libceph: fully initialize connection in con_init()
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
325                                  O_NONBLOCK);
326         if (ret == -EINPROGRESS) {
327                 dout("connect %s EINPROGRESS sk_state = %u\n",
328                      ceph_pr_addr(&con->peer_addr.in_addr),
329                      sock->sk->sk_state);
330         } else if (ret < 0) {
331                 pr_err("connect %s error %d\n",
332                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
333                 sock_release(sock);
334                 con->error_msg = "connect error";
335
336                 return ret;
337         }
338         con->sock = sock;
339         con_sock_state_connecting(con);
340
341         return 0;
342 }
343
344 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
345 {
346         struct kvec iov = {buf, len};
347         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
348         int r;
349
350         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
351         if (r == -EAGAIN)
352                 r = 0;
353         return r;
354 }
355
356 /*
357  * write something.  @more is true if caller will be sending more data
358  * shortly.
359  */
360 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
361                      size_t kvlen, size_t len, int more)
362 {
363         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
364         int r;
365
366         if (more)
367                 msg.msg_flags |= MSG_MORE;
368         else
369                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
370
371         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
372         if (r == -EAGAIN)
373                 r = 0;
374         return r;
375 }
376
377 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
378                      int offset, size_t size, int more)
379 {
380         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
381         int ret;
382
383         ret = kernel_sendpage(sock, page, offset, size, flags);
384         if (ret == -EAGAIN)
385                 ret = 0;
386
387         return ret;
388 }
389
390
391 /*
392  * Shutdown/close the socket for the given connection.
393  */
394 static int con_close_socket(struct ceph_connection *con)
395 {
396         int rc;
397
398         dout("con_close_socket on %p sock %p\n", con, con->sock);
399         if (!con->sock)
400                 return 0;
401         set_bit(SOCK_CLOSED, &con->state);
402         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
403         sock_release(con->sock);
404         con->sock = NULL;
405         clear_bit(SOCK_CLOSED, &con->state);
406         con_sock_state_closed(con);
407         return rc;
408 }
409
410 /*
411  * Reset a connection.  Discard all incoming and outgoing messages
412  * and clear *_seq state.
413  */
414 static void ceph_msg_remove(struct ceph_msg *msg)
415 {
416         list_del_init(&msg->list_head);
417         ceph_msg_put(msg);
418 }
419 static void ceph_msg_remove_list(struct list_head *head)
420 {
421         while (!list_empty(head)) {
422                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
423                                                         list_head);
424                 ceph_msg_remove(msg);
425         }
426 }
427
428 static void reset_connection(struct ceph_connection *con)
429 {
430         /* reset connection, out_queue, msg_ and connect_seq */
431         /* discard existing out_queue and msg_seq */
432         ceph_msg_remove_list(&con->out_queue);
433         ceph_msg_remove_list(&con->out_sent);
434
435         if (con->in_msg) {
436                 ceph_msg_put(con->in_msg);
437                 con->in_msg = NULL;
438         }
439
440         con->connect_seq = 0;
441         con->out_seq = 0;
442         if (con->out_msg) {
443                 ceph_msg_put(con->out_msg);
444                 con->out_msg = NULL;
445         }
446         con->in_seq = 0;
447         con->in_seq_acked = 0;
448 }
449
450 /*
451  * mark a peer down.  drop any open connections.
452  */
453 void ceph_con_close(struct ceph_connection *con)
454 {
455         dout("con_close %p peer %s\n", con,
456              ceph_pr_addr(&con->peer_addr.in_addr));
457         clear_bit(NEGOTIATING, &con->state);
458         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
459         set_bit(CLOSED, &con->state);
460
461         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
462         clear_bit(KEEPALIVE_PENDING, &con->flags);
463         clear_bit(WRITE_PENDING, &con->flags);
464
465         mutex_lock(&con->mutex);
466         reset_connection(con);
467         con->peer_global_seq = 0;
468         cancel_delayed_work(&con->work);
469         mutex_unlock(&con->mutex);
470         queue_con(con);
471 }
472 EXPORT_SYMBOL(ceph_con_close);
473
474 /*
475  * Reopen a closed connection, with a new peer address.
476  */
477 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
478 {
479         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
480         set_bit(OPENING, &con->state);
481         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
482
483         memcpy(&con->peer_addr, addr, sizeof(*addr));
484         con->delay = 0;      /* reset backoff memory */
485         queue_con(con);
486 }
487 EXPORT_SYMBOL(ceph_con_open);
488
489 /*
490  * return true if this connection ever successfully opened
491  */
492 bool ceph_con_opened(struct ceph_connection *con)
493 {
494         return con->connect_seq > 0;
495 }
496
497 /*
498  * generic get/put
499  */
500 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
501 {
502         int nref = __atomic_add_unless(&con->nref, 1, 0);
503
504         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
505
506         return nref ? con : NULL;
507 }
508
509 void ceph_con_put(struct ceph_connection *con)
510 {
511         int nref = atomic_dec_return(&con->nref);
512
513         BUG_ON(nref < 0);
514         if (nref == 0) {
515                 BUG_ON(con->sock);
516                 kfree(con);
517         }
518         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
519 }
520
521 /*
522  * initialize a new connection.
523  */
524 void ceph_con_init(struct ceph_connection *con, void *private,
525         const struct ceph_connection_operations *ops,
526         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
527 {
528         dout("con_init %p\n", con);
529         memset(con, 0, sizeof(*con));
530         con->private = private;
531         con->ops = ops;
532         atomic_set(&con->nref, 1);
533         con->msgr = msgr;
534
535         con_sock_state_init(con);
536
537         con->peer_name.type = (__u8) entity_type;
538         con->peer_name.num = cpu_to_le64(entity_num);
539
540         mutex_init(&con->mutex);
541         INIT_LIST_HEAD(&con->out_queue);
542         INIT_LIST_HEAD(&con->out_sent);
543         INIT_DELAYED_WORK(&con->work, con_work);
544
545         set_bit(CLOSED, &con->state);
546 }
547 EXPORT_SYMBOL(ceph_con_init);
548
549
550 /*
551  * We maintain a global counter to order connection attempts.  Get
552  * a unique seq greater than @gt.
553  */
554 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
555 {
556         u32 ret;
557
558         spin_lock(&msgr->global_seq_lock);
559         if (msgr->global_seq < gt)
560                 msgr->global_seq = gt;
561         ret = ++msgr->global_seq;
562         spin_unlock(&msgr->global_seq_lock);
563         return ret;
564 }
565
566 static void con_out_kvec_reset(struct ceph_connection *con)
567 {
568         con->out_kvec_left = 0;
569         con->out_kvec_bytes = 0;
570         con->out_kvec_cur = &con->out_kvec[0];
571 }
572
573 static void con_out_kvec_add(struct ceph_connection *con,
574                                 size_t size, void *data)
575 {
576         int index;
577
578         index = con->out_kvec_left;
579         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
580
581         con->out_kvec[index].iov_len = size;
582         con->out_kvec[index].iov_base = data;
583         con->out_kvec_left++;
584         con->out_kvec_bytes += size;
585 }
586
587 /*
588  * Prepare footer for currently outgoing message, and finish things
589  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
590  */
591 static void prepare_write_message_footer(struct ceph_connection *con)
592 {
593         struct ceph_msg *m = con->out_msg;
594         int v = con->out_kvec_left;
595
596         dout("prepare_write_message_footer %p\n", con);
597         con->out_kvec_is_msg = true;
598         con->out_kvec[v].iov_base = &m->footer;
599         con->out_kvec[v].iov_len = sizeof(m->footer);
600         con->out_kvec_bytes += sizeof(m->footer);
601         con->out_kvec_left++;
602         con->out_more = m->more_to_follow;
603         con->out_msg_done = true;
604 }
605
606 /*
607  * Prepare headers for the next outgoing message.
608  */
609 static void prepare_write_message(struct ceph_connection *con)
610 {
611         struct ceph_msg *m;
612         u32 crc;
613
614         con_out_kvec_reset(con);
615         con->out_kvec_is_msg = true;
616         con->out_msg_done = false;
617
618         /* Sneak an ack in there first?  If we can get it into the same
619          * TCP packet that's a good thing. */
620         if (con->in_seq > con->in_seq_acked) {
621                 con->in_seq_acked = con->in_seq;
622                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
623                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
624                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
625                         &con->out_temp_ack);
626         }
627
628         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
629         con->out_msg = m;
630
631         /* put message on sent list */
632         ceph_msg_get(m);
633         list_move_tail(&m->list_head, &con->out_sent);
634
635         /*
636          * only assign outgoing seq # if we haven't sent this message
637          * yet.  if it is requeued, resend with it's original seq.
