b872db5c498941020c05c6c77a9729b70cace120
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94                                        * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE   1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page;          /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135         int i;
136         char *s;
137         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141         s = addr_str[i];
142
143         switch (ss->ss_family) {
144         case AF_INET:
145                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146                          ntohs(in4->sin_port));
147                 break;
148
149         case AF_INET6:
150                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151                          ntohs(in6->sin6_port));
152                 break;
153
154         default:
155                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156                          ss->ss_family);
157         }
158
159         return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166         ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176         if (ceph_msgr_wq) {
177                 destroy_workqueue(ceph_msgr_wq);
178                 ceph_msgr_wq = NULL;
179         }
180
181         BUG_ON(zero_page == NULL);
182         kunmap(zero_page);
183         page_cache_release(zero_page);
184         zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189         BUG_ON(zero_page != NULL);
190         zero_page = ZERO_PAGE(0);
191         page_cache_get(zero_page);
192
193         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194         if (ceph_msgr_wq)
195                 return 0;
196
197         pr_err("msgr_init failed to create workqueue\n");
198         _ceph_msgr_exit();
199
200         return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206         BUG_ON(ceph_msgr_wq == NULL);
207
208         _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214         flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222         int old_state;
223
224         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226                 printk("%s: unexpected old state %d\n", __func__, old_state);
227 }
228
229 static void con_sock_state_connecting(struct ceph_connection *con)
230 {
231         int old_state;
232
233         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
234         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
235                 printk("%s: unexpected old state %d\n", __func__, old_state);
236 }
237
238 static void con_sock_state_connected(struct ceph_connection *con)
239 {
240         int old_state;
241
242         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
243         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
244                 printk("%s: unexpected old state %d\n", __func__, old_state);
245 }
246
247 static void con_sock_state_closing(struct ceph_connection *con)
248 {
249         int old_state;
250
251         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
252         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
253                         old_state != CON_SOCK_STATE_CONNECTED &&
254                         old_state != CON_SOCK_STATE_CLOSING))
255                 printk("%s: unexpected old state %d\n", __func__, old_state);
256 }
257
258 static void con_sock_state_closed(struct ceph_connection *con)
259 {
260         int old_state;
261
262         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
263         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
264                     old_state != CON_SOCK_STATE_CLOSING &&
265                     old_state != CON_SOCK_STATE_CONNECTING))
266                 printk("%s: unexpected old state %d\n", __func__, old_state);
267 }
268
269 /*
270  * socket callback functions
271  */
272
273 /* data available on socket, or listen socket received a connect */
274 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
275 {
276         struct ceph_connection *con = sk->sk_user_data;
277         if (atomic_read(&con->msgr->stopping)) {
278                 return;
279         }
280
281         if (sk->sk_state != TCP_CLOSE_WAIT) {
282                 dout("%s on %p state = %lu, queueing work\n", __func__,
283                      con, con->state);
284                 queue_con(con);
285         }
286 }
287
288 /* socket has buffer space for writing */
289 static void ceph_sock_write_space(struct sock *sk)
290 {
291         struct ceph_connection *con = sk->sk_user_data;
292
293         /* only queue to workqueue if there is data we want to write,
294          * and there is sufficient space in the socket buffer to accept
295          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
296          * doesn't get called again until try_write() fills the socket
297          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
298          * and net/core/stream.c:sk_stream_write_space().
299          */
300         if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
301                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
302                         dout("%s %p queueing write work\n", __func__, con);
303                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
304                         queue_con(con);
305                 }
306         } else {
307                 dout("%s %p nothing to write\n", __func__, con);
308         }
309 }
310
311 /* socket's state has changed */
312 static void ceph_sock_state_change(struct sock *sk)
313 {
314         struct ceph_connection *con = sk->sk_user_data;
315
316         dout("%s %p state = %lu sk_state = %u\n", __func__,
317              con, con->state, sk->sk_state);
318
319         switch (sk->sk_state) {
320         case TCP_CLOSE:
321                 dout("%s TCP_CLOSE\n", __func__);
322         case TCP_CLOSE_WAIT:
323                 dout("%s TCP_CLOSE_WAIT\n", __func__);
324                 con_sock_state_closing(con);
325                 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
326                 queue_con(con);
327                 break;
328         case TCP_ESTABLISHED:
329                 dout("%s TCP_ESTABLISHED\n", __func__);
330                 con_sock_state_connected(con);
331                 queue_con(con);
332                 break;
333         default:        /* Everything else is uninteresting */
334                 break;
335         }
336 }
337
338 /*
339  * set up socket callbacks
340  */
341 static void set_sock_callbacks(struct socket *sock,
342                                struct ceph_connection *con)
343 {
344         struct sock *sk = sock->sk;
345         sk->sk_user_data = con;
346         sk->sk_data_ready = ceph_sock_data_ready;
347         sk->sk_write_space = ceph_sock_write_space;
348         sk->sk_state_change = ceph_sock_state_change;
349 }
350
351
352 /*
353  * socket helpers
354  */
355
356 /*
357  * initiate connection to a remote socket.
358  */
359 static int ceph_tcp_connect(struct ceph_connection *con)
360 {
361         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
362         struct socket *sock;
363         int ret;
364
365         BUG_ON(con->sock);
366         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
367                                IPPROTO_TCP, &sock);
368         if (ret)
369                 return ret;
370         sock->sk->sk_allocation = GFP_NOFS;
371
372 #ifdef CONFIG_LOCKDEP
373         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
374 #endif
375
376         set_sock_callbacks(sock, con);
377
378         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
379
380         con_sock_state_connecting(con);
381         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
382                                  O_NONBLOCK);
383         if (ret == -EINPROGRESS) {
384                 dout("connect %s EINPROGRESS sk_state = %u\n",
385                      ceph_pr_addr(&con->peer_addr.in_addr),
386                      sock->sk->sk_state);
387         } else if (ret < 0) {
388                 pr_err("connect %s error %d\n",
389                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
390                 sock_release(sock);
391                 con->error_msg = "connect error";
392
393                 return ret;
394         }
395         con->sock = sock;
396         return 0;
397 }
398
399 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
400 {
401         struct kvec iov = {buf, len};
402         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
403         int r;
404
405         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
406         if (r == -EAGAIN)
407                 r = 0;
408         return r;
409 }
410
411 /*
412  * write something.  @more is true if caller will be sending more data
413  * shortly.
414  */
415 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
416                      size_t kvlen, size_t len, int more)
417 {
418         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
419         int r;
420
421         if (more)
422                 msg.msg_flags |= MSG_MORE;
423         else
424                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
425
426         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
427         if (r == -EAGAIN)
428                 r = 0;
429         return r;
430 }
431
432 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
433                      int offset, size_t size, int more)
434 {
435         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
436         int ret;
437
438         ret = kernel_sendpage(sock, page, offset, size, flags);
439         if (ret == -EAGAIN)
440                 ret = 0;
441
442         return ret;
443 }
444
445
446 /*
447  * Shutdown/close the socket for the given connection.
448  */
449 static int con_close_socket(struct ceph_connection *con)
450 {
451         int rc;
452
453         dout("con_close_socket on %p sock %p\n", con, con->sock);
454         if (!con->sock)
455                 return 0;
456         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
457         sock_release(con->sock);
458         con->sock = NULL;
459
460         /*
461          * Forcibly clear the SOCK_CLOSED flag.  It gets set
462          * independent of the connection mutex, and we could have
463          * received a socket close event before we had the chance to
464          * shut the socket down.
465          */
466         clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
467         con_sock_state_closed(con);
468         return rc;
469 }
470
471 /*
472  * Reset a connection.  Discard all incoming and outgoing messages
473  * and clear *_seq state.
474  */
475 static void ceph_msg_remove(struct ceph_msg *msg)
476 {
477         list_del_init(&msg->list_head);
478         BUG_ON(msg->con == NULL);
479         msg->con->ops->put(msg->con);
480         msg->con = NULL;
481
482         ceph_msg_put(msg);
483 }
484 static void ceph_msg_remove_list(struct list_head *head)
485 {
486         while (!list_empty(head)) {
487                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
488                                                         list_head);
489                 ceph_msg_remove(msg);
490         }
491 }
492
493 static void reset_connection(struct ceph_connection *con)
494 {
495         /* reset connection, out_queue, msg_ and connect_seq */
496         /* discard existing out_queue and msg_seq */
497         ceph_msg_remove_list(&con->out_queue);
498         ceph_msg_remove_list(&con->out_sent);
499
500         if (con->in_msg) {
501                 BUG_ON(con->in_msg->con != con);
502                 con->in_msg->con = NULL;
503                 ceph_msg_put(con->in_msg);
504                 con->in_msg = NULL;
505                 con->ops->put(con);
506         }
507
508         con->connect_seq = 0;
509         con->out_seq = 0;
510         if (con->out_msg) {
511                 ceph_msg_put(con->out_msg);
512                 con->out_msg = NULL;
513         }
514         con->in_seq = 0;
515         con->in_seq_acked = 0;
516 }
517
518 /*
519  * mark a peer down.  drop any open connections.
520  */
521 void ceph_con_close(struct ceph_connection *con)
522 {
523         mutex_lock(&con->mutex);
524         dout("con_close %p peer %s\n", con,
525              ceph_pr_addr(&con->peer_addr.in_addr));
526         con->state = CON_STATE_CLOSED;
527
528         clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
529         clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
530         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
531
532         reset_connection(con);
533         con->peer_global_seq = 0;
534         cancel_delayed_work(&con->work);
535         con_close_socket(con);
536         mutex_unlock(&con->mutex);
537 }
538 EXPORT_SYMBOL(ceph_con_close);
539
540 /*
541  * Reopen a closed connection, with a new peer address.
