24c5eea8c45bb1233edfad141baf6a6391e023c6
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94                                        * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE   1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page;          /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135         int i;
136         char *s;
137         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141         s = addr_str[i];
142
143         switch (ss->ss_family) {
144         case AF_INET:
145                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146                          ntohs(in4->sin_port));
147                 break;
148
149         case AF_INET6:
150                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151                          ntohs(in6->sin6_port));
152                 break;
153
154         default:
155                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156                          ss->ss_family);
157         }
158
159         return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166         ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176         if (ceph_msgr_wq) {
177                 destroy_workqueue(ceph_msgr_wq);
178                 ceph_msgr_wq = NULL;
179         }
180
181         BUG_ON(zero_page == NULL);
182         kunmap(zero_page);
183         page_cache_release(zero_page);
184         zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189         BUG_ON(zero_page != NULL);
190         zero_page = ZERO_PAGE(0);
191         page_cache_get(zero_page);
192
193         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194         if (ceph_msgr_wq)
195                 return 0;
196
197         pr_err("msgr_init failed to create workqueue\n");
198         _ceph_msgr_exit();
199
200         return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206         BUG_ON(ceph_msgr_wq == NULL);
207
208         _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214         flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222         int old_state;
223
224         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226                 printk("%s: unexpected old state %d\n", __func__, old_state);
227         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228              CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233         int old_state;
234
235         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237                 printk("%s: unexpected old state %d\n", __func__, old_state);
238         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239              CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244         int old_state;
245
246         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248                 printk("%s: unexpected old state %d\n", __func__, old_state);
249         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250              CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255         int old_state;
256
257         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259                         old_state != CON_SOCK_STATE_CONNECTED &&
260                         old_state != CON_SOCK_STATE_CLOSING))
261                 printk("%s: unexpected old state %d\n", __func__, old_state);
262         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263              CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268         int old_state;
269
270         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272                     old_state != CON_SOCK_STATE_CLOSING &&
273                     old_state != CON_SOCK_STATE_CONNECTING &&
274                     old_state != CON_SOCK_STATE_CLOSED))
275                 printk("%s: unexpected old state %d\n", __func__, old_state);
276         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277              CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281  * socket callback functions
282  */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287         struct ceph_connection *con = sk->sk_user_data;
288         if (atomic_read(&con->msgr->stopping)) {
289                 return;
290         }
291
292         if (sk->sk_state != TCP_CLOSE_WAIT) {
293                 dout("%s on %p state = %lu, queueing work\n", __func__,
294                      con, con->state);
295                 queue_con(con);
296         }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302         struct ceph_connection *con = sk->sk_user_data;
303
304         /* only queue to workqueue if there is data we want to write,
305          * and there is sufficient space in the socket buffer to accept
306          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307          * doesn't get called again until try_write() fills the socket
308          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309          * and net/core/stream.c:sk_stream_write_space().
310          */
311         if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313                         dout("%s %p queueing write work\n", __func__, con);
314                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315                         queue_con(con);
316                 }
317         } else {
318                 dout("%s %p nothing to write\n", __func__, con);
319         }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325         struct ceph_connection *con = sk->sk_user_data;
326
327         dout("%s %p state = %lu sk_state = %u\n", __func__,
328              con, con->state, sk->sk_state);
329
330         switch (sk->sk_state) {
331         case TCP_CLOSE:
332                 dout("%s TCP_CLOSE\n", __func__);
333         case TCP_CLOSE_WAIT:
334                 dout("%s TCP_CLOSE_WAIT\n", __func__);
335                 con_sock_state_closing(con);
336                 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337                 queue_con(con);
338                 break;
339         case TCP_ESTABLISHED:
340                 dout("%s TCP_ESTABLISHED\n", __func__);
341                 con_sock_state_connected(con);
342                 queue_con(con);
343                 break;
344         default:        /* Everything else is uninteresting */
345                 break;
346         }
347 }
348
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353                                struct ceph_connection *con)
354 {
355         struct sock *sk = sock->sk;
356         sk->sk_user_data = con;
357         sk->sk_data_ready = ceph_sock_data_ready;
358         sk->sk_write_space = ceph_sock_write_space;
359         sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364  * socket helpers
365  */
366
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373         struct socket *sock;
374         int ret;
375
376         BUG_ON(con->sock);
377         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378                                IPPROTO_TCP, &sock);
379         if (ret)
380                 return ret;
381         sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387         set_sock_callbacks(sock, con);
388
389         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391         con_sock_state_connecting(con);
392         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393                                  O_NONBLOCK);
394         if (ret == -EINPROGRESS) {
395                 dout("connect %s EINPROGRESS sk_state = %u\n",
396                      ceph_pr_addr(&con->peer_addr.in_addr),
397                      sock->sk->sk_state);
398         } else if (ret < 0) {
399                 pr_err("connect %s error %d\n",
400                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
401                 sock_release(sock);
402                 con->error_msg = "connect error";
403
404                 return ret;
405         }
406         con->sock = sock;
407         return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412         struct kvec iov = {buf, len};
413         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414         int r;
415
416         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417         if (r == -EAGAIN)
418                 r = 0;
419         return r;
420 }
421
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427                      size_t kvlen, size_t len, int more)
428 {
429         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430         int r;
431
432         if (more)
433                 msg.msg_flags |= MSG_MORE;
434         else
435                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436
437         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438         if (r == -EAGAIN)
439                 r = 0;
440         return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444                      int offset, size_t size, int more)
445 {
446         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447         int ret;
448
449         ret = kernel_sendpage(sock, page, offset, size, flags);
450         if (ret == -EAGAIN)
451                 ret = 0;
452
453         return ret;
454 }
455
456
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462         int rc = 0;
463
464         dout("con_close_socket on %p sock %p\n", con, con->sock);
465         if (con->sock) {
466                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467                 sock_release(con->sock);
468                 con->sock = NULL;
469         }
470
471         /*
472          * Forcibly clear the SOCK_CLOSED flag.  It gets set
473          * independent of the connection mutex, and we could have
474          * received a socket close event before we had the chance to
475          * shut the socket down.
476          */
477         clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479         con_sock_state_closed(con);
480         return rc;
481 }
482
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489         list_del_init(&msg->list_head);
490         BUG_ON(msg->con == NULL);
491         msg->con->ops->put(msg->con);
492         msg->con = NULL;
493
494         ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498         while (!list_empty(head)) {
499                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500                                                         list_head);
501                 ceph_msg_remove(msg);
502         }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507         /* reset connection, out_queue, msg_ and connect_seq */
508         /* discard existing out_queue and msg_seq */
509         ceph_msg_remove_list(&con->out_queue);
510         ceph_msg_remove_list(&con->out_sent);
511
512         if (con->in_msg) {
513                 BUG_ON(con->in_msg->con != con);
514                 con->in_msg->con = NULL;
515                 ceph_msg_put(con->in_msg);
516                 con->in_msg = NULL;
517                 con->ops->put(con);
518         }
519
520         con->connect_seq = 0;
521         con->out_seq = 0;
522         if (con->out_msg) {
523                 ceph_msg_put(con->out_msg);
524                 con->out_msg = NULL;
525         }
526         con->in_seq = 0;
527         con->in_seq_acked = 0;
528 }
529
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535         mutex_lock(&con->mutex);
536         dout("con_close %p peer %s\n", con,
537              ceph_pr_addr(&con->peer_addr.in_addr));
538         con->state = CON_STATE_CLOSED;
539
540         clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544         clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546         reset_connection(con);
547         con->peer_global_seq = 0;
548         cancel_delayed_work(&con->work);
549         con_close_socket(con);
550         mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558                    __u8 entity_type, __u64 entity_num,
559                    struct ceph_entity_addr *addr)
560 {
561         mutex_lock(&con->mutex);
562         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564         BUG_ON(con->state != CON_STATE_CLOSED);
565         con->state = CON_STATE_PREOPEN;
566
567         con->peer_name.type = (__u8) entity_type;
568         con->peer_name.num = cpu_to_le64(entity_num);
569
570         memcpy(&con->peer_addr, addr, sizeof(*addr));
571         con->delay = 0;      /* reset backoff memory */
572         mutex_unlock(&con->mutex);
573         queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582         return con->connect_seq > 0;
583 }
584
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589         const struct ceph_connection_operations *ops,
590         struct ceph_messenger *msgr)
591 {
592         dout("con_init %p\n", con);
593         memset(con, 0, sizeof(*con));
594         con->private = private;
595         con->ops = ops;
596         con->msgr = msgr;
597
598         con_sock_state_init(con);
599
600         mutex_init(&con->mutex);
601         INIT_LIST_HEAD(&con->out_queue);
602         INIT_LIST_HEAD(&con->out_sent);
603         INIT_DELAYED_WORK(&con->work, con_work);
604
605         con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616         u32 ret;
617
618         spin_lock(&msgr->global_seq_lock);
619         if (msgr->global_seq < gt)
620                 msgr->global_seq = gt;
621         ret = ++msgr->global_seq;
622         spin_unlock(&msgr->global_seq_lock);
623         return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628         con->out_kvec_left = 0;
629         con->out_kvec_bytes = 0;
630         con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634                                 size_t size, void *data)
635 {
636         int index;
637
638         index = con->out_kvec_left;
639         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641         con->out_kvec[index].iov_len = size;
642         con->out_kvec[index].iov_base = data;
643         con->out_kvec_left++;
644         con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650         if (!bio) {
651                 *iter = NULL;
652                 *seg = 0;
653                 return;
654         }
655         *iter = bio;
656         *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661         if (*bio_iter == NULL)
662                 return;
663
664         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666         (*seg)++;
667         if (*seg == (*bio_iter)->bi_vcnt)
668                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674         struct ceph_msg *msg = con->out_msg;
675
676         BUG_ON(!msg);
677         BUG_ON(!msg->hdr.data_len);
678
679         /* initialize page iterator */
680         con->out_msg_pos.page = 0;
681         if (msg->pages)
682                 con->out_msg_pos.page_pos = msg->page_alignment;
683         else
684                 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686         if (msg->bio)
687                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689         con->out_msg_pos.data_pos = 0;
690         con->out_msg_pos.did_page_crc = false;
691         con->out_more = 1;  /* data + footer will follow */
692 }
693
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700         struct ceph_msg *m = con->out_msg;
701         int v = con->out_kvec_left;
702
703         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705         dout("prepare_write_message_footer %p\n", con);
706         con->out_kvec_is_msg = true;
707         con->out_kvec[v].iov_base = &m->footer;
708         con->out_kvec[v].iov_len = sizeof(m->footer);
709         con->out_kvec_bytes += sizeof(m->footer);
710         con->out_kvec_left++;
711         con->out_more = m->more_to_follow;
712         con->out_msg_done = true;
713 }
714
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720         struct ceph_msg *m;
721         u32 crc;
722
723         con_out_kvec_reset(con);
724         con->out_kvec_is_msg = true;
725         con->out_msg_done = false;
726
727         /* Sneak an ack in there first?  If we can get it into the same
728          * TCP packet that's a good thing. */
729         if (con->in_seq > con->in_seq_acked) {
730                 con->in_seq_acked = con->in_seq;
731                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734                         &con->out_temp_ack);
735         }
736
737         BUG_ON(list_empty(&con->out_queue));
738         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739         con->out_msg = m;
740         BUG_ON(m->con != con);
741
742         /* put message on sent list */
743         ceph_msg_get(m);
744         list_move_tail(&m->list_head, &con->out_sent);
745
746         /*
747          * only assign outgoing seq # if we haven't sent this message
748          * yet.  if it is requeued, resend with it's original seq.
