:
217         kfree_skb(skb);
218         return ERR_PTR(-ENODATA);
219 }
220
221 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
222                                   const void *param, u8 event, u32 timeout)
223 {
224         DECLARE_WAITQUEUE(wait, current);
225         struct hci_request req;
226         int err = 0;
227
228         BT_DBG("%s", hdev->name);
229
230         hci_req_init(&req, hdev);
231
232         hci_req_add_ev(&req, opcode, plen, param, event);
233
234         hdev->req_status = HCI_REQ_PEND;
235
236         add_wait_queue(&hdev->req_wait_q, &wait);
237         set_current_state(TASK_INTERRUPTIBLE);
238
239         err = hci_req_run(&req, hci_req_sync_complete);
240         if (err < 0) {
241                 remove_wait_queue(&hdev->req_wait_q, &wait);
242                 set_current_state(TASK_RUNNING);
243                 return ERR_PTR(err);
244         }
245
246         schedule_timeout(timeout);
247
248         remove_wait_queue(&hdev->req_wait_q, &wait);
249
250         if (signal_pending(current))
251                 return ERR_PTR(-EINTR);
252
253         switch (hdev->req_status) {
254         case HCI_REQ_DONE:
255                 err = -bt_to_errno(hdev->req_result);
256                 break;
257
258         case HCI_REQ_CANCELED:
259                 err = -hdev->req_result;
260                 break;
261
262         default:
263                 err = -ETIMEDOUT;
264                 break;
265         }
266
267         hdev->req_status = hdev->req_result = 0;
268
269         BT_DBG("%s end: err %d", hdev->name, err);
270
271         if (err < 0)
272                 return ERR_PTR(err);
273
274         return hci_get_cmd_complete(hdev, opcode, event);
275 }
276 EXPORT_SYMBOL(__hci_cmd_sync_ev);
277
278 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
279                                const void *param, u32 timeout)
280 {
281         return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
282 }
283 EXPORT_SYMBOL(__hci_cmd_sync);
284
285 /* Execute request and wait for completion. */
286 static int __hci_req_sync(struct hci_dev *hdev,
287                           void (*func)(struct hci_request *req,
288                                       unsigned long opt),
289                           unsigned long opt, __u32 timeout)
290 {
291         struct hci_request req;
292         DECLARE_WAITQUEUE(wait, current);
293         int err = 0;
294
295         BT_DBG("%s start", hdev->name);
296
297         hci_req_init(&req, hdev);
298
299         hdev->req_status = HCI_REQ_PEND;
300
301         func(&req, opt);
302
303         add_wait_queue(&hdev->req_wait_q, &wait);
304         set_current_state(TASK_INTERRUPTIBLE);
305
306         err = hci_req_run(&req, hci_req_sync_complete);
307         if (err < 0) {
308                 hdev->req_status = 0;
309
310                 remove_wait_queue(&hdev->req_wait_q, &wait);
311                 set_current_state(TASK_RUNNING);
312
313                 /* ENODATA means the HCI request command queue is empty.
314                  * This can happen when a request with conditionals doesn't
315                  * trigger any commands to be sent. This is normal behavior
316                  * and should not trigger an error return.
317                  */
318                 if (err == -ENODATA)
319                         return 0;
320
321                 return err;
322         }
323
324         schedule_timeout(timeout);
325
326         remove_wait_queue(&hdev->req_wait_q, &wait);
327
328         if (signal_pending(current))
329                 return -EINTR;
330
331         switch (hdev->req_status) {
332         case HCI_REQ_DONE:
333                 err = -bt_to_errno(hdev->req_result);
334                 break;
335
336         case HCI_REQ_CANCELED:
337                 err = -hdev->req_result;
338                 break;
339
340         default:
341                 err = -ETIMEDOUT;
342                 break;
343         }
344
345         hdev->req_status = hdev->req_result = 0;
346
347         BT_DBG("%s end: err %d", hdev->name, err);
348
349         return err;
350 }
351
352 static int hci_req_sync(struct hci_dev *hdev,
353                         void (*req)(struct hci_request *req,
354                                     unsigned long opt),
355                         unsigned long opt, __u32 timeout)
356 {
357         int ret;
358
359         if (!test_bit(HCI_UP, &hdev->flags))
360                 return -ENETDOWN;
361
362         /* Serialize all requests */
363         hci_req_lock(hdev);
364         ret = __hci_req_sync(hdev, req, opt, timeout);
365         hci_req_unlock(hdev);
366
367         return ret;
368 }
369
370 static void hci_reset_req(struct hci_request *req, unsigned long opt)
371 {
372         BT_DBG("%s %ld", req->hdev->name, opt);
373
374         /* Reset device */
375         set_bit(HCI_RESET, &req->hdev->flags);
376         hci_req_add(req, HCI_OP_RESET, 0, NULL);
377 }
378
379 static void bredr_init(struct hci_request *req)
380 {
381         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
382
383         /* Read Local Supported Features */
384         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
385
386         /* Read Local Version */
387         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
388
389         /* Read BD Address */
390         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
391 }
392
393 static void amp_init1(struct hci_request *req)
394 {
395         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
396
397         /* Read Local Version */
398         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
399
400         /* Read Local Supported Commands */
401         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
402
403         /* Read Local AMP Info */
404         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
405
406         /* Read Data Blk size */
407         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
408
409         /* Read Flow Control Mode */
410         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
411
412         /* Read Location Data */
413         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
414 }
415
416 static void amp_init2(struct hci_request *req)
417 {
418         /* Read Local Supported Features. Not all AMP controllers
419          * support this so it's placed conditionally in the second
420          * stage init.
421          */
422         if (req->hdev->commands[14] & 0x20)
423                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
424 }
425
426 static void hci_init1_req(struct hci_request *req, unsigned long opt)
427 {
428         struct hci_dev *hdev = req->hdev;
429
430         BT_DBG("%s %ld", hdev->name, opt);
431
432         /* Reset */
433         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
434                 hci_reset_req(req, 0);
435
436         switch (hdev->dev_type) {
437         case HCI_BREDR:
438                 bredr_init(req);
439                 break;
440
441         case HCI_AMP:
442                 amp_init1(req);
443                 break;
444
445         default:
446                 BT_ERR("Unknown device type %d", hdev->dev_type);
447                 break;
448         }
449 }
450
451 static void bredr_setup(struct hci_request *req)
452 {
453         __le16 param;
454         __u8 flt_type;
455
456         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
457         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
458
459         /* Read Class of Device */
460         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
461
462         /* Read Local Name */
463         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
464
465         /* Read Voice Setting */
466         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
467
468         /* Read Number of Supported IAC */
469         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
470
471         /* Read Current IAC LAP */
472         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
473
474         /* Clear Event Filters */
475         flt_type = HCI_FLT_CLEAR_ALL;
476         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
477
478         /* Connection accept timeout ~20 secs */
479         param = cpu_to_le16(0x7d00);
480         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
481 }
482
483 static void le_setup(struct hci_request *req)
484 {
485         struct hci_dev *hdev = req->hdev;
486
487         /* Read LE Buffer Size */
488         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
489
490         /* Read LE Local Supported Features */
491         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
492
493         /* Read LE Supported States */
494         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
495
496         /* Read LE White List Size */
497         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
498
499         /* Clear LE White List */
500         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
501
502         /* LE-only controllers have LE implicitly enabled */
503         if (!lmp_bredr_capable(hdev))
504                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
505 }
506
507 static void hci_setup_event_mask(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510
511         /* The second byte is 0xff instead of 0x9f (two reserved bits
512          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
513          * command otherwise.
514          */
515         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
516
517         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
518          * any event mask for pre 1.2 devices.
519          */
520         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
521                 return;
522
523         if (lmp_bredr_capable(hdev)) {
524                 events[4] |= 0x01; /* Flow Specification Complete */
525                 events[4] |= 0x02; /* Inquiry Result with RSSI */
526                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
527                 events[5] |= 0x08; /* Synchronous Connection Complete */
528                 events[5] |= 0x10; /* Synchronous Connection Changed */
529         } else {
530                 /* Use a different default for LE-only devices */
531                 memset(events, 0, sizeof(events));
532                 events[0] |= 0x10; /* Disconnection Complete */
533                 events[1] |= 0x08; /* Read Remote Version Information Complete */
534                 events[1] |= 0x20; /* Command Complete */
535                 events[1] |= 0x40; /* Command Status */
536                 events[1] |= 0x80; /* Hardware Error */
537                 events[2] |= 0x04; /* Number of Completed Packets */
538                 events[3] |= 0x02; /* Data Buffer Overflow */
539
540                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
541                         events[0] |= 0x80; /* Encryption Change */
542                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
543                 }
544         }
545
546         if (lmp_inq_rssi_capable(hdev))
547                 events[4] |= 0x02; /* Inquiry Result with RSSI */
548
549         if (lmp_sniffsubr_capable(hdev))
550                 events[5] |= 0x20; /* Sniff Subrating */
551
552         if (lmp_pause_enc_capable(hdev))
553                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
554
555         if (lmp_ext_inq_capable(hdev))
556                 events[5] |= 0x40; /* Extended Inquiry Result */
557
558         if (lmp_no_flush_capable(hdev))
559                 events[7] |= 0x01; /* Enhanced Flush Complete */
560
561         if (lmp_lsto_capable(hdev))
562                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
563
564         if (lmp_ssp_capable(hdev)) {
565                 events[6] |= 0x01;      /* IO Capability Request */
566                 events[6] |= 0x02;      /* IO Capability Response */
567                 events[6] |= 0x04;      /* User Confirmation Request */
568                 events[6] |= 0x08;      /* User Passkey Request */
569                 events[6] |= 0x10;      /* Remote OOB Data Request */
570                 events[6] |= 0x20;      /* Simple Pairing Complete */
571                 events[7] |= 0x04;      /* User Passkey Notification */
572                 events[7] |= 0x08;      /* Keypress Notification */
573                 events[7] |= 0x10;      /* Remote Host Supported
574                                          * Features Notification
575                                          */
576         }
577
578         if (lmp_le_capable(hdev))
579                 events[7] |= 0x20;      /* LE Meta-Event */
580
581         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
582 }
583
584 static void hci_init2_req(struct hci_request *req, unsigned long opt)
585 {
586         struct hci_dev *hdev = req->hdev;
587
588         if (hdev->dev_type == HCI_AMP)
589                 return amp_init2(req);
590
591         if (lmp_bredr_capable(hdev))
592                 bredr_setup(req);
593         else
594                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
595
596         if (lmp_le_capable(hdev))
597                 le_setup(req);
598
599         /* All Bluetooth 1.2 and later controllers should support the
600          * HCI command for reading the local supported commands.
601          *
602          * Unfortunately some controllers indicate Bluetooth 1.2 support,
603          * but do not have support for this command. If that is the case,
604          * the driver can quirk the behavior and skip reading the local
605          * supported commands.
606          */
607         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
608             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
609                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
610
611         if (lmp_ssp_capable(hdev)) {
612                 /* When SSP is available, then the host features page
613                  * should also be available as well. However some
614                  * controllers list the max_page as 0 as long as SSP
615                  * has not been enabled. To achieve proper debugging
616                  * output, force the minimum max_page to 1 at least.
617                  */
618                 hdev->max_page = 0x01;
619
620                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
621                         u8 mode = 0x01;
622
623                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
624                                     sizeof(mode), &mode);
625                 } else {
626                         struct hci_cp_write_eir cp;
627
628                         memset(hdev->eir, 0, sizeof(hdev->eir));
629                         memset(&cp, 0, sizeof(cp));
630
631                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
632                 }
633         }
634
635         if (lmp_inq_rssi_capable(hdev) ||
636             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
637                 u8 mode;
638
639                 /* If Extended Inquiry Result events are supported, then
640                  * they are clearly preferred over Inquiry Result with RSSI
641                  * events.
642                  */
643                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
644
645                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
646         }
647
648         if (lmp_inq_tx_pwr_capable(hdev))
649                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
650
651         if (lmp_ext_feat_capable(hdev)) {
652                 struct hci_cp_read_local_ext_features cp;
653
654                 cp.page = 0x01;
655                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
656                             sizeof(cp), &cp);
657         }
658
659         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
660                 u8 enable = 1;
661                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
662                             &enable);
663         }
664 }
665
666 static void hci_setup_link_policy(struct hci_request *req)
667 {
668         struct hci_dev *hdev = req->hdev;
669         struct hci_cp_write_def_link_policy cp;
670         u16 link_policy = 0;
671
672         if (lmp_rswitch_capable(hdev))
673                 link_policy |= HCI_LP_RSWITCH;
674         if (lmp_hold_capable(hdev))
675                 link_policy |= HCI_LP_HOLD;
676         if (lmp_sniff_capable(hdev))
677                 link_policy |= HCI_LP_SNIFF;
678         if (lmp_park_capable(hdev))
679                 link_policy |= HCI_LP_PARK;
680
681         cp.policy = cpu_to_le16(link_policy);
682         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
683 }
684
685 static void hci_set_le_support(struct hci_request *req)
686 {
687         struct hci_dev *hdev = req->hdev;
688         struct hci_cp_write_le_host_supported cp;
689
690         /* LE-only devices do not support explicit enablement */
691         if (!lmp_bredr_capable(hdev))
692                 return;
693
694         memset(&cp, 0, sizeof(cp));
695
696         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
697                 cp.le = 0x01;
698                 cp.simul = 0x00;
699         }
700
701         if (cp.le != lmp_host_le_capable(hdev))
702                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
703                             &cp);
704 }
705
706 static void hci_set_event_mask_page_2(struct hci_request *req)
707 {
708         struct hci_dev *hdev = req->hdev;
709         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
710
711         /* If Connectionless Slave Broadcast master role is supported
712          * enable all necessary events for it.
713          */
714         if (lmp_csb_master_capable(hdev)) {
715                 events[1] |= 0x40;      /* Triggered Clock Capture */
716                 events[1] |= 0x80;      /* Synchronization Train Complete */
717                 events[2] |= 0x10;      /* Slave Page Response Timeout */
718                 events[2] |= 0x20;      /* CSB Channel Map Change */
719         }
720
721         /* If Connectionless Slave Broadcast slave role is supported
722          * enable all necessary events for it.