542  */
543 void ceph_con_open(struct ceph_connection *con,
544                    __u8 entity_type, __u64 entity_num,
545                    struct ceph_entity_addr *addr)
546 {
547         mutex_lock(&con->mutex);
548         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
549
550         BUG_ON(con->state != CON_STATE_CLOSED);
551         con->state = CON_STATE_PREOPEN;
552
553         con->peer_name.type = (__u8) entity_type;
554         con->peer_name.num = cpu_to_le64(entity_num);
555
556         memcpy(&con->peer_addr, addr, sizeof(*addr));
557         con->delay = 0;      /* reset backoff memory */
558         mutex_unlock(&con->mutex);
559         queue_con(con);
560 }
561 EXPORT_SYMBOL(ceph_con_open);
562
563 /*
564  * return true if this connection ever successfully opened
565  */
566 bool ceph_con_opened(struct ceph_connection *con)
567 {
568         return con->connect_seq > 0;
569 }
570
571 /*
572  * initialize a new connection.
573  */
574 void ceph_con_init(struct ceph_connection *con, void *private,
575         const struct ceph_connection_operations *ops,
576         struct ceph_messenger *msgr)
577 {
578         dout("con_init %p\n", con);
579         memset(con, 0, sizeof(*con));
580         con->private = private;
581         con->ops = ops;
582         con->msgr = msgr;
583
584         con_sock_state_init(con);
585
586         mutex_init(&con->mutex);
587         INIT_LIST_HEAD(&con->out_queue);
588         INIT_LIST_HEAD(&con->out_sent);
589         INIT_DELAYED_WORK(&con->work, con_work);
590
591         con->state = CON_STATE_CLOSED;
592 }
593 EXPORT_SYMBOL(ceph_con_init);
594
595
596 /*
597  * We maintain a global counter to order connection attempts.  Get
598  * a unique seq greater than @gt.
599  */
600 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
601 {
602         u32 ret;
603
604         spin_lock(&msgr->global_seq_lock);
605         if (msgr->global_seq < gt)
606                 msgr->global_seq = gt;
607         ret = ++msgr->global_seq;
608         spin_unlock(&msgr->global_seq_lock);
609         return ret;
610 }
611
612 static void con_out_kvec_reset(struct ceph_connection *con)
613 {
614         con->out_kvec_left = 0;
615         con->out_kvec_bytes = 0;
616         con->out_kvec_cur = &con->out_kvec[0];
617 }
618
619 static void con_out_kvec_add(struct ceph_connection *con,
620                                 size_t size, void *data)
621 {
622         int index;
623
624         index = con->out_kvec_left;
625         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
626
627         con->out_kvec[index].iov_len = size;
628         con->out_kvec[index].iov_base = data;
629         con->out_kvec_left++;
630         con->out_kvec_bytes += size;
631 }
632
633 #ifdef CONFIG_BLOCK
634 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
635 {
636         if (!bio) {
637                 *iter = NULL;
638                 *seg = 0;
639                 return;
640         }
641         *iter = bio;
642         *seg = bio->bi_idx;
643 }
644
645 static void iter_bio_next(struct bio **bio_iter, int *seg)
646 {
647         if (*bio_iter == NULL)
648                 return;
649
650         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
651
652         (*seg)++;
653         if (*seg == (*bio_iter)->bi_vcnt)
654                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
655 }
656 #endif
657
658 static void prepare_write_message_data(struct ceph_connection *con)
659 {
660         struct ceph_msg *msg = con->out_msg;
661
662         BUG_ON(!msg);
663         BUG_ON(!msg->hdr.data_len);
664
665         /* initialize page iterator */
666         con->out_msg_pos.page = 0;
667         if (msg->pages)
668                 con->out_msg_pos.page_pos = msg->page_alignment;
669         else
670                 con->out_msg_pos.page_pos = 0;
671 #ifdef CONFIG_BLOCK
672         if (msg->bio)
673                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
674 #endif
675         con->out_msg_pos.data_pos = 0;
676         con->out_msg_pos.did_page_crc = false;
677         con->out_more = 1;  /* data + footer will follow */
678 }
679
680 /*
681  * Prepare footer for currently outgoing message, and finish things
682  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
683  */
684 static void prepare_write_message_footer(struct ceph_connection *con)
685 {
686         struct ceph_msg *m = con->out_msg;
687         int v = con->out_kvec_left;
688
689         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
690
691         dout("prepare_write_message_footer %p\n", con);
692         con->out_kvec_is_msg = true;
693         con->out_kvec[v].iov_base = &m->footer;
694         con->out_kvec[v].iov_len = sizeof(m->footer);
695         con->out_kvec_bytes += sizeof(m->footer);
696         con->out_kvec_left++;
697         con->out_more = m->more_to_follow;
698         con->out_msg_done = true;
699 }
700
701 /*
702  * Prepare headers for the next outgoing message.
703  */
704 static void prepare_write_message(struct ceph_connection *con)
705 {
706         struct ceph_msg *m;
707         u32 crc;
708
709         con_out_kvec_reset(con);
710         con->out_kvec_is_msg = true;
711         con->out_msg_done = false;
712
713         /* Sneak an ack in there first?  If we can get it into the same
714          * TCP packet that's a good thing. */
715         if (con->in_seq > con->in_seq_acked) {
716                 con->in_seq_acked = con->in_seq;
717                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
718                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
719                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
720                         &con->out_temp_ack);
721         }
722
723         BUG_ON(list_empty(&con->out_queue));
724         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
725         con->out_msg = m;
726         BUG_ON(m->con != con);
727
728         /* put message on sent list */
729         ceph_msg_get(m);
730         list_move_tail(&m->list_head, &con->out_sent);
731
732         /*
733          * only assign outgoing seq # if we haven't sent this message
734          * yet.  if it is requeued, resend with it's original seq.
735          */
736         if (m->needs_out_seq) {
737                 m->hdr.seq = cpu_to_le64(++con->out_seq);
738                 m->needs_out_seq = false;
739         }
740
741         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
742              m, con->out_seq, le16_to_cpu(m->hdr.type),
743              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
744              le32_to_cpu(m->hdr.data_len),
745              m->nr_pages);
746         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
747
748         /* tag + hdr + front + middle */
749         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
750         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
751         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
752
753         if (m->middle)
754                 con_out_kvec_add(con, m->middle->vec.iov_len,
755                         m->middle->vec.iov_base);
756
757         /* fill in crc (except data pages), footer */
758         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
759         con->out_msg->hdr.crc = cpu_to_le32(crc);
760         con->out_msg->footer.flags = 0;
761
762         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
763         con->out_msg->footer.front_crc = cpu_to_le32(crc);
764         if (m->middle) {
765                 crc = crc32c(0, m->middle->vec.iov_base,
766                                 m->middle->vec.iov_len);
767                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
768         } else
769                 con->out_msg->footer.middle_crc = 0;
770         dout("%s front_crc %u middle_crc %u\n", __func__,
771              le32_to_cpu(con->out_msg->footer.front_crc),
772              le32_to_cpu(con->out_msg->footer.middle_crc));
773
774         /* is there a data payload? */
775         con->out_msg->footer.data_crc = 0;
776         if (m->hdr.data_len)
777                 prepare_write_message_data(con);
778         else
779                 /* no, queue up footer too and be done */
780                 prepare_write_message_footer(con);
781
782         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
783 }
784
785 /*
786  * Prepare an ack.
787  */
788 static void prepare_write_ack(struct ceph_connection *con)
789 {
790         dout("prepare_write_ack %p %llu -> %llu\n", con,
791              con->in_seq_acked, con->in_seq);
792         con->in_seq_acked = con->in_seq;
793
794         con_out_kvec_reset(con);
795
796         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
797
798         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
799         con_out_kvec_add(con, sizeof (con->out_temp_ack),
800                                 &con->out_temp_ack);
801
802         con->out_more = 1;  /* more will follow.. eventually.. */
803         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
804 }
805
806 /*
807  * Prepare to write keepalive byte.
808  */
809 static void prepare_write_keepalive(struct ceph_connection *con)
810 {
811         dout("prepare_write_keepalive %p\n", con);
812         con_out_kvec_reset(con);
813         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
814         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
815 }
816
817 /*
818  * Connection negotiation.
819  */
820
821 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
822                                                 int *auth_proto)
823 {
824         struct ceph_auth_handshake *auth;
825
826         if (!con->ops->get_authorizer) {
827                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
828                 con->out_connect.authorizer_len = 0;
829                 return NULL;
830         }
831
832         /* Can't hold the mutex while getting authorizer */
833         mutex_unlock(&con->mutex);
834         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
835         mutex_lock(&con->mutex);
836
837         if (IS_ERR(auth))
838                 return auth;
839         if (con->state != CON_STATE_NEGOTIATING)
840                 return ERR_PTR(-EAGAIN);
841
842         con->auth_reply_buf = auth->authorizer_reply_buf;
843         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
844         return auth;
845 }
846
847 /*
848  * We connected to a peer and are saying hello.
849  */
850 static void prepare_write_banner(struct ceph_connection *con)
851 {
852         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
853         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
854                                         &con->msgr->my_enc_addr);
855
856         con->out_more = 0;
857         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
858 }
859
860 static int prepare_write_connect(struct ceph_connection *con)
861 {
862         unsigned int global_seq = get_global_seq(con->msgr, 0);
863         int proto;
864         int auth_proto;
865         struct ceph_auth_handshake *auth;
866
867         switch (con->peer_name.type) {
868         case CEPH_ENTITY_TYPE_MON:
869                 proto = CEPH_MONC_PROTOCOL;
870                 break;
871         case CEPH_ENTITY_TYPE_OSD:
872                 proto = CEPH_OSDC_PROTOCOL;
873                 break;
874         case CEPH_ENTITY_TYPE_MDS:
875                 proto = CEPH_MDSC_PROTOCOL;
876                 break;
877         default:
878                 BUG();
879         }
880
881         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
882              con->connect_seq, global_seq, proto);
883
884         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
885         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
886         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
887         con->out_connect.global_seq = cpu_to_le32(global_seq);
888         con->out_connect.protocol_version = cpu_to_le32(proto);
889         con->out_connect.flags = 0;
890
891         auth_proto = CEPH_AUTH_UNKNOWN;
892         auth = get_connect_authorizer(con, &auth_proto);
893         if (IS_ERR(auth))
894                 return PTR_ERR(auth);
895
896         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
897         con->out_connect.authorizer_len = auth ?