638          */
639         if (m->needs_out_seq) {
640                 m->hdr.seq = cpu_to_le64(++con->out_seq);
641                 m->needs_out_seq = false;
642         }
643
644         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
645              m, con->out_seq, le16_to_cpu(m->hdr.type),
646              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
647              le32_to_cpu(m->hdr.data_len),
648              m->nr_pages);
649         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
650
651         /* tag + hdr + front + middle */
652         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
653         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
654         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
655
656         if (m->middle)
657                 con_out_kvec_add(con, m->middle->vec.iov_len,
658                         m->middle->vec.iov_base);
659
660         /* fill in crc (except data pages), footer */
661         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
662         con->out_msg->hdr.crc = cpu_to_le32(crc);
663         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
664
665         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
666         con->out_msg->footer.front_crc = cpu_to_le32(crc);
667         if (m->middle) {
668                 crc = crc32c(0, m->middle->vec.iov_base,
669                                 m->middle->vec.iov_len);
670                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
671         } else
672                 con->out_msg->footer.middle_crc = 0;
673         con->out_msg->footer.data_crc = 0;
674         dout("prepare_write_message front_crc %u data_crc %u\n",
675              le32_to_cpu(con->out_msg->footer.front_crc),
676              le32_to_cpu(con->out_msg->footer.middle_crc));
677
678         /* is there a data payload? */
679         if (le32_to_cpu(m->hdr.data_len) > 0) {
680                 /* initialize page iterator */
681                 con->out_msg_pos.page = 0;
682                 if (m->pages)
683                         con->out_msg_pos.page_pos = m->page_alignment;
684                 else
685                         con->out_msg_pos.page_pos = 0;
686                 con->out_msg_pos.data_pos = 0;
687                 con->out_msg_pos.did_page_crc = false;
688                 con->out_more = 1;  /* data + footer will follow */
689         } else {
690                 /* no, queue up footer too and be done */
691                 prepare_write_message_footer(con);
692         }
693
694         set_bit(WRITE_PENDING, &con->flags);
695 }
696
697 /*
698  * Prepare an ack.
699  */
700 static void prepare_write_ack(struct ceph_connection *con)
701 {
702         dout("prepare_write_ack %p %llu -> %llu\n", con,
703              con->in_seq_acked, con->in_seq);
704         con->in_seq_acked = con->in_seq;
705
706         con_out_kvec_reset(con);
707
708         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
709
710         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
711         con_out_kvec_add(con, sizeof (con->out_temp_ack),
712                                 &con->out_temp_ack);
713
714         con->out_more = 1;  /* more will follow.. eventually.. */
715         set_bit(WRITE_PENDING, &con->flags);
716 }
717
718 /*
719  * Prepare to write keepalive byte.
720  */
721 static void prepare_write_keepalive(struct ceph_connection *con)
722 {
723         dout("prepare_write_keepalive %p\n", con);
724         con_out_kvec_reset(con);
725         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
726         set_bit(WRITE_PENDING, &con->flags);
727 }
728
729 /*
730  * Connection negotiation.
731  */
732
733 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
734                                                 int *auth_proto)
735 {
736         struct ceph_auth_handshake *auth;
737
738         if (!con->ops->get_authorizer) {
739                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
740                 con->out_connect.authorizer_len = 0;
741
742                 return NULL;
743         }
744
745         /* Can't hold the mutex while getting authorizer */
746
747         mutex_unlock(&con->mutex);
748
749         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
750
751         mutex_lock(&con->mutex);
752
753         if (IS_ERR(auth))
754                 return auth;
755         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
756                 return ERR_PTR(-EAGAIN);
757
758         con->auth_reply_buf = auth->authorizer_reply_buf;
759         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
760
761
762         return auth;
763 }
764
765 /*
766  * We connected to a peer and are saying hello.
767  */
768 static void prepare_write_banner(struct ceph_connection *con)
769 {
770         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
771         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
772                                         &con->msgr->my_enc_addr);
773
774         con->out_more = 0;
775         set_bit(WRITE_PENDING, &con->flags);
776 }
777
778 static int prepare_write_connect(struct ceph_connection *con)
779 {
780         unsigned global_seq = get_global_seq(con->msgr, 0);
781         int proto;
782         int auth_proto;
783         struct ceph_auth_handshake *auth;
784
785         switch (con->peer_name.type) {
786         case CEPH_ENTITY_TYPE_MON:
787                 proto = CEPH_MONC_PROTOCOL;
788                 break;
789         case CEPH_ENTITY_TYPE_OSD:
790                 proto = CEPH_OSDC_PROTOCOL;
791                 break;
792         case CEPH_ENTITY_TYPE_MDS:
793                 proto = CEPH_MDSC_PROTOCOL;
794                 break;
795         default:
796                 BUG();
797         }
798
799         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
800              con->connect_seq, global_seq, proto);
801
802         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
803         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
804         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
805         con->out_connect.global_seq = cpu_to_le32(global_seq);
806         con->out_connect.protocol_version = cpu_to_le32(proto);
807         con->out_connect.flags = 0;
808
809         auth_proto = CEPH_AUTH_UNKNOWN;
810         auth = get_connect_authorizer(con, &auth_proto);
811         if (IS_ERR(auth))
812                 return PTR_ERR(auth);
813
814         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
815         con->out_connect.authorizer_len = auth ?
816                 cpu_to_le32(auth->authorizer_buf_len) : 0;
817
818         con_out_kvec_add(con, sizeof (con->out_connect),
819                                         &con->out_connect);
820         if (auth && auth->authorizer_buf_len)
821                 con_out_kvec_add(con, auth->authorizer_buf_len,
822                                         auth->authorizer_buf);
823
824         con->out_more = 0;
825         set_bit(WRITE_PENDING, &con->flags);
826
827         return 0;
828 }
829
830 /*
831  * write as much of pending kvecs to the socket as we can.
832  *  1 -> done
833  *  0 -> socket full, but more to do
834  * <0 -> error
835  */
836 static int write_partial_kvec(struct ceph_connection *con)
837 {
838         int ret;
839
840         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
841         while (con->out_kvec_bytes > 0) {
842                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
843                                        con->out_kvec_left, con->out_kvec_bytes,
844                                        con->out_more);
845                 if (ret <= 0)
846                         goto out;
847                 con->out_kvec_bytes -= ret;
848                 if (con->out_kvec_bytes == 0)
849                         break;            /* done */
850
851                 /* account for full iov entries consumed */
852                 while (ret >= con->out_kvec_cur->iov_len) {
853                         BUG_ON(!con->out_kvec_left);
854                         ret -= con->out_kvec_cur->iov_len;
855                         con->out_kvec_cur++;
856                         con->out_kvec_left--;
857                 }
858                 /* and for a partially-consumed entry */
859                 if (ret) {
860                         con->out_kvec_cur->iov_len -= ret;
861                         con->out_kvec_cur->iov_base += ret;
862                 }
863         }
864         con->out_kvec_left = 0;
865         con->out_kvec_is_msg = false;
866         ret = 1;
867 out:
868         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
869              con->out_kvec_bytes, con->out_kvec_left, ret);
870         return ret;  /* done! */
871 }
872
873 #ifdef CONFIG_BLOCK
874 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
875 {
876         if (!bio) {
877                 *iter = NULL;
878                 *seg = 0;
879                 return;
880         }
881         *iter = bio;
882         *seg = bio->bi_idx;
883 }
884
885 static void iter_bio_next(struct bio **bio_iter, int *seg)
886 {
887         if (*bio_iter == NULL)
888                 return;
889
890         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
891
892         (*seg)++;
893         if (*seg == (*bio_iter)->bi_vcnt)
894                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
895 }
896 #endif
897
898 /*
899  * Write as much message data payload as we can.  If we finish, queue
900  * up the footer.
901  *  1 -> done, footer is now queued in out_kvec[].
902  *  0 -> socket full, but more to do
903  * <0 -> error
904  */
905 static int write_partial_msg_pages(struct ceph_connection *con)
906 {
907         struct ceph_msg *msg = con->out_msg;
908         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
909         size_t len;
910         bool do_datacrc = !con->msgr->nocrc;
911         int ret;
912         int total_max_write;
913         int in_trail = 0;
914         size_t trail_len = (msg->trail ? msg->trail->length : 0);
915
916         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
917              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
918              con->out_msg_pos.page_pos);
919
920 #ifdef CONFIG_BLOCK
921         if (msg->bio && !msg->bio_iter)
922                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
923 #endif
924
925         while (data_len > con->out_msg_pos.data_pos) {
926                 struct page *page = NULL;
927                 int max_write = PAGE_SIZE;
928                 int bio_offset = 0;
929
930                 total_max_write = data_len - trail_len -
931                         con->out_msg_pos.data_pos;
932
933                 /*
934                  * if we are calculating the data crc (the default), we need
935                  * to map the page.  if our pages[] has been revoked, use the
936                  * zero page.