723          */
724         if (lmp_csb_slave_capable(hdev)) {
725                 events[2] |= 0x01;      /* Synchronization Train Received */
726                 events[2] |= 0x02;      /* CSB Receive */
727                 events[2] |= 0x04;      /* CSB Timeout */
728                 events[2] |= 0x08;      /* Truncated Page Complete */
729         }
730
731         /* Enable Authenticated Payload Timeout Expired event if supported */
732         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
733                 events[2] |= 0x80;
734
735         hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
736 }
737
738 static void hci_init3_req(struct hci_request *req, unsigned long opt)
739 {
740         struct hci_dev *hdev = req->hdev;
741         u8 p;
742
743         hci_setup_event_mask(req);
744
745         if (hdev->commands[6] & 0x20) {
746                 struct hci_cp_read_stored_link_key cp;
747
748                 bacpy(&cp.bdaddr, BDADDR_ANY);
749                 cp.read_all = 0x01;
750                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
751         }
752
753         if (hdev->commands[5] & 0x10)
754                 hci_setup_link_policy(req);
755
756         if (hdev->commands[8] & 0x01)
757                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
758
759         /* Some older Broadcom based Bluetooth 1.2 controllers do not
760          * support the Read Page Scan Type command. Check support for
761          * this command in the bit mask of supported commands.
762          */
763         if (hdev->commands[13] & 0x01)
764                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
765
766         if (lmp_le_capable(hdev)) {
767                 u8 events[8];
768
769                 memset(events, 0, sizeof(events));
770                 events[0] = 0x0f;
771
772                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
773                         events[0] |= 0x10;      /* LE Long Term Key Request */
774
775                 /* If controller supports the Connection Parameters Request
776                  * Link Layer Procedure, enable the corresponding event.
777                  */
778                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
779                         events[0] |= 0x20;      /* LE Remote Connection
780                                                  * Parameter Request
781                                                  */
782
783                 /* If the controller supports the Data Length Extension
784                  * feature, enable the corresponding event.
785                  */
786                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
787                         events[0] |= 0x40;      /* LE Data Length Change */
788
789                 /* If the controller supports Extended Scanner Filter
790                  * Policies, enable the correspondig event.
791                  */
792                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
793                         events[1] |= 0x04;      /* LE Direct Advertising
794                                                  * Report
795                                                  */
796
797                 /* If the controller supports the LE Read Local P-256
798                  * Public Key command, enable the corresponding event.
799                  */
800                 if (hdev->commands[34] & 0x02)
801                         events[0] |= 0x80;      /* LE Read Local P-256
802                                                  * Public Key Complete
803                                                  */
804
805                 /* If the controller supports the LE Generate DHKey
806                  * command, enable the corresponding event.
807                  */
808                 if (hdev->commands[34] & 0x04)
809                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
810
811                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
812                             events);
813
814                 if (hdev->commands[25] & 0x40) {
815                         /* Read LE Advertising Channel TX Power */
816                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
817                 }
818
819                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
820                         /* Read LE Maximum Data Length */
821                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
822
823                         /* Read LE Suggested Default Data Length */
824                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
825                 }
826
827                 hci_set_le_support(req);
828         }
829
830         /* Read features beyond page 1 if available */
831         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
832                 struct hci_cp_read_local_ext_features cp;
833
834                 cp.page = p;
835                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
836                             sizeof(cp), &cp);
837         }
838 }
839
840 static void hci_init4_req(struct hci_request *req, unsigned long opt)
841 {
842         struct hci_dev *hdev = req->hdev;
843
844         /* Some Broadcom based Bluetooth controllers do not support the
845          * Delete Stored Link Key command. They are clearly indicating its
846          * absence in the bit mask of supported commands.
847          *
848          * Check the supported commands and only if the the command is marked
849          * as supported send it. If not supported assume that the controller
850          * does not have actual support for stored link keys which makes this
851          * command redundant anyway.
852          *
853          * Some controllers indicate that they support handling deleting
854          * stored link keys, but they don't. The quirk lets a driver
855          * just disable this command.
856          */
857         if (hdev->commands[6] & 0x80 &&
858             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
859                 struct hci_cp_delete_stored_link_key cp;
860
861                 bacpy(&cp.bdaddr, BDADDR_ANY);
862                 cp.delete_all = 0x01;
863                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
864                             sizeof(cp), &cp);
865         }
866
867         /* Set event mask page 2 if the HCI command for it is supported */
868         if (hdev->commands[22] & 0x04)
869                 hci_set_event_mask_page_2(req);
870
871         /* Read local codec list if the HCI command is supported */
872         if (hdev->commands[29] & 0x20)
873                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
874
875         /* Get MWS transport configuration if the HCI command is supported */
876         if (hdev->commands[30] & 0x08)
877                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
878
879         /* Check for Synchronization Train support */
880         if (lmp_sync_train_capable(hdev))
881                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
882
883         /* Enable Secure Connections if supported and configured */
884         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
885             bredr_sc_enabled(hdev)) {
886                 u8 support = 0x01;
887
888                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
889                             sizeof(support), &support);
890         }
891 }
892
893 static int __hci_init(struct hci_dev *hdev)
894 {
895         int err;
896
897         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
898         if (err < 0)
899                 return err;
900
901         /* The Device Under Test (DUT) mode is special and available for
902          * all controller types. So just create it early on.
903          */
904         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
905                 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
906                                     &dut_mode_fops);
907         }
908
909         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
910         if (err < 0)
911                 return err;
912
913         /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
914          * BR/EDR/LE type controllers. AMP controllers only need the
915          * first two stages of init.
916          */
917         if (hdev->dev_type != HCI_BREDR)
918                 return 0;
919
920         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
921         if (err < 0)
922                 return err;
923
924         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
925         if (err < 0)
926                 return err;
927
928         /* This function is only called when the controller is actually in
929          * configured state. When the controller is marked as unconfigured,
930          * this initialization procedure is not run.
931          *
932          * It means that it is possible that a controller runs through its
933          * setup phase and then discovers missing settings. If that is the
934          * case, then this function will not be called. It then will only
935          * be called during the config phase.
936          *
937          * So only when in setup phase or config phase, create the debugfs
938          * entries and register the SMP channels.
939          */
940         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
941             !hci_dev_test_flag(hdev, HCI_CONFIG))
942                 return 0;
943
944         hci_debugfs_create_common(hdev);
945
946         if (lmp_bredr_capable(hdev))
947                 hci_debugfs_create_bredr(hdev);
948
949         if (lmp_le_capable(hdev))
950                 hci_debugfs_create_le(hdev);
951
952         return 0;
953 }
954
955 static void hci_init0_req(struct hci_request *req, unsigned long opt)
956 {
957         struct hci_dev *hdev = req->hdev;
958
959         BT_DBG("%s %ld", hdev->name, opt);
960
961         /* Reset */
962         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
963                 hci_reset_req(req, 0);
964
965         /* Read Local Version */
966         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
967
968         /* Read BD Address */
969         if (hdev->set_bdaddr)
970                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
971 }
972
973 static int __hci_unconf_init(struct hci_dev *hdev)
974 {
975         int err;
976
977         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
978                 return 0;
979
980         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
981         if (err < 0)
982                 return err;
983
984         return 0;
985 }
986
987 static void hci_scan_req(struct hci_request *req, unsigned long opt)
988 {
989         __u8 scan = opt;
990
991         BT_DBG("%s %x", req->hdev->name, scan);
992
993         /* Inquiry and Page scans */
994         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
995 }
996
997 static void hci_auth_req(struct hci_request *req, unsigned long opt)
998 {
999         __u8 auth = opt;
1000
1001         BT_DBG("%s %x", req->hdev->name, auth);
1002
1003         /* Authentication */
1004         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1005 }
1006
1007 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1008 {
1009         __u8 encrypt = opt;
1010
1011         BT_DBG("%s %x", req->hdev->name, encrypt);
1012
1013         /* Encryption */
1014         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1015 }
1016
1017 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1018 {
1019         __le16 policy = cpu_to_le16(opt);
1020
1021         BT_DBG("%s %x", req->hdev->name, policy);
1022
1023         /* Default link policy */
1024         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1025 }
1026
1027 /* Get HCI device by index.
1028  * Device is held on return. */
1029 struct hci_dev *hci_dev_get(int index)
1030 {
1031         struct hci_dev *hdev = NULL, *d;
1032
1033         BT_DBG("%d", index);
1034
1035         if (index < 0)
1036                 return NULL;
1037
1038         read_lock(&hci_dev_list_lock);
1039         list_for_each_entry(d, &hci_dev_list, list) {
1040                 if (d->id == index) {
1041                         hdev = hci_dev_hold(d);
1042                         break;
1043                 }
1044         }
1045         read_unlock(&hci_dev_list_lock);
1046         return hdev;
1047 }
1048
1049 /* ---- Inquiry support ---- */
1050
1051 bool hci_discovery_active(struct hci_dev *hdev)
1052 {
1053         struct discovery_state *discov = &hdev->discovery;
1054
1055         switch (discov->state) {
1056         case DISCOVERY_FINDING:
1057         case DISCOVERY_RESOLVING:
1058                 return true;
1059
1060         default:
1061                 return false;
1062         }
1063 }
1064
1065 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1066 {
1067         int old_state = hdev->discovery.state;
1068
1069         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1070
1071         if (old_state == state)
1072                 return;
1073
1074         hdev->discovery.state = state;
1075
1076         switch (state) {
1077         case DISCOVERY_STOPPED:
1078                 hci_update_background_scan(hdev);
1079
1080                 if (old_state != DISCOVERY_STARTING)
1081                         mgmt_discovering(hdev, 0);
1082                 break;
1083         case DISCOVERY_STARTING:
1084                 break;
1085         case DISCOVERY_FINDING:
1086                 mgmt_discovering(hdev, 1);
1087                 break;
1088         case DISCOVERY_RESOLVING:
1089                 break;
1090         case DISCOVERY_STOPPING:
1091                 break;
1092         }
1093 }
1094
1095 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1096 {
1097         struct discovery_state *cache = &hdev->discovery;
1098         struct inquiry_entry *p, *n;
1099
1100         list_for_each_entry_safe(p, n, &cache->all, all) {
1101                 list_del(&p->all);
1102                 kfree(p);
1103         }
1104
1105         INIT_LIST_HEAD(&cache->unknown);
1106         INIT_LIST_HEAD(&cache->resolve);
1107 }
1108
1109 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1110                                                bdaddr_t *bdaddr)
1111 {
1112         struct discovery_state *cache = &hdev->discovery;
1113         struct inquiry_entry *e;
1114
1115         BT_DBG("cache %p, %pMR", cache, bdaddr);
1116
1117         list_for_each_entry(e, &cache->all, all) {
1118                 if (!bacmp(&e->data.bdaddr, bdaddr))
1119                         return e;
1120         }
1121
1122         return NULL;
1123 }
1124
1125 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1126                                                        bdaddr_t *bdaddr)
1127 {
1128         struct discovery_state *cache = &hdev->discovery;
1129         struct inquiry_entry *e;
1130
1131         BT_DBG("cache %p, %pMR", cache, bdaddr);
1132
1133         list_for_each_entry(e, &cache->unknown, list) {
1134                 if (!bacmp(&e->data.bdaddr, bdaddr))
1135                         return e;
1136         }
1137
1138         return NULL;
1139 }
1140
1141 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1142                                                        bdaddr_t *bdaddr,
1143                                                        int state)
1144 {
1145         struct discovery_state *cache = &hdev->discovery;
1146         struct inquiry_entry *e;
1147
1148         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1149
1150         list_for_each_entry(e, &cache->resolve, list) {
1151                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1152                         return e;
1153                 if (!bacmp(&e->data.bdaddr, bdaddr))
1154                         return e;
1155         }
1156
1157         return NULL;
1158 }
1159
1160 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1161                                       struct inquiry_entry *ie)
1162 {
1163         struct discovery_state *cache = &hdev->discovery;
1164         struct list_head *pos = &cache->resolve;
1165         struct inquiry_entry *p;
1166
1167         list_del(&ie->list);
1168
1169         list_for_each_entry(p, &cache->resolve, list) {
1170                 if (p->name_state != NAME_PENDING &&
1171                     abs(p->data.rssi) >= abs(ie->data.rssi))
1172                         break;
1173                 pos = &p->list;
1174         }
1175
1176         list_add(&ie->list, pos);
1177 }
1178
1179 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1180                              bool name_known)
1181 {
1182         struct discovery_state *cache = &hdev->discovery;
1183         struct inquiry_entry *ie;
1184         u32 flags = 0;
1185
1186         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1187
1188         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1189
1190         if (!data->ssp_mode)
1191                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1192
1193         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1194         if (ie) {
1195                 if (!ie->data.ssp_mode)
1196                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1197
1198                 if (ie->name_state == NAME_NEEDED &&
1199                     data->rssi != ie->data.rssi) {
1200                         ie->data.rssi = data->rssi;
1201                         hci_inquiry_cache_update_resolve(hdev, ie);
1202                 }
1203
1204                 goto update;
1205         }
1206
1207         /* Entry not in the cache. Add new one. */
1208         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1209         if (!ie) {
1210                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211                 goto done;
1212         }
1213
1214         list_add(&ie->all, &cache->all);
1215
1216         if (name_known) {
1217                 ie->name_state = NAME_KNOWN;
1218         } else {
1219                 ie->name_state = NAME_NOT_KNOWN;
1220                 list_add(&ie->list, &cache->unknown);
1221         }
1222
1223 update:
1224         if (name_known && ie->name_state != NAME_KNOWN &&
1225             ie->name_state != NAME_PENDING) {
1226                 ie->name_state = NAME_KNOWN;
1227                 list_del(&ie->list);
1228         }
1229
1230         memcpy(&ie->data, data, sizeof(*data));
1231         ie->timestamp = jiffies;
1232         cache->timestamp = jiffies;
1233
1234         if (ie->name_state == NAME_NOT_KNOWN)
1235                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1236
1237 done:
1238         return flags;
1239 }
1240
1241 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1242 {
1243         struct discovery_state *cache = &hdev->discovery;
1244         struct inquiry_info *info = (struct inquiry_info *) buf;
1245         struct inquiry_entry *e;
1246         int copied = 0;
1247
1248         list_for_each_entry(e, &cache->all, all) {
1249                 struct inquiry_data *data = &e->data;
1250
1251                 if (copied >= num)
1252                         break;
1253
1254                 bacpy(&info->bdaddr, &data->bdaddr);
1255                 info->pscan_rep_mode    = data->pscan_rep_mode;
1256                 info->pscan_period_mode = data->pscan_period_mode;
1257                 info->pscan_mode        = data->pscan_mode;
1258                 memcpy(info->dev_class, data->dev_class, 3);
1259                 info->clock_offset      = data->clock_offset;
1260
1261                 info++;
1262                 copied++;
1263         }
1264
1265         BT_DBG("cache %p, copied %d", cache, copied);
1266         return copied;
1267 }
1268
1269 static void hci_inq_req(struct hci_request *req, unsigned long opt)
1270 {
1271         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1272         struct hci_dev *hdev = req->hdev;
1273         struct hci_cp_inquiry cp;
1274
1275         BT_DBG("%s", hdev->name);
1276
1277         if (test_bit(HCI_INQUIRY, &hdev->flags))
1278                 return;
1279
1280         /* Start Inquiry */
1281         memcpy(&cp.lap, &ir->lap, 3);
1282         cp.length  = ir->length;
1283         cp.num_rsp = ir->num_rsp;
1284         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1285 }
1286
1287 int hci_inquiry(void __user *arg)
1288 {
1289         __u8 __user *ptr = arg;
1290         struct hci_inquiry_req ir;
1291         struct hci_dev *hdev;
1292         int err = 0, do_inquiry = 0, max_rsp;
1293         long timeo;
1294         __u8 *buf;
1295
1296         if (copy_from_user(&ir, ptr, sizeof(ir)))
1297                 return -EFAULT;
1298
1299         hdev = hci_dev_get(ir.dev_id);
1300         if (!hdev)
1301                 return -ENODEV;
1302
1303         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1304                 err = -EBUSY;
1305                 goto done;
1306         }
1307
1308         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1309                 err = -EOPNOTSUPP;
1310                 goto done;
1311         }
1312
1313         if (hdev->dev_type != HCI_BREDR) {
1314                 err = -EOPNOTSUPP;
1315                 goto done;
1316         }
1317
1318         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1319                 err = -EOPNOTSUPP;
1320                 goto done;
1321         }
1322
1323         hci_dev_lock(hdev);
1324         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1325             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1326                 hci_inquiry_cache_flush(hdev);
1327                 do_inquiry = 1;
1328         }
1329         hci_dev_unlock(hdev);
1330
1331         timeo = ir.length * msecs_to_jiffies(2000);
1332
1333         if (do_inquiry) {
1334                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1335                                    timeo);
1336                 if (err < 0)
1337                         goto done;
1338
1339                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1340                  * cleared). If it is interrupted by a signal, return -EINTR.