749          */
750         if (m->needs_out_seq) {
751                 m->hdr.seq = cpu_to_le64(++con->out_seq);
752                 m->needs_out_seq = false;
753         }
754 #ifdef CONFIG_BLOCK
755         else
756                 m->bio_iter = NULL;
757 #endif
758
759         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760              m, con->out_seq, le16_to_cpu(m->hdr.type),
761              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762              le32_to_cpu(m->hdr.data_len),
763              m->nr_pages);
764         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765
766         /* tag + hdr + front + middle */
767         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770
771         if (m->middle)
772                 con_out_kvec_add(con, m->middle->vec.iov_len,
773                         m->middle->vec.iov_base);
774
775         /* fill in crc (except data pages), footer */
776         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777         con->out_msg->hdr.crc = cpu_to_le32(crc);
778         con->out_msg->footer.flags = 0;
779
780         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781         con->out_msg->footer.front_crc = cpu_to_le32(crc);
782         if (m->middle) {
783                 crc = crc32c(0, m->middle->vec.iov_base,
784                                 m->middle->vec.iov_len);
785                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786         } else
787                 con->out_msg->footer.middle_crc = 0;
788         dout("%s front_crc %u middle_crc %u\n", __func__,
789              le32_to_cpu(con->out_msg->footer.front_crc),
790              le32_to_cpu(con->out_msg->footer.middle_crc));
791
792         /* is there a data payload? */
793         con->out_msg->footer.data_crc = 0;
794         if (m->hdr.data_len)
795                 prepare_write_message_data(con);
796         else
797                 /* no, queue up footer too and be done */
798                 prepare_write_message_footer(con);
799
800         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808         dout("prepare_write_ack %p %llu -> %llu\n", con,
809              con->in_seq_acked, con->in_seq);
810         con->in_seq_acked = con->in_seq;
811
812         con_out_kvec_reset(con);
813
814         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815
816         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817         con_out_kvec_add(con, sizeof (con->out_temp_ack),
818                                 &con->out_temp_ack);
819
820         con->out_more = 1;  /* more will follow.. eventually.. */
821         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829         dout("prepare_write_keepalive %p\n", con);
830         con_out_kvec_reset(con);
831         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834
835 /*
836  * Connection negotiation.
837  */
838
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840                                                 int *auth_proto)
841 {
842         struct ceph_auth_handshake *auth;
843
844         if (!con->ops->get_authorizer) {
845                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846                 con->out_connect.authorizer_len = 0;
847                 return NULL;
848         }
849
850         /* Can't hold the mutex while getting authorizer */
851         mutex_unlock(&con->mutex);
852         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853         mutex_lock(&con->mutex);
854
855         if (IS_ERR(auth))
856                 return auth;
857         if (con->state != CON_STATE_NEGOTIATING)
858                 return ERR_PTR(-EAGAIN);
859
860         con->auth_reply_buf = auth->authorizer_reply_buf;
861         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862         return auth;
863 }
864
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872                                         &con->msgr->my_enc_addr);
873
874         con->out_more = 0;
875         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880         unsigned int global_seq = get_global_seq(con->msgr, 0);
881         int proto;
882         int auth_proto;
883         struct ceph_auth_handshake *auth;
884
885         switch (con->peer_name.type) {
886         case CEPH_ENTITY_TYPE_MON:
887                 proto = CEPH_MONC_PROTOCOL;
888                 break;
889         case CEPH_ENTITY_TYPE_OSD:
890                 proto = CEPH_OSDC_PROTOCOL;
891                 break;
892         case CEPH_ENTITY_TYPE_MDS:
893                 proto = CEPH_MDSC_PROTOCOL;
894                 break;
895         default:
896                 BUG();
897         }
898
899         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900              con->connect_seq, global_seq, proto);
901
902         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905         con->out_connect.global_seq = cpu_to_le32(global_seq);
906         con->out_connect.protocol_version = cpu_to_le32(proto);
907         con->out_connect.flags = 0;
908
909         auth_proto = CEPH_AUTH_UNKNOWN;
910         auth = get_connect_authorizer(con, &auth_proto);
911         if (IS_ERR(auth))
912                 return PTR_ERR(auth);
913
914         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915         con->out_connect.authorizer_len = auth ?
916                 cpu_to_le32(auth->authorizer_buf_len) : 0;
917
918         con_out_kvec_add(con, sizeof (con->out_connect),
919                                         &con->out_connect);
920         if (auth && auth->authorizer_buf_len)
921                 con_out_kvec_add(con, auth->authorizer_buf_len,
922                                         auth->authorizer_buf);
923
924         con->out_more = 0;
925         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
926
927         return 0;
928 }
929
930 /*
931  * write as much of pending kvecs to the socket as we can.
932  *  1 -> done
933  *  0 -> socket full, but more to do
934  * <0 -> error
935  */
936 static int write_partial_kvec(struct ceph_connection *con)
937 {
938         int ret;
939
940         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941         while (con->out_kvec_bytes > 0) {
942                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943                                        con->out_kvec_left, con->out_kvec_bytes,
944                                        con->out_more);
945                 if (ret <= 0)
946                         goto out;
947                 con->out_kvec_bytes -= ret;
948                 if (con->out_kvec_bytes == 0)
949                         break;            /* done */
950
951                 /* account for full iov entries consumed */
952                 while (ret >= con->out_kvec_cur->iov_len) {
953                         BUG_ON(!con->out_kvec_left);
954                         ret -= con->out_kvec_cur->iov_len;
955                         con->out_kvec_cur++;
956                         con->out_kvec_left--;
957                 }
958                 /* and for a partially-consumed entry */
959                 if (ret) {
960                         con->out_kvec_cur->iov_len -= ret;
961                         con->out_kvec_cur->iov_base += ret;
962                 }
963         }
964         con->out_kvec_left = 0;
965         con->out_kvec_is_msg = false;
966         ret = 1;
967 out:
968         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969              con->out_kvec_bytes, con->out_kvec_left, ret);
970         return ret;  /* done! */
971 }
972
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974                         size_t len, size_t sent, bool in_trail)
975 {
976         struct ceph_msg *msg = con->out_msg;
977
978         BUG_ON(!msg);
979         BUG_ON(!sent);
980
981         con->out_msg_pos.data_pos += sent;
982         con->out_msg_pos.page_pos += sent;
983         if (sent < len)
984                 return;
985
986         BUG_ON(sent != len);
987         con->out_msg_pos.page_pos = 0;
988         con->out_msg_pos.page++;
989         con->out_msg_pos.did_page_crc = false;
990         if (in_trail)
991                 list_move_tail(&page->lru,
992                                &msg->trail->head);
993         else if (msg->pagelist)
994                 list_move_tail(&page->lru,
995                                &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997         else if (msg->bio)
998                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1000 }
1001
1002 /*
1003  * Write as much message data payload as we can.  If we finish, queue
1004  * up the footer.
1005  *  1 -> done, footer is now queued in out_kvec[].
1006  *  0 -> socket full, but more to do
1007  * <0 -> error
1008  */
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1010 {
1011         struct ceph_msg *msg = con->out_msg;
1012         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013         size_t len;
1014         bool do_datacrc = !con->msgr->nocrc;
1015         int ret;
1016         int total_max_write;
1017         bool in_trail = false;
1018         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019         const size_t trail_off = data_len - trail_len;
1020
1021         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022              con, msg, con->out_msg_pos.page, msg->nr_pages,
1023              con->out_msg_pos.page_pos);
1024
1025         /*
1026          * Iterate through each page that contains data to be
1027          * written, and send as much as possible for each.