937                  */
938
939                 /* have we reached the trail part of the data? */
940                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
941                         in_trail = 1;
942
943                         total_max_write = data_len - con->out_msg_pos.data_pos;
944
945                         page = list_first_entry(&msg->trail->head,
946                                                 struct page, lru);
947                         max_write = PAGE_SIZE;
948                 } else if (msg->pages) {
949                         page = msg->pages[con->out_msg_pos.page];
950                 } else if (msg->pagelist) {
951                         page = list_first_entry(&msg->pagelist->head,
952                                                 struct page, lru);
953 #ifdef CONFIG_BLOCK
954                 } else if (msg->bio) {
955                         struct bio_vec *bv;
956
957                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
958                         page = bv->bv_page;
959                         bio_offset = bv->bv_offset;
960                         max_write = bv->bv_len;
961 #endif
962                 } else {
963                         page = zero_page;
964                 }
965                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
966                             total_max_write);
967
968                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
969                         void *base;
970                         u32 crc;
971                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
972                         char *kaddr;
973
974                         kaddr = kmap(page);
975                         BUG_ON(kaddr == NULL);
976                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
977                         crc = crc32c(tmpcrc, base, len);
978                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
979                         con->out_msg_pos.did_page_crc = true;
980                 }
981                 ret = ceph_tcp_sendpage(con->sock, page,
982                                       con->out_msg_pos.page_pos + bio_offset,
983                                       len, 1);
984
985                 if (do_datacrc)
986                         kunmap(page);
987
988                 if (ret <= 0)
989                         goto out;
990
991                 con->out_msg_pos.data_pos += ret;
992                 con->out_msg_pos.page_pos += ret;
993                 if (ret == len) {
994                         con->out_msg_pos.page_pos = 0;
995                         con->out_msg_pos.page++;
996                         con->out_msg_pos.did_page_crc = false;
997                         if (in_trail)
998                                 list_move_tail(&page->lru,
999                                                &msg->trail->head);
1000                         else if (msg->pagelist)
1001                                 list_move_tail(&page->lru,
1002                                                &msg->pagelist->head);
1003 #ifdef CONFIG_BLOCK
1004                         else if (msg->bio)
1005                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1006 #endif
1007                 }
1008         }
1009
1010         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1011
1012         /* prepare and queue up footer, too */
1013         if (!do_datacrc)
1014                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1015         con_out_kvec_reset(con);
1016         prepare_write_message_footer(con);
1017         ret = 1;
1018 out:
1019         return ret;
1020 }
1021
1022 /*
1023  * write some zeros
1024  */
1025 static int write_partial_skip(struct ceph_connection *con)
1026 {
1027         int ret;
1028
1029         while (con->out_skip > 0) {
1030                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1031
1032                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1033                 if (ret <= 0)
1034                         goto out;
1035                 con->out_skip -= ret;
1036         }
1037         ret = 1;
1038 out:
1039         return ret;
1040 }
1041
1042 /*
1043  * Prepare to read connection handshake, or an ack.
1044  */
1045 static void prepare_read_banner(struct ceph_connection *con)
1046 {
1047         dout("prepare_read_banner %p\n", con);
1048         con->in_base_pos = 0;
1049 }
1050
1051 static void prepare_read_connect(struct ceph_connection *con)
1052 {
1053         dout("prepare_read_connect %p\n", con);
1054         con->in_base_pos = 0;
1055 }
1056
1057 static void prepare_read_ack(struct ceph_connection *con)
1058 {
1059         dout("prepare_read_ack %p\n", con);
1060         con->in_base_pos = 0;
1061 }
1062
1063 static void prepare_read_tag(struct ceph_connection *con)
1064 {
1065         dout("prepare_read_tag %p\n", con);
1066         con->in_base_pos = 0;
1067         con->in_tag = CEPH_MSGR_TAG_READY;
1068 }
1069
1070 /*
1071  * Prepare to read a message.
1072  */
1073 static int prepare_read_message(struct ceph_connection *con)
1074 {
1075         dout("prepare_read_message %p\n", con);
1076         BUG_ON(con->in_msg != NULL);
1077         con->in_base_pos = 0;
1078         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1079         return 0;
1080 }
1081
1082
1083 static int read_partial(struct ceph_connection *con,
1084                         int end, int size, void *object)
1085 {
1086         while (con->in_base_pos < end) {
1087                 int left = end - con->in_base_pos;
1088                 int have = size - left;
1089                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1090                 if (ret <= 0)
1091                         return ret;
1092                 con->in_base_pos += ret;
1093         }
1094         return 1;
1095 }
1096
1097
1098 /*
1099  * Read all or part of the connect-side handshake on a new connection
1100  */
1101 static int read_partial_banner(struct ceph_connection *con)
1102 {
1103         int size;
1104         int end;
1105         int ret;
1106
1107         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1108
1109         /* peer's banner */
1110         size = strlen(CEPH_BANNER);
1111         end = size;
1112         ret = read_partial(con, end, size, con->in_banner);
1113         if (ret <= 0)
1114                 goto out;
1115
1116         size = sizeof (con->actual_peer_addr);
1117         end += size;
1118         ret = read_partial(con, end, size, &con->actual_peer_addr);
1119         if (ret <= 0)
1120                 goto out;
1121
1122         size = sizeof (con->peer_addr_for_me);
1123         end += size;
1124         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1125         if (ret <= 0)
1126                 goto out;
1127
1128 out:
1129         return ret;
1130 }
1131
1132 static int read_partial_connect(struct ceph_connection *con)
1133 {
1134         int size;
1135         int end;
1136         int ret;
1137
1138         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1139
1140         size = sizeof (con->in_reply);
1141         end = size;
1142         ret = read_partial(con, end, size, &con->in_reply);
1143         if (ret <= 0)
1144                 goto out;
1145
1146         size = le32_to_cpu(con->in_reply.authorizer_len);
1147         end += size;
1148         ret = read_partial(con, end, size, con->auth_reply_buf);
1149         if (ret <= 0)
1150                 goto out;
1151
1152         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1153              con, (int)con->in_reply.tag,
1154              le32_to_cpu(con->in_reply.connect_seq),
1155              le32_to_cpu(con->in_reply.global_seq));
1156 out:
1157         return ret;
1158
1159 }
1160
1161 /*
1162  * Verify the hello banner looks okay.
1163  */
1164 static int verify_hello(struct ceph_connection *con)
1165 {
1166         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1167                 pr_err("connect to %s got bad banner\n",
1168                        ceph_pr_addr(&con->peer_addr.in_addr));
1169                 con->error_msg = "protocol error, bad banner";
1170                 return -1;
1171         }
1172         return 0;
1173 }
1174
1175 static bool addr_is_blank(struct sockaddr_storage *ss)
1176 {
1177         switch (ss->ss_family) {
1178         case AF_INET:
1179                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1180         case AF_INET6:
1181                 return
1182                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1183                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1184                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1185                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1186         }
1187         return false;
1188 }
1189
1190 static int addr_port(struct sockaddr_storage *ss)
1191 {
1192         switch (ss->ss_family) {
1193         case AF_INET:
1194                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1195         case AF_INET6:
1196                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1197         }
1198         return 0;
1199 }
1200
1201 static void addr_set_port(struct sockaddr_storage *ss, int p)
1202 {
1203         switch (ss->ss_family) {
1204         case AF_INET:
1205                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1206                 break;
1207         case AF_INET6:
1208                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1209                 break;
1210         }
1211 }
1212
1213 /*
1214  * Unlike other *_pton function semantics, zero indicates success.
1215  */
1216 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1217                 char delim, const char **ipend)
1218 {
1219         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1220         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1221
1222         memset(ss, 0, sizeof(*ss));
1223
1224         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1225                 ss->ss_family = AF_INET;
1226                 return 0;
1227         }
1228
1229         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1230                 ss->ss_family = AF_INET6;
1231                 return 0;
1232         }
1233
1234         return -EINVAL;
1235 }
1236
1237 /*
1238  * Extract hostname string and resolve using kernel DNS facility.
1239  */
1240 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1241 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1242                 struct sockaddr_storage *ss, char delim, const char **ipend)
1243 {
1244         const char *end, *delim_p;
1245         char *colon_p, *ip_addr = NULL;
1246         int ip_len, ret;
1247
1248         /*
1249          * The end of the hostname occurs immediately preceding the delimiter or
1250          * the port marker (':') where the delimiter takes precedence.
1251          */
1252         delim_p = memchr(name, delim, namelen);
1253         colon_p = memchr(name, ':', namelen);
1254
1255         if (delim_p && colon_p)
1256                 end = delim_p < colon_p ? delim_p : colon_p;
1257         else if (!delim_p && colon_p)
1258                 end = colon_p;
1259         else {
1260                 end = delim_p;
1261                 if (!end) /* case: hostname:/ */
1262                         end = name + namelen;
1263         }
1264
1265         if (end <= name)
1266                 return -EINVAL;
1267
1268         /* do dns_resolve upcall */
1269         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1270         if (ip_len > 0)
1271                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1272         else
1273                 ret = -ESRCH;
1274
1275         kfree(ip_addr);
1276
1277         *ipend = end;
1278
1279         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1280                         ret, ret ? "failed" : ceph_pr_addr(ss));
1281
1282         return ret;
1283 }
1284 #else
1285 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1286                 struct sockaddr_storage *ss, char delim, const char **ipend)
1287 {
1288         return -EINVAL;
1289 }
1290 #endif
1291
1292 /*
1293  * Parse a server name (IP or hostname). If a valid IP address is not found
1294  * then try to extract a hostname to resolve using userspace DNS upcall.