1341                  */
1342                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1343                                 TASK_INTERRUPTIBLE))
1344                         return -EINTR;
1345         }
1346
1347         /* for unlimited number of responses we will use buffer with
1348          * 255 entries
1349          */
1350         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1351
1352         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1353          * copy it to the user space.
1354          */
1355         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1356         if (!buf) {
1357                 err = -ENOMEM;
1358                 goto done;
1359         }
1360
1361         hci_dev_lock(hdev);
1362         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1363         hci_dev_unlock(hdev);
1364
1365         BT_DBG("num_rsp %d", ir.num_rsp);
1366
1367         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1368                 ptr += sizeof(ir);
1369                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1370                                  ir.num_rsp))
1371                         err = -EFAULT;
1372         } else
1373                 err = -EFAULT;
1374
1375         kfree(buf);
1376
1377 done:
1378         hci_dev_put(hdev);
1379         return err;
1380 }
1381
1382 static int hci_dev_do_open(struct hci_dev *hdev)
1383 {
1384         int ret = 0;
1385
1386         BT_DBG("%s %p", hdev->name, hdev);
1387
1388         hci_req_lock(hdev);
1389
1390         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1391                 ret = -ENODEV;
1392                 goto done;
1393         }
1394
1395         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1396             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1397                 /* Check for rfkill but allow the HCI setup stage to
1398                  * proceed (which in itself doesn't cause any RF activity).
1399                  */
1400                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1401                         ret = -ERFKILL;
1402                         goto done;
1403                 }
1404
1405                 /* Check for valid public address or a configured static
1406                  * random adddress, but let the HCI setup proceed to
1407                  * be able to determine if there is a public address
1408                  * or not.
1409                  *
1410                  * In case of user channel usage, it is not important
1411                  * if a public address or static random address is
1412                  * available.
1413                  *
1414                  * This check is only valid for BR/EDR controllers
1415                  * since AMP controllers do not have an address.
1416                  */
1417                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1418                     hdev->dev_type == HCI_BREDR &&
1419                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1420                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1421                         ret = -EADDRNOTAVAIL;
1422                         goto done;
1423                 }
1424         }
1425
1426         if (test_bit(HCI_UP, &hdev->flags)) {
1427                 ret = -EALREADY;
1428                 goto done;
1429         }
1430
1431         if (hdev->open(hdev)) {
1432                 ret = -EIO;
1433                 goto done;
1434         }
1435
1436         atomic_set(&hdev->cmd_cnt, 1);
1437         set_bit(HCI_INIT, &hdev->flags);
1438
1439         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1440                 if (hdev->setup)
1441                         ret = hdev->setup(hdev);
1442
1443                 /* The transport driver can set these quirks before
1444                  * creating the HCI device or in its setup callback.
1445                  *
1446                  * In case any of them is set, the controller has to
1447                  * start up as unconfigured.
1448                  */
1449                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1450                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1451                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1452
1453                 /* For an unconfigured controller it is required to
1454                  * read at least the version information provided by
1455                  * the Read Local Version Information command.
1456                  *
1457                  * If the set_bdaddr driver callback is provided, then
1458                  * also the original Bluetooth public device address
1459                  * will be read using the Read BD Address command.
1460                  */
1461                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1462                         ret = __hci_unconf_init(hdev);
1463         }
1464
1465         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1466                 /* If public address change is configured, ensure that
1467                  * the address gets programmed. If the driver does not
1468                  * support changing the public address, fail the power
1469                  * on procedure.
1470                  */
1471                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1472                     hdev->set_bdaddr)
1473                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1474                 else
1475                         ret = -EADDRNOTAVAIL;
1476         }
1477
1478         if (!ret) {
1479                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1480                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1481                         ret = __hci_init(hdev);
1482         }
1483
1484         clear_bit(HCI_INIT, &hdev->flags);
1485
1486         if (!ret) {
1487                 hci_dev_hold(hdev);
1488                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1489                 set_bit(HCI_UP, &hdev->flags);
1490                 hci_notify(hdev, HCI_DEV_UP);
1491                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1492                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1493                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1494                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1495                     hdev->dev_type == HCI_BREDR) {
1496                         hci_dev_lock(hdev);
1497                         mgmt_powered(hdev, 1);
1498                         hci_dev_unlock(hdev);
1499                 }
1500         } else {
1501                 /* Init failed, cleanup */
1502                 flush_work(&hdev->tx_work);
1503                 flush_work(&hdev->cmd_work);
1504                 flush_work(&hdev->rx_work);
1505
1506                 skb_queue_purge(&hdev->cmd_q);
1507                 skb_queue_purge(&hdev->rx_q);
1508
1509                 if (hdev->flush)
1510                         hdev->flush(hdev);
1511
1512                 if (hdev->sent_cmd) {
1513                         kfree_skb(hdev->sent_cmd);
1514                         hdev->sent_cmd = NULL;
1515                 }
1516
1517                 hdev->close(hdev);
1518                 hdev->flags &= BIT(HCI_RAW);
1519         }
1520
1521 done:
1522         hci_req_unlock(hdev);
1523         return ret;
1524 }
1525
1526 /* ---- HCI ioctl helpers ---- */
1527
1528 int hci_dev_open(__u16 dev)
1529 {
1530         struct hci_dev *hdev;
1531         int err;
1532
1533         hdev = hci_dev_get(dev);
1534         if (!hdev)
1535                 return -ENODEV;
1536
1537         /* Devices that are marked as unconfigured can only be powered
1538          * up as user channel. Trying to bring them up as normal devices
1539          * will result into a failure. Only user channel operation is
1540          * possible.
1541          *
1542          * When this function is called for a user channel, the flag
1543          * HCI_USER_CHANNEL will be set first before attempting to
1544          * open the device.
1545          */
1546         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1547             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1548                 err = -EOPNOTSUPP;
1549                 goto done;
1550         }
1551
1552         /* We need to ensure that no other power on/off work is pending
1553          * before proceeding to call hci_dev_do_open. This is
1554          * particularly important if the setup procedure has not yet
1555          * completed.
1556          */
1557         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1558                 cancel_delayed_work(&hdev->power_off);
1559
1560         /* After this call it is guaranteed that the setup procedure
1561          * has finished. This means that error conditions like RFKILL
1562          * or no valid public or static random address apply.
1563          */
1564         flush_workqueue(hdev->req_workqueue);
1565
1566         /* For controllers not using the management interface and that
1567          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1568          * so that pairing works for them. Once the management interface
1569          * is in use this bit will be cleared again and userspace has
1570          * to explicitly enable it.
1571          */
1572         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1573             !hci_dev_test_flag(hdev, HCI_MGMT))
1574                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1575
1576         err = hci_dev_do_open(hdev);
1577
1578 done:
1579         hci_dev_put(hdev);
1580         return err;
1581 }
1582
1583 /* This function requires the caller holds hdev->lock */
1584 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1585 {
1586         struct hci_conn_params *p;
1587
1588         list_for_each_entry(p, &hdev->le_conn_params, list) {
1589                 if (p->conn) {
1590                         hci_conn_drop(p->conn);
1591                         hci_conn_put(p->conn);
1592                         p->conn = NULL;
1593                 }
1594                 list_del_init(&p->action);
1595         }
1596
1597         BT_DBG("All LE pending actions cleared");
1598 }
1599
1600 static int hci_dev_do_close(struct hci_dev *hdev)
1601 {
1602         BT_DBG("%s %p", hdev->name, hdev);
1603
1604         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1605                 /* Execute vendor specific shutdown routine */
1606                 if (hdev->shutdown)
1607                         hdev->shutdown(hdev);
1608         }
1609
1610         cancel_delayed_work(&hdev->power_off);
1611
1612         hci_req_cancel(hdev, ENODEV);
1613         hci_req_lock(hdev);
1614
1615         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1616                 cancel_delayed_work_sync(&hdev->cmd_timer);
1617                 hci_req_unlock(hdev);
1618                 return 0;
1619         }
1620
1621         /* Flush RX and TX works */
1622         flush_work(&hdev->tx_work);
1623         flush_work(&hdev->rx_work);
1624
1625         if (hdev->discov_timeout > 0) {
1626                 cancel_delayed_work(&hdev->discov_off);
1627                 hdev->discov_timeout = 0;
1628                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1629                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1630         }
1631
1632         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1633                 cancel_delayed_work(&hdev->service_cache);
1634
1635         cancel_delayed_work_sync(&hdev->le_scan_disable);
1636         cancel_delayed_work_sync(&hdev->le_scan_restart);
1637
1638         if (hci_dev_test_flag(hdev, HCI_MGMT))
1639                 cancel_delayed_work_sync(&hdev->rpa_expired);
1640
1641         /* Avoid potential lockdep warnings from the *_flush() calls by
1642          * ensuring the workqueue is empty up front.
1643          */
1644         drain_workqueue(hdev->workqueue);
1645
1646         hci_dev_lock(hdev);
1647
1648         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1649
1650         if (!hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
1651                 if (hdev->dev_type == HCI_BREDR)
1652                         mgmt_powered(hdev, 0);
1653         }
1654
1655         hci_inquiry_cache_flush(hdev);
1656         hci_pend_le_actions_clear(hdev);
1657         hci_conn_hash_flush(hdev);
1658         hci_dev_unlock(hdev);
1659
1660         smp_unregister(hdev);
1661
1662         hci_notify(hdev, HCI_DEV_DOWN);
1663
1664         if (hdev->flush)
1665                 hdev->flush(hdev);
1666
1667         /* Reset device */
1668         skb_queue_purge(&hdev->cmd_q);
1669         atomic_set(&hdev->cmd_cnt, 1);
1670         if (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1671             !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1672             test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1673                 set_bit(HCI_INIT, &hdev->flags);
1674                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1675                 clear_bit(HCI_INIT, &hdev->flags);
1676         }
1677
1678         /* flush cmd  work */
1679         flush_work(&hdev->cmd_work);
1680
1681         /* Drop queues */
1682         skb_queue_purge(&hdev->rx_q);
1683         skb_queue_purge(&hdev->cmd_q);
1684         skb_queue_purge(&hdev->raw_q);
1685
1686         /* Drop last sent command */
1687         if (hdev->sent_cmd) {
1688                 cancel_delayed_work_sync(&hdev->cmd_timer);
1689                 kfree_skb(hdev->sent_cmd);
1690                 hdev->sent_cmd = NULL;
1691         }
1692
1693         kfree_skb(hdev->recv_evt);
1694         hdev->recv_evt = NULL;
1695
1696         /* After this point our queues are empty
1697          * and no tasks are scheduled. */
1698         hdev->close(hdev);
1699
1700         /* Clear flags */
1701         hdev->flags &= BIT(HCI_RAW);
1702         hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1703
1704         /* Controller radio is available but is currently powered down */
1705         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1706
1707         memset(hdev->eir, 0, sizeof(hdev->eir));
1708         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1709         bacpy(&hdev->random_addr, BDADDR_ANY);
1710
1711         hci_req_unlock(hdev);
1712
1713         hci_dev_put(hdev);
1714         return 0;
1715 }
1716
1717 int hci_dev_close(__u16 dev)
1718 {
1719         struct hci_dev *hdev;
1720         int err;
1721
1722         hdev = hci_dev_get(dev);
1723         if (!hdev)
1724                 return -ENODEV;
1725
1726         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1727                 err = -EBUSY;
1728                 goto done;
1729         }
1730
1731         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1732                 cancel_delayed_work(&hdev->power_off);
1733
1734         err = hci_dev_do_close(hdev);
1735
1736 done:
1737         hci_dev_put(hdev);
1738         return err;
1739 }
1740
1741 static int hci_dev_do_reset(struct hci_dev *hdev)
1742 {
1743         int ret;
1744
1745         BT_DBG("%s %p", hdev->name, hdev);
1746
1747         hci_req_lock(hdev);
1748
1749         /* Drop queues */
1750         skb_queue_purge(&hdev->rx_q);
1751         skb_queue_purge(&hdev->cmd_q);
1752
1753         /* Avoid potential lockdep warnings from the *_flush() calls by
1754          * ensuring the workqueue is empty up front.