898                 cpu_to_le32(auth->authorizer_buf_len) : 0;
899
900         con_out_kvec_reset(con);
901         con_out_kvec_add(con, sizeof (con->out_connect),
902                                         &con->out_connect);
903         if (auth && auth->authorizer_buf_len)
904                 con_out_kvec_add(con, auth->authorizer_buf_len,
905                                         auth->authorizer_buf);
906
907         con->out_more = 0;
908         set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
909
910         return 0;
911 }
912
913 /*
914  * write as much of pending kvecs to the socket as we can.
915  *  1 -> done
916  *  0 -> socket full, but more to do
917  * <0 -> error
918  */
919 static int write_partial_kvec(struct ceph_connection *con)
920 {
921         int ret;
922
923         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
924         while (con->out_kvec_bytes > 0) {
925                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
926                                        con->out_kvec_left, con->out_kvec_bytes,
927                                        con->out_more);
928                 if (ret <= 0)
929                         goto out;
930                 con->out_kvec_bytes -= ret;
931                 if (con->out_kvec_bytes == 0)
932                         break;            /* done */
933
934                 /* account for full iov entries consumed */
935                 while (ret >= con->out_kvec_cur->iov_len) {
936                         BUG_ON(!con->out_kvec_left);
937                         ret -= con->out_kvec_cur->iov_len;
938                         con->out_kvec_cur++;
939                         con->out_kvec_left--;
940                 }
941                 /* and for a partially-consumed entry */
942                 if (ret) {
943                         con->out_kvec_cur->iov_len -= ret;
944                         con->out_kvec_cur->iov_base += ret;
945                 }
946         }
947         con->out_kvec_left = 0;
948         con->out_kvec_is_msg = false;
949         ret = 1;
950 out:
951         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
952              con->out_kvec_bytes, con->out_kvec_left, ret);
953         return ret;  /* done! */
954 }
955
956 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
957                         size_t len, size_t sent, bool in_trail)
958 {
959         struct ceph_msg *msg = con->out_msg;
960
961         BUG_ON(!msg);
962         BUG_ON(!sent);
963
964         con->out_msg_pos.data_pos += sent;
965         con->out_msg_pos.page_pos += sent;
966         if (sent < len)
967                 return;
968
969         BUG_ON(sent != len);
970         con->out_msg_pos.page_pos = 0;
971         con->out_msg_pos.page++;
972         con->out_msg_pos.did_page_crc = false;
973         if (in_trail)
974                 list_move_tail(&page->lru,
975                                &msg->trail->head);
976         else if (msg->pagelist)
977                 list_move_tail(&page->lru,
978                                &msg->pagelist->head);
979 #ifdef CONFIG_BLOCK
980         else if (msg->bio)
981                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
982 #endif
983 }
984
985 /*
986  * Write as much message data payload as we can.  If we finish, queue
987  * up the footer.
988  *  1 -> done, footer is now queued in out_kvec[].
989  *  0 -> socket full, but more to do
990  * <0 -> error
991  */
992 static int write_partial_msg_pages(struct ceph_connection *con)
993 {
994         struct ceph_msg *msg = con->out_msg;
995         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
996         size_t len;
997         bool do_datacrc = !con->msgr->nocrc;
998         int ret;
999         int total_max_write;
1000         bool in_trail = false;
1001         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1002         const size_t trail_off = data_len - trail_len;
1003
1004         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1005              con, msg, con->out_msg_pos.page, msg->nr_pages,
1006              con->out_msg_pos.page_pos);
1007
1008         /*
1009          * Iterate through each page that contains data to be
1010          * written, and send as much as possible for each.
1011          *
1012          * If we are calculating the data crc (the default), we will
1013          * need to map the page.  If we have no pages, they have
1014          * been revoked, so use the zero page.
1015          */
1016         while (data_len > con->out_msg_pos.data_pos) {
1017                 struct page *page = NULL;
1018                 int max_write = PAGE_SIZE;
1019                 int bio_offset = 0;
1020
1021                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1022                 if (!in_trail)
1023                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1024
1025                 if (in_trail) {
1026                         total_max_write = data_len - con->out_msg_pos.data_pos;
1027
1028                         page = list_first_entry(&msg->trail->head,
1029                                                 struct page, lru);
1030                 } else if (msg->pages) {
1031                         page = msg->pages[con->out_msg_pos.page];
1032                 } else if (msg->pagelist) {
1033                         page = list_first_entry(&msg->pagelist->head,
1034                                                 struct page, lru);
1035 #ifdef CONFIG_BLOCK
1036                 } else if (msg->bio) {
1037                         struct bio_vec *bv;
1038
1039                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1040                         page = bv->bv_page;
1041                         bio_offset = bv->bv_offset;
1042                         max_write = bv->bv_len;
1043 #endif
1044                 } else {
1045                         page = zero_page;
1046                 }
1047                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1048                             total_max_write);
1049
1050                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1051                         void *base;
1052                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1053                         char *kaddr;
1054
1055                         kaddr = kmap(page);
1056                         BUG_ON(kaddr == NULL);
1057                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1058                         crc = crc32c(crc, base, len);
1059                         msg->footer.data_crc = cpu_to_le32(crc);
1060                         con->out_msg_pos.did_page_crc = true;
1061                 }
1062                 ret = ceph_tcp_sendpage(con->sock, page,
1063                                       con->out_msg_pos.page_pos + bio_offset,
1064                                       len, 1);
1065
1066                 if (do_datacrc)
1067                         kunmap(page);
1068
1069                 if (ret <= 0)
1070                         goto out;
1071
1072                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1073         }
1074
1075         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1076
1077         /* prepare and queue up footer, too */
1078         if (!do_datacrc)
1079                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1080         con_out_kvec_reset(con);
1081         prepare_write_message_footer(con);
1082         ret = 1;
1083 out:
1084         return ret;
1085 }
1086
1087 /*
1088  * write some zeros
1089  */
1090 static int write_partial_skip(struct ceph_connection *con)
1091 {
1092         int ret;
1093
1094         while (con->out_skip > 0) {
1095                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1096
1097                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1098                 if (ret <= 0)
1099                         goto out;
1100                 con->out_skip -= ret;
1101         }
1102         ret = 1;
1103 out:
1104         return ret;
1105 }
1106
1107 /*
1108  * Prepare to read connection handshake, or an ack.
1109  */
1110 static void prepare_read_banner(struct ceph_connection *con)
1111 {
1112         dout("prepare_read_banner %p\n", con);
1113         con->in_base_pos = 0;
1114 }
1115
1116 static void prepare_read_connect(struct ceph_connection *con)
1117 {
1118         dout("prepare_read_connect %p\n", con);
1119         con->in_base_pos = 0;
1120 }
1121
1122 static void prepare_read_ack(struct ceph_connection *con)
1123 {
1124         dout("prepare_read_ack %p\n", con);
1125         con->in_base_pos = 0;
1126 }
1127
1128 static void prepare_read_tag(struct ceph_connection *con)
1129 {
1130         dout("prepare_read_tag %p\n", con);
1131         con->in_base_pos = 0;
1132         con->in_tag = CEPH_MSGR_TAG_READY;
1133 }
1134
1135 /*
1136  * Prepare to read a message.
1137  */
1138 static int prepare_read_message(struct ceph_connection *con)
1139 {
1140         dout("prepare_read_message %p\n", con);
1141         BUG_ON(con->in_msg != NULL);
1142         con->in_base_pos = 0;
1143         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1144         return 0;
1145 }
1146
1147
1148 static int read_partial(struct ceph_connection *con,
1149                         int end, int size, void *object)
1150 {
1151         while (con->in_base_pos < end) {
1152                 int left = end - con->in_base_pos;
1153                 int have = size - left;
1154                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1155                 if (ret <= 0)
1156                         return ret;
1157                 con->in_base_pos += ret;
1158         }
1159         return 1;
1160 }
1161
1162
1163 /*
1164  * Read all or part of the connect-side handshake on a new connection
1165  */
1166 static int read_partial_banner(struct ceph_connection *con)
1167 {
1168         int size;
1169         int end;
1170         int ret;
1171
1172         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1173
1174         /* peer's banner */
1175         size = strlen(CEPH_BANNER);
1176         end = size;
1177         ret = read_partial(con, end, size, con->in_banner);
1178         if (ret <= 0)
1179                 goto out;
1180
1181         size = sizeof (con->actual_peer_addr);
1182         end += size;
1183         ret = read_partial(con, end, size, &con->actual_peer_addr);
1184         if (ret <= 0)
1185                 goto out;
1186
1187         size = sizeof (con->peer_addr_for_me);
1188         end += size;
1189         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1190         if (ret <= 0)
1191                 goto out;
1192
1193 out:
1194         return ret;
1195 }
1196
1197 static int read_partial_connect(struct ceph_connection *con)
1198 {
1199         int size;
1200         int end;
1201         int ret;
1202
1203         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1204
1205         size = sizeof (con->in_reply);
1206         end = size;
1207         ret = read_partial(con, end, size, &con->in_reply);
1208         if (ret <= 0)
1209                 goto out;
1210
1211         size = le32_to_cpu(con->in_reply.authorizer_len);
1212         end += size;
1213         ret = read_partial(con, end, size, con->auth_reply_buf);
1214         if (ret <= 0)
1215                 goto out;
1216
1217         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1218              con, (int)con->in_reply.tag,
1219              le32_to_cpu(con->in_reply.connect_seq),
1220              le32_to_cpu(con->in_reply.global_seq));
1221 out:
1222         return ret;
1223
1224 }
1225
1226 /*
1227  * Verify the hello banner looks okay.