1295  */
1296 static int ceph_parse_server_name(const char *name, size_t namelen,
1297                         struct sockaddr_storage *ss, char delim, const char **ipend)
1298 {
1299         int ret;
1300
1301         ret = ceph_pton(name, namelen, ss, delim, ipend);
1302         if (ret)
1303                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1304
1305         return ret;
1306 }
1307
1308 /*
1309  * Parse an ip[:port] list into an addr array.  Use the default
1310  * monitor port if a port isn't specified.
1311  */
1312 int ceph_parse_ips(const char *c, const char *end,
1313                    struct ceph_entity_addr *addr,
1314                    int max_count, int *count)
1315 {
1316         int i, ret = -EINVAL;
1317         const char *p = c;
1318
1319         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1320         for (i = 0; i < max_count; i++) {
1321                 const char *ipend;
1322                 struct sockaddr_storage *ss = &addr[i].in_addr;
1323                 int port;
1324                 char delim = ',';
1325
1326                 if (*p == '[') {
1327                         delim = ']';
1328                         p++;
1329                 }
1330
1331                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1332                 if (ret)
1333                         goto bad;
1334                 ret = -EINVAL;
1335
1336                 p = ipend;
1337
1338                 if (delim == ']') {
1339                         if (*p != ']') {
1340                                 dout("missing matching ']'\n");
1341                                 goto bad;
1342                         }
1343                         p++;
1344                 }
1345
1346                 /* port? */
1347                 if (p < end && *p == ':') {
1348                         port = 0;
1349                         p++;
1350                         while (p < end && *p >= '0' && *p <= '9') {
1351                                 port = (port * 10) + (*p - '0');
1352                                 p++;
1353                         }
1354                         if (port > 65535 || port == 0)
1355                                 goto bad;
1356                 } else {
1357                         port = CEPH_MON_PORT;
1358                 }
1359
1360                 addr_set_port(ss, port);
1361
1362                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1363
1364                 if (p == end)
1365                         break;
1366                 if (*p != ',')
1367                         goto bad;
1368                 p++;
1369         }
1370
1371         if (p != end)
1372                 goto bad;
1373
1374         if (count)
1375                 *count = i + 1;
1376         return 0;
1377
1378 bad:
1379         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1380         return ret;
1381 }
1382 EXPORT_SYMBOL(ceph_parse_ips);
1383
1384 static int process_banner(struct ceph_connection *con)
1385 {
1386         dout("process_banner on %p\n", con);
1387
1388         if (verify_hello(con) < 0)
1389                 return -1;
1390
1391         ceph_decode_addr(&con->actual_peer_addr);
1392         ceph_decode_addr(&con->peer_addr_for_me);
1393
1394         /*
1395          * Make sure the other end is who we wanted.  note that the other
1396          * end may not yet know their ip address, so if it's 0.0.0.0, give
1397          * them the benefit of the doubt.
1398          */
1399         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1400                    sizeof(con->peer_addr)) != 0 &&
1401             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1402               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1403                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1404                            ceph_pr_addr(&con->peer_addr.in_addr),
1405                            (int)le32_to_cpu(con->peer_addr.nonce),
1406                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1407                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1408                 con->error_msg = "wrong peer at address";
1409                 return -1;
1410         }
1411
1412         /*
1413          * did we learn our address?
1414          */
1415         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1416                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1417
1418                 memcpy(&con->msgr->inst.addr.in_addr,
1419                        &con->peer_addr_for_me.in_addr,
1420                        sizeof(con->peer_addr_for_me.in_addr));
1421                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1422                 encode_my_addr(con->msgr);
1423                 dout("process_banner learned my addr is %s\n",
1424                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1425         }
1426
1427         set_bit(NEGOTIATING, &con->state);
1428         prepare_read_connect(con);
1429         return 0;
1430 }
1431
1432 static void fail_protocol(struct ceph_connection *con)
1433 {
1434         reset_connection(con);
1435         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1436 }
1437
1438 static int process_connect(struct ceph_connection *con)
1439 {
1440         u64 sup_feat = con->msgr->supported_features;
1441         u64 req_feat = con->msgr->required_features;
1442         u64 server_feat = le64_to_cpu(con->in_reply.features);
1443         int ret;
1444
1445         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1446
1447         switch (con->in_reply.tag) {
1448         case CEPH_MSGR_TAG_FEATURES:
1449                 pr_err("%s%lld %s feature set mismatch,"
1450                        " my %llx < server's %llx, missing %llx\n",
1451                        ENTITY_NAME(con->peer_name),
1452                        ceph_pr_addr(&con->peer_addr.in_addr),
1453                        sup_feat, server_feat, server_feat & ~sup_feat);
1454                 con->error_msg = "missing required protocol features";
1455                 fail_protocol(con);
1456                 return -1;
1457
1458         case CEPH_MSGR_TAG_BADPROTOVER:
1459                 pr_err("%s%lld %s protocol version mismatch,"
1460                        " my %d != server's %d\n",
1461                        ENTITY_NAME(con->peer_name),
1462                        ceph_pr_addr(&con->peer_addr.in_addr),
1463                        le32_to_cpu(con->out_connect.protocol_version),
1464                        le32_to_cpu(con->in_reply.protocol_version));
1465                 con->error_msg = "protocol version mismatch";
1466                 fail_protocol(con);
1467                 return -1;
1468
1469         case CEPH_MSGR_TAG_BADAUTHORIZER:
1470                 con->auth_retry++;
1471                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1472                      con->auth_retry);
1473                 if (con->auth_retry == 2) {
1474                         con->error_msg = "connect authorization failure";
1475                         return -1;
1476                 }
1477                 con->auth_retry = 1;
1478                 con_out_kvec_reset(con);
1479                 ret = prepare_write_connect(con);
1480                 if (ret < 0)
1481                         return ret;
1482                 prepare_read_connect(con);
1483                 break;
1484
1485         case CEPH_MSGR_TAG_RESETSESSION:
1486                 /*
1487                  * If we connected with a large connect_seq but the peer
1488                  * has no record of a session with us (no connection, or
1489                  * connect_seq == 0), they will send RESETSESION to indicate
1490                  * that they must have reset their session, and may have
1491                  * dropped messages.
1492                  */
1493                 dout("process_connect got RESET peer seq %u\n",
1494                      le32_to_cpu(con->in_connect.connect_seq));
1495                 pr_err("%s%lld %s connection reset\n",
1496                        ENTITY_NAME(con->peer_name),
1497                        ceph_pr_addr(&con->peer_addr.in_addr));
1498                 reset_connection(con);
1499                 con_out_kvec_reset(con);
1500                 ret = prepare_write_connect(con);
1501                 if (ret < 0)
1502                         return ret;
1503                 prepare_read_connect(con);
1504
1505                 /* Tell ceph about it. */
1506                 mutex_unlock(&con->mutex);
1507                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1508                 if (con->ops->peer_reset)
1509                         con->ops->peer_reset(con);
1510                 mutex_lock(&con->mutex);
1511                 if (test_bit(CLOSED, &con->state) ||
1512                     test_bit(OPENING, &con->state))
1513                         return -EAGAIN;
1514                 break;
1515
1516         case CEPH_MSGR_TAG_RETRY_SESSION:
1517                 /*
1518                  * If we sent a smaller connect_seq than the peer has, try
1519                  * again with a larger value.
1520                  */
1521                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1522                      le32_to_cpu(con->out_connect.connect_seq),
1523                      le32_to_cpu(con->in_connect.connect_seq));
1524                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1525                 con_out_kvec_reset(con);
1526                 ret = prepare_write_connect(con);
1527                 if (ret < 0)
1528                         return ret;
1529                 prepare_read_connect(con);
1530                 break;
1531
1532         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1533                 /*
1534                  * If we sent a smaller global_seq than the peer has, try
1535                  * again with a larger value.