1028          *
1029          * If we are calculating the data crc (the default), we will
1030          * need to map the page.  If we have no pages, they have
1031          * been revoked, so use the zero page.
1032          */
1033         while (data_len > con->out_msg_pos.data_pos) {
1034                 struct page *page = NULL;
1035                 int max_write = PAGE_SIZE;
1036                 int bio_offset = 0;
1037
1038                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039                 if (!in_trail)
1040                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1041
1042                 if (in_trail) {
1043                         total_max_write = data_len - con->out_msg_pos.data_pos;
1044
1045                         page = list_first_entry(&msg->trail->head,
1046                                                 struct page, lru);
1047                 } else if (msg->pages) {
1048                         page = msg->pages[con->out_msg_pos.page];
1049                 } else if (msg->pagelist) {
1050                         page = list_first_entry(&msg->pagelist->head,
1051                                                 struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053                 } else if (msg->bio) {
1054                         struct bio_vec *bv;
1055
1056                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057                         page = bv->bv_page;
1058                         bio_offset = bv->bv_offset;
1059                         max_write = bv->bv_len;
1060 #endif
1061                 } else {
1062                         page = zero_page;
1063                 }
1064                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065                             total_max_write);
1066
1067                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068                         void *base;
1069                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1070                         char *kaddr;
1071
1072                         kaddr = kmap(page);
1073                         BUG_ON(kaddr == NULL);
1074                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075                         crc = crc32c(crc, base, len);
1076                         msg->footer.data_crc = cpu_to_le32(crc);
1077                         con->out_msg_pos.did_page_crc = true;
1078                 }
1079                 ret = ceph_tcp_sendpage(con->sock, page,
1080                                       con->out_msg_pos.page_pos + bio_offset,
1081                                       len, 1);
1082
1083                 if (do_datacrc)
1084                         kunmap(page);
1085
1086                 if (ret <= 0)
1087                         goto out;
1088
1089                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1090         }
1091
1092         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1093
1094         /* prepare and queue up footer, too */
1095         if (!do_datacrc)
1096                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1097         con_out_kvec_reset(con);
1098         prepare_write_message_footer(con);
1099         ret = 1;
1100 out:
1101         return ret;
1102 }
1103
1104 /*
1105  * write some zeros
1106  */
1107 static int write_partial_skip(struct ceph_connection *con)
1108 {
1109         int ret;
1110
1111         while (con->out_skip > 0) {
1112                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1113
1114                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1115                 if (ret <= 0)
1116                         goto out;
1117                 con->out_skip -= ret;
1118         }
1119         ret = 1;
1120 out:
1121         return ret;
1122 }
1123
1124 /*
1125  * Prepare to read connection handshake, or an ack.
1126  */
1127 static void prepare_read_banner(struct ceph_connection *con)
1128 {
1129         dout("prepare_read_banner %p\n", con);
1130         con->in_base_pos = 0;
1131 }
1132
1133 static void prepare_read_connect(struct ceph_connection *con)
1134 {
1135         dout("prepare_read_connect %p\n", con);
1136         con->in_base_pos = 0;
1137 }
1138
1139 static void prepare_read_ack(struct ceph_connection *con)
1140 {
1141         dout("prepare_read_ack %p\n", con);
1142         con->in_base_pos = 0;
1143 }
1144
1145 static void prepare_read_tag(struct ceph_connection *con)
1146 {
1147         dout("prepare_read_tag %p\n", con);
1148         con->in_base_pos = 0;
1149         con->in_tag = CEPH_MSGR_TAG_READY;
1150 }
1151
1152 /*
1153  * Prepare to read a message.
1154  */
1155 static int prepare_read_message(struct ceph_connection *con)
1156 {
1157         dout("prepare_read_message %p\n", con);
1158         BUG_ON(con->in_msg != NULL);
1159         con->in_base_pos = 0;
1160         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1161         return 0;
1162 }
1163
1164
1165 static int read_partial(struct ceph_connection *con,
1166                         int end, int size, void *object)
1167 {
1168         while (con->in_base_pos < end) {
1169                 int left = end - con->in_base_pos;
1170                 int have = size - left;
1171                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1172                 if (ret <= 0)
1173                         return ret;
1174                 con->in_base_pos += ret;
1175         }
1176         return 1;
1177 }
1178
1179
1180 /*
1181  * Read all or part of the connect-side handshake on a new connection
1182  */
1183 static int read_partial_banner(struct ceph_connection *con)
1184 {
1185         int size;
1186         int end;
1187         int ret;
1188
1189         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1190
1191         /* peer's banner */
1192         size = strlen(CEPH_BANNER);
1193         end = size;
1194         ret = read_partial(con, end, size, con->in_banner);
1195         if (ret <= 0)
1196                 goto out;
1197
1198         size = sizeof (con->actual_peer_addr);
1199         end += size;
1200         ret = read_partial(con, end, size, &con->actual_peer_addr);
1201         if (ret <= 0)
1202                 goto out;
1203
1204         size = sizeof (con->peer_addr_for_me);
1205         end += size;
1206         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1207         if (ret <= 0)
1208                 goto out;
1209
1210 out:
1211         return ret;
1212 }
1213
1214 static int read_partial_connect(struct ceph_connection *con)
1215 {
1216         int size;
1217         int end;
1218         int ret;
1219
1220         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1221
1222         size = sizeof (con->in_reply);
1223         end = size;
1224         ret = read_partial(con, end, size, &con->in_reply);
1225         if (ret <= 0)
1226                 goto out;
1227
1228         size = le32_to_cpu(con->in_reply.authorizer_len);
1229         end += size;
1230         ret = read_partial(con, end, size, con->auth_reply_buf);
1231         if (ret <= 0)
1232                 goto out;
1233
1234         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1235              con, (int)con->in_reply.tag,
1236              le32_to_cpu(con->in_reply.connect_seq),
1237              le32_to_cpu(con->in_reply.global_seq));
1238 out:
1239         return ret;
1240
1241 }
1242
1243 /*
1244  * Verify the hello banner looks okay.
1245  */
1246 static int verify_hello(struct ceph_connection *con)
1247 {
1248         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1249                 pr_err("connect to %s got bad banner\n",
1250                        ceph_pr_addr(&con->peer_addr.in_addr));
1251                 con->error_msg = "protocol error, bad banner";
1252                 return -1;
1253         }
1254         return 0;
1255 }
1256
1257 static bool addr_is_blank(struct sockaddr_storage *ss)
1258 {
1259         switch (ss->ss_family) {
1260         case AF_INET:
1261                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1262         case AF_INET6:
1263                 return
1264                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1265                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1266                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1267                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1268         }
1269         return false;
1270 }
1271
1272 static int addr_port(struct sockaddr_storage *ss)
1273 {
1274         switch (ss->ss_family) {
1275         case AF_INET:
1276                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1277         case AF_INET6:
1278                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1279         }
1280         return 0;
1281 }
1282
1283 static void addr_set_port(struct sockaddr_storage *ss, int p)
1284 {
1285         switch (ss->ss_family) {
1286         case AF_INET:
1287                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1288                 break;
1289         case AF_INET6:
1290                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1291                 break;
1292         }
1293 }
1294
1295 /*
1296  * Unlike other *_pton function semantics, zero indicates success.
1297  */
1298 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1299                 char delim, const char **ipend)
1300 {
1301         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1302         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1303
1304         memset(ss, 0, sizeof(*ss));
1305
1306         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1307                 ss->ss_family = AF_INET;
1308                 return 0;
1309         }
1310
1311         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1312                 ss->ss_family = AF_INET6;
1313                 return 0;
1314         }
1315
1316         return -EINVAL;
1317 }
1318
1319 /*
1320  * Extract hostname string and resolve using kernel DNS facility.
1321  */
1322 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1323 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1324                 struct sockaddr_storage *ss, char delim, const char **ipend)
1325 {
1326         const char *end, *delim_p;
1327         char *colon_p, *ip_addr = NULL;
1328         int ip_len, ret;
1329
1330         /*
1331          * The end of the hostname occurs immediately preceding the delimiter or
1332          * the port marker (':') where the delimiter takes precedence.
1333          */
1334         delim_p = memchr(name, delim, namelen);
1335         colon_p = memchr(name, ':', namelen);
1336
1337         if (delim_p && colon_p)
1338                 end = delim_p < colon_p ? delim_p : colon_p;
1339         else if (!delim_p && colon_p)
1340                 end = colon_p;
1341         else {
1342                 end = delim_p;
1343                 if (!end) /* case: hostname:/ */
1344                         end = name + namelen;
1345         }
1346
1347         if (end <= name)
1348                 return -EINVAL;
1349
1350         /* do dns_resolve upcall */
1351         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1352         if (ip_len > 0)
1353                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1354         else
1355                 ret = -ESRCH;
1356
1357         kfree(ip_addr);
1358
1359         *ipend = end;
1360
1361         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1362                         ret, ret ? "failed" : ceph_pr_addr(ss));
1363
1364         return ret;
1365 }
1366 #else
1367 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1368                 struct sockaddr_storage *ss, char delim, const char **ipend)
1369 {
1370         return -EINVAL;
1371 }
1372 #endif
1373
1374 /*
1375  * Parse a server name (IP or hostname). If a valid IP address is not found
1376  * then try to extract a hostname to resolve using userspace DNS upcall.