1755          */
1756         drain_workqueue(hdev->workqueue);
1757
1758         hci_dev_lock(hdev);
1759         hci_inquiry_cache_flush(hdev);
1760         hci_conn_hash_flush(hdev);
1761         hci_dev_unlock(hdev);
1762
1763         if (hdev->flush)
1764                 hdev->flush(hdev);
1765
1766         atomic_set(&hdev->cmd_cnt, 1);
1767         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1768
1769         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1770
1771         hci_req_unlock(hdev);
1772         return ret;
1773 }
1774
1775 int hci_dev_reset(__u16 dev)
1776 {
1777         struct hci_dev *hdev;
1778         int err;
1779
1780         hdev = hci_dev_get(dev);
1781         if (!hdev)
1782                 return -ENODEV;
1783
1784         if (!test_bit(HCI_UP, &hdev->flags)) {
1785                 err = -ENETDOWN;
1786                 goto done;
1787         }
1788
1789         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1790                 err = -EBUSY;
1791                 goto done;
1792         }
1793
1794         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1795                 err = -EOPNOTSUPP;
1796                 goto done;
1797         }
1798
1799         err = hci_dev_do_reset(hdev);
1800
1801 done:
1802         hci_dev_put(hdev);
1803         return err;
1804 }
1805
1806 int hci_dev_reset_stat(__u16 dev)
1807 {
1808         struct hci_dev *hdev;
1809         int ret = 0;
1810
1811         hdev = hci_dev_get(dev);
1812         if (!hdev)
1813                 return -ENODEV;
1814
1815         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1816                 ret = -EBUSY;
1817                 goto done;
1818         }
1819
1820         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1821                 ret = -EOPNOTSUPP;
1822                 goto done;
1823         }
1824
1825         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1826
1827 done:
1828         hci_dev_put(hdev);
1829         return ret;
1830 }
1831
1832 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1833 {
1834         bool conn_changed, discov_changed;
1835
1836         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1837
1838         if ((scan & SCAN_PAGE))
1839                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1840                                                           HCI_CONNECTABLE);
1841         else
1842                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1843                                                            HCI_CONNECTABLE);
1844
1845         if ((scan & SCAN_INQUIRY)) {
1846                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1847                                                             HCI_DISCOVERABLE);
1848         } else {
1849                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1850                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1851                                                              HCI_DISCOVERABLE);
1852         }
1853
1854         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1855                 return;
1856
1857         if (conn_changed || discov_changed) {
1858                 /* In case this was disabled through mgmt */
1859                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1860
1861                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1862                         mgmt_update_adv_data(hdev);
1863
1864                 mgmt_new_settings(hdev);
1865         }
1866 }
1867
1868 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1869 {
1870         struct hci_dev *hdev;
1871         struct hci_dev_req dr;
1872         int err = 0;
1873
1874         if (copy_from_user(&dr, arg, sizeof(dr)))
1875                 return -EFAULT;
1876
1877         hdev = hci_dev_get(dr.dev_id);
1878         if (!hdev)
1879                 return -ENODEV;
1880
1881         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1882                 err = -EBUSY;
1883                 goto done;
1884         }
1885
1886         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1887                 err = -EOPNOTSUPP;
1888                 goto done;
1889         }
1890
1891         if (hdev->dev_type != HCI_BREDR) {
1892                 err = -EOPNOTSUPP;
1893                 goto done;
1894         }
1895
1896         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1897                 err = -EOPNOTSUPP;
1898                 goto done;
1899         }
1900
1901         switch (cmd) {
1902         case HCISETAUTH:
1903                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1904                                    HCI_INIT_TIMEOUT);
1905                 break;
1906
1907         case HCISETENCRYPT:
1908                 if (!lmp_encrypt_capable(hdev)) {
1909                         err = -EOPNOTSUPP;
1910                         break;
1911                 }
1912
1913                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1914                         /* Auth must be enabled first */
1915                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1916                                            HCI_INIT_TIMEOUT);
1917                         if (err)
1918                                 break;
1919                 }
1920
1921                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1922                                    HCI_INIT_TIMEOUT);
1923                 break;
1924
1925         case HCISETSCAN:
1926                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1927                                    HCI_INIT_TIMEOUT);
1928
1929                 /* Ensure that the connectable and discoverable states
1930                  * get correctly modified as this was a non-mgmt change.
1931                  */
1932                 if (!err)
1933                         hci_update_scan_state(hdev, dr.dev_opt);
1934                 break;
1935
1936         case HCISETLINKPOL:
1937                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1938                                    HCI_INIT_TIMEOUT);
1939                 break;
1940
1941         case HCISETLINKMODE:
1942                 hdev->link_mode = ((__u16) dr.dev_opt) &
1943                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1944                 break;
1945
1946         case HCISETPTYPE:
1947                 hdev->pkt_type = (__u16) dr.dev_opt;
1948                 break;
1949
1950         case HCISETACLMTU:
1951                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1952                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1953                 break;
1954
1955         case HCISETSCOMTU:
1956                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1957                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1958                 break;
1959
1960         default:
1961                 err = -EINVAL;
1962                 break;
1963         }
1964
1965 done:
1966         hci_dev_put(hdev);
1967         return err;
1968 }
1969
1970 int hci_get_dev_list(void __user *arg)
1971 {
1972         struct hci_dev *hdev;
1973         struct hci_dev_list_req *dl;
1974         struct hci_dev_req *dr;
1975         int n = 0, size, err;
1976         __u16 dev_num;
1977
1978         if (get_user(dev_num, (__u16 __user *) arg))
1979                 return -EFAULT;
1980
1981         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1982                 return -EINVAL;
1983
1984         size = sizeof(*dl) + dev_num * sizeof(*dr);
1985
1986         dl = kzalloc(size, GFP_KERNEL);
1987         if (!dl)
1988                 return -ENOMEM;
1989
1990         dr = dl->dev_req;
1991
1992         read_lock(&hci_dev_list_lock);
1993         list_for_each_entry(hdev, &hci_dev_list, list) {
1994                 unsigned long flags = hdev->flags;
1995
1996                 /* When the auto-off is configured it means the transport
1997                  * is running, but in that case still indicate that the
1998                  * device is actually down.
1999                  */
2000                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001                         flags &= ~BIT(HCI_UP);
2002
2003                 (dr + n)->dev_id  = hdev->id;
2004                 (dr + n)->dev_opt = flags;
2005
2006                 if (++n >= dev_num)
2007                         break;
2008         }
2009         read_unlock(&hci_dev_list_lock);
2010
2011         dl->dev_num = n;
2012         size = sizeof(*dl) + n * sizeof(*dr);
2013
2014         err = copy_to_user(arg, dl, size);
2015         kfree(dl);
2016
2017         return err ? -EFAULT : 0;
2018 }
2019
2020 int hci_get_dev_info(void __user *arg)
2021 {
2022         struct hci_dev *hdev;
2023         struct hci_dev_info di;
2024         unsigned long flags;
2025         int err = 0;
2026
2027         if (copy_from_user(&di, arg, sizeof(di)))
2028                 return -EFAULT;
2029
2030         hdev = hci_dev_get(di.dev_id);
2031         if (!hdev)
2032                 return -ENODEV;
2033
2034         /* When the auto-off is configured it means the transport
2035          * is running, but in that case still indicate that the
2036          * device is actually down.
2037          */
2038         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2039                 flags = hdev->flags & ~BIT(HCI_UP);
2040         else
2041                 flags = hdev->flags;
2042
2043         strcpy(di.name, hdev->name);
2044         di.bdaddr   = hdev->bdaddr;
2045         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2046         di.flags    = flags;
2047         di.pkt_type = hdev->pkt_type;
2048         if (lmp_bredr_capable(hdev)) {
2049                 di.acl_mtu  = hdev->acl_mtu;
2050                 di.acl_pkts = hdev->acl_pkts;
2051                 di.sco_mtu  = hdev->sco_mtu;
2052                 di.sco_pkts = hdev->sco_pkts;
2053         } else {
2054                 di.acl_mtu  = hdev->le_mtu;
2055                 di.acl_pkts = hdev->le_pkts;
2056                 di.sco_mtu  = 0;
2057                 di.sco_pkts = 0;
2058         }
2059         di.link_policy = hdev->link_policy;
2060         di.link_mode   = hdev->link_mode;
2061
2062         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2063         memcpy(&di.features, &hdev->features, sizeof(di.features));
2064
2065         if (copy_to_user(arg, &di, sizeof(di)))
2066                 err = -EFAULT;
2067
2068         hci_dev_put(hdev);
2069
2070         return err;
2071 }
2072
2073 /* ---- Interface to HCI drivers ---- */
2074
2075 static int hci_rfkill_set_block(void *data, bool blocked)
2076 {
2077         struct hci_dev *hdev = data;
2078
2079         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2080
2081         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2082                 return -EBUSY;
2083
2084         if (blocked) {
2085                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2086                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2087                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2088                         hci_dev_do_close(hdev);
2089         } else {
2090                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2091         }
2092
2093         return 0;
2094 }
2095
2096 static const struct rfkill_ops hci_rfkill_ops = {
2097         .set_block = hci_rfkill_set_block,
2098 };
2099
2100 static void hci_power_on(struct work_struct *work)
2101 {
2102         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2103         int err;
2104
2105         BT_DBG("%s", hdev->name);
2106
2107         err = hci_dev_do_open(hdev);
2108         if (err < 0) {
2109                 hci_dev_lock(hdev);
2110                 mgmt_set_powered_failed(hdev, err);
2111                 hci_dev_unlock(hdev);
2112                 return;
2113         }
2114
2115         /* During the HCI setup phase, a few error conditions are
2116          * ignored and they need to be checked now. If they are still
2117          * valid, it is important to turn the device back off.
2118          */
2119         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2120             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2121             (hdev->dev_type == HCI_BREDR &&
2122              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2123              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2124                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2125                 hci_dev_do_close(hdev);
2126         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2127                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2128                                    HCI_AUTO_OFF_TIMEOUT);
2129         }
2130
2131         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2132                 /* For unconfigured devices, set the HCI_RAW flag
2133                  * so that userspace can easily identify them.
2134                  */
2135                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2136                         set_bit(HCI_RAW, &hdev->flags);
2137
2138                 /* For fully configured devices, this will send
2139                  * the Index Added event. For unconfigured devices,
2140                  * it will send Unconfigued Index Added event.
2141                  *
2142                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2143                  * and no event will be send.
2144                  */
2145                 mgmt_index_added(hdev);
2146         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2147                 /* When the controller is now configured, then it
2148                  * is important to clear the HCI_RAW flag.
2149                  */
2150                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2151                         clear_bit(HCI_RAW, &hdev->flags);
2152
2153                 /* Powering on the controller with HCI_CONFIG set only
2154                  * happens with the transition from unconfigured to
2155                  * configured. This will send the Index Added event.
2156                  */
2157                 mgmt_index_added(hdev);
2158         }
2159 }
2160
2161 static void hci_power_off(struct work_struct *work)
2162 {
2163         struct hci_dev *hdev = container_of(work, struct hci_dev,
2164                                             power_off.work);
2165
2166         BT_DBG("%s", hdev->name);
2167
2168         hci_dev_do_close(hdev);
2169 }
2170
2171 static void hci_error_reset(struct work_struct *work)
2172 {
2173         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2174
2175         BT_DBG("%s", hdev->name);
2176
2177         if (hdev->hw_error)
2178                 hdev->hw_error(hdev, hdev->hw_error_code);
2179         else
2180                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2181                        hdev->hw_error_code);
2182
2183         if (hci_dev_do_close(hdev))
2184                 return;
2185
2186         hci_dev_do_open(hdev);
2187 }
2188
2189 static void hci_discov_off(struct work_struct *work)
2190 {
2191         struct hci_dev *hdev;
2192
2193         hdev = container_of(work, struct hci_dev, discov_off.work);
2194
2195         BT_DBG("%s", hdev->name);
2196
2197         mgmt_discoverable_timeout(hdev);
2198 }
2199
2200 void hci_uuids_clear(struct hci_dev *hdev)
2201 {
2202         struct bt_uuid *uuid, *tmp;
2203
2204         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2205                 list_del(&uuid->list);
2206                 kfree(uuid);
2207         }
2208 }
2209
2210 void hci_link_keys_clear(struct hci_dev *hdev)
2211 {
2212         struct link_key *key;
2213
2214         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2215                 list_del_rcu(&key->list);
2216                 kfree_rcu(key, rcu);
2217         }
2218 }
2219
2220 void hci_smp_ltks_clear(struct hci_dev *hdev)
2221 {
2222         struct smp_ltk *k;
2223
2224         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225                 list_del_rcu(&k->list);
2226                 kfree_rcu(k, rcu);
2227         }
2228 }
2229
2230 void hci_smp_irks_clear(struct hci_dev *hdev)
2231 {
2232         struct smp_irk *k;
2233
2234         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2235                 list_del_rcu(&k->list);
2236                 kfree_rcu(k, rcu);
2237         }
2238 }
2239
2240 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2241 {
2242         struct link_key *k;
2243
2244         rcu_read_lock();
2245         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2246                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2247                         rcu_read_unlock();
2248                         return k;
2249                 }
2250         }
2251         rcu_read_unlock();
2252
2253         return NULL;
2254 }
2255
2256 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2257                                u8 key_type, u8 old_key_type)
2258 {
2259         /* Legacy key */
2260         if (key_type < 0x03)
2261                 return true;
2262
2263         /* Debug keys are insecure so don't store them persistently */
2264         if (key_type == HCI_LK_DEBUG_COMBINATION)
2265                 return false;
2266
2267         /* Changed combination key and there's no previous one */
2268         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2269                 return false;
2270
2271         /* Security mode 3 case */
2272         if (!conn)
2273                 return true;
2274
2275         /* BR/EDR key derived using SC from an LE link */
2276         if (conn->type == LE_LINK)
2277                 return true;
2278
2279         /* Neither local nor remote side had no-bonding as requirement */
2280         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2281                 return true;
2282
2283         /* Local side had dedicated bonding as requirement */
2284         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2285                 return true;
2286
2287         /* Remote side had dedicated bonding as requirement */
2288         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2289                 return true;
2290
2291         /* If none of the above criteria match, then don't store the key
2292          * persistently */
2293         return false;
2294 }
2295
2296 static u8 ltk_role(u8 type)
2297 {
2298         if (type == SMP_LTK)
2299                 return HCI_ROLE_MASTER;
2300
2301         return HCI_ROLE_SLAVE;
2302 }
2303
2304 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2305                              u8 addr_type, u8 role)
2306 {
2307         struct smp_ltk *k;
2308
2309         rcu_read_lock();
2310         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2311                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2312                         continue;
2313
2314                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2315                         rcu_read_unlock();
2316                         return k;
2317                 }
2318         }
2319         rcu_read_unlock();
2320
2321         return NULL;
2322 }
2323
2324 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2325 {
2326         struct smp_irk *irk;
2327
2328         rcu_read_lock();
2329         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2330                 if (!bacmp(&irk->rpa, rpa)) {
2331                         rcu_read_unlock();
2332                         return irk;
2333                 }
2334         }
2335
2336         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2337                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2338                         bacpy(&irk->rpa, rpa);
2339                         rcu_read_unlock();
2340                         return irk;
2341                 }
2342         }
2343         rcu_read_unlock();
2344
2345         return NULL;
2346 }
2347
2348 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2349                                      u8 addr_type)
2350 {
2351         struct smp_irk *irk;
2352
2353         /* Identity Address must be public or static random */
2354         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2355                 return NULL;
2356
2357         rcu_read_lock();