1536                  */
1537                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1538                      con->peer_global_seq,
1539                      le32_to_cpu(con->in_connect.global_seq));
1540                 get_global_seq(con->msgr,
1541                                le32_to_cpu(con->in_connect.global_seq));
1542                 con_out_kvec_reset(con);
1543                 ret = prepare_write_connect(con);
1544                 if (ret < 0)
1545                         return ret;
1546                 prepare_read_connect(con);
1547                 break;
1548
1549         case CEPH_MSGR_TAG_READY:
1550                 if (req_feat & ~server_feat) {
1551                         pr_err("%s%lld %s protocol feature mismatch,"
1552                                " my required %llx > server's %llx, need %llx\n",
1553                                ENTITY_NAME(con->peer_name),
1554                                ceph_pr_addr(&con->peer_addr.in_addr),
1555                                req_feat, server_feat, req_feat & ~server_feat);
1556                         con->error_msg = "missing required protocol features";
1557                         fail_protocol(con);
1558                         return -1;
1559                 }
1560                 clear_bit(CONNECTING, &con->state);
1561                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1562                 con->connect_seq++;
1563                 con->peer_features = server_feat;
1564                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1565                      con->peer_global_seq,
1566                      le32_to_cpu(con->in_reply.connect_seq),
1567                      con->connect_seq);
1568                 WARN_ON(con->connect_seq !=
1569                         le32_to_cpu(con->in_reply.connect_seq));
1570
1571                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1572                         set_bit(LOSSYTX, &con->flags);
1573
1574                 prepare_read_tag(con);
1575                 break;
1576
1577         case CEPH_MSGR_TAG_WAIT:
1578                 /*
1579                  * If there is a connection race (we are opening
1580                  * connections to each other), one of us may just have
1581                  * to WAIT.  This shouldn't happen if we are the
1582                  * client.
1583                  */
1584                 pr_err("process_connect got WAIT as client\n");
1585                 con->error_msg = "protocol error, got WAIT as client";
1586                 return -1;
1587
1588         default:
1589                 pr_err("connect protocol error, will retry\n");
1590                 con->error_msg = "protocol error, garbage tag during connect";
1591                 return -1;
1592         }
1593         return 0;
1594 }
1595
1596
1597 /*
1598  * read (part of) an ack
1599  */
1600 static int read_partial_ack(struct ceph_connection *con)
1601 {
1602         int size = sizeof (con->in_temp_ack);
1603         int end = size;
1604
1605         return read_partial(con, end, size, &con->in_temp_ack);
1606 }
1607
1608
1609 /*
1610  * We can finally discard anything that's been acked.
1611  */
1612 static void process_ack(struct ceph_connection *con)
1613 {
1614         struct ceph_msg *m;
1615         u64 ack = le64_to_cpu(con->in_temp_ack);
1616         u64 seq;
1617
1618         while (!list_empty(&con->out_sent)) {
1619                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1620                                      list_head);
1621                 seq = le64_to_cpu(m->hdr.seq);
1622                 if (seq > ack)
1623                         break;
1624                 dout("got ack for seq %llu type %d at %p\n", seq,
1625                      le16_to_cpu(m->hdr.type), m);
1626                 m->ack_stamp = jiffies;
1627                 ceph_msg_remove(m);
1628         }
1629         prepare_read_tag(con);
1630 }
1631
1632
1633
1634
1635 static int read_partial_message_section(struct ceph_connection *con,
1636                                         struct kvec *section,
1637                                         unsigned int sec_len, u32 *crc)
1638 {
1639         int ret, left;
1640
1641         BUG_ON(!section);
1642
1643         while (section->iov_len < sec_len) {
1644                 BUG_ON(section->iov_base == NULL);
1645                 left = sec_len - section->iov_len;
1646                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1647                                        section->iov_len, left);
1648                 if (ret <= 0)
1649                         return ret;
1650                 section->iov_len += ret;
1651         }
1652         if (section->iov_len == sec_len)
1653                 *crc = crc32c(0, section->iov_base, section->iov_len);
1654
1655         return 1;
1656 }
1657
1658 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1659                                 struct ceph_msg_header *hdr,
1660                                 int *skip);
1661
1662
1663 static int read_partial_message_pages(struct ceph_connection *con,
1664                                       struct page **pages,
1665                                       unsigned data_len, bool do_datacrc)
1666 {
1667         void *p;
1668         int ret;
1669         int left;
1670
1671         left = min((int)(data_len - con->in_msg_pos.data_pos),
1672                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1673         /* (page) data */
1674         BUG_ON(pages == NULL);
1675         p = kmap(pages[con->in_msg_pos.page]);
1676         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1677                                left);
1678         if (ret > 0 && do_datacrc)
1679                 con->in_data_crc =
1680                         crc32c(con->in_data_crc,
1681                                   p + con->in_msg_pos.page_pos, ret);
1682         kunmap(pages[con->in_msg_pos.page]);
1683         if (ret <= 0)
1684                 return ret;
1685         con->in_msg_pos.data_pos += ret;
1686         con->in_msg_pos.page_pos += ret;
1687         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1688                 con->in_msg_pos.page_pos = 0;
1689                 con->in_msg_pos.page++;
1690         }
1691
1692         return ret;
1693 }
1694
1695 #ifdef CONFIG_BLOCK
1696 static int read_partial_message_bio(struct ceph_connection *con,
1697                                     struct bio **bio_iter, int *bio_seg,
1698                                     unsigned data_len, bool do_datacrc)
1699 {
1700         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1701         void *p;
1702         int ret, left;
1703
1704         if (IS_ERR(bv))
1705                 return PTR_ERR(bv);
1706
1707         left = min((int)(data_len - con->in_msg_pos.data_pos),
1708                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1709
1710         p = kmap(bv->bv_page) + bv->bv_offset;
1711
1712         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1713                                left);
1714         if (ret > 0 && do_datacrc)
1715                 con->in_data_crc =
1716                         crc32c(con->in_data_crc,
1717                                   p + con->in_msg_pos.page_pos, ret);
1718         kunmap(bv->bv_page);
1719         if (ret <= 0)
1720                 return ret;
1721         con->in_msg_pos.data_pos += ret;
1722         con->in_msg_pos.page_pos += ret;
1723         if (con->in_msg_pos.page_pos == bv->bv_len) {
1724                 con->in_msg_pos.page_pos = 0;
1725                 iter_bio_next(bio_iter, bio_seg);
1726         }
1727
1728         return ret;
1729 }
1730 #endif
1731
1732 /*
1733  * read (part of) a message.
1734  */
1735 static int read_partial_message(struct ceph_connection *con)
1736 {
1737         struct ceph_msg *m = con->in_msg;
1738         int size;
1739         int end;
1740         int ret;
1741         unsigned front_len, middle_len, data_len;
1742         bool do_datacrc = !con->msgr->nocrc;
1743         int skip;
1744         u64 seq;
1745         u32 crc;
1746
1747         dout("read_partial_message con %p msg %p\n", con, m);
1748
1749         /* header */
1750         size = sizeof (con->in_hdr);
1751         end = size;
1752         ret = read_partial(con, end, size, &con->in_hdr);
1753         if (ret <= 0)
1754                 return ret;
1755
1756         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1757         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1758                 pr_err("read_partial_message bad hdr "
1759                        " crc %u != expected %u\n",
1760                        crc, con->in_hdr.crc);
1761                 return -EBADMSG;
1762         }
1763
1764         front_len = le32_to_cpu(con->in_hdr.front_len);
1765         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1766                 return -EIO;
1767         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1768         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1769                 return -EIO;
1770         data_len = le32_to_cpu(con->in_hdr.data_len);
1771         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1772                 return -EIO;
1773
1774         /* verify seq# */
1775         seq = le64_to_cpu(con->in_hdr.seq);
1776         if ((s64)seq - (s64)con->in_seq < 1) {
1777                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1778                         ENTITY_NAME(con->peer_name),
1779                         ceph_pr_addr(&con->peer_addr.in_addr),
1780                         seq, con->in_seq + 1);
1781                 con->in_base_pos = -front_len - middle_len - data_len -
1782                         sizeof(m->footer);
1783                 con->in_tag = CEPH_MSGR_TAG_READY;
1784                 return 0;
1785         } else if ((s64)seq - (s64)con->in_seq > 1) {
1786                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1787                        seq, con->in_seq + 1);
1788                 con->error_msg = "bad message sequence # for incoming message";
1789                 return -EBADMSG;
1790         }
1791
1792         /* allocate message? */
1793         if (!con->in_msg) {
1794                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1795                      con->in_hdr.front_len, con->in_hdr.data_len);
1796                 skip = 0;
1797                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1798                 if (skip) {
1799                         /* skip this message */
1800                         dout("alloc_msg said skip message\n");
1801                         BUG_ON(con->in_msg);
1802                         con->in_base_pos = -front_len - middle_len - data_len -
1803                                 sizeof(m->footer);
1804                         con->in_tag = CEPH_MSGR_TAG_READY;
1805                         con->in_seq++;
1806                         return 0;
1807                 }
1808                 if (!con->in_msg) {
1809                         con->error_msg =
1810                                 "error allocating memory for incoming message";
1811                         return -ENOMEM;
1812                 }
1813                 m = con->in_msg;
1814                 m->front.iov_len = 0;    /* haven't read it yet */
1815                 if (m->middle)
1816                         m->middle->vec.iov_len = 0;
1817
1818                 con->in_msg_pos.page = 0;
1819                 if (m->pages)
1820                         con->in_msg_pos.page_pos = m->page_alignment;
1821                 else
1822                         con->in_msg_pos.page_pos = 0;
1823                 con->in_msg_pos.data_pos = 0;
1824         }
1825
1826         /* front */
1827         ret = read_partial_message_section(con, &m->front, front_len,
1828                                            &con->in_front_crc);
1829         if (ret <= 0)
1830                 return ret;
1831
1832         /* middle */
1833         if (m->middle) {
1834                 ret = read_partial_message_section(con, &m->middle->vec,
1835                                                    middle_len,
1836                                                    &con->in_middle_crc);
1837                 if (ret <= 0)
1838                         return ret;
1839         }
1840 #ifdef CONFIG_BLOCK
1841         if (m->bio && !m->bio_iter)
1842                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1843 #endif
1844
1845         /* (page) data */
1846         while (con->in_msg_pos.data_pos < data_len) {
1847                 if (m->pages) {
1848                         ret = read_partial_message_pages(con, m->pages,
1849                                                  data_len, do_datacrc);
1850                         if (ret <= 0)
1851                                 return ret;
1852 #ifdef CONFIG_BLOCK
1853                 } else if (m->bio) {
1854
1855                         ret = read_partial_message_bio(con,
1856                                                  &m->bio_iter, &m->bio_seg,
1857                                                  data_len, do_datacrc);
1858                         if (ret <= 0)
1859                                 return ret;
1860 #endif
1861                 } else {
1862                         BUG_ON(1);
1863                 }
1864         }
1865
1866         /* footer */
1867         size = sizeof (m->footer);
1868         end += size;
1869         ret = read_partial(con, end, size, &m->footer);
1870         if (ret <= 0)
1871                 return ret;
1872
1873         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1874              m, front_len, m->footer.front_crc, middle_len,
1875              m->footer.middle_crc, data_len, m->footer.data_crc);
1876
1877         /* crc ok? */
1878         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1879                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1880                        m, con->in_front_crc, m->footer.front_crc);
1881                 return -EBADMSG;
1882         }
1883         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1884                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1885                        m, con->in_middle_crc, m->footer.middle_crc);
1886                 return -EBADMSG;
1887         }
1888         if (do_datacrc &&
1889             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1890             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1891                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1892                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1893                 return -EBADMSG;
1894         }
1895
1896         return 1; /* done! */
1897 }
1898
1899 /*
1900  * Process message.  This happens in the worker thread.  The callback should
1901  * be careful not to do anything that waits on other incoming messages or it
1902  * may deadlock.