1228  */
1229 static int verify_hello(struct ceph_connection *con)
1230 {
1231         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1232                 pr_err("connect to %s got bad banner\n",
1233                        ceph_pr_addr(&con->peer_addr.in_addr));
1234                 con->error_msg = "protocol error, bad banner";
1235                 return -1;
1236         }
1237         return 0;
1238 }
1239
1240 static bool addr_is_blank(struct sockaddr_storage *ss)
1241 {
1242         switch (ss->ss_family) {
1243         case AF_INET:
1244                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1245         case AF_INET6:
1246                 return
1247                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1248                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1249                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1250                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1251         }
1252         return false;
1253 }
1254
1255 static int addr_port(struct sockaddr_storage *ss)
1256 {
1257         switch (ss->ss_family) {
1258         case AF_INET:
1259                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1260         case AF_INET6:
1261                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1262         }
1263         return 0;
1264 }
1265
1266 static void addr_set_port(struct sockaddr_storage *ss, int p)
1267 {
1268         switch (ss->ss_family) {
1269         case AF_INET:
1270                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1271                 break;
1272         case AF_INET6:
1273                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1274                 break;
1275         }
1276 }
1277
1278 /*
1279  * Unlike other *_pton function semantics, zero indicates success.
1280  */
1281 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1282                 char delim, const char **ipend)
1283 {
1284         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1285         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1286
1287         memset(ss, 0, sizeof(*ss));
1288
1289         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1290                 ss->ss_family = AF_INET;
1291                 return 0;
1292         }
1293
1294         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1295                 ss->ss_family = AF_INET6;
1296                 return 0;
1297         }
1298
1299         return -EINVAL;
1300 }
1301
1302 /*
1303  * Extract hostname string and resolve using kernel DNS facility.
1304  */
1305 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1306 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1307                 struct sockaddr_storage *ss, char delim, const char **ipend)
1308 {
1309         const char *end, *delim_p;
1310         char *colon_p, *ip_addr = NULL;
1311         int ip_len, ret;
1312
1313         /*
1314          * The end of the hostname occurs immediately preceding the delimiter or
1315          * the port marker (':') where the delimiter takes precedence.
1316          */
1317         delim_p = memchr(name, delim, namelen);
1318         colon_p = memchr(name, ':', namelen);
1319
1320         if (delim_p && colon_p)
1321                 end = delim_p < colon_p ? delim_p : colon_p;
1322         else if (!delim_p && colon_p)
1323                 end = colon_p;
1324         else {
1325                 end = delim_p;
1326                 if (!end) /* case: hostname:/ */
1327                         end = name + namelen;
1328         }
1329
1330         if (end <= name)
1331                 return -EINVAL;
1332
1333         /* do dns_resolve upcall */
1334         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1335         if (ip_len > 0)
1336                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1337         else
1338                 ret = -ESRCH;
1339
1340         kfree(ip_addr);
1341
1342         *ipend = end;
1343
1344         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1345                         ret, ret ? "failed" : ceph_pr_addr(ss));
1346
1347         return ret;
1348 }
1349 #else
1350 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1351                 struct sockaddr_storage *ss, char delim, const char **ipend)
1352 {
1353         return -EINVAL;
1354 }
1355 #endif
1356
1357 /*
1358  * Parse a server name (IP or hostname). If a valid IP address is not found
1359  * then try to extract a hostname to resolve using userspace DNS upcall.
1360  */
1361 static int ceph_parse_server_name(const char *name, size_t namelen,
1362                         struct sockaddr_storage *ss, char delim, const char **ipend)
1363 {
1364         int ret;
1365
1366         ret = ceph_pton(name, namelen, ss, delim, ipend);
1367         if (ret)
1368                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Parse an ip[:port] list into an addr array.  Use the default
1375  * monitor port if a port isn't specified.
1376  */
1377 int ceph_parse_ips(const char *c, const char *end,
1378                    struct ceph_entity_addr *addr,
1379                    int max_count, int *count)
1380 {
1381         int i, ret = -EINVAL;
1382         const char *p = c;
1383
1384         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1385         for (i = 0; i < max_count; i++) {
1386                 const char *ipend;
1387                 struct sockaddr_storage *ss = &addr[i].in_addr;
1388                 int port;
1389                 char delim = ',';
1390
1391                 if (*p == '[') {
1392                         delim = ']';
1393                         p++;
1394                 }
1395
1396                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1397                 if (ret)
1398                         goto bad;
1399                 ret = -EINVAL;
1400
1401                 p = ipend;
1402
1403                 if (delim == ']') {
1404                         if (*p != ']') {
1405                                 dout("missing matching ']'\n");
1406                                 goto bad;
1407                         }
1408                         p++;
1409                 }
1410
1411                 /* port? */
1412                 if (p < end && *p == ':') {
1413                         port = 0;
1414                         p++;
1415                         while (p < end && *p >= '0' && *p <= '9') {
1416                                 port = (port * 10) + (*p - '0');
1417                                 p++;
1418                         }
1419                         if (port > 65535 || port == 0)
1420                                 goto bad;
1421                 } else {
1422                         port = CEPH_MON_PORT;
1423                 }
1424
1425                 addr_set_port(ss, port);
1426
1427                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1428
1429                 if (p == end)
1430                         break;
1431                 if (*p != ',')
1432                         goto bad;
1433                 p++;
1434         }
1435
1436         if (p != end)
1437                 goto bad;
1438
1439         if (count)
1440                 *count = i + 1;
1441         return 0;
1442
1443 bad:
1444         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1445         return ret;
1446 }
1447 EXPORT_SYMBOL(ceph_parse_ips);
1448
1449 static int process_banner(struct ceph_connection *con)
1450 {
1451         dout("process_banner on %p\n", con);
1452
1453         if (verify_hello(con) < 0)
1454                 return -1;
1455
1456         ceph_decode_addr(&con->actual_peer_addr);
1457         ceph_decode_addr(&con->peer_addr_for_me);
1458
1459         /*
1460          * Make sure the other end is who we wanted.  note that the other
1461          * end may not yet know their ip address, so if it's 0.0.0.0, give
1462          * them the benefit of the doubt.
1463          */
1464         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1465                    sizeof(con->peer_addr)) != 0 &&
1466             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1467               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1468                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1469                            ceph_pr_addr(&con->peer_addr.in_addr),
1470                            (int)le32_to_cpu(con->peer_addr.nonce),
1471                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1472                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1473                 con->error_msg = "wrong peer at address";
1474                 return -1;
1475         }
1476
1477         /*
1478          * did we learn our address?
1479          */
1480         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1481                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1482
1483                 memcpy(&con->msgr->inst.addr.in_addr,
1484                        &con->peer_addr_for_me.in_addr,
1485                        sizeof(con->peer_addr_for_me.in_addr));
1486                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1487                 encode_my_addr(con->msgr);
1488                 dout("process_banner learned my addr is %s\n",
1489                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1490         }
1491
1492         return 0;
1493 }
1494
1495 static void fail_protocol(struct ceph_connection *con)
1496 {
1497         reset_connection(con);
1498         BUG_ON(con->state != CON_STATE_NEGOTIATING);
1499         con->state = CON_STATE_CLOSED;
1500 }
1501
1502 static int process_connect(struct ceph_connection *con)
1503 {
1504         u64 sup_feat = con->msgr->supported_features;
1505         u64 req_feat = con->msgr->required_features;
1506         u64 server_feat = le64_to_cpu(con->in_reply.features);
1507         int ret;
1508
1509         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1510
1511         switch (con->in_reply.tag) {
1512         case CEPH_MSGR_TAG_FEATURES:
1513                 pr_err("%s%lld %s feature set mismatch,"
1514                        " my %llx < server's %llx, missing %llx\n",
1515                        ENTITY_NAME(con->peer_name),
1516                        ceph_pr_addr(&con->peer_addr.in_addr),
1517                        sup_feat, server_feat, server_feat & ~sup_feat);
1518                 con->error_msg = "missing required protocol features";
1519                 fail_protocol(con);
1520                 return -1;
1521
1522         case CEPH_MSGR_TAG_BADPROTOVER:
1523                 pr_err("%s%lld %s protocol version mismatch,"
1524                        " my %d != server's %d\n",
1525                        ENTITY_NAME(con->peer_name),
1526                        ceph_pr_addr(&con->peer_addr.in_addr),
1527                        le32_to_cpu(con->out_connect.protocol_version),
1528                        le32_to_cpu(con->in_reply.protocol_version));
1529                 con->error_msg = "protocol version mismatch";
1530                 fail_protocol(con);
1531                 return -1;
1532
1533         case CEPH_MSGR_TAG_BADAUTHORIZER:
1534                 con->auth_retry++;
1535                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1536                      con->auth_retry);
1537                 if (con->auth_retry == 2) {
1538                         con->error_msg = "connect authorization failure";
1539                         return -1;
1540                 }
1541                 con->auth_retry = 1;
1542                 ret = prepare_write_connect(con);
1543                 if (ret < 0)
1544                         return ret;
1545                 prepare_read_connect(con);
1546                 break;
1547
1548         case CEPH_MSGR_TAG_RESETSESSION:
1549                 /*
1550                  * If we connected with a large connect_seq but the peer
1551                  * has no record of a session with us (no connection, or
1552                  * connect_seq == 0), they will send RESETSESION to indicate
1553                  * that they must have reset their session, and may have
1554                  * dropped messages.
1555                  */
1556                 dout("process_connect got RESET peer seq %u\n",
1557                      le32_to_cpu(con->in_reply.connect_seq));
1558                 pr_err("%s%lld %s connection reset\n",
1559                        ENTITY_NAME(con->peer_name),
1560                        ceph_pr_addr(&con->peer_addr.in_addr));
1561                 reset_connection(con);
1562                 ret = prepare_write_connect(con);
1563                 if (ret < 0)
1564                         return ret;
1565                 prepare_read_connect(con);
1566
1567                 /* Tell ceph about it. */
1568                 mutex_unlock(&con->mutex);
1569                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1570                 if (con->ops->peer_reset)
1571                         con->ops->peer_reset(con);
1572                 mutex_lock(&con->mutex);
1573                 if (con->state != CON_STATE_NEGOTIATING)
1574                         return -EAGAIN;
1575                 break;
1576
1577         case CEPH_MSGR_TAG_RETRY_SESSION:
1578                 /*
1579                  * If we sent a smaller connect_seq than the peer has, try
1580                  * again with a larger value.