2358         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2359                 if (addr_type == irk->addr_type &&
2360                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2361                         rcu_read_unlock();
2362                         return irk;
2363                 }
2364         }
2365         rcu_read_unlock();
2366
2367         return NULL;
2368 }
2369
2370 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2371                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2372                                   u8 pin_len, bool *persistent)
2373 {
2374         struct link_key *key, *old_key;
2375         u8 old_key_type;
2376
2377         old_key = hci_find_link_key(hdev, bdaddr);
2378         if (old_key) {
2379                 old_key_type = old_key->type;
2380                 key = old_key;
2381         } else {
2382                 old_key_type = conn ? conn->key_type : 0xff;
2383                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2384                 if (!key)
2385                         return NULL;
2386                 list_add_rcu(&key->list, &hdev->link_keys);
2387         }
2388
2389         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2390
2391         /* Some buggy controller combinations generate a changed
2392          * combination key for legacy pairing even when there's no
2393          * previous key */
2394         if (type == HCI_LK_CHANGED_COMBINATION &&
2395             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2396                 type = HCI_LK_COMBINATION;
2397                 if (conn)
2398                         conn->key_type = type;
2399         }
2400
2401         bacpy(&key->bdaddr, bdaddr);
2402         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2403         key->pin_len = pin_len;
2404
2405         if (type == HCI_LK_CHANGED_COMBINATION)
2406                 key->type = old_key_type;
2407         else
2408                 key->type = type;
2409
2410         if (persistent)
2411                 *persistent = hci_persistent_key(hdev, conn, type,
2412                                                  old_key_type);
2413
2414         return key;
2415 }
2416
2417 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2418                             u8 addr_type, u8 type, u8 authenticated,
2419                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2420 {
2421         struct smp_ltk *key, *old_key;
2422         u8 role = ltk_role(type);
2423
2424         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2425         if (old_key)
2426                 key = old_key;
2427         else {
2428                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2429                 if (!key)
2430                         return NULL;
2431                 list_add_rcu(&key->list, &hdev->long_term_keys);
2432         }
2433
2434         bacpy(&key->bdaddr, bdaddr);
2435         key->bdaddr_type = addr_type;
2436         memcpy(key->val, tk, sizeof(key->val));
2437         key->authenticated = authenticated;
2438         key->ediv = ediv;
2439         key->rand = rand;
2440         key->enc_size = enc_size;
2441         key->type = type;
2442
2443         return key;
2444 }
2445
2446 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2447                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2448 {
2449         struct smp_irk *irk;
2450
2451         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2452         if (!irk) {
2453                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2454                 if (!irk)
2455                         return NULL;
2456
2457                 bacpy(&irk->bdaddr, bdaddr);
2458                 irk->addr_type = addr_type;
2459
2460                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2461         }
2462
2463         memcpy(irk->val, val, 16);
2464         bacpy(&irk->rpa, rpa);
2465
2466         return irk;
2467 }
2468
2469 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2470 {
2471         struct link_key *key;
2472
2473         key = hci_find_link_key(hdev, bdaddr);
2474         if (!key)
2475                 return -ENOENT;
2476
2477         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2478
2479         list_del_rcu(&key->list);
2480         kfree_rcu(key, rcu);
2481
2482         return 0;
2483 }
2484
2485 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2486 {
2487         struct smp_ltk *k;
2488         int removed = 0;
2489
2490         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2491                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2492                         continue;
2493
2494                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2495
2496                 list_del_rcu(&k->list);
2497                 kfree_rcu(k, rcu);
2498                 removed++;
2499         }
2500
2501         return removed ? 0 : -ENOENT;
2502 }
2503
2504 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2505 {
2506         struct smp_irk *k;
2507
2508         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2509                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2510                         continue;
2511
2512                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2513
2514                 list_del_rcu(&k->list);
2515                 kfree_rcu(k, rcu);
2516         }
2517 }
2518
2519 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2520 {
2521         struct smp_ltk *k;
2522         struct smp_irk *irk;
2523         u8 addr_type;
2524
2525         if (type == BDADDR_BREDR) {
2526                 if (hci_find_link_key(hdev, bdaddr))
2527                         return true;
2528                 return false;
2529         }
2530
2531         /* Convert to HCI addr type which struct smp_ltk uses */
2532         if (type == BDADDR_LE_PUBLIC)
2533                 addr_type = ADDR_LE_DEV_PUBLIC;
2534         else
2535                 addr_type = ADDR_LE_DEV_RANDOM;
2536
2537         irk = hci_get_irk(hdev, bdaddr, addr_type);
2538         if (irk) {
2539                 bdaddr = &irk->bdaddr;
2540                 addr_type = irk->addr_type;
2541         }
2542
2543         rcu_read_lock();
2544         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2545                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2546                         rcu_read_unlock();
2547                         return true;
2548                 }
2549         }
2550         rcu_read_unlock();
2551
2552         return false;
2553 }
2554
2555 /* HCI command timer function */
2556 static void hci_cmd_timeout(struct work_struct *work)
2557 {
2558         struct hci_dev *hdev = container_of(work, struct hci_dev,
2559                                             cmd_timer.work);
2560
2561         if (hdev->sent_cmd) {
2562                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2563                 u16 opcode = __le16_to_cpu(sent->opcode);
2564
2565                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2566         } else {
2567                 BT_ERR("%s command tx timeout", hdev->name);
2568         }
2569
2570         atomic_set(&hdev->cmd_cnt, 1);
2571         queue_work(hdev->workqueue, &hdev->cmd_work);
2572 }
2573
2574 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2575                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2576 {
2577         struct oob_data *data;
2578
2579         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2580                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2581                         continue;
2582                 if (data->bdaddr_type != bdaddr_type)
2583                         continue;
2584                 return data;
2585         }
2586
2587         return NULL;
2588 }
2589
2590 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2591                                u8 bdaddr_type)
2592 {
2593         struct oob_data *data;
2594
2595         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2596         if (!data)
2597                 return -ENOENT;
2598
2599         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2600
2601         list_del(&data->list);
2602         kfree(data);
2603
2604         return 0;
2605 }
2606
2607 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2608 {
2609         struct oob_data *data, *n;
2610
2611         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2612                 list_del(&data->list);
2613                 kfree(data);
2614         }
2615 }
2616
2617 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2618                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2619                             u8 *hash256, u8 *rand256)
2620 {
2621         struct oob_data *data;
2622
2623         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2624         if (!data) {
2625                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2626                 if (!data)
2627                         return -ENOMEM;
2628
2629                 bacpy(&data->bdaddr, bdaddr);
2630                 data->bdaddr_type = bdaddr_type;
2631                 list_add(&data->list, &hdev->remote_oob_data);
2632         }
2633
2634         if (hash192 && rand192) {
2635                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2636                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2637                 if (hash256 && rand256)
2638                         data->present = 0x03;
2639         } else {
2640                 memset(data->hash192, 0, sizeof(data->hash192));
2641                 memset(data->rand192, 0, sizeof(data->rand192));
2642                 if (hash256 && rand256)
2643                         data->present = 0x02;
2644                 else
2645                         data->present = 0x00;
2646         }
2647
2648         if (hash256 && rand256) {
2649                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2650                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2651         } else {
2652                 memset(data->hash256, 0, sizeof(data->hash256));
2653                 memset(data->rand256, 0, sizeof(data->rand256));
2654                 if (hash192 && rand192)
2655                         data->present = 0x01;
2656         }
2657
2658         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2659
2660         return 0;
2661 }
2662
2663 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2664                                          bdaddr_t *bdaddr, u8 type)
2665 {
2666         struct bdaddr_list *b;
2667
2668         list_for_each_entry(b, bdaddr_list, list) {
2669                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2670                         return b;
2671         }
2672
2673         return NULL;
2674 }
2675
2676 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2677 {
2678         struct list_head *p, *n;
2679
2680         list_for_each_safe(p, n, bdaddr_list) {
2681                 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
2682
2683                 list_del(p);
2684                 kfree(b);
2685         }
2686 }
2687
2688 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2689 {
2690         struct bdaddr_list *entry;
2691
2692         if (!bacmp(bdaddr, BDADDR_ANY))
2693                 return -EBADF;
2694
2695         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2696                 return -EEXIST;
2697
2698         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2699         if (!entry)
2700                 return -ENOMEM;
2701
2702         bacpy(&entry->bdaddr, bdaddr);
2703         entry->bdaddr_type = type;
2704
2705         list_add(&entry->list, list);
2706
2707         return 0;
2708 }
2709
2710 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2711 {
2712         struct bdaddr_list *entry;
2713
2714         if (!bacmp(bdaddr, BDADDR_ANY)) {
2715                 hci_bdaddr_list_clear(list);
2716                 return 0;
2717         }
2718
2719         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2720         if (!entry)
2721                 return -ENOENT;
2722
2723         list_del(&entry->list);
2724         kfree(entry);
2725
2726         return 0;
2727 }
2728
2729 /* This function requires the caller holds hdev->lock */
2730 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2731                                                bdaddr_t *addr, u8 addr_type)
2732 {
2733         struct hci_conn_params *params;
2734
2735         /* The conn params list only contains identity addresses */
2736         if (!hci_is_identity_address(addr, addr_type))
2737                 return NULL;
2738
2739         list_for_each_entry(params, &hdev->le_conn_params, list) {
2740                 if (bacmp(&params->addr, addr) == 0 &&
2741                     params->addr_type == addr_type) {
2742                         return params;
2743                 }
2744         }
2745
2746         return NULL;
2747 }
2748
2749 /* This function requires the caller holds hdev->lock */
2750 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2751                                                   bdaddr_t *addr, u8 addr_type)
2752 {
2753         struct hci_conn_params *param;
2754
2755         /* The list only contains identity addresses */
2756         if (!hci_is_identity_address(addr, addr_type))
2757                 return NULL;
2758
2759         list_for_each_entry(param, list, action) {
2760                 if (bacmp(&param->addr, addr) == 0 &&
2761                     param->addr_type == addr_type)
2762                         return param;
2763         }
2764
2765         return NULL;
2766 }
2767
2768 /* This function requires the caller holds hdev->lock */
2769 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2770                                             bdaddr_t *addr, u8 addr_type)
2771 {
2772         struct hci_conn_params *params;
2773
2774         if (!hci_is_identity_address(addr, addr_type))
2775                 return NULL;
2776
2777         params = hci_conn_params_lookup(hdev, addr, addr_type);
2778         if (params)
2779                 return params;
2780
2781         params = kzalloc(sizeof(*params), GFP_KERNEL);
2782         if (!params) {
2783                 BT_ERR("Out of memory");
2784                 return NULL;
2785         }
2786
2787         bacpy(&params->addr, addr);
2788         params->addr_type = addr_type;
2789
2790         list_add(&params->list, &hdev->le_conn_params);
2791         INIT_LIST_HEAD(&params->action);
2792
2793         params->conn_min_interval = hdev->le_conn_min_interval;
2794         params->conn_max_interval = hdev->le_conn_max_interval;
2795         params->conn_latency = hdev->le_conn_latency;
2796         params->supervision_timeout = hdev->le_supv_timeout;
2797         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2798
2799         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2800
2801         return params;
2802 }
2803
2804 static void hci_conn_params_free(struct hci_conn_params *params)
2805 {
2806         if (params->conn) {
2807                 hci_conn_drop(params->conn);
2808                 hci_conn_put(params->conn);
2809         }
2810
2811         list_del(&params->action);
2812         list_del(&params->list);
2813         kfree(params);
2814 }
2815
2816 /* This function requires the caller holds hdev->lock */
2817 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2818 {
2819         struct hci_conn_params *params;
2820
2821         params = hci_conn_params_lookup(hdev, addr, addr_type);
2822         if (!params)
2823                 return;
2824
2825         hci_conn_params_free(params);
2826
2827         hci_update_background_scan(hdev);
2828
2829         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830 }
2831
2832 /* This function requires the caller holds hdev->lock */
2833 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2834 {
2835         struct hci_conn_params *params, *tmp;
2836
2837         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2838                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2839                         continue;
2840                 list_del(&params->list);
2841                 kfree(params);
2842         }
2843
2844         BT_DBG("All LE disabled connection parameters were removed");
2845 }
2846
2847 /* This function requires the caller holds hdev->lock */
2848 void hci_conn_params_clear_all(struct hci_dev *hdev)
2849 {
2850         struct hci_conn_params *params, *tmp;
2851
2852         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2853                 hci_conn_params_free(params);
2854
2855         hci_update_background_scan(hdev);
2856
2857         BT_DBG("All LE connection parameters were removed");
2858 }
2859
2860 static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2861 {
2862         if (status) {
2863                 BT_ERR("Failed to start inquiry: status %d", status);
2864
2865                 hci_dev_lock(hdev);
2866                 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2867                 hci_dev_unlock(hdev);
2868                 return;
2869         }
2870 }
2871
2872 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status,
2873                                           u16 opcode)
2874 {
2875         /* General inquiry access code (GIAC) */
2876         u8 lap[3] = { 0x33, 0x8b, 0x9e };
2877         struct hci_request req;
2878         struct hci_cp_inquiry cp;
2879         int err;
2880
2881         if (status) {
2882                 BT_ERR("Failed to disable LE scanning: status %d", status);
2883                 return;
2884         }
2885
2886         hdev->discovery.scan_start = 0;
2887
2888         switch (hdev->discovery.type) {
2889         case DISCOV_TYPE_LE:
2890                 hci_dev_lock(hdev);
2891                 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2892                 hci_dev_unlock(hdev);
2893                 break;
2894
2895         case DISCOV_TYPE_INTERLEAVED:
2896                 hci_req_init(&req, hdev);
2897
2898                 memset(&cp, 0, sizeof(cp));
2899                 memcpy(&cp.lap, lap, sizeof(cp.lap));
2900                 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
2901                 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2902
2903                 hci_dev_lock(hdev);
2904
2905                 hci_inquiry_cache_flush(hdev);
2906
2907                 err = hci_req_run(&req, inquiry_complete);
2908                 if (err) {
2909                         BT_ERR("Inquiry request failed: err %d", err);
2910                         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2911                 }
2912
2913                 hci_dev_unlock(hdev);
2914                 break;
2915         }
2916 }
2917
2918 static void le_scan_disable_work(struct work_struct *work)
2919 {
2920         struct hci_dev *hdev = container_of(work, struct hci_dev,
2921                                             le_scan_disable.work);
2922         struct hci_request req;
2923         int err;
2924
2925         BT_DBG("%s", hdev->name);
2926
2927         cancel_delayed_work_sync(&hdev->le_scan_restart);
2928
2929         hci_req_init(&req, hdev);
2930
2931         hci_req_add_le_scan_disable(&req);
2932
2933         err = hci_req_run(&req, le_scan_disable_work_complete);
2934         if (err)
2935                 BT_ERR("Disable LE scanning request failed: err %d", err);
2936 }
2937
2938 static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status,
2939                                           u16 opcode)
2940 {
2941         unsigned long timeout, duration, scan_start, now;
2942
2943         BT_DBG("%s", hdev->name);
2944
2945         if (status) {
2946                 BT_ERR("Failed to restart LE scan: status %d", status);
2947                 return;
2948         }
2949
2950         if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2951             !hdev->discovery.scan_start)
2952                 return;
2953
2954         /* When the scan was started, hdev->le_scan_disable has been queued
2955          * after duration from scan_start. During scan restart this job
2956          * has been canceled, and we need to queue it again after proper
2957          * timeout, to make sure that scan does not run indefinitely.