1903  */
1904 static void process_message(struct ceph_connection *con)
1905 {
1906         struct ceph_msg *msg;
1907
1908         msg = con->in_msg;
1909         con->in_msg = NULL;
1910
1911         /* if first message, set peer_name */
1912         if (con->peer_name.type == 0)
1913                 con->peer_name = msg->hdr.src;
1914
1915         con->in_seq++;
1916         mutex_unlock(&con->mutex);
1917
1918         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1919              msg, le64_to_cpu(msg->hdr.seq),
1920              ENTITY_NAME(msg->hdr.src),
1921              le16_to_cpu(msg->hdr.type),
1922              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1923              le32_to_cpu(msg->hdr.front_len),
1924              le32_to_cpu(msg->hdr.data_len),
1925              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1926         con->ops->dispatch(con, msg);
1927
1928         mutex_lock(&con->mutex);
1929         prepare_read_tag(con);
1930 }
1931
1932
1933 /*
1934  * Write something to the socket.  Called in a worker thread when the
1935  * socket appears to be writeable and we have something ready to send.
1936  */
1937 static int try_write(struct ceph_connection *con)
1938 {
1939         int ret = 1;
1940
1941         dout("try_write start %p state %lu nref %d\n", con, con->state,
1942              atomic_read(&con->nref));
1943
1944 more:
1945         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1946
1947         /* open the socket first? */
1948         if (con->sock == NULL) {
1949                 clear_bit(NEGOTIATING, &con->state);
1950                 set_bit(CONNECTING, &con->state);
1951
1952                 con_out_kvec_reset(con);
1953                 prepare_write_banner(con);
1954                 ret = prepare_write_connect(con);
1955                 if (ret < 0)
1956                         goto out;
1957                 prepare_read_banner(con);
1958
1959                 BUG_ON(con->in_msg);
1960                 con->in_tag = CEPH_MSGR_TAG_READY;
1961                 dout("try_write initiating connect on %p new state %lu\n",
1962                      con, con->state);
1963                 ret = ceph_tcp_connect(con);
1964                 if (ret < 0) {
1965                         con->error_msg = "connect error";
1966                         goto out;
1967                 }
1968         }
1969
1970 more_kvec:
1971         /* kvec data queued? */
1972         if (con->out_skip) {
1973                 ret = write_partial_skip(con);
1974                 if (ret <= 0)
1975                         goto out;
1976         }
1977         if (con->out_kvec_left) {
1978                 ret = write_partial_kvec(con);
1979                 if (ret <= 0)
1980                         goto out;
1981         }
1982
1983         /* msg pages? */
1984         if (con->out_msg) {
1985                 if (con->out_msg_done) {
1986                         ceph_msg_put(con->out_msg);
1987                         con->out_msg = NULL;   /* we're done with this one */
1988                         goto do_next;
1989                 }
1990
1991                 ret = write_partial_msg_pages(con);
1992                 if (ret == 1)
1993                         goto more_kvec;  /* we need to send the footer, too! */
1994                 if (ret == 0)
1995                         goto out;
1996                 if (ret < 0) {
1997                         dout("try_write write_partial_msg_pages err %d\n",
1998                              ret);
1999                         goto out;
2000                 }
2001         }
2002
2003 do_next:
2004         if (!test_bit(CONNECTING, &con->state)) {
2005                 /* is anything else pending? */
2006                 if (!list_empty(&con->out_queue)) {
2007                         prepare_write_message(con);
2008                         goto more;
2009                 }
2010                 if (con->in_seq > con->in_seq_acked) {
2011                         prepare_write_ack(con);
2012                         goto more;
2013                 }
2014                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2015                         prepare_write_keepalive(con);
2016                         goto more;
2017                 }
2018         }
2019
2020         /* Nothing to do! */
2021         clear_bit(WRITE_PENDING, &con->flags);
2022         dout("try_write nothing else to write.\n");
2023         ret = 0;
2024 out:
2025         dout("try_write done on %p ret %d\n", con, ret);
2026         return ret;
2027 }
2028
2029
2030
2031 /*
2032  * Read what we can from the socket.
2033  */
2034 static int try_read(struct ceph_connection *con)
2035 {
2036         int ret = -1;
2037
2038         if (!con->sock)
2039                 return 0;
2040
2041         if (test_bit(STANDBY, &con->state))
2042                 return 0;
2043
2044         dout("try_read start on %p\n", con);
2045
2046 more:
2047         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2048              con->in_base_pos);
2049
2050         /*
2051          * process_connect and process_message drop and re-take
2052          * con->mutex.  make sure we handle a racing close or reopen.
2053          */
2054         if (test_bit(CLOSED, &con->state) ||
2055             test_bit(OPENING, &con->state)) {
2056                 ret = -EAGAIN;
2057                 goto out;
2058         }
2059
2060         if (test_bit(CONNECTING, &con->state)) {
2061                 if (!test_bit(NEGOTIATING, &con->state)) {
2062                         dout("try_read connecting\n");
2063                         ret = read_partial_banner(con);
2064                         if (ret <= 0)
2065                                 goto out;
2066                         ret = process_banner(con);
2067                         if (ret < 0)
2068                                 goto out;
2069                 }
2070                 ret = read_partial_connect(con);
2071                 if (ret <= 0)
2072                         goto out;
2073                 ret = process_connect(con);
2074                 if (ret < 0)
2075                         goto out;
2076                 goto more;
2077         }
2078
2079         if (con->in_base_pos < 0) {
2080                 /*
2081                  * skipping + discarding content.
2082                  *
2083                  * FIXME: there must be a better way to do this!
2084                  */
2085                 static char buf[SKIP_BUF_SIZE];
2086                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2087
2088                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2089                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2090                 if (ret <= 0)
2091                         goto out;
2092                 con->in_base_pos += ret;
2093                 if (con->in_base_pos)
2094                         goto more;
2095         }
2096         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2097                 /*
2098                  * what's next?