1581                  */
1582                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1583                      le32_to_cpu(con->out_connect.connect_seq),
1584                      le32_to_cpu(con->in_reply.connect_seq));
1585                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1586                 ret = prepare_write_connect(con);
1587                 if (ret < 0)
1588                         return ret;
1589                 prepare_read_connect(con);
1590                 break;
1591
1592         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1593                 /*
1594                  * If we sent a smaller global_seq than the peer has, try
1595                  * again with a larger value.
1596                  */
1597                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1598                      con->peer_global_seq,
1599                      le32_to_cpu(con->in_reply.global_seq));
1600                 get_global_seq(con->msgr,
1601                                le32_to_cpu(con->in_reply.global_seq));
1602                 ret = prepare_write_connect(con);
1603                 if (ret < 0)
1604                         return ret;
1605                 prepare_read_connect(con);
1606                 break;
1607
1608         case CEPH_MSGR_TAG_READY:
1609                 if (req_feat & ~server_feat) {
1610                         pr_err("%s%lld %s protocol feature mismatch,"
1611                                " my required %llx > server's %llx, need %llx\n",
1612                                ENTITY_NAME(con->peer_name),
1613                                ceph_pr_addr(&con->peer_addr.in_addr),
1614                                req_feat, server_feat, req_feat & ~server_feat);
1615                         con->error_msg = "missing required protocol features";
1616                         fail_protocol(con);
1617                         return -1;
1618                 }
1619
1620                 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1621                 con->state = CON_STATE_OPEN;
1622
1623                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1624                 con->connect_seq++;
1625                 con->peer_features = server_feat;
1626                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1627                      con->peer_global_seq,
1628                      le32_to_cpu(con->in_reply.connect_seq),
1629                      con->connect_seq);
1630                 WARN_ON(con->connect_seq !=
1631                         le32_to_cpu(con->in_reply.connect_seq));
1632
1633                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1634                         set_bit(CON_FLAG_LOSSYTX, &con->flags);
1635
1636                 con->delay = 0;      /* reset backoff memory */
1637
1638                 prepare_read_tag(con);
1639                 break;
1640
1641         case CEPH_MSGR_TAG_WAIT:
1642                 /*
1643                  * If there is a connection race (we are opening
1644                  * connections to each other), one of us may just have
1645                  * to WAIT.  This shouldn't happen if we are the
1646                  * client.
1647                  */
1648                 pr_err("process_connect got WAIT as client\n");
1649                 con->error_msg = "protocol error, got WAIT as client";
1650                 return -1;
1651
1652         default:
1653                 pr_err("connect protocol error, will retry\n");
1654                 con->error_msg = "protocol error, garbage tag during connect";
1655                 return -1;
1656         }
1657         return 0;
1658 }
1659
1660
1661 /*
1662  * read (part of) an ack
1663  */
1664 static int read_partial_ack(struct ceph_connection *con)
1665 {
1666         int size = sizeof (con->in_temp_ack);
1667         int end = size;
1668
1669         return read_partial(con, end, size, &con->in_temp_ack);
1670 }
1671
1672
1673 /*
1674  * We can finally discard anything that's been acked.
1675  */
1676 static void process_ack(struct ceph_connection *con)
1677 {
1678         struct ceph_msg *m;
1679         u64 ack = le64_to_cpu(con->in_temp_ack);
1680         u64 seq;
1681
1682         while (!list_empty(&con->out_sent)) {
1683                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1684                                      list_head);
1685                 seq = le64_to_cpu(m->hdr.seq);
1686                 if (seq > ack)
1687                         break;
1688                 dout("got ack for seq %llu type %d at %p\n", seq,
1689                      le16_to_cpu(m->hdr.type), m);
1690                 m->ack_stamp = jiffies;
1691                 ceph_msg_remove(m);
1692         }
1693         prepare_read_tag(con);
1694 }
1695
1696
1697
1698
1699 static int read_partial_message_section(struct ceph_connection *con,
1700                                         struct kvec *section,
1701                                         unsigned int sec_len, u32 *crc)
1702 {
1703         int ret, left;
1704
1705         BUG_ON(!section);
1706
1707         while (section->iov_len < sec_len) {
1708                 BUG_ON(section->iov_base == NULL);
1709                 left = sec_len - section->iov_len;
1710                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1711                                        section->iov_len, left);
1712                 if (ret <= 0)
1713                         return ret;
1714                 section->iov_len += ret;
1715         }
1716         if (section->iov_len == sec_len)
1717                 *crc = crc32c(0, section->iov_base, section->iov_len);
1718
1719         return 1;
1720 }
1721
1722 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1723                                 struct ceph_msg_header *hdr);
1724
1725
1726 static int read_partial_message_pages(struct ceph_connection *con,
1727                                       struct page **pages,
1728                                       unsigned int data_len, bool do_datacrc)
1729 {
1730         void *p;
1731         int ret;
1732         int left;
1733
1734         left = min((int)(data_len - con->in_msg_pos.data_pos),
1735                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1736         /* (page) data */
1737         BUG_ON(pages == NULL);
1738         p = kmap(pages[con->in_msg_pos.page]);
1739         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1740                                left);
1741         if (ret > 0 && do_datacrc)
1742                 con->in_data_crc =
1743                         crc32c(con->in_data_crc,
1744                                   p + con->in_msg_pos.page_pos, ret);
1745         kunmap(pages[con->in_msg_pos.page]);
1746         if (ret <= 0)
1747                 return ret;
1748         con->in_msg_pos.data_pos += ret;
1749         con->in_msg_pos.page_pos += ret;
1750         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1751                 con->in_msg_pos.page_pos = 0;
1752                 con->in_msg_pos.page++;
1753         }
1754
1755         return ret;
1756 }
1757
1758 #ifdef CONFIG_BLOCK
1759 static int read_partial_message_bio(struct ceph_connection *con,
1760                                     struct bio **bio_iter, int *bio_seg,
1761                                     unsigned int data_len, bool do_datacrc)
1762 {
1763         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1764         void *p;
1765         int ret, left;
1766
1767         left = min((int)(data_len - con->in_msg_pos.data_pos),
1768                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1769
1770         p = kmap(bv->bv_page) + bv->bv_offset;
1771
1772         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1773                                left);
1774         if (ret > 0 && do_datacrc)
1775                 con->in_data_crc =
1776                         crc32c(con->in_data_crc,
1777                                   p + con->in_msg_pos.page_pos, ret);
1778         kunmap(bv->bv_page);
1779         if (ret <= 0)
1780                 return ret;
1781         con->in_msg_pos.data_pos += ret;
1782         con->in_msg_pos.page_pos += ret;
1783         if (con->in_msg_pos.page_pos == bv->bv_len) {
1784                 con->in_msg_pos.page_pos = 0;
1785                 iter_bio_next(bio_iter, bio_seg);
1786         }
1787
1788         return ret;
1789 }
1790 #endif
1791
1792 /*
1793  * read (part of) a message.
1794  */
1795 static int read_partial_message(struct ceph_connection *con)
1796 {
1797         struct ceph_msg *m = con->in_msg;
1798         int size;
1799         int end;
1800         int ret;
1801         unsigned int front_len, middle_len, data_len;
1802         bool do_datacrc = !con->msgr->nocrc;
1803         u64 seq;
1804         u32 crc;
1805
1806         dout("read_partial_message con %p msg %p\n", con, m);
1807
1808         /* header */
1809         size = sizeof (con->in_hdr);
1810         end = size;
1811         ret = read_partial(con, end, size, &con->in_hdr);
1812         if (ret <= 0)
1813                 return ret;
1814
1815         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1816         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1817                 pr_err("read_partial_message bad hdr "
1818                        " crc %u != expected %u\n",
1819                        crc, con->in_hdr.crc);
1820                 return -EBADMSG;
1821         }
1822
1823         front_len = le32_to_cpu(con->in_hdr.front_len);
1824         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1825                 return -EIO;
1826         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1827         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1828                 return -EIO;
1829         data_len = le32_to_cpu(con->in_hdr.data_len);
1830         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1831                 return -EIO;
1832
1833         /* verify seq# */
1834         seq = le64_to_cpu(con->in_hdr.seq);
1835         if ((s64)seq - (s64)con->in_seq < 1) {
1836                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1837                         ENTITY_NAME(con->peer_name),
1838                         ceph_pr_addr(&con->peer_addr.in_addr),
1839                         seq, con->in_seq + 1);
1840                 con->in_base_pos = -front_len - middle_len - data_len -
1841                         sizeof(m->footer);
1842                 con->in_tag = CEPH_MSGR_TAG_READY;
1843                 return 0;
1844         } else if ((s64)seq - (s64)con->in_seq > 1) {
1845                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1846                        seq, con->in_seq + 1);
1847                 con->error_msg = "bad message sequence # for incoming message";
1848                 return -EBADMSG;
1849         }
1850
1851         /* allocate message? */
1852         if (!con->in_msg) {
1853                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1854                      con->in_hdr.front_len, con->in_hdr.data_len);
1855                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1856                         /* skip this message */
1857                         dout("alloc_msg said skip message\n");
1858                         BUG_ON(con->in_msg);
1859                         con->in_base_pos = -front_len - middle_len - data_len -
1860                                 sizeof(m->footer);
1861                         con->in_tag = CEPH_MSGR_TAG_READY;
1862                         con->in_seq++;
1863                         return 0;
1864                 }
1865                 if (!con->in_msg) {
1866                         con->error_msg =
1867                                 "error allocating memory for incoming message";
1868                         return -ENOMEM;
1869                 }
1870
1871                 BUG_ON(con->in_msg->con != con);
1872                 m = con->in_msg;
1873                 m->front.iov_len = 0;    /* haven't read it yet */
1874                 if (m->middle)
1875                         m->middle->vec.iov_len = 0;
1876
1877                 con->in_msg_pos.page = 0;
1878                 if (m->pages)
1879                         con->in_msg_pos.page_pos = m->page_alignment;
1880                 else
1881                         con->in_msg_pos.page_pos = 0;
1882                 con->in_msg_pos.data_pos = 0;
1883
1884 #ifdef CONFIG_BLOCK
1885                 if (m->bio)
1886                         init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1887 #endif
1888         }
1889
1890         /* front */
1891         ret = read_partial_message_section(con, &m->front, front_len,
1892                                            &con->in_front_crc);
1893         if (ret <= 0)
1894                 return ret;
1895
1896         /* middle */
1897         if (m->middle) {
1898                 ret = read_partial_message_section(con, &m->middle->vec,
1899                                                    middle_len,
1900                                                    &con->in_middle_crc);
1901                 if (ret <= 0)
1902                         return ret;
1903         }
1904
1905         /* (page) data */
1906         while (con->in_msg_pos.data_pos < data_len) {
1907                 if (m->pages) {
1908                         ret = read_partial_message_pages(con, m->pages,
1909                                                  data_len, do_datacrc);
1910                         if (ret <= 0)
1911                                 return ret;
1912 #ifdef CONFIG_BLOCK
1913                 } else if (m->bio) {
1914                         BUG_ON(!m->bio_iter);
1915                         ret = read_partial_message_bio(con,
1916                                                  &m->bio_iter, &m->bio_seg,
1917                                                  data_len, do_datacrc);
1918                         if (ret <= 0)
1919                                 return ret;
1920 #endif
1921                 } else {
1922                         BUG_ON(1);
1923                 }
1924         }
1925
1926         /* footer */
1927         size = sizeof (m->footer);
1928         end += size;
1929         ret = read_partial(con, end, size, &m->footer);
1930         if (ret <= 0)
1931                 return ret;
1932
1933         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1934              m, front_len, m->footer.front_crc, middle_len,
1935              m->footer.middle_crc, data_len, m->footer.data_crc);
1936
1937         /* crc ok? */
1938         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1939                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1940                        m, con->in_front_crc, m->footer.front_crc);
1941                 return -EBADMSG;
1942         }
1943         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1944                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1945                        m, con->in_middle_crc, m->footer.middle_crc);
1946                 return -EBADMSG;
1947         }
1948         if (do_datacrc &&
1949             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1950             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1951                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1952                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1953                 return -EBADMSG;
1954         }
1955
1956         return 1; /* done! */
1957 }
1958
1959 /*
1960  * Process message.  This happens in the worker thread.  The callback should
1961  * be careful not to do anything that waits on other incoming messages or it
1962  * may deadlock.