2958          */
2959         duration = hdev->discovery.scan_duration;
2960         scan_start = hdev->discovery.scan_start;
2961         now = jiffies;
2962         if (now - scan_start <= duration) {
2963                 int elapsed;
2964
2965                 if (now >= scan_start)
2966                         elapsed = now - scan_start;
2967                 else
2968                         elapsed = ULONG_MAX - scan_start + now;
2969
2970                 timeout = duration - elapsed;
2971         } else {
2972                 timeout = 0;
2973         }
2974         queue_delayed_work(hdev->workqueue,
2975                            &hdev->le_scan_disable, timeout);
2976 }
2977
2978 static void le_scan_restart_work(struct work_struct *work)
2979 {
2980         struct hci_dev *hdev = container_of(work, struct hci_dev,
2981                                             le_scan_restart.work);
2982         struct hci_request req;
2983         struct hci_cp_le_set_scan_enable cp;
2984         int err;
2985
2986         BT_DBG("%s", hdev->name);
2987
2988         /* If controller is not scanning we are done. */
2989         if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2990                 return;
2991
2992         hci_req_init(&req, hdev);
2993
2994         hci_req_add_le_scan_disable(&req);
2995
2996         memset(&cp, 0, sizeof(cp));
2997         cp.enable = LE_SCAN_ENABLE;
2998         cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2999         hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
3000
3001         err = hci_req_run(&req, le_scan_restart_work_complete);
3002         if (err)
3003                 BT_ERR("Restart LE scan request failed: err %d", err);
3004 }
3005
3006 /* Copy the Identity Address of the controller.
3007  *
3008  * If the controller has a public BD_ADDR, then by default use that one.
3009  * If this is a LE only controller without a public address, default to
3010  * the static random address.
3011  *
3012  * For debugging purposes it is possible to force controllers with a
3013  * public address to use the static random address instead.
3014  *
3015  * In case BR/EDR has been disabled on a dual-mode controller and
3016  * userspace has configured a static address, then that address
3017  * becomes the identity address instead of the public BR/EDR address.
3018  */
3019 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3020                                u8 *bdaddr_type)
3021 {
3022         if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
3023             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3024             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3025              bacmp(&hdev->static_addr, BDADDR_ANY))) {
3026                 bacpy(bdaddr, &hdev->static_addr);
3027                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3028         } else {
3029                 bacpy(bdaddr, &hdev->bdaddr);
3030                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3031         }
3032 }
3033
3034 /* Alloc HCI device */
3035 struct hci_dev *hci_alloc_dev(void)
3036 {
3037         struct hci_dev *hdev;
3038
3039         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3040         if (!hdev)
3041                 return NULL;
3042
3043         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3044         hdev->esco_type = (ESCO_HV1);
3045         hdev->link_mode = (HCI_LM_ACCEPT);
3046         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
3047         hdev->io_capability = 0x03;     /* No Input No Output */
3048         hdev->manufacturer = 0xffff;    /* Default to internal use */
3049         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3050         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3051
3052         hdev->sniff_max_interval = 800;
3053         hdev->sniff_min_interval = 80;
3054
3055         hdev->le_adv_channel_map = 0x07;
3056         hdev->le_adv_min_interval = 0x0800;
3057         hdev->le_adv_max_interval = 0x0800;
3058         hdev->le_scan_interval = 0x0060;
3059         hdev->le_scan_window = 0x0030;
3060         hdev->le_conn_min_interval = 0x0028;
3061         hdev->le_conn_max_interval = 0x0038;
3062         hdev->le_conn_latency = 0x0000;
3063         hdev->le_supv_timeout = 0x002a;
3064         hdev->le_def_tx_len = 0x001b;
3065         hdev->le_def_tx_time = 0x0148;
3066         hdev->le_max_tx_len = 0x001b;
3067         hdev->le_max_tx_time = 0x0148;
3068         hdev->le_max_rx_len = 0x001b;
3069         hdev->le_max_rx_time = 0x0148;
3070
3071         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3072         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3073         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3074         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3075
3076         mutex_init(&hdev->lock);
3077         mutex_init(&hdev->req_lock);
3078
3079         INIT_LIST_HEAD(&hdev->mgmt_pending);
3080         INIT_LIST_HEAD(&hdev->blacklist);
3081         INIT_LIST_HEAD(&hdev->whitelist);
3082         INIT_LIST_HEAD(&hdev->uuids);
3083         INIT_LIST_HEAD(&hdev->link_keys);
3084         INIT_LIST_HEAD(&hdev->long_term_keys);
3085         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3086         INIT_LIST_HEAD(&hdev->remote_oob_data);
3087         INIT_LIST_HEAD(&hdev->le_white_list);
3088         INIT_LIST_HEAD(&hdev->le_conn_params);
3089         INIT_LIST_HEAD(&hdev->pend_le_conns);
3090         INIT_LIST_HEAD(&hdev->pend_le_reports);
3091         INIT_LIST_HEAD(&hdev->conn_hash.list);
3092
3093         INIT_WORK(&hdev->rx_work, hci_rx_work);
3094         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3095         INIT_WORK(&hdev->tx_work, hci_tx_work);
3096         INIT_WORK(&hdev->power_on, hci_power_on);
3097         INIT_WORK(&hdev->error_reset, hci_error_reset);
3098
3099         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3100         INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3101         INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3102         INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3103
3104         skb_queue_head_init(&hdev->rx_q);
3105         skb_queue_head_init(&hdev->cmd_q);
3106         skb_queue_head_init(&hdev->raw_q);
3107
3108         init_waitqueue_head(&hdev->req_wait_q);
3109
3110         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3111
3112         hci_init_sysfs(hdev);
3113         discovery_init(hdev);
3114
3115         return hdev;
3116 }
3117 EXPORT_SYMBOL(hci_alloc_dev);
3118
3119 /* Free HCI device */
3120 void hci_free_dev(struct hci_dev *hdev)
3121 {
3122         /* will free via device release */
3123         put_device(&hdev->dev);
3124 }
3125 EXPORT_SYMBOL(hci_free_dev);
3126
3127 /* Register HCI device */
3128 int hci_register_dev(struct hci_dev *hdev)
3129 {
3130         int id, error;
3131
3132         if (!hdev->open || !hdev->close || !hdev->send)
3133                 return -EINVAL;
3134
3135         /* Do not allow HCI_AMP devices to register at index 0,
3136          * so the index can be used as the AMP controller ID.
3137          */
3138         switch (hdev->dev_type) {
3139         case HCI_BREDR:
3140                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3141                 break;
3142         case HCI_AMP:
3143                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3144                 break;
3145         default:
3146                 return -EINVAL;
3147         }
3148
3149         if (id < 0)
3150                 return id;
3151
3152         sprintf(hdev->name, "hci%d", id);
3153         hdev->id = id;
3154
3155         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3156
3157         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3158                                           WQ_MEM_RECLAIM, 1, hdev->name);
3159         if (!hdev->workqueue) {
3160                 error = -ENOMEM;
3161                 goto err;
3162         }
3163
3164         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3165                                               WQ_MEM_RECLAIM, 1, hdev->name);
3166         if (!hdev->req_workqueue) {
3167                 destroy_workqueue(hdev->workqueue);
3168                 error = -ENOMEM;
3169                 goto err;
3170         }
3171
3172         if (!IS_ERR_OR_NULL(bt_debugfs))
3173                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3174
3175         dev_set_name(&hdev->dev, "%s", hdev->name);
3176
3177         error = device_add(&hdev->dev);
3178         if (error < 0)
3179                 goto err_wqueue;
3180
3181         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3182                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3183                                     hdev);
3184         if (hdev->rfkill) {
3185                 if (rfkill_register(hdev->rfkill) < 0) {
3186                         rfkill_destroy(hdev->rfkill);
3187                         hdev->rfkill = NULL;
3188                 }
3189         }
3190
3191         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3192                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3193
3194         hci_dev_set_flag(hdev, HCI_SETUP);
3195         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3196
3197         if (hdev->dev_type == HCI_BREDR) {
3198                 /* Assume BR/EDR support until proven otherwise (such as
3199                  * through reading supported features during init.
3200                  */
3201                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3202         }
3203
3204         write_lock(&hci_dev_list_lock);
3205         list_add(&hdev->list, &hci_dev_list);
3206         write_unlock(&hci_dev_list_lock);
3207
3208         /* Devices that are marked for raw-only usage are unconfigured
3209          * and should not be included in normal operation.
3210          */
3211         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3212                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3213
3214         hci_notify(hdev, HCI_DEV_REG);
3215         hci_dev_hold(hdev);
3216
3217         queue_work(hdev->req_workqueue, &hdev->power_on);
3218
3219         return id;
3220
3221 err_wqueue:
3222         destroy_workqueue(hdev->workqueue);
3223         destroy_workqueue(hdev->req_workqueue);
3224 err:
3225         ida_simple_remove(&hci_index_ida, hdev->id);
3226
3227         return error;
3228 }
3229 EXPORT_SYMBOL(hci_register_dev);
3230
3231 /* Unregister HCI device */
3232 void hci_unregister_dev(struct hci_dev *hdev)
3233 {
3234         int i, id;
3235
3236         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3237
3238         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3239
3240         id = hdev->id;
3241
3242         write_lock(&hci_dev_list_lock);
3243         list_del(&hdev->list);
3244         write_unlock(&hci_dev_list_lock);
3245
3246         hci_dev_do_close(hdev);
3247
3248         for (i = 0; i < NUM_REASSEMBLY; i++)
3249                 kfree_skb(hdev->reassembly[i]);
3250
3251         cancel_work_sync(&hdev->power_on);
3252
3253         if (!test_bit(HCI_INIT, &hdev->flags) &&
3254             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3255             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3256                 hci_dev_lock(hdev);
3257                 mgmt_index_removed(hdev);
3258                 hci_dev_unlock(hdev);
3259         }
3260
3261         /* mgmt_index_removed should take care of emptying the
3262          * pending list */
3263         BUG_ON(!list_empty(&hdev->mgmt_pending));
3264
3265         hci_notify(hdev, HCI_DEV_UNREG);
3266
3267         if (hdev->rfkill) {
3268                 rfkill_unregister(hdev->rfkill);
3269                 rfkill_destroy(hdev->rfkill);
3270         }
3271
3272         device_del(&hdev->dev);
3273
3274         debugfs_remove_recursive(hdev->debugfs);
3275
3276         destroy_workqueue(hdev->workqueue);
3277         destroy_workqueue(hdev->req_workqueue);
3278
3279         hci_dev_lock(hdev);
3280         hci_bdaddr_list_clear(&hdev->blacklist);
3281         hci_bdaddr_list_clear(&hdev->whitelist);
3282         hci_uuids_clear(hdev);
3283         hci_link_keys_clear(hdev);
3284         hci_smp_ltks_clear(hdev);
3285         hci_smp_irks_clear(hdev);
3286         hci_remote_oob_data_clear(hdev);
3287         hci_bdaddr_list_clear(&hdev->le_white_list);
3288         hci_conn_params_clear_all(hdev);
3289         hci_discovery_filter_clear(hdev);
3290         hci_dev_unlock(hdev);
3291
3292         hci_dev_put(hdev);
3293
3294         ida_simple_remove(&hci_index_ida, id);
3295 }
3296 EXPORT_SYMBOL(hci_unregister_dev);
3297
3298 /* Suspend HCI device */
3299 int hci_suspend_dev(struct hci_dev *hdev)
3300 {
3301         hci_notify(hdev, HCI_DEV_SUSPEND);
3302         return 0;
3303 }
3304 EXPORT_SYMBOL(hci_suspend_dev);
3305
3306 /* Resume HCI device */
3307 int hci_resume_dev(struct hci_dev *hdev)
3308 {
3309         hci_notify(hdev, HCI_DEV_RESUME);
3310         return 0;
3311 }
3312 EXPORT_SYMBOL(hci_resume_dev);
3313
3314 /* Reset HCI device */
3315 int hci_reset_dev(struct hci_dev *hdev)
3316 {
3317         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3318         struct sk_buff *skb;
3319
3320         skb = bt_skb_alloc(3, GFP_ATOMIC);
3321         if (!skb)
3322                 return -ENOMEM;
3323
3324         bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
3325         memcpy(skb_put(skb, 3), hw_err, 3);
3326
3327         /* Send Hardware Error to upper stack */
3328         return hci_recv_frame(hdev, skb);
3329 }
3330 EXPORT_SYMBOL(hci_reset_dev);
3331
3332 /* Receive frame from HCI drivers */
3333 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3334 {
3335         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3336                       && !test_bit(HCI_INIT, &hdev->flags))) {
3337                 kfree_skb(skb);
3338                 return -ENXIO;
3339         }
3340
3341         /* Incoming skb */
3342         bt_cb(skb)->incoming = 1;
3343
3344         /* Time stamp */
3345         __net_timestamp(skb);
3346
3347         skb_queue_tail(&hdev->rx_q, skb);
3348         queue_work(hdev->workqueue, &hdev->rx_work);
3349
3350         return 0;
3351 }
3352 EXPORT_SYMBOL(hci_recv_frame);
3353
3354 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
3355                           int count, __u8 index)
3356 {
3357         int len = 0;
3358         int hlen = 0;
3359         int remain = count;
3360         struct sk_buff *skb;
3361         struct bt_skb_cb *scb;
3362
3363         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
3364             index >= NUM_REASSEMBLY)
3365                 return -EILSEQ;
3366
3367         skb = hdev->reassembly[index];
3368
3369         if (!skb) {
3370                 switch (type) {
3371                 case HCI_ACLDATA_PKT:
3372                         len = HCI_MAX_FRAME_SIZE;
3373                         hlen = HCI_ACL_HDR_SIZE;
3374                         break;
3375                 case HCI_EVENT_PKT:
3376                         len = HCI_MAX_EVENT_SIZE;
3377                         hlen = HCI_EVENT_HDR_SIZE;
3378                         break;
3379                 case HCI_SCODATA_PKT:
3380                         len = HCI_MAX_SCO_SIZE;
3381                         hlen = HCI_SCO_HDR_SIZE;
3382                         break;
3383                 }
3384
3385                 skb = bt_skb_alloc(len, GFP_ATOMIC);
3386                 if (!skb)
3387                         return -ENOMEM;
3388
3389                 scb = (void *) skb->cb;
3390                 scb->expect = hlen;
3391                 scb->pkt_type = type;
3392
3393                 hdev->reassembly[index] = skb;
3394         }
3395
3396         while (count) {
3397                 scb = (void *) skb->cb;
3398                 len = min_t(uint, scb->expect, count);
3399
3400                 memcpy(skb_put(skb, len), data, len);
3401
3402                 count -= len;
3403                 data += len;
3404                 scb->expect -= len;
3405                 remain = count;
3406
3407                 switch (type) {
3408                 case HCI_EVENT_PKT:
3409                         if (skb->len == HCI_EVENT_HDR_SIZE) {
3410                                 struct hci_event_hdr *h = hci_event_hdr(skb);
3411                                 scb->expect = h->plen;
3412
3413                                 if (skb_tailroom(skb) < scb->expect) {
3414                                         kfree_skb(skb);
3415                                         hdev->reassembly[index] = NULL;
3416                                         return -ENOMEM;
3417                                 }
3418                         }
3419                         break;
3420
3421                 case HCI_ACLDATA_PKT:
3422                         if (skb->len  == HCI_ACL_HDR_SIZE) {
3423                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
3424                                 scb->expect = __le16_to_cpu(h->dlen);
3425
3426                                 if (skb_tailroom(skb) < scb->expect) {