2099                  */
2100                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2101                 if (ret <= 0)
2102                         goto out;
2103                 dout("try_read got tag %d\n", (int)con->in_tag);
2104                 switch (con->in_tag) {
2105                 case CEPH_MSGR_TAG_MSG:
2106                         prepare_read_message(con);
2107                         break;
2108                 case CEPH_MSGR_TAG_ACK:
2109                         prepare_read_ack(con);
2110                         break;
2111                 case CEPH_MSGR_TAG_CLOSE:
2112                         set_bit(CLOSED, &con->state);   /* fixme */
2113                         goto out;
2114                 default:
2115                         goto bad_tag;
2116                 }
2117         }
2118         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2119                 ret = read_partial_message(con);
2120                 if (ret <= 0) {
2121                         switch (ret) {
2122                         case -EBADMSG:
2123                                 con->error_msg = "bad crc";
2124                                 ret = -EIO;
2125                                 break;
2126                         case -EIO:
2127                                 con->error_msg = "io error";
2128                                 break;
2129                         }
2130                         goto out;
2131                 }
2132                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2133                         goto more;
2134                 process_message(con);
2135                 goto more;
2136         }
2137         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2138                 ret = read_partial_ack(con);
2139                 if (ret <= 0)
2140                         goto out;
2141                 process_ack(con);
2142                 goto more;
2143         }
2144
2145 out:
2146         dout("try_read done on %p ret %d\n", con, ret);
2147         return ret;
2148
2149 bad_tag:
2150         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2151         con->error_msg = "protocol error, garbage tag";
2152         ret = -1;
2153         goto out;
2154 }
2155
2156
2157 /*
2158  * Atomically queue work on a connection.  Bump @con reference to
2159  * avoid races with connection teardown.
2160  */
2161 static void queue_con(struct ceph_connection *con)
2162 {
2163         if (!con->ops->get(con)) {
2164                 dout("queue_con %p ref count 0\n", con);
2165                 return;
2166         }
2167
2168         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2169                 dout("queue_con %p - already queued\n", con);
2170                 con->ops->put(con);
2171         } else {
2172                 dout("queue_con %p\n", con);
2173         }
2174 }
2175
2176 /*
2177  * Do some work on a connection.  Drop a connection ref when we're done.
2178  */
2179 static void con_work(struct work_struct *work)
2180 {
2181         struct ceph_connection *con = container_of(work, struct ceph_connection,
2182                                                    work.work);
2183         int ret;
2184
2185         mutex_lock(&con->mutex);
2186 restart:
2187         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2188                 dout("con_work %p backing off\n", con);
2189                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2190                                        round_jiffies_relative(con->delay))) {
2191                         dout("con_work %p backoff %lu\n", con, con->delay);
2192                         mutex_unlock(&con->mutex);
2193                         return;
2194                 } else {
2195                         con->ops->put(con);
2196                         dout("con_work %p FAILED to back off %lu\n", con,
2197                              con->delay);
2198                 }
2199         }
2200
2201         if (test_bit(STANDBY, &con->state)) {
2202                 dout("con_work %p STANDBY\n", con);
2203                 goto done;
2204         }
2205         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2206                 dout("con_work CLOSED\n");
2207                 con_close_socket(con);
2208                 goto done;
2209         }
2210         if (test_and_clear_bit(OPENING, &con->state)) {
2211                 /* reopen w/ new peer */
2212                 dout("con_work OPENING\n");
2213                 con_close_socket(con);
2214         }
2215
2216         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2217                 goto fault;
2218
2219         ret = try_read(con);
2220         if (ret == -EAGAIN)
2221                 goto restart;
2222         if (ret < 0)
2223                 goto fault;
2224
2225         ret = try_write(con);
2226         if (ret == -EAGAIN)
2227                 goto restart;
2228         if (ret < 0)
2229                 goto fault;
2230
2231 done:
2232         mutex_unlock(&con->mutex);
2233 done_unlocked:
2234         con->ops->put(con);
2235         return;
2236
2237 fault:
2238         mutex_unlock(&con->mutex);
2239         ceph_fault(con);     /* error/fault path */
2240         goto done_unlocked;
2241 }
2242
2243
2244 /*
2245  * Generic error/fault handler.  A retry mechanism is used with
2246  * exponential backoff
2247  */
2248 static void ceph_fault(struct ceph_connection *con)
2249 {
2250         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2251                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2252         dout("fault %p state %lu to peer %s\n",
2253              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2254
2255         if (test_bit(LOSSYTX, &con->flags)) {
2256                 dout("fault on LOSSYTX channel\n");
2257                 goto out;
2258         }
2259
2260         mutex_lock(&con->mutex);
2261         if (test_bit(CLOSED, &con->state))
2262                 goto out_unlock;
2263
2264         con_close_socket(con);
2265
2266         if (con->in_msg) {
2267                 ceph_msg_put(con->in_msg);
2268                 con->in_msg = NULL;
2269         }
2270
2271         /* Requeue anything that hasn't been acked */
2272         list_splice_init(&con->out_sent, &con->out_queue);
2273
2274         /* If there are no messages queued or keepalive pending, place
2275          * the connection in a STANDBY state */
2276         if (list_empty(&con->out_queue) &&
2277             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2278                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2279                 clear_bit(WRITE_PENDING, &con->flags);
2280                 set_bit(STANDBY, &con->state);
2281         } else {
2282                 /* retry after a delay. */
2283                 if (con->delay == 0)
2284                         con->delay = BASE_DELAY_INTERVAL;
2285                 else if (con->delay < MAX_DELAY_INTERVAL)
2286                         con->delay *= 2;
2287                 con->ops->get(con);
2288                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2289                                        round_jiffies_relative(con->delay))) {
2290                         dout("fault queued %p delay %lu\n", con, con->delay);
2291                 } else {
2292                         con->ops->put(con);
2293                         dout("fault failed to queue %p delay %lu, backoff\n",
2294                              con, con->delay);
2295                         /*
2296                          * In many cases we see a socket state change
2297                          * while con_work is running and end up
2298                          * queuing (non-delayed) work, such that we
2299                          * can't backoff with a delay.  Set a flag so
2300                          * that when con_work restarts we schedule the
2301                          * delay then.
2302                          */
2303                         set_bit(BACKOFF, &con->flags);
2304                 }
2305         }
2306
2307 out_unlock:
2308         mutex_unlock(&con->mutex);
2309 out:
2310         /*
2311          * in case we faulted due to authentication, invalidate our
2312          * current tickets so that we can get new ones.
2313          */
2314         if (con->auth_retry && con->ops->invalidate_authorizer) {
2315                 dout("calling invalidate_authorizer()\n");
2316                 con->ops->invalidate_authorizer(con);
2317         }
2318
2319         if (con->ops->fault)
2320                 con->ops->fault(con);
2321 }
2322
2323
2324
2325 /*
2326  * initialize a new messenger instance
2327  */
2328 void ceph_messenger_init(struct ceph_messenger *msgr,
2329                         struct ceph_entity_addr *myaddr,
2330                         u32 supported_features,
2331                         u32 required_features,
2332                         bool nocrc)
2333 {
2334         msgr->supported_features = supported_features;
2335         msgr->required_features = required_features;
2336
2337         spin_lock_init(&msgr->global_seq_lock);
2338
2339         if (myaddr)
2340                 msgr->inst.addr = *myaddr;
2341
2342         /* select a random nonce */
2343         msgr->inst.addr.type = 0;
2344         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2345         encode_my_addr(msgr);
2346         msgr->nocrc = nocrc;
2347
2348         dout("%s %p\n", __func__, msgr);
2349 }
2350 EXPORT_SYMBOL(ceph_messenger_init);
2351
2352 static void clear_standby(struct ceph_connection *con)
2353 {
2354         /* come back from STANDBY? */
2355         if (test_and_clear_bit(STANDBY, &con->state)) {
2356                 mutex_lock(&con->mutex);
2357                 dout("clear_standby %p and ++connect_seq\n", con);
2358                 con->connect_seq++;
2359                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2360                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2361                 mutex_unlock(&con->mutex);
2362         }
2363 }
2364
2365 /*
2366  * Queue up an outgoing message on the given connection.
2367  */
2368 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2369 {
2370         if (test_bit(CLOSED, &con->state)) {
2371                 dout("con_send %p closed, dropping %p\n", con, msg);
2372                 ceph_msg_put(msg);
2373                 return;
2374         }
2375
2376         /* set src+dst */
2377         msg->hdr.src = con->msgr->inst.name;
2378
2379         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2380
2381         msg->needs_out_seq = true;
2382
2383         /* queue */
2384         mutex_lock(&con->mutex);
2385         BUG_ON(!list_empty(&msg->list_head));
2386         list_add_tail(&msg->list_head, &con->out_queue);
2387         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2388              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2389              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2390              le32_to_cpu(msg->hdr.front_len),
2391              le32_to_cpu(msg->hdr.middle_len),
2392              le32_to_cpu(msg->hdr.data_len));
2393         mutex_unlock(&con->mutex);
2394
2395         /* if there wasn't anything waiting to send before, queue
2396          * new work */
2397         clear_standby(con);
2398         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2399                 queue_con(con);
2400 }
2401 EXPORT_SYMBOL(ceph_con_send);
2402
2403 /*
2404  * Revoke a message that was previously queued for send
2405  */
2406 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2407 {
2408         mutex_lock(&con->mutex);
2409         if (!list_empty(&msg->list_head)) {
2410                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2411                 list_del_init(&msg->list_head);
2412                 ceph_msg_put(msg);
2413                 msg->hdr.seq = 0;
2414         }
2415         if (con->out_msg == msg) {
2416                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2417                 con->out_msg = NULL;
2418                 if (con->out_kvec_is_msg) {
2419                         con->out_skip = con->out_kvec_bytes;
2420                         con->out_kvec_is_msg = false;
2421                 }
2422                 ceph_msg_put(msg);
2423                 msg->hdr.seq = 0;
2424         }
2425         mutex_unlock(&con->mutex);
2426 }
2427
2428 /*
2429  * Revoke a message that we may be reading data into
2430  */
2431 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2432 {
2433         mutex_lock(&con->mutex);
2434         if (con->in_msg && con->in_msg == msg) {
2435                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2436                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2437                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2438
2439                 /* skip rest of message */
2440                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2441                         con->in_base_pos = con->in_base_pos -
2442                                 sizeof(struct ceph_msg_header) -
2443                                 front_len -
2444                                 middle_len -
2445                                 data_len -
2446                                 sizeof(struct ceph_msg_footer);
2447                 ceph_msg_put(con->in_msg);
2448                 con->in_msg = NULL;
2449                 con->in_tag = CEPH_MSGR_TAG_READY;
2450                 con->in_seq++;
2451         } else {
2452                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2453                      con, con->in_msg, msg);
2454         }
2455         mutex_unlock(&con->mutex);
2456 }
2457
2458 /*
2459  * Queue a keepalive byte to ensure the tcp connection is alive.