1377  */
1378 static int ceph_parse_server_name(const char *name, size_t namelen,
1379                         struct sockaddr_storage *ss, char delim, const char **ipend)
1380 {
1381         int ret;
1382
1383         ret = ceph_pton(name, namelen, ss, delim, ipend);
1384         if (ret)
1385                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1386
1387         return ret;
1388 }
1389
1390 /*
1391  * Parse an ip[:port] list into an addr array.  Use the default
1392  * monitor port if a port isn't specified.
1393  */
1394 int ceph_parse_ips(const char *c, const char *end,
1395                    struct ceph_entity_addr *addr,
1396                    int max_count, int *count)
1397 {
1398         int i, ret = -EINVAL;
1399         const char *p = c;
1400
1401         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1402         for (i = 0; i < max_count; i++) {
1403                 const char *ipend;
1404                 struct sockaddr_storage *ss = &addr[i].in_addr;
1405                 int port;
1406                 char delim = ',';
1407
1408                 if (*p == '[') {
1409                         delim = ']';
1410                         p++;
1411                 }
1412
1413                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1414                 if (ret)
1415                         goto bad;
1416                 ret = -EINVAL;
1417
1418                 p = ipend;
1419
1420                 if (delim == ']') {
1421                         if (*p != ']') {
1422                                 dout("missing matching ']'\n");
1423                                 goto bad;
1424                         }
1425                         p++;
1426                 }
1427
1428                 /* port? */
1429                 if (p < end && *p == ':') {
1430                         port = 0;
1431                         p++;
1432                         while (p < end && *p >= '0' && *p <= '9') {
1433                                 port = (port * 10) + (*p - '0');
1434                                 p++;
1435                         }
1436                         if (port > 65535 || port == 0)
1437                                 goto bad;
1438                 } else {
1439                         port = CEPH_MON_PORT;
1440                 }
1441
1442                 addr_set_port(ss, port);
1443
1444                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1445
1446                 if (p == end)
1447                         break;
1448                 if (*p != ',')
1449                         goto bad;
1450                 p++;
1451         }
1452
1453         if (p != end)
1454                 goto bad;
1455
1456         if (count)
1457                 *count = i + 1;
1458         return 0;
1459
1460 bad:
1461         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1462         return ret;
1463 }
1464 EXPORT_SYMBOL(ceph_parse_ips);
1465
1466 static int process_banner(struct ceph_connection *con)
1467 {
1468         dout("process_banner on %p\n", con);
1469
1470         if (verify_hello(con) < 0)
1471                 return -1;
1472
1473         ceph_decode_addr(&con->actual_peer_addr);
1474         ceph_decode_addr(&con->peer_addr_for_me);
1475
1476         /*
1477          * Make sure the other end is who we wanted.  note that the other
1478          * end may not yet know their ip address, so if it's 0.0.0.0, give
1479          * them the benefit of the doubt.
1480          */
1481         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1482                    sizeof(con->peer_addr)) != 0 &&
1483             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1484               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1485                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1486                            ceph_pr_addr(&con->peer_addr.in_addr),
1487                            (int)le32_to_cpu(con->peer_addr.nonce),
1488                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1489                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1490                 con->error_msg = "wrong peer at address";
1491                 return -1;
1492         }
1493
1494         /*
1495          * did we learn our address?
1496          */
1497         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1498                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1499
1500                 memcpy(&con->msgr->inst.addr.in_addr,
1501                        &con->peer_addr_for_me.in_addr,
1502                        sizeof(con->peer_addr_for_me.in_addr));
1503                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1504                 encode_my_addr(con->msgr);
1505                 dout("process_banner learned my addr is %s\n",
1506                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1507         }
1508
1509         return 0;
1510 }
1511
1512 static void fail_protocol(struct ceph_connection *con)
1513 {
1514         reset_connection(con);
1515         BUG_ON(con->state != CON_STATE_NEGOTIATING);
1516         con->state = CON_STATE_CLOSED;
1517 }
1518
1519 static int process_connect(struct ceph_connection *con)
1520 {
1521         u64 sup_feat = con->msgr->supported_features;
1522         u64 req_feat = con->msgr->required_features;
1523         u64 server_feat = le64_to_cpu(con->in_reply.features);
1524         int ret;
1525
1526         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1527
1528         switch (con->in_reply.tag) {
1529         case CEPH_MSGR_TAG_FEATURES:
1530                 pr_err("%s%lld %s feature set mismatch,"
1531                        " my %llx < server's %llx, missing %llx\n",
1532                        ENTITY_NAME(con->peer_name),
1533                        ceph_pr_addr(&con->peer_addr.in_addr),
1534                        sup_feat, server_feat, server_feat & ~sup_feat);
1535                 con->error_msg = "missing required protocol features";
1536                 fail_protocol(con);
1537                 return -1;
1538
1539         case CEPH_MSGR_TAG_BADPROTOVER:
1540                 pr_err("%s%lld %s protocol version mismatch,"
1541                        " my %d != server's %d\n",
1542                        ENTITY_NAME(con->peer_name),
1543                        ceph_pr_addr(&con->peer_addr.in_addr),
1544                        le32_to_cpu(con->out_connect.protocol_version),
1545                        le32_to_cpu(con->in_reply.protocol_version));
1546                 con->error_msg = "protocol version mismatch";
1547                 fail_protocol(con);
1548                 return -1;
1549
1550         case CEPH_MSGR_TAG_BADAUTHORIZER:
1551                 con->auth_retry++;
1552                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1553                      con->auth_retry);
1554                 if (con->auth_retry == 2) {
1555                         con->error_msg = "connect authorization failure";
1556                         return -1;
1557                 }
1558                 con->auth_retry = 1;
1559                 con_out_kvec_reset(con);
1560                 ret = prepare_write_connect(con);
1561                 if (ret < 0)
1562                         return ret;
1563                 prepare_read_connect(con);
1564                 break;
1565
1566         case CEPH_MSGR_TAG_RESETSESSION:
1567                 /*
1568                  * If we connected with a large connect_seq but the peer
1569                  * has no record of a session with us (no connection, or
1570                  * connect_seq == 0), they will send RESETSESION to indicate
1571                  * that they must have reset their session, and may have
1572                  * dropped messages.
1573                  */
1574                 dout("process_connect got RESET peer seq %u\n",
1575                      le32_to_cpu(con->in_reply.connect_seq));
1576                 pr_err("%s%lld %s connection reset\n",
1577                        ENTITY_NAME(con->peer_name),
1578                        ceph_pr_addr(&con->peer_addr.in_addr));
1579                 reset_connection(con);
1580                 con_out_kvec_reset(con);
1581                 ret = prepare_write_connect(con);
1582                 if (ret < 0)
1583                         return ret;
1584                 prepare_read_connect(con);
1585
1586                 /* Tell ceph about it. */
1587                 mutex_unlock(&con->mutex);
1588                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1589                 if (con->ops->peer_reset)
1590                         con->ops->peer_reset(con);
1591                 mutex_lock(&con->mutex);
1592                 if (con->state != CON_STATE_NEGOTIATING)
1593                         return -EAGAIN;
1594                 break;
1595
1596         case CEPH_MSGR_TAG_RETRY_SESSION:
1597                 /*
1598                  * If we sent a smaller connect_seq than the peer has, try
1599                  * again with a larger value.
1600                  */
1601                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1602                      le32_to_cpu(con->out_connect.connect_seq),
1603                      le32_to_cpu(con->in_reply.connect_seq));
1604                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1605                 con_out_kvec_reset(con);
1606                 ret = prepare_write_connect(con);
1607                 if (ret < 0)
1608                         return ret;
1609                 prepare_read_connect(con);
1610                 break;
1611
1612         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1613                 /*
1614                  * If we sent a smaller global_seq than the peer has, try
1615                  * again with a larger value.
1616                  */
1617                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1618                      con->peer_global_seq,
1619                      le32_to_cpu(con->in_reply.global_seq));
1620                 get_global_seq(con->msgr,
1621                                le32_to_cpu(con->in_reply.global_seq));
1622                 con_out_kvec_reset(con);
1623                 ret = prepare_write_connect(con);
1624                 if (ret < 0)
1625                         return ret;
1626                 prepare_read_connect(con);
1627                 break;
1628
1629         case CEPH_MSGR_TAG_READY:
1630                 if (req_feat & ~server_feat) {
1631                         pr_err("%s%lld %s protocol feature mismatch,"
1632                                " my required %llx > server's %llx, need %llx\n",
1633                                ENTITY_NAME(con->peer_name),
1634                                ceph_pr_addr(&con->peer_addr.in_addr),
1635                                req_feat, server_feat, req_feat & ~server_feat);
1636                         con->error_msg = "missing required protocol features";
1637                         fail_protocol(con);
1638                         return -1;
1639                 }
1640
1641                 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1642                 con->state = CON_STATE_OPEN;
1643
1644                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1645                 con->connect_seq++;
1646                 con->peer_features = server_feat;
1647                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1648                      con->peer_global_seq,
1649                      le32_to_cpu(con->in_reply.connect_seq),
1650                      con->connect_seq);
1651                 WARN_ON(con->connect_seq !=
1652                         le32_to_cpu(con->in_reply.connect_seq));
1653
1654                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1655                         set_bit(CON_FLAG_LOSSYTX, &con->flags);
1656
1657                 con->delay = 0;      /* reset backoff memory */
1658
1659                 prepare_read_tag(con);
1660                 break;
1661
1662         case CEPH_MSGR_TAG_WAIT:
1663                 /*
1664                  * If there is a connection race (we are opening
1665                  * connections to each other), one of us may just have
1666                  * to WAIT.  This shouldn't happen if we are the
1667                  * client.