3427                                         kfree_skb(skb);
3428                                         hdev->reassembly[index] = NULL;
3429                                         return -ENOMEM;
3430                                 }
3431                         }
3432                         break;
3433
3434                 case HCI_SCODATA_PKT:
3435                         if (skb->len == HCI_SCO_HDR_SIZE) {
3436                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
3437                                 scb->expect = h->dlen;
3438
3439                                 if (skb_tailroom(skb) < scb->expect) {
3440                                         kfree_skb(skb);
3441                                         hdev->reassembly[index] = NULL;
3442                                         return -ENOMEM;
3443                                 }
3444                         }
3445                         break;
3446                 }
3447
3448                 if (scb->expect == 0) {
3449                         /* Complete frame */
3450
3451                         bt_cb(skb)->pkt_type = type;
3452                         hci_recv_frame(hdev, skb);
3453
3454                         hdev->reassembly[index] = NULL;
3455                         return remain;
3456                 }
3457         }
3458
3459         return remain;
3460 }
3461
3462 #define STREAM_REASSEMBLY 0
3463
3464 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
3465 {
3466         int type;
3467         int rem = 0;
3468
3469         while (count) {
3470                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
3471
3472                 if (!skb) {
3473                         struct { char type; } *pkt;
3474
3475                         /* Start of the frame */
3476                         pkt = data;
3477                         type = pkt->type;
3478
3479                         data++;
3480                         count--;
3481                 } else
3482                         type = bt_cb(skb)->pkt_type;
3483
3484                 rem = hci_reassembly(hdev, type, data, count,
3485                                      STREAM_REASSEMBLY);
3486                 if (rem < 0)
3487                         return rem;
3488
3489                 data += (count - rem);
3490                 count = rem;
3491         }
3492
3493         return rem;
3494 }
3495 EXPORT_SYMBOL(hci_recv_stream_fragment);
3496
3497 /* ---- Interface to upper protocols ---- */
3498
3499 int hci_register_cb(struct hci_cb *cb)
3500 {
3501         BT_DBG("%p name %s", cb, cb->name);
3502
3503         mutex_lock(&hci_cb_list_lock);
3504         list_add_tail(&cb->list, &hci_cb_list);
3505         mutex_unlock(&hci_cb_list_lock);
3506
3507         return 0;
3508 }
3509 EXPORT_SYMBOL(hci_register_cb);
3510
3511 int hci_unregister_cb(struct hci_cb *cb)
3512 {
3513         BT_DBG("%p name %s", cb, cb->name);
3514
3515         mutex_lock(&hci_cb_list_lock);
3516         list_del(&cb->list);
3517         mutex_unlock(&hci_cb_list_lock);
3518
3519         return 0;
3520 }
3521 EXPORT_SYMBOL(hci_unregister_cb);
3522
3523 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3524 {
3525         int err;
3526
3527         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
3528
3529         /* Time stamp */
3530         __net_timestamp(skb);
3531
3532         /* Send copy to monitor */
3533         hci_send_to_monitor(hdev, skb);
3534
3535         if (atomic_read(&hdev->promisc)) {
3536                 /* Send copy to the sockets */
3537                 hci_send_to_sock(hdev, skb);
3538         }
3539
3540         /* Get rid of skb owner, prior to sending to the driver. */
3541         skb_orphan(skb);
3542
3543         err = hdev->send(hdev, skb);
3544         if (err < 0) {
3545                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3546                 kfree_skb(skb);
3547         }
3548 }
3549
3550 bool hci_req_pending(struct hci_dev *hdev)
3551 {
3552         return (hdev->req_status == HCI_REQ_PEND);
3553 }
3554
3555 /* Send HCI command */
3556 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3557                  const void *param)
3558 {
3559         struct sk_buff *skb;
3560
3561         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3562
3563         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3564         if (!skb) {
3565                 BT_ERR("%s no memory for command", hdev->name);
3566                 return -ENOMEM;
3567         }
3568
3569         /* Stand-alone HCI commands must be flagged as
3570          * single-command requests.
3571          */
3572         bt_cb(skb)->req_start = 1;
3573
3574         skb_queue_tail(&hdev->cmd_q, skb);
3575         queue_work(hdev->workqueue, &hdev->cmd_work);
3576
3577         return 0;
3578 }
3579
3580 /* Get data from the previously sent command */
3581 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3582 {
3583         struct hci_command_hdr *hdr;
3584
3585         if (!hdev->sent_cmd)
3586                 return NULL;
3587
3588         hdr = (void *) hdev->sent_cmd->data;
3589
3590         if (hdr->opcode != cpu_to_le16(opcode))
3591                 return NULL;
3592
3593         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3594
3595         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3596 }
3597
3598 /* Send ACL data */
3599 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3600 {
3601         struct hci_acl_hdr *hdr;
3602         int len = skb->len;
3603
3604         skb_push(skb, HCI_ACL_HDR_SIZE);
3605         skb_reset_transport_header(skb);
3606         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3607         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3608         hdr->dlen   = cpu_to_le16(len);
3609 }
3610
3611 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3612                           struct sk_buff *skb, __u16 flags)
3613 {
3614         struct hci_conn *conn = chan->conn;
3615         struct hci_dev *hdev = conn->hdev;
3616         struct sk_buff *list;
3617
3618         skb->len = skb_headlen(skb);
3619         skb->data_len = 0;
3620
3621         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3622
3623         switch (hdev->dev_type) {
3624         case HCI_BREDR:
3625                 hci_add_acl_hdr(skb, conn->handle, flags);
3626                 break;
3627         case HCI_AMP:
3628                 hci_add_acl_hdr(skb, chan->handle, flags);
3629                 break;
3630         default:
3631                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3632                 return;
3633         }
3634
3635         list = skb_shinfo(skb)->frag_list;
3636         if (!list) {
3637                 /* Non fragmented */
3638                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3639
3640                 skb_queue_tail(queue, skb);
3641         } else {
3642                 /* Fragmented */
3643                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3644
3645                 skb_shinfo(skb)->frag_list = NULL;
3646
3647                 /* Queue all fragments atomically. We need to use spin_lock_bh
3648                  * here because of 6LoWPAN links, as there this function is
3649                  * called from softirq and using normal spin lock could cause
3650                  * deadlocks.
3651                  */
3652                 spin_lock_bh(&queue->lock);
3653
3654                 __skb_queue_tail(queue, skb);
3655
3656                 flags &= ~ACL_START;
3657                 flags |= ACL_CONT;
3658                 do {
3659                         skb = list; list = list->next;
3660
3661                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3662                         hci_add_acl_hdr(skb, conn->handle, flags);
3663
3664                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3665
3666                         __skb_queue_tail(queue, skb);
3667                 } while (list);
3668
3669                 spin_unlock_bh(&queue->lock);
3670         }
3671 }
3672
3673 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3674 {
3675         struct hci_dev *hdev = chan->conn->hdev;
3676
3677         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3678
3679         hci_queue_acl(chan, &chan->data_q, skb, flags);
3680
3681         queue_work(hdev->workqueue, &hdev->tx_work);
3682 }
3683
3684 /* Send SCO data */
3685 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3686 {
3687         struct hci_dev *hdev = conn->hdev;
3688         struct hci_sco_hdr hdr;
3689
3690         BT_DBG("%s len %d", hdev->name, skb->len);
3691
3692         hdr.handle = cpu_to_le16(conn->handle);
3693         hdr.dlen   = skb->len;
3694
3695         skb_push(skb, HCI_SCO_HDR_SIZE);
3696         skb_reset_transport_header(skb);
3697         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3698
3699         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
3700
3701         skb_queue_tail(&conn->data_q, skb);
3702         queue_work(hdev->workqueue, &hdev->tx_work);
3703 }
3704
3705 /* ---- HCI TX task (outgoing data) ---- */
3706
3707 /* HCI Connection scheduler */
3708 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3709                                      int *quote)
3710 {
3711         struct hci_conn_hash *h = &hdev->conn_hash;
3712         struct hci_conn *conn = NULL, *c;
3713         unsigned int num = 0, min = ~0;
3714
3715         /* We don't have to lock device here. Connections are always
3716          * added and removed with TX task disabled. */
3717
3718         rcu_read_lock();
3719
3720         list_for_each_entry_rcu(c, &h->list, list) {
3721                 if (c->type != type || skb_queue_empty(&c->data_q))
3722                         continue;
3723
3724                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3725                         continue;
3726
3727                 num++;
3728
3729                 if (c->sent < min) {
3730                         min  = c->sent;
3731                         conn = c;
3732                 }
3733
3734                 if (hci_conn_num(hdev, type) == num)
3735                         break;
3736         }
3737
3738         rcu_read_unlock();
3739
3740         if (conn) {
3741                 int cnt, q;
3742
3743                 switch (conn->type) {
3744                 case ACL_LINK:
3745                         cnt = hdev->acl_cnt;
3746                         break;
3747                 case SCO_LINK:
3748                 case ESCO_LINK:
3749                         cnt = hdev->sco_cnt;
3750                         break;
3751                 case LE_LINK:
3752                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3753                         break;
3754                 default:
3755                         cnt = 0;
3756                         BT_ERR("Unknown link type");
3757                 }
3758
3759                 q = cnt / num;
3760                 *quote = q ? q : 1;
3761         } else
3762                 *quote = 0;
3763
3764         BT_DBG("conn %p quote %d", conn, *quote);
3765         return conn;
3766 }
3767
3768 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3769 {
3770         struct hci_conn_hash *h = &hdev->conn_hash;
3771         struct hci_conn *c;
3772
3773         BT_ERR("%s link tx timeout", hdev->name);
3774
3775         rcu_read_lock();
3776
3777         /* Kill stalled connections */
3778         list_for_each_entry_rcu(c, &h->list, list) {
3779                 if (c->type == type && c->sent) {
3780                         BT_ERR("%s killing stalled connection %pMR",
3781                                hdev->name, &c->dst);
3782                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3783                 }
3784         }
3785
3786         rcu_read_unlock();
3787 }
3788
3789 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3790                                       int *quote)
3791 {
3792         struct hci_conn_hash *h = &hdev->conn_hash;
3793         struct hci_chan *chan = NULL;
3794         unsigned int num = 0, min = ~0, cur_prio = 0;
3795         struct hci_conn *conn;
3796         int cnt, q, conn_num = 0;
3797
3798         BT_DBG("%s", hdev->name);
3799
3800         rcu_read_lock();
3801
3802         list_for_each_entry_rcu(conn, &h->list, list) {
3803                 struct hci_chan *tmp;
3804
3805                 if (conn->type != type)
3806                         continue;
3807
3808                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3809                         continue;
3810
3811                 conn_num++;
3812
3813                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3814                         struct sk_buff *skb;
3815
3816                         if (skb_queue_empty(&tmp->data_q))
3817                                 continue;
3818
3819                         skb = skb_peek(&tmp->data_q);
3820                         if (skb->priority < cur_prio)
3821                                 continue;
3822
3823                         if (skb->priority > cur_prio) {
3824                                 num = 0;
3825                                 min = ~0;
3826                                 cur_prio = skb->priority;
3827                         }
3828
3829                         num++;
3830
3831                         if (conn->sent < min) {
3832                                 min  = conn->sent;
3833                                 chan = tmp;
3834                         }
3835                 }
3836
3837                 if (hci_conn_num(hdev, type) == conn_num)
3838                         break;
3839         }
3840
3841         rcu_read_unlock();
3842
3843         if (!chan)
3844                 return NULL;
3845
3846         switch (chan->conn->type) {
3847         case ACL_LINK:
3848                 cnt = hdev->acl_cnt;
3849                 break;
3850         case AMP_LINK:
3851                 cnt = hdev->block_cnt;
3852                 break;
3853         case SCO_LINK:
3854         case ESCO_LINK:
3855                 cnt = hdev->sco_cnt;
3856                 break;
3857         case LE_LINK:
3858                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3859                 break;
3860         default:
3861                 cnt = 0;
3862                 BT_ERR("Unknown link type");
3863         }
3864
3865         q = cnt / num;
3866         *quote = q ? q : 1;
3867         BT_DBG("chan %p quote %d", chan, *quote);
3868         return chan;
3869 }
3870
3871 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3872 {
3873         struct hci_conn_hash *h = &hdev->conn_hash;
3874         struct hci_conn *conn;
3875         int num = 0;
3876
3877         BT_DBG("%s", hdev->name);
3878
3879         rcu_read_lock();
3880
3881         list_for_each_entry_rcu(conn, &h->list, list) {
3882                 struct hci_chan *chan;
3883
3884                 if (conn->type != type)
3885                         continue;
3886
3887                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3888                         continue;
3889
3890                 num++;
3891
3892                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3893                         struct sk_buff *skb;
3894
3895                         if (chan->sent) {
3896                                 chan->sent = 0;
3897                                 continue;
3898                         }
3899
3900                         if (skb_queue_empty(&chan->data_q))
3901                                 continue;
3902
3903                         skb = skb_peek(&chan->data_q);
3904                         if (skb->priority >= HCI_PRIO_MAX - 1)
3905                                 continue;
3906
3907                         skb->priority = HCI_PRIO_MAX - 1;
3908
3909                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3910                                skb->priority);
3911                 }
3912
3913                 if (hci_conn_num(hdev, type) == num)
3914                         break;
3915         }
3916
3917         rcu_read_unlock();
3918
3919 }
3920
3921 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3922 {
3923         /* Calculate count of blocks used by this packet */
3924         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3925 }
3926
3927 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3928 {
3929         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930                 /* ACL tx timeout must be longer than maximum
3931                  * link supervision timeout (40.9 seconds) */
3932                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3933                                        HCI_ACL_TX_TIMEOUT))
3934                         hci_link_tx_to(hdev, ACL_LINK);
3935         }
3936 }
3937
3938 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3939 {
3940         unsigned int cnt = hdev->acl_cnt;
3941         struct hci_chan *chan;
3942         struct sk_buff *skb;
3943         int quote;
3944
3945         __check_timeout(hdev, cnt);
3946
3947         while (hdev->acl_cnt &&
3948                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3949                 u32 priority = (skb_peek(&chan->data_q))->priority;