1963  */
1964 static void process_message(struct ceph_connection *con)
1965 {
1966         struct ceph_msg *msg;
1967
1968         BUG_ON(con->in_msg->con != con);
1969         con->in_msg->con = NULL;
1970         msg = con->in_msg;
1971         con->in_msg = NULL;
1972         con->ops->put(con);
1973
1974         /* if first message, set peer_name */
1975         if (con->peer_name.type == 0)
1976                 con->peer_name = msg->hdr.src;
1977
1978         con->in_seq++;
1979         mutex_unlock(&con->mutex);
1980
1981         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1982              msg, le64_to_cpu(msg->hdr.seq),
1983              ENTITY_NAME(msg->hdr.src),
1984              le16_to_cpu(msg->hdr.type),
1985              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1986              le32_to_cpu(msg->hdr.front_len),
1987              le32_to_cpu(msg->hdr.data_len),
1988              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1989         con->ops->dispatch(con, msg);
1990
1991         mutex_lock(&con->mutex);
1992         prepare_read_tag(con);
1993 }
1994
1995
1996 /*
1997  * Write something to the socket.  Called in a worker thread when the
1998  * socket appears to be writeable and we have something ready to send.
1999  */
2000 static int try_write(struct ceph_connection *con)
2001 {
2002         int ret = 1;
2003
2004         dout("try_write start %p state %lu\n", con, con->state);
2005
2006 more:
2007         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2008
2009         /* open the socket first? */
2010         if (con->state == CON_STATE_PREOPEN) {
2011                 BUG_ON(con->sock);
2012                 con->state = CON_STATE_CONNECTING;
2013
2014                 con_out_kvec_reset(con);
2015                 prepare_write_banner(con);
2016                 prepare_read_banner(con);
2017
2018                 BUG_ON(con->in_msg);
2019                 con->in_tag = CEPH_MSGR_TAG_READY;
2020                 dout("try_write initiating connect on %p new state %lu\n",
2021                      con, con->state);
2022                 ret = ceph_tcp_connect(con);
2023                 if (ret < 0) {
2024                         con->error_msg = "connect error";
2025                         goto out;
2026                 }
2027         }
2028
2029 more_kvec:
2030         /* kvec data queued? */
2031         if (con->out_skip) {
2032                 ret = write_partial_skip(con);
2033                 if (ret <= 0)
2034                         goto out;
2035         }
2036         if (con->out_kvec_left) {
2037                 ret = write_partial_kvec(con);
2038                 if (ret <= 0)
2039                         goto out;
2040         }
2041
2042         /* msg pages? */
2043         if (con->out_msg) {
2044                 if (con->out_msg_done) {
2045                         ceph_msg_put(con->out_msg);
2046                         con->out_msg = NULL;   /* we're done with this one */
2047                         goto do_next;
2048                 }
2049
2050                 ret = write_partial_msg_pages(con);
2051                 if (ret == 1)
2052                         goto more_kvec;  /* we need to send the footer, too! */
2053                 if (ret == 0)
2054                         goto out;
2055                 if (ret < 0) {
2056                         dout("try_write write_partial_msg_pages err %d\n",
2057                              ret);
2058                         goto out;
2059                 }
2060         }
2061
2062 do_next:
2063         if (con->state == CON_STATE_OPEN) {
2064                 /* is anything else pending? */
2065                 if (!list_empty(&con->out_queue)) {
2066                         prepare_write_message(con);
2067                         goto more;
2068                 }
2069                 if (con->in_seq > con->in_seq_acked) {
2070                         prepare_write_ack(con);
2071                         goto more;
2072                 }
2073                 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2074                                        &con->flags)) {
2075                         prepare_write_keepalive(con);
2076                         goto more;
2077                 }
2078         }
2079
2080         /* Nothing to do! */
2081         clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2082         dout("try_write nothing else to write.\n");
2083         ret = 0;
2084 out:
2085         dout("try_write done on %p ret %d\n", con, ret);
2086         return ret;
2087 }
2088
2089
2090
2091 /*
2092  * Read what we can from the socket.
2093  */
2094 static int try_read(struct ceph_connection *con)
2095 {
2096         int ret = -1;
2097
2098 more:
2099         dout("try_read start on %p state %lu\n", con, con->state);
2100         if (con->state != CON_STATE_CONNECTING &&
2101             con->state != CON_STATE_NEGOTIATING &&
2102             con->state != CON_STATE_OPEN)
2103                 return 0;
2104
2105         BUG_ON(!con->sock);
2106
2107         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2108              con->in_base_pos);
2109
2110         if (con->state == CON_STATE_CONNECTING) {
2111                 dout("try_read connecting\n");
2112                 ret = read_partial_banner(con);
2113                 if (ret <= 0)
2114                         goto out;
2115                 ret = process_banner(con);
2116                 if (ret < 0)
2117                         goto out;
2118
2119                 BUG_ON(con->state != CON_STATE_CONNECTING);
2120                 con->state = CON_STATE_NEGOTIATING;
2121
2122                 /* Banner is good, exchange connection info */
2123                 ret = prepare_write_connect(con);
2124                 if (ret < 0)
2125                         goto out;
2126                 prepare_read_connect(con);
2127
2128                 /* Send connection info before awaiting response */
2129                 goto out;
2130         }
2131
2132         if (con->state == CON_STATE_NEGOTIATING) {
2133                 dout("try_read negotiating\n");
2134                 ret = read_partial_connect(con);
2135                 if (ret <= 0)
2136                         goto out;
2137                 ret = process_connect(con);
2138                 if (ret < 0)
2139                         goto out;
2140                 goto more;
2141         }
2142
2143         BUG_ON(con->state != CON_STATE_OPEN);
2144
2145         if (con->in_base_pos < 0) {
2146                 /*
2147                  * skipping + discarding content.
2148                  *
2149                  * FIXME: there must be a better way to do this!
2150                  */
2151                 static char buf[SKIP_BUF_SIZE];
2152                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2153
2154                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2155                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2156                 if (ret <= 0)
2157                         goto out;
2158                 con->in_base_pos += ret;
2159                 if (con->in_base_pos)
2160                         goto more;
2161         }
2162         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2163                 /*
2164                  * what's next?
2165                  */
2166                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2167                 if (ret <= 0)
2168                         goto out;
2169                 dout("try_read got tag %d\n", (int)con->in_tag);
2170                 switch (con->in_tag) {
2171                 case CEPH_MSGR_TAG_MSG:
2172                         prepare_read_message(con);
2173                         break;
2174                 case CEPH_MSGR_TAG_ACK:
2175                         prepare_read_ack(con);
2176                         break;
2177                 case CEPH_MSGR_TAG_CLOSE:
2178                         con_close_socket(con);
2179                         con->state = CON_STATE_CLOSED;
2180                         goto out;
2181                 default:
2182                         goto bad_tag;
2183                 }
2184         }
2185         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2186                 ret = read_partial_message(con);
2187                 if (ret <= 0) {
2188                         switch (ret) {
2189                         case -EBADMSG:
2190                                 con->error_msg = "bad crc";
2191                                 ret = -EIO;
2192                                 break;
2193                         case -EIO:
2194                                 con->error_msg = "io error";
2195                                 break;
2196                         }
2197                         goto out;
2198                 }
2199                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2200                         goto more;
2201                 process_message(con);
2202                 goto more;
2203         }
2204         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2205                 ret = read_partial_ack(con);
2206                 if (ret <= 0)
2207                         goto out;
2208                 process_ack(con);
2209                 goto more;
2210         }
2211
2212 out:
2213         dout("try_read done on %p ret %d\n", con, ret);
2214         return ret;
2215
2216 bad_tag:
2217         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2218         con->error_msg = "protocol error, garbage tag";
2219         ret = -1;
2220         goto out;
2221 }
2222
2223
2224 /*
2225  * Atomically queue work on a connection.  Bump @con reference to
2226  * avoid races with connection teardown.