1668                  */
1669                 pr_err("process_connect got WAIT as client\n");
1670                 con->error_msg = "protocol error, got WAIT as client";
1671                 return -1;
1672
1673         default:
1674                 pr_err("connect protocol error, will retry\n");
1675                 con->error_msg = "protocol error, garbage tag during connect";
1676                 return -1;
1677         }
1678         return 0;
1679 }
1680
1681
1682 /*
1683  * read (part of) an ack
1684  */
1685 static int read_partial_ack(struct ceph_connection *con)
1686 {
1687         int size = sizeof (con->in_temp_ack);
1688         int end = size;
1689
1690         return read_partial(con, end, size, &con->in_temp_ack);
1691 }
1692
1693
1694 /*
1695  * We can finally discard anything that's been acked.
1696  */
1697 static void process_ack(struct ceph_connection *con)
1698 {
1699         struct ceph_msg *m;
1700         u64 ack = le64_to_cpu(con->in_temp_ack);
1701         u64 seq;
1702
1703         while (!list_empty(&con->out_sent)) {
1704                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1705                                      list_head);
1706                 seq = le64_to_cpu(m->hdr.seq);
1707                 if (seq > ack)
1708                         break;
1709                 dout("got ack for seq %llu type %d at %p\n", seq,
1710                      le16_to_cpu(m->hdr.type), m);
1711                 m->ack_stamp = jiffies;
1712                 ceph_msg_remove(m);
1713         }
1714         prepare_read_tag(con);
1715 }
1716
1717
1718
1719
1720 static int read_partial_message_section(struct ceph_connection *con,
1721                                         struct kvec *section,
1722                                         unsigned int sec_len, u32 *crc)
1723 {
1724         int ret, left;
1725
1726         BUG_ON(!section);
1727
1728         while (section->iov_len < sec_len) {
1729                 BUG_ON(section->iov_base == NULL);
1730                 left = sec_len - section->iov_len;
1731                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1732                                        section->iov_len, left);
1733                 if (ret <= 0)
1734                         return ret;
1735                 section->iov_len += ret;
1736         }
1737         if (section->iov_len == sec_len)
1738                 *crc = crc32c(0, section->iov_base, section->iov_len);
1739
1740         return 1;
1741 }
1742
1743 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1744
1745 static int read_partial_message_pages(struct ceph_connection *con,
1746                                       struct page **pages,
1747                                       unsigned int data_len, bool do_datacrc)
1748 {
1749         void *p;
1750         int ret;
1751         int left;
1752
1753         left = min((int)(data_len - con->in_msg_pos.data_pos),
1754                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1755         /* (page) data */
1756         BUG_ON(pages == NULL);
1757         p = kmap(pages[con->in_msg_pos.page]);
1758         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1759                                left);
1760         if (ret > 0 && do_datacrc)
1761                 con->in_data_crc =
1762                         crc32c(con->in_data_crc,
1763                                   p + con->in_msg_pos.page_pos, ret);
1764         kunmap(pages[con->in_msg_pos.page]);
1765         if (ret <= 0)
1766                 return ret;
1767         con->in_msg_pos.data_pos += ret;
1768         con->in_msg_pos.page_pos += ret;
1769         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1770                 con->in_msg_pos.page_pos = 0;
1771                 con->in_msg_pos.page++;
1772         }
1773
1774         return ret;
1775 }
1776
1777 #ifdef CONFIG_BLOCK
1778 static int read_partial_message_bio(struct ceph_connection *con,
1779                                     struct bio **bio_iter, int *bio_seg,
1780                                     unsigned int data_len, bool do_datacrc)
1781 {
1782         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1783         void *p;
1784         int ret, left;
1785
1786         left = min((int)(data_len - con->in_msg_pos.data_pos),
1787                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1788
1789         p = kmap(bv->bv_page) + bv->bv_offset;
1790
1791         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1792                                left);
1793         if (ret > 0 && do_datacrc)
1794                 con->in_data_crc =
1795                         crc32c(con->in_data_crc,
1796                                   p + con->in_msg_pos.page_pos, ret);
1797         kunmap(bv->bv_page);
1798         if (ret <= 0)
1799                 return ret;
1800         con->in_msg_pos.data_pos += ret;
1801         con->in_msg_pos.page_pos += ret;
1802         if (con->in_msg_pos.page_pos == bv->bv_len) {
1803                 con->in_msg_pos.page_pos = 0;
1804                 iter_bio_next(bio_iter, bio_seg);
1805         }
1806
1807         return ret;
1808 }
1809 #endif
1810
1811 /*
1812  * read (part of) a message.
1813  */
1814 static int read_partial_message(struct ceph_connection *con)
1815 {
1816         struct ceph_msg *m = con->in_msg;
1817         int size;
1818         int end;
1819         int ret;
1820         unsigned int front_len, middle_len, data_len;
1821         bool do_datacrc = !con->msgr->nocrc;
1822         u64 seq;
1823         u32 crc;
1824
1825         dout("read_partial_message con %p msg %p\n", con, m);
1826
1827         /* header */
1828         size = sizeof (con->in_hdr);
1829         end = size;
1830         ret = read_partial(con, end, size, &con->in_hdr);
1831         if (ret <= 0)
1832                 return ret;
1833
1834         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1835         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1836                 pr_err("read_partial_message bad hdr "
1837                        " crc %u != expected %u\n",
1838                        crc, con->in_hdr.crc);
1839                 return -EBADMSG;
1840         }
1841
1842         front_len = le32_to_cpu(con->in_hdr.front_len);
1843         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1844                 return -EIO;
1845         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1846         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1847                 return -EIO;
1848         data_len = le32_to_cpu(con->in_hdr.data_len);
1849         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1850                 return -EIO;
1851
1852         /* verify seq# */
1853         seq = le64_to_cpu(con->in_hdr.seq);
1854         if ((s64)seq - (s64)con->in_seq < 1) {
1855                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1856                         ENTITY_NAME(con->peer_name),
1857                         ceph_pr_addr(&con->peer_addr.in_addr),
1858                         seq, con->in_seq + 1);
1859                 con->in_base_pos = -front_len - middle_len - data_len -
1860                         sizeof(m->footer);
1861                 con->in_tag = CEPH_MSGR_TAG_READY;
1862                 return 0;
1863         } else if ((s64)seq - (s64)con->in_seq > 1) {
1864                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1865                        seq, con->in_seq + 1);
1866                 con->error_msg = "bad message sequence # for incoming message";
1867                 return -EBADMSG;
1868         }
1869
1870         /* allocate message? */
1871         if (!con->in_msg) {
1872                 int skip = 0;
1873
1874                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1875                      con->in_hdr.front_len, con->in_hdr.data_len);
1876                 ret = ceph_con_in_msg_alloc(con, &skip);
1877                 if (ret < 0)
1878                         return ret;
1879                 if (skip) {
1880                         /* skip this message */
1881                         dout("alloc_msg said skip message\n");
1882                         BUG_ON(con->in_msg);
1883                         con->in_base_pos = -front_len - middle_len - data_len -
1884                                 sizeof(m->footer);
1885                         con->in_tag = CEPH_MSGR_TAG_READY;
1886                         con->in_seq++;
1887                         return 0;
1888                 }
1889
1890                 BUG_ON(!con->in_msg);
1891                 BUG_ON(con->in_msg->con != con);
1892                 m = con->in_msg;
1893                 m->front.iov_len = 0;    /* haven't read it yet */
1894                 if (m->middle)
1895                         m->middle->vec.iov_len = 0;
1896
1897                 con->in_msg_pos.page = 0;
1898                 if (m->pages)
1899                         con->in_msg_pos.page_pos = m->page_alignment;
1900                 else
1901                         con->in_msg_pos.page_pos = 0;
1902                 con->in_msg_pos.data_pos = 0;
1903
1904 #ifdef CONFIG_BLOCK
1905                 if (m->bio)
1906                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1907 #endif
1908         }
1909
1910         /* front */
1911         ret = read_partial_message_section(con, &m->front, front_len,
1912                                            &con->in_front_crc);
1913         if (ret <= 0)
1914                 return ret;
1915
1916         /* middle */
1917         if (m->middle) {
1918                 ret = read_partial_message_section(con, &m->middle->vec,
1919                                                    middle_len,
1920                                                    &con->in_middle_crc);
1921                 if (ret <= 0)
1922                         return ret;
1923         }
1924
1925         /* (page) data */
1926         while (con->in_msg_pos.data_pos < data_len) {
1927                 if (m->pages) {
1928                         ret = read_partial_message_pages(con, m->pages,
1929                                                  data_len, do_datacrc);
1930                         if (ret <= 0)
1931                                 return ret;
1932 #ifdef CONFIG_BLOCK
1933                 } else if (m->bio) {
1934                         BUG_ON(!m->bio_iter);
1935                         ret = read_partial_message_bio(con,
1936                                                  &m->bio_iter, &m->bio_seg,
1937                                                  data_len, do_datacrc);
1938                         if (ret <= 0)
1939                                 return ret;
1940 #endif
1941                 } else {
1942                         BUG_ON(1);
1943                 }
1944         }
1945
1946         /* footer */
1947         size = sizeof (m->footer);
1948         end += size;
1949         ret = read_partial(con, end, size, &m->footer);
1950         if (ret <= 0)
1951                 return ret;
1952
1953         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1954              m, front_len, m->footer.front_crc, middle_len,
1955              m->footer.middle_crc, data_len, m->footer.data_crc);
1956
1957         /* crc ok? */
1958         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1959                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1960                        m, con->in_front_crc, m->footer.front_crc);
1961                 return -EBADMSG;
1962         }
1963         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1964                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1965                        m, con->in_middle_crc, m->footer.middle_crc);
1966                 return -EBADMSG;
1967         }
1968         if (do_datacrc &&
1969             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1970             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1971                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1972                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1973                 return -EBADMSG;
1974         }
1975
1976         return 1; /* done! */
1977 }
1978
1979 /*
1980  * Process message.  This happens in the worker thread.  The callback should
1981  * be careful not to do anything that waits on other incoming messages or it
1982  * may deadlock.