3950                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3951                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3952                                skb->len, skb->priority);
3953
3954                         /* Stop if priority has changed */
3955                         if (skb->priority < priority)
3956                                 break;
3957
3958                         skb = skb_dequeue(&chan->data_q);
3959
3960                         hci_conn_enter_active_mode(chan->conn,
3961                                                    bt_cb(skb)->force_active);
3962
3963                         hci_send_frame(hdev, skb);
3964                         hdev->acl_last_tx = jiffies;
3965
3966                         hdev->acl_cnt--;
3967                         chan->sent++;
3968                         chan->conn->sent++;
3969                 }
3970         }
3971
3972         if (cnt != hdev->acl_cnt)
3973                 hci_prio_recalculate(hdev, ACL_LINK);
3974 }
3975
3976 static void hci_sched_acl_blk(struct hci_dev *hdev)
3977 {
3978         unsigned int cnt = hdev->block_cnt;
3979         struct hci_chan *chan;
3980         struct sk_buff *skb;
3981         int quote;
3982         u8 type;
3983
3984         __check_timeout(hdev, cnt);
3985
3986         BT_DBG("%s", hdev->name);
3987
3988         if (hdev->dev_type == HCI_AMP)
3989                 type = AMP_LINK;
3990         else
3991                 type = ACL_LINK;
3992
3993         while (hdev->block_cnt > 0 &&
3994                (chan = hci_chan_sent(hdev, type, &quote))) {
3995                 u32 priority = (skb_peek(&chan->data_q))->priority;
3996                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3997                         int blocks;
3998
3999                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4000                                skb->len, skb->priority);
4001
4002                         /* Stop if priority has changed */
4003                         if (skb->priority < priority)
4004                                 break;
4005
4006                         skb = skb_dequeue(&chan->data_q);
4007
4008                         blocks = __get_blocks(hdev, skb);
4009                         if (blocks > hdev->block_cnt)
4010                                 return;
4011
4012                         hci_conn_enter_active_mode(chan->conn,
4013                                                    bt_cb(skb)->force_active);
4014
4015                         hci_send_frame(hdev, skb);
4016                         hdev->acl_last_tx = jiffies;
4017
4018                         hdev->block_cnt -= blocks;
4019                         quote -= blocks;
4020
4021                         chan->sent += blocks;
4022                         chan->conn->sent += blocks;
4023                 }
4024         }
4025
4026         if (cnt != hdev->block_cnt)
4027                 hci_prio_recalculate(hdev, type);
4028 }
4029
4030 static void hci_sched_acl(struct hci_dev *hdev)
4031 {
4032         BT_DBG("%s", hdev->name);
4033
4034         /* No ACL link over BR/EDR controller */
4035         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4036                 return;
4037
4038         /* No AMP link over AMP controller */
4039         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4040                 return;
4041
4042         switch (hdev->flow_ctl_mode) {
4043         case HCI_FLOW_CTL_MODE_PACKET_BASED:
4044                 hci_sched_acl_pkt(hdev);
4045                 break;
4046
4047         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4048                 hci_sched_acl_blk(hdev);
4049                 break;
4050         }
4051 }
4052
4053 /* Schedule SCO */
4054 static void hci_sched_sco(struct hci_dev *hdev)
4055 {
4056         struct hci_conn *conn;
4057         struct sk_buff *skb;
4058         int quote;
4059
4060         BT_DBG("%s", hdev->name);
4061
4062         if (!hci_conn_num(hdev, SCO_LINK))
4063                 return;
4064
4065         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4066                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4067                         BT_DBG("skb %p len %d", skb, skb->len);
4068                         hci_send_frame(hdev, skb);
4069
4070                         conn->sent++;
4071                         if (conn->sent == ~0)
4072                                 conn->sent = 0;
4073                 }
4074         }
4075 }
4076
4077 static void hci_sched_esco(struct hci_dev *hdev)
4078 {
4079         struct hci_conn *conn;
4080         struct sk_buff *skb;
4081         int quote;
4082
4083         BT_DBG("%s", hdev->name);
4084
4085         if (!hci_conn_num(hdev, ESCO_LINK))
4086                 return;
4087
4088         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4089                                                      &quote))) {
4090                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4091                         BT_DBG("skb %p len %d", skb, skb->len);
4092                         hci_send_frame(hdev, skb);
4093
4094                         conn->sent++;
4095                         if (conn->sent == ~0)
4096                                 conn->sent = 0;
4097                 }
4098         }
4099 }
4100
4101 static void hci_sched_le(struct hci_dev *hdev)
4102 {
4103         struct hci_chan *chan;
4104         struct sk_buff *skb;
4105         int quote, cnt, tmp;
4106
4107         BT_DBG("%s", hdev->name);
4108
4109         if (!hci_conn_num(hdev, LE_LINK))
4110                 return;
4111
4112         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4113                 /* LE tx timeout must be longer than maximum
4114                  * link supervision timeout (40.9 seconds) */
4115                 if (!hdev->le_cnt && hdev->le_pkts &&
4116                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
4117                         hci_link_tx_to(hdev, LE_LINK);
4118         }
4119
4120         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4121         tmp = cnt;
4122         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4123                 u32 priority = (skb_peek(&chan->data_q))->priority;
4124                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4125                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4126                                skb->len, skb->priority);
4127
4128                         /* Stop if priority has changed */
4129                         if (skb->priority < priority)
4130                                 break;
4131
4132                         skb = skb_dequeue(&chan->data_q);
4133
4134                         hci_send_frame(hdev, skb);
4135                         hdev->le_last_tx = jiffies;
4136
4137                         cnt--;
4138                         chan->sent++;
4139                         chan->conn->sent++;
4140                 }
4141         }
4142
4143         if (hdev->le_pkts)
4144                 hdev->le_cnt = cnt;
4145         else
4146                 hdev->acl_cnt = cnt;
4147
4148         if (cnt != tmp)
4149                 hci_prio_recalculate(hdev, LE_LINK);
4150 }
4151
4152 static void hci_tx_work(struct work_struct *work)
4153 {
4154         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4155         struct sk_buff *skb;
4156
4157         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4158                hdev->sco_cnt, hdev->le_cnt);
4159
4160         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4161                 /* Schedule queues and send stuff to HCI driver */
4162                 hci_sched_acl(hdev);
4163                 hci_sched_sco(hdev);
4164                 hci_sched_esco(hdev);
4165                 hci_sched_le(hdev);
4166         }
4167
4168         /* Send next queued raw (unknown type) packet */
4169         while ((skb = skb_dequeue(&hdev->raw_q)))
4170                 hci_send_frame(hdev, skb);
4171 }
4172
4173 /* ----- HCI RX task (incoming data processing) ----- */
4174
4175 /* ACL data packet */
4176 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4177 {
4178         struct hci_acl_hdr *hdr = (void *) skb->data;
4179         struct hci_conn *conn;
4180         __u16 handle, flags;
4181
4182         skb_pull(skb, HCI_ACL_HDR_SIZE);
4183
4184         handle = __le16_to_cpu(hdr->handle);
4185         flags  = hci_flags(handle);
4186         handle = hci_handle(handle);
4187
4188         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4189                handle, flags);
4190
4191         hdev->stat.acl_rx++;
4192
4193         hci_dev_lock(hdev);
4194         conn = hci_conn_hash_lookup_handle(hdev, handle);
4195         hci_dev_unlock(hdev);
4196
4197         if (conn) {
4198                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4199
4200                 /* Send to upper protocol */
4201                 l2cap_recv_acldata(conn, skb, flags);
4202                 return;
4203         } else {
4204                 BT_ERR("%s ACL packet for unknown connection handle %d",
4205                        hdev->name, handle);
4206         }
4207
4208         kfree_skb(skb);
4209 }
4210
4211 /* SCO data packet */
4212 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4213 {
4214         struct hci_sco_hdr *hdr = (void *) skb->data;
4215         struct hci_conn *conn;
4216         __u16 handle;
4217
4218         skb_pull(skb, HCI_SCO_HDR_SIZE);
4219
4220         handle = __le16_to_cpu(hdr->handle);
4221
4222         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4223
4224         hdev->stat.sco_rx++;
4225
4226         hci_dev_lock(hdev);
4227         conn = hci_conn_hash_lookup_handle(hdev, handle);
4228         hci_dev_unlock(hdev);
4229
4230         if (conn) {
4231                 /* Send to upper protocol */
4232                 sco_recv_scodata(conn, skb);
4233                 return;
4234         } else {
4235                 BT_ERR("%s SCO packet for unknown connection handle %d",
4236                        hdev->name, handle);
4237         }
4238
4239         kfree_skb(skb);
4240 }
4241
4242 static bool hci_req_is_complete(struct hci_dev *hdev)
4243 {
4244         struct sk_buff *skb;
4245
4246         skb = skb_peek(&hdev->cmd_q);
4247         if (!skb)
4248                 return true;
4249
4250         return bt_cb(skb)->req_start;
4251 }
4252
4253 static void hci_resend_last(struct hci_dev *hdev)
4254 {
4255         struct hci_command_hdr *sent;
4256         struct sk_buff *skb;
4257         u16 opcode;
4258
4259         if (!hdev->sent_cmd)
4260                 return;
4261
4262         sent = (void *) hdev->sent_cmd->data;
4263         opcode = __le16_to_cpu(sent->opcode);
4264         if (opcode == HCI_OP_RESET)
4265                 return;
4266
4267         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4268         if (!skb)
4269                 return;
4270
4271         skb_queue_head(&hdev->cmd_q, skb);
4272         queue_work(hdev->workqueue, &hdev->cmd_work);
4273 }
4274
4275 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
4276 {
4277         hci_req_complete_t req_complete = NULL;
4278         struct sk_buff *skb;
4279         unsigned long flags;
4280
4281         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4282
4283         /* If the completed command doesn't match the last one that was
4284          * sent we need to do special handling of it.
4285          */
4286         if (!hci_sent_cmd_data(hdev, opcode)) {
4287                 /* Some CSR based controllers generate a spontaneous
4288                  * reset complete event during init and any pending
4289                  * command will never be completed. In such a case we
4290                  * need to resend whatever was the last sent
4291                  * command.
4292                  */
4293                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4294                         hci_resend_last(hdev);
4295
4296                 return;
4297         }
4298
4299         /* If the command succeeded and there's still more commands in
4300          * this request the request is not yet complete.
4301          */
4302         if (!status && !hci_req_is_complete(hdev))
4303                 return;
4304
4305         /* If this was the last command in a request the complete
4306          * callback would be found in hdev->sent_cmd instead of the
4307          * command queue (hdev->cmd_q).
4308          */
4309         if (hdev->sent_cmd) {
4310                 req_complete = bt_cb(hdev->sent_cmd)->req_complete;
4311
4312                 if (req_complete) {
4313                         /* We must set the complete callback to NULL to
4314                          * avoid calling the callback more than once if
4315                          * this function gets called again.
4316                          */
4317                         bt_cb(hdev->sent_cmd)->req_complete = NULL;
4318
4319                         goto call_complete;
4320                 }
4321         }
4322
4323         /* Remove all pending commands belonging to this request */
4324         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4325         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4326                 if (bt_cb(skb)->req_start) {
4327                         __skb_queue_head(&hdev->cmd_q, skb);
4328                         break;
4329                 }
4330
4331                 req_complete = bt_cb(skb)->req_complete;
4332                 kfree_skb(skb);
4333         }
4334         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4335
4336 call_complete:
4337         if (req_complete)
4338                 req_complete(hdev, status, status ? opcode : HCI_OP_NOP);
4339 }
4340
4341 static void hci_rx_work(struct work_struct *work)
4342 {
4343         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4344         struct sk_buff *skb;
4345
4346         BT_DBG("%s", hdev->name);
4347
4348         while ((skb = skb_dequeue(&hdev->rx_q))) {
4349                 /* Send copy to monitor */
4350                 hci_send_to_monitor(hdev, skb);
4351
4352                 if (atomic_read(&hdev->promisc)) {
4353                         /* Send copy to the sockets */
4354                         hci_send_to_sock(hdev, skb);
4355                 }
4356
4357                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4358                         kfree_skb(skb);
4359                         continue;
4360                 }
4361
4362                 if (test_bit(HCI_INIT, &hdev->flags)) {
4363                         /* Don't process data packets in this states. */
4364                         switch (bt_cb(skb)->pkt_type) {
4365                         case HCI_ACLDATA_PKT:
4366                         case HCI_SCODATA_PKT:
4367                                 kfree_skb(skb);
4368                                 continue;
4369                         }
4370                 }
4371
4372                 /* Process frame */
4373                 switch (bt_cb(skb)->pkt_type) {
4374                 case HCI_EVENT_PKT:
4375                         BT_DBG("%s Event packet", hdev->name);
4376                         hci_event_packet(hdev, skb);
4377                         break;
4378
4379                 case HCI_ACLDATA_PKT:
4380                         BT_DBG("%s ACL data packet", hdev->name);
4381                         hci_acldata_packet(hdev, skb);
4382                         break;
4383
4384                 case HCI_SCODATA_PKT:
4385                         BT_DBG("%s SCO data packet", hdev->name);
4386                         hci_scodata_packet(hdev, skb);
4387                         break;
4388
4389                 default:
4390                         kfree_skb(skb);
4391                         break;
4392                 }
4393         }
4394 }
4395
4396 static void hci_cmd_work(struct work_struct *work)
4397 {
4398         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4399         struct sk_buff *skb;
4400
4401         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4402                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4403
4404         /* Send queued commands */
4405         if (atomic_read(&hdev->cmd_cnt)) {
4406                 skb = skb_dequeue(&hdev->cmd_q);
4407                 if (!skb)
4408                         return;
4409
4410                 kfree_skb(hdev->sent_cmd);
4411
4412                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4413                 if (hdev->sent_cmd) {
4414                         atomic_dec(&hdev->cmd_cnt);
4415                         hci_send_frame(hdev, skb);
4416                         if (test_bit(HCI_RESET, &hdev->flags))
4417                                 cancel_delayed_work(&hdev->cmd_timer);
4418                         else
4419                                 schedule_delayed_work(&hdev->cmd_timer,
4420                                                       HCI_CMD_TIMEOUT);
4421                 } else {
4422                         skb_queue_head(&hdev->cmd_q, skb);
4423                         queue_work(hdev->workqueue, &hdev->cmd_work);
4424                 }
4425         }
4426 }