2460  */
2461 void ceph_con_keepalive(struct ceph_connection *con)
2462 {
2463         dout("con_keepalive %p\n", con);
2464         clear_standby(con);
2465         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2466             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2467                 queue_con(con);
2468 }
2469 EXPORT_SYMBOL(ceph_con_keepalive);
2470
2471
2472 /*
2473  * construct a new message with given type, size
2474  * the new msg has a ref count of 1.
2475  */
2476 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2477                               bool can_fail)
2478 {
2479         struct ceph_msg *m;
2480
2481         m = kmalloc(sizeof(*m), flags);
2482         if (m == NULL)
2483                 goto out;
2484         kref_init(&m->kref);
2485         INIT_LIST_HEAD(&m->list_head);
2486
2487         m->hdr.tid = 0;
2488         m->hdr.type = cpu_to_le16(type);
2489         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2490         m->hdr.version = 0;
2491         m->hdr.front_len = cpu_to_le32(front_len);
2492         m->hdr.middle_len = 0;
2493         m->hdr.data_len = 0;
2494         m->hdr.data_off = 0;
2495         m->hdr.reserved = 0;
2496         m->footer.front_crc = 0;
2497         m->footer.middle_crc = 0;
2498         m->footer.data_crc = 0;
2499         m->footer.flags = 0;
2500         m->front_max = front_len;
2501         m->front_is_vmalloc = false;
2502         m->more_to_follow = false;
2503         m->ack_stamp = 0;
2504         m->pool = NULL;
2505
2506         /* middle */
2507         m->middle = NULL;
2508
2509         /* data */
2510         m->nr_pages = 0;
2511         m->page_alignment = 0;
2512         m->pages = NULL;
2513         m->pagelist = NULL;
2514         m->bio = NULL;
2515         m->bio_iter = NULL;
2516         m->bio_seg = 0;
2517         m->trail = NULL;
2518
2519         /* front */
2520         if (front_len) {
2521                 if (front_len > PAGE_CACHE_SIZE) {
2522                         m->front.iov_base = __vmalloc(front_len, flags,
2523                                                       PAGE_KERNEL);
2524                         m->front_is_vmalloc = true;
2525                 } else {
2526                         m->front.iov_base = kmalloc(front_len, flags);
2527                 }
2528                 if (m->front.iov_base == NULL) {
2529                         dout("ceph_msg_new can't allocate %d bytes\n",
2530                              front_len);
2531                         goto out2;
2532                 }
2533         } else {
2534                 m->front.iov_base = NULL;
2535         }
2536         m->front.iov_len = front_len;
2537
2538         dout("ceph_msg_new %p front %d\n", m, front_len);
2539         return m;
2540
2541 out2:
2542         ceph_msg_put(m);
2543 out:
2544         if (!can_fail) {
2545                 pr_err("msg_new can't create type %d front %d\n", type,
2546                        front_len);
2547                 WARN_ON(1);
2548         } else {
2549                 dout("msg_new can't create type %d front %d\n", type,
2550                      front_len);
2551         }
2552         return NULL;
2553 }
2554 EXPORT_SYMBOL(ceph_msg_new);
2555
2556 /*
2557  * Allocate "middle" portion of a message, if it is needed and wasn't
2558  * allocated by alloc_msg.  This allows us to read a small fixed-size
2559  * per-type header in the front and then gracefully fail (i.e.,
2560  * propagate the error to the caller based on info in the front) when
2561  * the middle is too large.
2562  */
2563 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2564 {
2565         int type = le16_to_cpu(msg->hdr.type);
2566         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2567
2568         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2569              ceph_msg_type_name(type), middle_len);
2570         BUG_ON(!middle_len);
2571         BUG_ON(msg->middle);
2572
2573         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2574         if (!msg->middle)
2575                 return -ENOMEM;
2576         return 0;
2577 }
2578
2579 /*
2580  * Generic message allocator, for incoming messages.
2581  */
2582 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2583                                 struct ceph_msg_header *hdr,
2584                                 int *skip)
2585 {
2586         int type = le16_to_cpu(hdr->type);
2587         int front_len = le32_to_cpu(hdr->front_len);
2588         int middle_len = le32_to_cpu(hdr->middle_len);
2589         struct ceph_msg *msg = NULL;
2590         int ret;
2591
2592         if (con->ops->alloc_msg) {
2593                 mutex_unlock(&con->mutex);
2594                 msg = con->ops->alloc_msg(con, hdr, skip);
2595                 mutex_lock(&con->mutex);
2596                 if (!msg || *skip)
2597                         return NULL;
2598         }
2599         if (!msg) {
2600                 *skip = 0;
2601                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2602                 if (!msg) {
2603                         pr_err("unable to allocate msg type %d len %d\n",
2604                                type, front_len);
2605                         return NULL;
2606                 }
2607                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2608         }
2609         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2610
2611         if (middle_len && !msg->middle) {
2612                 ret = ceph_alloc_middle(con, msg);
2613                 if (ret < 0) {
2614                         ceph_msg_put(msg);
2615                         return NULL;
2616                 }
2617         }
2618
2619         return msg;
2620 }
2621
2622
2623 /*
2624  * Free a generically kmalloc'd message.
2625  */
2626 void ceph_msg_kfree(struct ceph_msg *m)
2627 {
2628         dout("msg_kfree %p\n", m);
2629         if (m->front_is_vmalloc)
2630                 vfree(m->front.iov_base);
2631         else
2632                 kfree(m->front.iov_base);
2633         kfree(m);
2634 }
2635
2636 /*
2637  * Drop a msg ref.  Destroy as needed.
2638  */
2639 void ceph_msg_last_put(struct kref *kref)
2640 {
2641         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2642
2643         dout("ceph_msg_put last one on %p\n", m);
2644         WARN_ON(!list_empty(&m->list_head));
2645
2646         /* drop middle, data, if any */
2647         if (m->middle) {
2648                 ceph_buffer_put(m->middle);
2649                 m->middle = NULL;
2650         }
2651         m->nr_pages = 0;
2652         m->pages = NULL;
2653
2654         if (m->pagelist) {
2655                 ceph_pagelist_release(m->pagelist);
2656                 kfree(m->pagelist);
2657                 m->pagelist = NULL;
2658         }
2659
2660         m->trail = NULL;
2661
2662         if (m->pool)
2663                 ceph_msgpool_put(m->pool, m);
2664         else
2665                 ceph_msg_kfree(m);
2666 }
2667 EXPORT_SYMBOL(ceph_msg_last_put);
2668
2669 void ceph_msg_dump(struct ceph_msg *msg)
2670 {
2671         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2672                  msg->front_max, msg->nr_pages);
2673         print_hex_dump(KERN_DEBUG, "header: ",
2674                        DUMP_PREFIX_OFFSET, 16, 1,
2675                        &msg->hdr, sizeof(msg->hdr), true);
2676         print_hex_dump(KERN_DEBUG, " front: ",
2677                        DUMP_PREFIX_OFFSET, 16, 1,
2678                        msg->front.iov_base, msg->front.iov_len, true);
2679         if (msg->middle)
2680                 print_hex_dump(KERN_DEBUG, "middle: ",
2681                                DUMP_PREFIX_OFFSET, 16, 1,
2682                                msg->middle->vec.iov_base,
2683                                msg->middle->vec.iov_len, true);
2684         print_hex_dump(KERN_DEBUG, "footer: ",
2685                        DUMP_PREFIX_OFFSET, 16, 1,
2686                        &msg->footer, sizeof(msg->footer), true);
2687 }
2688 EXPORT_SYMBOL(ceph_msg_dump);