1983  */
1984 static void process_message(struct ceph_connection *con)
1985 {
1986         struct ceph_msg *msg;
1987
1988         BUG_ON(con->in_msg->con != con);
1989         con->in_msg->con = NULL;
1990         msg = con->in_msg;
1991         con->in_msg = NULL;
1992         con->ops->put(con);
1993
1994         /* if first message, set peer_name */
1995         if (con->peer_name.type == 0)
1996                 con->peer_name = msg->hdr.src;
1997
1998         con->in_seq++;
1999         mutex_unlock(&con->mutex);
2000
2001         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2002              msg, le64_to_cpu(msg->hdr.seq),
2003              ENTITY_NAME(msg->hdr.src),
2004              le16_to_cpu(msg->hdr.type),
2005              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2006              le32_to_cpu(msg->hdr.front_len),
2007              le32_to_cpu(msg->hdr.data_len),
2008              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2009         con->ops->dispatch(con, msg);
2010
2011         mutex_lock(&con->mutex);
2012 }
2013
2014
2015 /*
2016  * Write something to the socket.  Called in a worker thread when the
2017  * socket appears to be writeable and we have something ready to send.
2018  */
2019 static int try_write(struct ceph_connection *con)
2020 {
2021         int ret = 1;
2022
2023         dout("try_write start %p state %lu\n", con, con->state);
2024
2025 more:
2026         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2027
2028         /* open the socket first? */
2029         if (con->state == CON_STATE_PREOPEN) {
2030                 BUG_ON(con->sock);
2031                 con->state = CON_STATE_CONNECTING;
2032
2033                 con_out_kvec_reset(con);
2034                 prepare_write_banner(con);
2035                 prepare_read_banner(con);
2036
2037                 BUG_ON(con->in_msg);
2038                 con->in_tag = CEPH_MSGR_TAG_READY;
2039                 dout("try_write initiating connect on %p new state %lu\n",
2040                      con, con->state);
2041                 ret = ceph_tcp_connect(con);
2042                 if (ret < 0) {
2043                         con->error_msg = "connect error";
2044                         goto out;
2045                 }
2046         }
2047
2048 more_kvec:
2049         /* kvec data queued? */
2050         if (con->out_skip) {
2051                 ret = write_partial_skip(con);
2052                 if (ret <= 0)
2053                         goto out;
2054         }
2055         if (con->out_kvec_left) {
2056                 ret = write_partial_kvec(con);
2057                 if (ret <= 0)
2058                         goto out;
2059         }
2060
2061         /* msg pages? */
2062         if (con->out_msg) {
2063                 if (con->out_msg_done) {
2064                         ceph_msg_put(con->out_msg);
2065                         con->out_msg = NULL;   /* we're done with this one */
2066                         goto do_next;
2067                 }
2068
2069                 ret = write_partial_msg_pages(con);
2070                 if (ret == 1)
2071                         goto more_kvec;  /* we need to send the footer, too! */
2072                 if (ret == 0)
2073                         goto out;
2074                 if (ret < 0) {
2075                         dout("try_write write_partial_msg_pages err %d\n",
2076                              ret);
2077                         goto out;
2078                 }
2079         }
2080
2081 do_next:
2082         if (con->state == CON_STATE_OPEN) {
2083                 /* is anything else pending? */
2084                 if (!list_empty(&con->out_queue)) {
2085                         prepare_write_message(con);
2086                         goto more;
2087                 }
2088                 if (con->in_seq > con->in_seq_acked) {
2089                         prepare_write_ack(con);
2090                         goto more;
2091                 }
2092                 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2093                                        &con->flags)) {
2094                         prepare_write_keepalive(con);
2095                         goto more;
2096                 }
2097         }
2098
2099         /* Nothing to do! */
2100         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2101         dout("try_write nothing else to write.\n");
2102         ret = 0;
2103 out:
2104         dout("try_write done on %p ret %d\n", con, ret);
2105         return ret;
2106 }
2107
2108
2109
2110 /*
2111  * Read what we can from the socket.
2112  */
2113 static int try_read(struct ceph_connection *con)
2114 {
2115         int ret = -1;
2116
2117 more:
2118         dout("try_read start on %p state %lu\n", con, con->state);
2119         if (con->state != CON_STATE_CONNECTING &&
2120             con->state != CON_STATE_NEGOTIATING &&
2121             con->state != CON_STATE_OPEN)
2122                 return 0;
2123
2124         BUG_ON(!con->sock);
2125
2126         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2127              con->in_base_pos);
2128
2129         if (con->state == CON_STATE_CONNECTING) {
2130                 dout("try_read connecting\n");
2131                 ret = read_partial_banner(con);
2132                 if (ret <= 0)
2133                         goto out;
2134                 ret = process_banner(con);
2135                 if (ret < 0)
2136                         goto out;
2137
2138                 BUG_ON(con->state != CON_STATE_CONNECTING);
2139                 con->state = CON_STATE_NEGOTIATING;
2140
2141                 /*
2142                  * Received banner is good, exchange connection info.
2143                  * Do not reset out_kvec, as sending our banner raced
2144                  * with receiving peer banner after connect completed.
2145                  */
2146                 ret = prepare_write_connect(con);
2147                 if (ret < 0)
2148                         goto out;
2149                 prepare_read_connect(con);
2150
2151                 /* Send connection info before awaiting response */
2152                 goto out;
2153         }
2154
2155         if (con->state == CON_STATE_NEGOTIATING) {
2156                 dout("try_read negotiating\n");
2157                 ret = read_partial_connect(con);
2158                 if (ret <= 0)
2159                         goto out;
2160                 ret = process_connect(con);
2161                 if (ret < 0)
2162                         goto out;
2163                 goto more;
2164         }
2165
2166         BUG_ON(con->state != CON_STATE_OPEN);
2167
2168         if (con->in_base_pos < 0) {
2169                 /*
2170                  * skipping + discarding content.
2171                  *
2172                  * FIXME: there must be a better way to do this!
2173                  */
2174                 static char buf[SKIP_BUF_SIZE];
2175                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2176
2177                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2178                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2179                 if (ret <= 0)
2180                         goto out;
2181                 con->in_base_pos += ret;
2182                 if (con->in_base_pos)
2183                         goto more;
2184         }
2185         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2186                 /*
2187                  * what's next?
2188                  */
2189                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2190                 if (ret <= 0)
2191                         goto out;
2192                 dout("try_read got tag %d\n", (int)con->in_tag);
2193                 switch (con->in_tag) {
2194                 case CEPH_MSGR_TAG_MSG:
2195                         prepare_read_message(con);
2196                         break;
2197                 case CEPH_MSGR_TAG_ACK:
2198                         prepare_read_ack(con);
2199                         break;
2200                 case CEPH_MSGR_TAG_CLOSE:
2201                         con_close_socket(con);
2202                         con->state = CON_STATE_CLOSED;
2203                         goto out;
2204                 default:
2205                         goto bad_tag;
2206                 }
2207         }
2208         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2209                 ret = read_partial_message(con);
2210                 if (ret <= 0) {
2211                         switch (ret) {
2212                         case -EBADMSG:
2213                                 con->error_msg = "bad crc";
2214                                 ret = -EIO;
2215                                 break;
2216                         case -EIO:
2217                                 con->error_msg = "io error";
2218                                 break;
2219                         }
2220                         goto out;
2221                 }
2222                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2223                         goto more;
2224                 process_message(con);
2225                 if (con->state == CON_STATE_OPEN)
2226                         prepare_read_tag(con);
2227                 goto more;
2228         }
2229         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2230                 ret = read_partial_ack(con);
2231                 if (ret <= 0)
2232                         goto out;
2233                 process_ack(con);
2234                 goto more;
2235         }
2236
2237 out:
2238         dout("try_read done on %p ret %d\n", con, ret);
2239         return ret;
2240
2241 bad_tag:
2242         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2243         con->error_msg = "protocol error, garbage tag";
2244         ret = -1;
2245         goto out;
2246 }
2247
2248
2249 /*
2250  * Atomically queue work on a connection.  Bump @con reference to
2251  * avoid races with connection teardown.
2252  */
2253 static void queue_con(struct ceph_connection *con)
2254 {
2255         if (!con->ops->get(con)) {
2256                 dout("queue_con %p ref count 0\n", con);
2257                 return;
2258         }
2259
2260         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2261                 dout("queue_con %p - already queued\n", con);
2262                 con->ops->put(con);
2263         } else {
2264                 dout("queue_con %p\n", con);
2265         }
2266 }
2267
2268 /*
2269  * Do some work on a connection.  Drop a connection ref when we're done.