2227  */
2228 static void queue_con(struct ceph_connection *con)
2229 {
2230         if (!con->ops->get(con)) {
2231                 dout("queue_con %p ref count 0\n", con);
2232                 return;
2233         }
2234
2235         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2236                 dout("queue_con %p - already queued\n", con);
2237                 con->ops->put(con);
2238         } else {
2239                 dout("queue_con %p\n", con);
2240         }
2241 }
2242
2243 /*
2244  * Do some work on a connection.  Drop a connection ref when we're done.
2245  */
2246 static void con_work(struct work_struct *work)
2247 {
2248         struct ceph_connection *con = container_of(work, struct ceph_connection,
2249                                                    work.work);
2250         int ret;
2251
2252         mutex_lock(&con->mutex);
2253 restart:
2254         if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2255                 switch (con->state) {
2256                 case CON_STATE_CONNECTING:
2257                         con->error_msg = "connection failed";
2258                         break;
2259                 case CON_STATE_NEGOTIATING:
2260                         con->error_msg = "negotiation failed";
2261                         break;
2262                 case CON_STATE_OPEN:
2263                         con->error_msg = "socket closed";
2264                         break;
2265                 default:
2266                         dout("unrecognized con state %d\n", (int)con->state);
2267                         con->error_msg = "unrecognized con state";
2268                         BUG();
2269                 }
2270                 goto fault;
2271         }
2272
2273         if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2274                 dout("con_work %p backing off\n", con);
2275                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2276                                        round_jiffies_relative(con->delay))) {
2277                         dout("con_work %p backoff %lu\n", con, con->delay);
2278                         mutex_unlock(&con->mutex);
2279                         return;
2280                 } else {
2281                         con->ops->put(con);
2282                         dout("con_work %p FAILED to back off %lu\n", con,
2283                              con->delay);
2284                 }
2285         }
2286
2287         if (con->state == CON_STATE_STANDBY) {
2288                 dout("con_work %p STANDBY\n", con);
2289                 goto done;
2290         }
2291         if (con->state == CON_STATE_CLOSED) {
2292                 dout("con_work %p CLOSED\n", con);
2293                 BUG_ON(con->sock);
2294                 goto done;
2295         }
2296         if (con->state == CON_STATE_PREOPEN) {
2297                 dout("con_work OPENING\n");
2298                 BUG_ON(con->sock);
2299         }
2300
2301         ret = try_read(con);
2302         if (ret == -EAGAIN)
2303                 goto restart;
2304         if (ret < 0) {
2305                 con->error_msg = "socket error on read";
2306                 goto fault;
2307         }
2308
2309         ret = try_write(con);
2310         if (ret == -EAGAIN)
2311                 goto restart;
2312         if (ret < 0) {
2313                 con->error_msg = "socket error on write";
2314                 goto fault;
2315         }
2316
2317 done:
2318         mutex_unlock(&con->mutex);
2319 done_unlocked:
2320         con->ops->put(con);
2321         return;
2322
2323 fault:
2324         mutex_unlock(&con->mutex);
2325         ceph_fault(con);     /* error/fault path */
2326         goto done_unlocked;
2327 }
2328
2329
2330 /*
2331  * Generic error/fault handler.  A retry mechanism is used with
2332  * exponential backoff
2333  */
2334 static void ceph_fault(struct ceph_connection *con)
2335 {
2336         mutex_lock(&con->mutex);
2337
2338         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2339                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2340         dout("fault %p state %lu to peer %s\n",
2341              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2342
2343         BUG_ON(con->state != CON_STATE_CONNECTING &&
2344                con->state != CON_STATE_NEGOTIATING &&
2345                con->state != CON_STATE_OPEN);
2346
2347         con_close_socket(con);
2348
2349         if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2350                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2351                 con->state = CON_STATE_CLOSED;
2352                 goto out_unlock;
2353         }
2354
2355         if (con->in_msg) {
2356                 BUG_ON(con->in_msg->con != con);
2357                 con->in_msg->con = NULL;
2358                 ceph_msg_put(con->in_msg);
2359                 con->in_msg = NULL;
2360                 con->ops->put(con);
2361         }
2362
2363         /* Requeue anything that hasn't been acked */
2364         list_splice_init(&con->out_sent, &con->out_queue);
2365
2366         /* If there are no messages queued or keepalive pending, place
2367          * the connection in a STANDBY state */
2368         if (list_empty(&con->out_queue) &&
2369             !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2370                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2371                 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2372                 con->state = CON_STATE_STANDBY;
2373         } else {
2374                 /* retry after a delay. */
2375                 con->state = CON_STATE_PREOPEN;
2376                 if (con->delay == 0)
2377                         con->delay = BASE_DELAY_INTERVAL;
2378                 else if (con->delay < MAX_DELAY_INTERVAL)
2379                         con->delay *= 2;
2380                 con->ops->get(con);
2381                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2382                                        round_jiffies_relative(con->delay))) {
2383                         dout("fault queued %p delay %lu\n", con, con->delay);
2384                 } else {
2385                         con->ops->put(con);
2386                         dout("fault failed to queue %p delay %lu, backoff\n",
2387                              con, con->delay);
2388                         /*
2389                          * In many cases we see a socket state change
2390                          * while con_work is running and end up
2391                          * queuing (non-delayed) work, such that we
2392                          * can't backoff with a delay.  Set a flag so
2393                          * that when con_work restarts we schedule the
2394                          * delay then.
2395                          */
2396                         set_bit(CON_FLAG_BACKOFF, &con->flags);
2397                 }
2398         }
2399
2400 out_unlock:
2401         mutex_unlock(&con->mutex);
2402         /*
2403          * in case we faulted due to authentication, invalidate our
2404          * current tickets so that we can get new ones.
2405          */
2406         if (con->auth_retry && con->ops->invalidate_authorizer) {
2407                 dout("calling invalidate_authorizer()\n");
2408                 con->ops->invalidate_authorizer(con);
2409         }
2410
2411         if (con->ops->fault)
2412                 con->ops->fault(con);
2413 }
2414
2415
2416
2417 /*
2418  * initialize a new messenger instance
2419  */
2420 void ceph_messenger_init(struct ceph_messenger *msgr,
2421                         struct ceph_entity_addr *myaddr,
2422                         u32 supported_features,
2423                         u32 required_features,
2424                         bool nocrc)
2425 {
2426         msgr->supported_features = supported_features;
2427         msgr->required_features = required_features;
2428
2429         spin_lock_init(&msgr->global_seq_lock);
2430
2431         if (myaddr)
2432                 msgr->inst.addr = *myaddr;
2433
2434         /* select a random nonce */
2435         msgr->inst.addr.type = 0;
2436         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2437         encode_my_addr(msgr);
2438         msgr->nocrc = nocrc;
2439
2440         atomic_set(&msgr->stopping, 0);
2441
2442         dout("%s %p\n", __func__, msgr);
2443 }
2444 EXPORT_SYMBOL(ceph_messenger_init);
2445
2446 static void clear_standby(struct ceph_connection *con)
2447 {
2448         /* come back from STANDBY? */
2449         if (con->state == CON_STATE_STANDBY) {
2450                 dout("clear_standby %p and ++connect_seq\n", con);
2451                 con->state = CON_STATE_PREOPEN;
2452                 con->connect_seq++;
2453                 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2454                 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2455         }
2456 }
2457
2458 /*
2459  * Queue up an outgoing message on the given connection.
2460  */
2461 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2462 {
2463         /* set src+dst */
2464         msg->hdr.src = con->msgr->inst.name;
2465         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2466         msg->needs_out_seq = true;
2467
2468         mutex_lock(&con->mutex);
2469
2470         if (con->state == CON_STATE_CLOSED) {
2471                 dout("con_send %p closed, dropping %p\n", con, msg);
2472                 ceph_msg_put(msg);
2473                 mutex_unlock(&con->mutex);
2474                 return;
2475         }
2476
2477         BUG_ON(msg->con != NULL);
2478         msg->con = con->ops->get(con);
2479         BUG_ON(msg->con == NULL);
2480
2481         BUG_ON(!list_empty(&msg->list_head));
2482         list_add_tail(&msg->list_head, &con->out_queue);
2483         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2484              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2485              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2486              le32_to_cpu(msg->hdr.front_len),
2487              le32_to_cpu(msg->hdr.middle_len),
2488              le32_to_cpu(msg->hdr.data_len));
2489
2490         clear_standby(con);
2491         mutex_unlock(&con->mutex);
2492
2493         /* if there wasn't anything waiting to send before, queue
2494          * new work */
2495         if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2496                 queue_con(con);
2497 }
2498 EXPORT_SYMBOL(ceph_con_send);
2499
2500 /*
2501  * Revoke a message that was previously queued for send
2502  */
2503 void ceph_msg_revoke(struct ceph_msg *msg)
2504 {
2505         struct ceph_connection *con = msg->con;
2506
2507         if (!con)
2508                 return;         /* Message not in our possession */
2509
2510         mutex_lock(&con->mutex);
2511         if (!list_empty(&msg->list_head)) {
2512                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2513                 list_del_init(&msg->list_head);
2514                 BUG_ON(msg->con == NULL);
2515                 msg->con->ops->put(msg->con);
2516                 msg->con = NULL;
2517                 msg->hdr.seq = 0;
2518
2519                 ceph_msg_put(msg);
2520         }
2521         if (con->out_msg == msg) {
2522                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2523                 con->out_msg = NULL;
2524                 if (con->out_kvec_is_msg) {
2525                         con->out_skip = con->out_kvec_bytes;
2526                         con->out_kvec_is_msg = false;
2527                 }
2528                 msg->hdr.seq = 0;
2529
2530                 ceph_msg_put(msg);
2531         }
2532         mutex_unlock(&con->mutex);
2533 }
2534
2535 /*
2536  * Revoke a message that we may be reading data into
2537  */
2538 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2539 {
2540         struct ceph_connection *con;
2541
2542         BUG_ON(msg == NULL);
2543         if (!msg->con) {
2544                 dout("%s msg %p null con\n", __func__, msg);
2545
2546                 return;         /* Message not in our possession */
2547         }
2548
2549         con = msg->con;
2550         mutex_lock(&con->mutex);
2551         if (con->in_msg == msg) {
2552                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2553                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2554                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2555
2556                 /* skip rest of message */
2557                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2558                 con->in_base_pos = con->in_base_pos -
2559                                 sizeof(struct ceph_msg_header) -
2560                                 front_len -
2561                                 middle_len -
2562                                 data_len -
2563                                 sizeof(struct ceph_msg_footer);
2564                 ceph_msg_put(con->in_msg);
2565                 con->in_msg = NULL;
2566                 con->in_tag = CEPH_MSGR_TAG_READY;
2567                 con->in_seq++;
2568         } else {
2569                 dout("%s %p in_msg %p msg %p no-op\n",
2570                      __func__, con, con->in_msg, msg);
2571         }
2572         mutex_unlock(&con->mutex);
2573 }
2574
2575 /*
2576  * Queue a keepalive byte to ensure the tcp connection is alive.