2270  */
2271 static void con_work(struct work_struct *work)
2272 {
2273         struct ceph_connection *con = container_of(work, struct ceph_connection,
2274                                                    work.work);
2275         int ret;
2276
2277         mutex_lock(&con->mutex);
2278 restart:
2279         if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2280                 switch (con->state) {
2281                 case CON_STATE_CONNECTING:
2282                         con->error_msg = "connection failed";
2283                         break;
2284                 case CON_STATE_NEGOTIATING:
2285                         con->error_msg = "negotiation failed";
2286                         break;
2287                 case CON_STATE_OPEN:
2288                         con->error_msg = "socket closed";
2289                         break;
2290                 default:
2291                         dout("unrecognized con state %d\n", (int)con->state);
2292                         con->error_msg = "unrecognized con state";
2293                         BUG();
2294                 }
2295                 goto fault;
2296         }
2297
2298         if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2299                 dout("con_work %p backing off\n", con);
2300                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2301                                        round_jiffies_relative(con->delay))) {
2302                         dout("con_work %p backoff %lu\n", con, con->delay);
2303                         mutex_unlock(&con->mutex);
2304                         return;
2305                 } else {
2306                         con->ops->put(con);
2307                         dout("con_work %p FAILED to back off %lu\n", con,
2308                              con->delay);
2309                 }
2310         }
2311
2312         if (con->state == CON_STATE_STANDBY) {
2313                 dout("con_work %p STANDBY\n", con);
2314                 goto done;
2315         }
2316         if (con->state == CON_STATE_CLOSED) {
2317                 dout("con_work %p CLOSED\n", con);
2318                 BUG_ON(con->sock);
2319                 goto done;
2320         }
2321         if (con->state == CON_STATE_PREOPEN) {
2322                 dout("con_work OPENING\n");
2323                 BUG_ON(con->sock);
2324         }
2325
2326         ret = try_read(con);
2327         if (ret == -EAGAIN)
2328                 goto restart;
2329         if (ret < 0) {
2330                 con->error_msg = "socket error on read";
2331                 goto fault;
2332         }
2333
2334         ret = try_write(con);
2335         if (ret == -EAGAIN)
2336                 goto restart;
2337         if (ret < 0) {
2338                 con->error_msg = "socket error on write";
2339                 goto fault;
2340         }
2341
2342 done:
2343         mutex_unlock(&con->mutex);
2344 done_unlocked:
2345         con->ops->put(con);
2346         return;
2347
2348 fault:
2349         ceph_fault(con);     /* error/fault path */
2350         goto done_unlocked;
2351 }
2352
2353
2354 /*
2355  * Generic error/fault handler.  A retry mechanism is used with
2356  * exponential backoff
2357  */
2358 static void ceph_fault(struct ceph_connection *con)
2359         __releases(con->mutex)
2360 {
2361         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2362                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2363         dout("fault %p state %lu to peer %s\n",
2364              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2365
2366         BUG_ON(con->state != CON_STATE_CONNECTING &&
2367                con->state != CON_STATE_NEGOTIATING &&
2368                con->state != CON_STATE_OPEN);
2369
2370         con_close_socket(con);
2371
2372         if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2373                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2374                 con->state = CON_STATE_CLOSED;
2375                 goto out_unlock;
2376         }
2377
2378         if (con->in_msg) {
2379                 BUG_ON(con->in_msg->con != con);
2380                 con->in_msg->con = NULL;
2381                 ceph_msg_put(con->in_msg);
2382                 con->in_msg = NULL;
2383                 con->ops->put(con);
2384         }
2385
2386         /* Requeue anything that hasn't been acked */
2387         list_splice_init(&con->out_sent, &con->out_queue);
2388
2389         /* If there are no messages queued or keepalive pending, place
2390          * the connection in a STANDBY state */
2391         if (list_empty(&con->out_queue) &&
2392             !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2393                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2394                 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2395                 con->state = CON_STATE_STANDBY;
2396         } else {
2397                 /* retry after a delay. */
2398                 con->state = CON_STATE_PREOPEN;
2399                 if (con->delay == 0)
2400                         con->delay = BASE_DELAY_INTERVAL;
2401                 else if (con->delay < MAX_DELAY_INTERVAL)
2402                         con->delay *= 2;
2403                 con->ops->get(con);
2404                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2405                                        round_jiffies_relative(con->delay))) {
2406                         dout("fault queued %p delay %lu\n", con, con->delay);
2407                 } else {
2408                         con->ops->put(con);
2409                         dout("fault failed to queue %p delay %lu, backoff\n",
2410                              con, con->delay);
2411                         /*
2412                          * In many cases we see a socket state change
2413                          * while con_work is running and end up
2414                          * queuing (non-delayed) work, such that we
2415                          * can't backoff with a delay.  Set a flag so
2416                          * that when con_work restarts we schedule the
2417                          * delay then.
2418                          */
2419                         set_bit(CON_FLAG_BACKOFF, &con->flags);
2420                 }
2421         }
2422
2423 out_unlock:
2424         mutex_unlock(&con->mutex);
2425         /*
2426          * in case we faulted due to authentication, invalidate our
2427          * current tickets so that we can get new ones.
2428          */
2429         if (con->auth_retry && con->ops->invalidate_authorizer) {
2430                 dout("calling invalidate_authorizer()\n");
2431                 con->ops->invalidate_authorizer(con);
2432         }
2433
2434         if (con->ops->fault)
2435                 con->ops->fault(con);
2436 }
2437
2438
2439
2440 /*
2441  * initialize a new messenger instance
2442  */
2443 void ceph_messenger_init(struct ceph_messenger *msgr,
2444                         struct ceph_entity_addr *myaddr,
2445                         u32 supported_features,
2446                         u32 required_features,
2447                         bool nocrc)
2448 {
2449         msgr->supported_features = supported_features;
2450         msgr->required_features = required_features;
2451
2452         spin_lock_init(&msgr->global_seq_lock);
2453
2454         if (myaddr)
2455                 msgr->inst.addr = *myaddr;
2456
2457         /* select a random nonce */
2458         msgr->inst.addr.type = 0;
2459         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2460         encode_my_addr(msgr);
2461         msgr->nocrc = nocrc;
2462
2463         atomic_set(&msgr->stopping, 0);
2464
2465         dout("%s %p\n", __func__, msgr);
2466 }
2467 EXPORT_SYMBOL(ceph_messenger_init);
2468
2469 static void clear_standby(struct ceph_connection *con)
2470 {
2471         /* come back from STANDBY? */
2472         if (con->state == CON_STATE_STANDBY) {
2473                 dout("clear_standby %p and ++connect_seq\n", con);
2474                 con->state = CON_STATE_PREOPEN;
2475                 con->connect_seq++;
2476                 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2477                 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2478         }
2479 }
2480
2481 /*
2482  * Queue up an outgoing message on the given connection.
2483  */
2484 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2485 {
2486         /* set src+dst */
2487         msg->hdr.src = con->msgr->inst.name;
2488         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2489         msg->needs_out_seq = true;
2490
2491         mutex_lock(&con->mutex);
2492
2493         if (con->state == CON_STATE_CLOSED) {
2494                 dout("con_send %p closed, dropping %p\n", con, msg);
2495                 ceph_msg_put(msg);
2496                 mutex_unlock(&con->mutex);
2497                 return;
2498         }
2499
2500         BUG_ON(msg->con != NULL);
2501         msg->con = con->ops->get(con);
2502         BUG_ON(msg->con == NULL);
2503
2504         BUG_ON(!list_empty(&msg->list_head));
2505         list_add_tail(&msg->list_head, &con->out_queue);
2506         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2507              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2508              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2509              le32_to_cpu(msg->hdr.front_len),
2510              le32_to_cpu(msg->hdr.middle_len),
2511              le32_to_cpu(msg->hdr.data_len));
2512
2513         clear_standby(con);
2514         mutex_unlock(&con->mutex);
2515
2516         /* if there wasn't anything waiting to send before, queue
2517          * new work */
2518         if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2519                 queue_con(con);
2520 }
2521 EXPORT_SYMBOL(ceph_con_send);
2522
2523 /*
2524  * Revoke a message that was previously queued for send
2525  */
2526 void ceph_msg_revoke(struct ceph_msg *msg)
2527 {
2528         struct ceph_connection *con = msg->con;
2529
2530         if (!con)
2531                 return;         /* Message not in our possession */
2532
2533         mutex_lock(&con->mutex);
2534         if (!list_empty(&msg->list_head)) {
2535                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2536                 list_del_init(&msg->list_head);
2537                 BUG_ON(msg->con == NULL);
2538                 msg->con->ops->put(msg->con);
2539                 msg->con = NULL;
2540                 msg->hdr.seq = 0;
2541
2542                 ceph_msg_put(msg);
2543         }
2544         if (con->out_msg == msg) {
2545                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2546                 con->out_msg = NULL;
2547                 if (con->out_kvec_is_msg) {
2548                         con->out_skip = con->out_kvec_bytes;
2549                         con->out_kvec_is_msg = false;
2550                 }
2551                 msg->hdr.seq = 0;
2552
2553                 ceph_msg_put(msg);
2554         }
2555         mutex_unlock(&con->mutex);
2556 }
2557
2558 /*
2559  * Revoke a message that we may be reading data into
2560  */
2561 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2562 {
2563         struct ceph_connection *con;
2564
2565         BUG_ON(msg == NULL);
2566         if (!msg->con) {
2567                 dout("%s msg %p null con\n", __func__, msg);
2568
2569                 return;         /* Message not in our possession */
2570         }
2571
2572         con = msg->con;
2573         mutex_lock(&con->mutex);
2574         if (con->in_msg == msg) {
2575                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2576                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2577                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2578
2579                 /* skip rest of message */
2580                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2581                 con->in_base_pos = con->in_base_pos -
2582                                 sizeof(struct ceph_msg_header) -
2583                                 front_len -
2584                                 middle_len -
2585                                 data_len -
2586                                 sizeof(struct ceph_msg_footer);
2587                 ceph_msg_put(con->in_msg);
2588                 con->in_msg = NULL;
2589                 con->in_tag = CEPH_MSGR_TAG_READY;
2590                 con->in_seq++;
2591         } else {
2592                 dout("%s %p in_msg %p msg %p no-op\n",
2593                      __func__, con, con->in_msg, msg);
2594         }
2595         mutex_unlock(&con->mutex);
2596 }
2597
2598 /*
2599  * Queue a keepalive byte to ensure the tcp connection is alive.
2600  */
2601 void ceph_con_keepalive(struct ceph_connection *con)
2602 {
2603         dout("con_keepalive %p\n", con);
2604         mutex_lock(&con->mutex);
2605         clear_standby(con);
2606         mutex_unlock(&con->mutex);
2607         if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2608             test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2609                 queue_con(con);
2610 }
2611 EXPORT_SYMBOL(ceph_con_keepalive);
2612
2613
2614 /*
2615  * construct a new message with given type, size
2616  * the new msg has a ref count of 1.
2617  */
2618 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2619                               bool can_fail)
2620 {
2621         struct ceph_msg *m;
2622
2623         m = kmalloc(sizeof(*m), flags);
2624         if (m == NULL)
2625                 goto out;
2626         kref_init(&m->kref);
2627
2628         m->con = NULL;
2629         INIT_LIST_HEAD(&m->list_head);
2630
2631         m->hdr.tid = 0;
2632         m->hdr.type = cpu_to_le16(type);
2633         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2634         m->hdr.version = 0;
2635         m->hdr.front_len = cpu_to_le32(front_len);
2636         m->hdr.middle_len = 0;
2637         m->hdr.data_len = 0;
2638         m->hdr.data_off = 0;
2639         m->hdr.reserved = 0;
2640         m->footer.front_crc = 0;
2641         m->footer.middle_crc = 0;
2642         m->footer.data_crc = 0;
2643         m->footer.flags = 0;
2644         m->front_max = front_len;
2645         m->front_is_vmalloc = false;
2646         m->more_to_follow = false;
2647         m->ack_stamp = 0;
2648         m->pool = NULL;
2649
2650         /* middle */
2651         m->middle = NULL;
2652
2653         /* data */
2654         m->nr_pages = 0;
2655         m->page_alignment = 0;
2656         m->pages = NULL;
2657         m->pagelist = NULL;
2658         m->bio = NULL;
2659         m->bio_iter = NULL;
2660         m->bio_seg = 0;
2661         m->trail = NULL;
2662
2663         /* front */
2664         if (front_len) {
2665                 if (front_len > PAGE_CACHE_SIZE) {
2666                         m->front.iov_base = __vmalloc(front_len, flags,
2667                                                       PAGE_KERNEL);
2668                         m->front_is_vmalloc = true;
2669                 } else {
2670                         m->front.iov_base = kmalloc(front_len, flags);
2671                 }
2672                 if (m->front.iov_base == NULL) {
2673                         dout("ceph_msg_new can't allocate %d bytes\n",
2674                              front_len);
2675                         goto out2;
2676                 }
2677         } else {
2678                 m->front.iov_base = NULL;
2679         }
2680         m->front.iov_len = front_len;
2681
2682         dout("ceph_msg_new %p front %d\n", m, front_len);
2683         return m;
2684
2685 out2:
2686         ceph_msg_put(m);
2687 out:
2688         if (!can_fail) {
2689                 pr_err("msg_new can't create type %d front %d\n", type,
2690                        front_len);
2691                 WARN_ON(1);
2692         } else {
2693                 dout("msg_new can't create type %d front %d\n", type,
2694                      front_len);
2695         }
2696         return NULL;
2697 }
2698 EXPORT_SYMBOL(ceph_msg_new);
2699
2700 /*
2701  * Allocate "middle" portion of a message, if it is needed and wasn't
2702  * allocated by alloc_msg.  This allows us to read a small fixed-size
2703  * per-type header in the front and then gracefully fail (i.e.,
2704  * propagate the error to the caller based on info in the front) when
2705  * the middle is too large.
2706  */
2707 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2708 {
2709         int type = le16_to_cpu(msg->hdr.type);
2710         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2711
2712         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2713              ceph_msg_type_name(type), middle_len);
2714         BUG_ON(!middle_len);
2715         BUG_ON(msg->middle);
2716
2717         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2718         if (!msg->middle)
2719                 return -ENOMEM;
2720         return 0;
2721 }
2722
2723 /*
2724  * Allocate a message for receiving an incoming message on a
2725  * connection, and save the result in con->in_msg.  Uses the
2726  * connection's private alloc_msg op if available.
2727  *
2728  * Returns 0 on success, or a negative error code.
2729  *
2730  * On success, if we set *skip = 1:
2731  *  - the next message should be skipped and ignored.
2732  *  - con->in_msg == NULL
2733  * or if we set *skip = 0:
2734  *  - con->in_msg is non-null.
2735  * On error (ENOMEM, EAGAIN, ...),
2736  *  - con->in_msg == NULL
2737  */
2738 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2739 {
2740         struct ceph_msg_header *hdr = &con->in_hdr;
2741         int type = le16_to_cpu(hdr->type);
2742         int front_len = le32_to_cpu(hdr->front_len);
2743         int middle_len = le32_to_cpu(hdr->middle_len);
2744         int ret = 0;
2745
2746         BUG_ON(con->in_msg != NULL);
2747
2748         if (con->ops->alloc_msg) {
2749                 struct ceph_msg *msg;
2750
2751                 mutex_unlock(&con->mutex);
2752                 msg = con->ops->alloc_msg(con, hdr, skip);
2753                 mutex_lock(&con->mutex);
2754                 if (con->state != CON_STATE_OPEN) {
2755                         ceph_msg_put(msg);
2756                         return -EAGAIN;
2757                 }
2758                 con->in_msg = msg;
2759                 if (con->in_msg) {
2760                         con->in_msg->con = con->ops->get(con);
2761                         BUG_ON(con->in_msg->con == NULL);
2762                 }
2763                 if (*skip) {
2764                         con->in_msg = NULL;
2765                         return 0;
2766                 }
2767                 if (!con->in_msg) {
2768                         con->error_msg =
2769                                 "error allocating memory for incoming message";
2770                         return -ENOMEM;
2771                 }
2772         }
2773         if (!con->in_msg) {
2774                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2775                 if (!con->in_msg) {
2776                         pr_err("unable to allocate msg type %d len %d\n",
2777                                type, front_len);
2778                         return -ENOMEM;
2779                 }
2780                 con->in_msg->con = con->ops->get(con);
2781                 BUG_ON(con->in_msg->con == NULL);
2782                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2783         }
2784         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2785
2786         if (middle_len && !con->in_msg->middle) {
2787                 ret = ceph_alloc_middle(con, con->in_msg);
2788                 if (ret < 0) {
2789                         ceph_msg_put(con->in_msg);
2790                         con->in_msg = NULL;
2791                 }
2792         }
2793
2794         return ret;
2795 }
2796
2797
2798 /*
2799  * Free a generically kmalloc'd message.
2800  */
2801 void ceph_msg_kfree(struct ceph_msg *m)
2802 {
2803         dout("msg_kfree %p\n", m);
2804         if (m->front_is_vmalloc)
2805                 vfree(m->front.iov_base);
2806         else
2807                 kfree(m->front.iov_base);
2808         kfree(m);
2809 }
2810
2811 /*
2812  * Drop a msg ref.  Destroy as needed.
2813  */
2814 void ceph_msg_last_put(struct kref *kref)
2815 {
2816         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2817
2818         dout("ceph_msg_put last one on %p\n", m);
2819         WARN_ON(!list_empty(&m->list_head));
2820
2821         /* drop middle, data, if any */
2822         if (m->middle) {
2823                 ceph_buffer_put(m->middle);
2824                 m->middle = NULL;
2825         }
2826         m->nr_pages = 0;
2827         m->pages = NULL;
2828
2829         if (m->pagelist) {
2830                 ceph_pagelist_release(m->pagelist);
2831                 kfree(m->pagelist);
2832                 m->pagelist = NULL;
2833         }
2834
2835         m->trail = NULL;
2836
2837         if (m->pool)
2838                 ceph_msgpool_put(m->pool, m);
2839         else
2840                 ceph_msg_kfree(m);
2841 }
2842 EXPORT_SYMBOL(ceph_msg_last_put);
2843
2844 void ceph_msg_dump(struct ceph_msg *msg)
2845 {
2846         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2847                  msg->front_max, msg->nr_pages);
2848         print_hex_dump(KERN_DEBUG, "header: ",
2849                        DUMP_PREFIX_OFFSET, 16, 1,
2850                        &msg->hdr, sizeof(msg->hdr), true);
2851         print_hex_dump(KERN_DEBUG, " front: ",
2852                        DUMP_PREFIX_OFFSET, 16, 1,
2853                        msg->front.iov_base, msg->front.iov_len, true);
2854         if (msg->middle)
2855                 print_hex_dump(KERN_DEBUG, "middle: ",
2856                                DUMP_PREFIX_OFFSET, 16, 1,
2857                                msg->middle->vec.iov_base,
2858                                msg->middle->vec.iov_len, true);
2859         print_hex_dump(KERN_DEBUG, "footer: ",
2860                        DUMP_PREFIX_OFFSET, 16, 1,
2861                        &msg->footer, sizeof(msg->footer), true);
2862 }
2863 EXPORT_SYMBOL(ceph_msg_dump);