2577  */
2578 void ceph_con_keepalive(struct ceph_connection *con)
2579 {
2580         dout("con_keepalive %p\n", con);
2581         mutex_lock(&con->mutex);
2582         clear_standby(con);
2583         mutex_unlock(&con->mutex);
2584         if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2585             test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2586                 queue_con(con);
2587 }
2588 EXPORT_SYMBOL(ceph_con_keepalive);
2589
2590
2591 /*
2592  * construct a new message with given type, size
2593  * the new msg has a ref count of 1.
2594  */
2595 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2596                               bool can_fail)
2597 {
2598         struct ceph_msg *m;
2599
2600         m = kmalloc(sizeof(*m), flags);
2601         if (m == NULL)
2602                 goto out;
2603         kref_init(&m->kref);
2604
2605         m->con = NULL;
2606         INIT_LIST_HEAD(&m->list_head);
2607
2608         m->hdr.tid = 0;
2609         m->hdr.type = cpu_to_le16(type);
2610         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2611         m->hdr.version = 0;
2612         m->hdr.front_len = cpu_to_le32(front_len);
2613         m->hdr.middle_len = 0;
2614         m->hdr.data_len = 0;
2615         m->hdr.data_off = 0;
2616         m->hdr.reserved = 0;
2617         m->footer.front_crc = 0;
2618         m->footer.middle_crc = 0;
2619         m->footer.data_crc = 0;
2620         m->footer.flags = 0;
2621         m->front_max = front_len;
2622         m->front_is_vmalloc = false;
2623         m->more_to_follow = false;
2624         m->ack_stamp = 0;
2625         m->pool = NULL;
2626
2627         /* middle */
2628         m->middle = NULL;
2629
2630         /* data */
2631         m->nr_pages = 0;
2632         m->page_alignment = 0;
2633         m->pages = NULL;
2634         m->pagelist = NULL;
2635         m->bio = NULL;
2636         m->bio_iter = NULL;
2637         m->bio_seg = 0;
2638         m->trail = NULL;
2639
2640         /* front */
2641         if (front_len) {
2642                 if (front_len > PAGE_CACHE_SIZE) {
2643                         m->front.iov_base = __vmalloc(front_len, flags,
2644                                                       PAGE_KERNEL);
2645                         m->front_is_vmalloc = true;
2646                 } else {
2647                         m->front.iov_base = kmalloc(front_len, flags);
2648                 }
2649                 if (m->front.iov_base == NULL) {
2650                         dout("ceph_msg_new can't allocate %d bytes\n",
2651                              front_len);
2652                         goto out2;
2653                 }
2654         } else {
2655                 m->front.iov_base = NULL;
2656         }
2657         m->front.iov_len = front_len;
2658
2659         dout("ceph_msg_new %p front %d\n", m, front_len);
2660         return m;
2661
2662 out2:
2663         ceph_msg_put(m);
2664 out:
2665         if (!can_fail) {
2666                 pr_err("msg_new can't create type %d front %d\n", type,
2667                        front_len);
2668                 WARN_ON(1);
2669         } else {
2670                 dout("msg_new can't create type %d front %d\n", type,
2671                      front_len);
2672         }
2673         return NULL;
2674 }
2675 EXPORT_SYMBOL(ceph_msg_new);
2676
2677 /*
2678  * Allocate "middle" portion of a message, if it is needed and wasn't
2679  * allocated by alloc_msg.  This allows us to read a small fixed-size
2680  * per-type header in the front and then gracefully fail (i.e.,
2681  * propagate the error to the caller based on info in the front) when
2682  * the middle is too large.
2683  */
2684 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2685 {
2686         int type = le16_to_cpu(msg->hdr.type);
2687         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2688
2689         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2690              ceph_msg_type_name(type), middle_len);
2691         BUG_ON(!middle_len);
2692         BUG_ON(msg->middle);
2693
2694         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2695         if (!msg->middle)
2696                 return -ENOMEM;
2697         return 0;
2698 }
2699
2700 /*
2701  * Allocate a message for receiving an incoming message on a
2702  * connection, and save the result in con->in_msg.  Uses the
2703  * connection's private alloc_msg op if available.
2704  *
2705  * Returns true if the message should be skipped, false otherwise.
2706  * If true is returned (skip message), con->in_msg will be NULL.
2707  * If false is returned, con->in_msg will contain a pointer to the
2708  * newly-allocated message, or NULL in case of memory exhaustion.
2709  */
2710 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2711                                 struct ceph_msg_header *hdr)
2712 {
2713         int type = le16_to_cpu(hdr->type);
2714         int front_len = le32_to_cpu(hdr->front_len);
2715         int middle_len = le32_to_cpu(hdr->middle_len);
2716         int ret;
2717
2718         BUG_ON(con->in_msg != NULL);
2719
2720         if (con->ops->alloc_msg) {
2721                 int skip = 0;
2722
2723                 mutex_unlock(&con->mutex);
2724                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2725                 mutex_lock(&con->mutex);
2726                 if (con->in_msg) {
2727                         con->in_msg->con = con->ops->get(con);
2728                         BUG_ON(con->in_msg->con == NULL);
2729                 }
2730                 if (skip)
2731                         con->in_msg = NULL;
2732
2733                 if (!con->in_msg)
2734                         return skip != 0;
2735         }
2736         if (!con->in_msg) {
2737                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2738                 if (!con->in_msg) {
2739                         pr_err("unable to allocate msg type %d len %d\n",
2740                                type, front_len);
2741                         return false;
2742                 }
2743                 con->in_msg->con = con->ops->get(con);
2744                 BUG_ON(con->in_msg->con == NULL);
2745                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2746         }
2747         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2748
2749         if (middle_len && !con->in_msg->middle) {
2750                 ret = ceph_alloc_middle(con, con->in_msg);
2751                 if (ret < 0) {
2752                         ceph_msg_put(con->in_msg);
2753                         con->in_msg = NULL;
2754                 }
2755         }
2756
2757         return false;
2758 }
2759
2760
2761 /*
2762  * Free a generically kmalloc'd message.
2763  */
2764 void ceph_msg_kfree(struct ceph_msg *m)
2765 {
2766         dout("msg_kfree %p\n", m);
2767         if (m->front_is_vmalloc)
2768                 vfree(m->front.iov_base);
2769         else
2770                 kfree(m->front.iov_base);
2771         kfree(m);
2772 }
2773
2774 /*
2775  * Drop a msg ref.  Destroy as needed.
2776  */
2777 void ceph_msg_last_put(struct kref *kref)
2778 {
2779         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2780
2781         dout("ceph_msg_put last one on %p\n", m);
2782         WARN_ON(!list_empty(&m->list_head));
2783
2784         /* drop middle, data, if any */
2785         if (m->middle) {
2786                 ceph_buffer_put(m->middle);
2787                 m->middle = NULL;
2788         }
2789         m->nr_pages = 0;
2790         m->pages = NULL;
2791
2792         if (m->pagelist) {
2793                 ceph_pagelist_release(m->pagelist);
2794                 kfree(m->pagelist);
2795                 m->pagelist = NULL;
2796         }
2797
2798         m->trail = NULL;
2799
2800         if (m->pool)
2801                 ceph_msgpool_put(m->pool, m);
2802         else
2803                 ceph_msg_kfree(m);
2804 }
2805 EXPORT_SYMBOL(ceph_msg_last_put);
2806
2807 void ceph_msg_dump(struct ceph_msg *msg)
2808 {
2809         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2810                  msg->front_max, msg->nr_pages);
2811         print_hex_dump(KERN_DEBUG, "header: ",
2812                        DUMP_PREFIX_OFFSET, 16, 1,
2813                        &msg->hdr, sizeof(msg->hdr), true);
2814         print_hex_dump(KERN_DEBUG, " front: ",
2815                        DUMP_PREFIX_OFFSET, 16, 1,
2816                        msg->front.iov_base, msg->front.iov_len, true);
2817         if (msg->middle)
2818                 print_hex_dump(KERN_DEBUG, "middle: ",
2819                                DUMP_PREFIX_OFFSET, 16, 1,
2820                                msg->middle->vec.iov_base,
2821                                msg->middle->vec.iov_len, true);
2822         print_hex_dump(KERN_DEBUG, "footer: ",
2823                        DUMP_PREFIX_OFFSET, 16, 1,
2824                        &msg->footer, sizeof(msg->footer), true);
2825 }
2826 EXPORT_SYMBOL(ceph_msg_dump);