libceph: have messages point to their connection
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
325                                  O_NONBLOCK);
326         if (ret == -EINPROGRESS) {
327                 dout("connect %s EINPROGRESS sk_state = %u\n",
328                      ceph_pr_addr(&con->peer_addr.in_addr),
329                      sock->sk->sk_state);
330         } else if (ret < 0) {
331                 pr_err("connect %s error %d\n",
332                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
333                 sock_release(sock);
334                 con->error_msg = "connect error";
335
336                 return ret;
337         }
338         con->sock = sock;
339         con_sock_state_connecting(con);
340
341         return 0;
342 }
343
344 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
345 {
346         struct kvec iov = {buf, len};
347         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
348         int r;
349
350         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
351         if (r == -EAGAIN)
352                 r = 0;
353         return r;
354 }
355
356 /*
357  * write something.  @more is true if caller will be sending more data
358  * shortly.
359  */
360 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
361                      size_t kvlen, size_t len, int more)
362 {
363         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
364         int r;
365
366         if (more)
367                 msg.msg_flags |= MSG_MORE;
368         else
369                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
370
371         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
372         if (r == -EAGAIN)
373                 r = 0;
374         return r;
375 }
376
377 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
378                      int offset, size_t size, int more)
379 {
380         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
381         int ret;
382
383         ret = kernel_sendpage(sock, page, offset, size, flags);
384         if (ret == -EAGAIN)
385                 ret = 0;
386
387         return ret;
388 }
389
390
391 /*
392  * Shutdown/close the socket for the given connection.
393  */
394 static int con_close_socket(struct ceph_connection *con)
395 {
396         int rc;
397
398         dout("con_close_socket on %p sock %p\n", con, con->sock);
399         if (!con->sock)
400                 return 0;
401         set_bit(SOCK_CLOSED, &con->state);
402         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
403         sock_release(con->sock);
404         con->sock = NULL;
405         clear_bit(SOCK_CLOSED, &con->state);
406         con_sock_state_closed(con);
407         return rc;
408 }
409
410 /*
411  * Reset a connection.  Discard all incoming and outgoing messages
412  * and clear *_seq state.
413  */
414 static void ceph_msg_remove(struct ceph_msg *msg)
415 {
416         list_del_init(&msg->list_head);
417         BUG_ON(msg->con == NULL);
418         msg->con = NULL;
419
420         ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424         while (!list_empty(head)) {
425                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426                                                         list_head);
427                 ceph_msg_remove(msg);
428         }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433         /* reset connection, out_queue, msg_ and connect_seq */
434         /* discard existing out_queue and msg_seq */
435         ceph_msg_remove_list(&con->out_queue);
436         ceph_msg_remove_list(&con->out_sent);
437
438         if (con->in_msg) {
439                 BUG_ON(con->in_msg->con != con);
440                 con->in_msg->con = NULL;
441                 ceph_msg_put(con->in_msg);
442                 con->in_msg = NULL;
443         }
444
445         con->connect_seq = 0;
446         con->out_seq = 0;
447         if (con->out_msg) {
448                 ceph_msg_put(con->out_msg);
449                 con->out_msg = NULL;
450         }
451         con->in_seq = 0;
452         con->in_seq_acked = 0;
453 }
454
455 /*
456  * mark a peer down.  drop any open connections.
457  */
458 void ceph_con_close(struct ceph_connection *con)
459 {
460         dout("con_close %p peer %s\n", con,
461              ceph_pr_addr(&con->peer_addr.in_addr));
462         clear_bit(NEGOTIATING, &con->state);
463         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
464         set_bit(CLOSED, &con->state);
465
466         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
467         clear_bit(KEEPALIVE_PENDING, &con->flags);
468         clear_bit(WRITE_PENDING, &con->flags);
469
470         mutex_lock(&con->mutex);
471         reset_connection(con);
472         con->peer_global_seq = 0;
473         cancel_delayed_work(&con->work);
474         mutex_unlock(&con->mutex);
475         queue_con(con);
476 }
477 EXPORT_SYMBOL(ceph_con_close);
478
479 /*
480  * Reopen a closed connection, with a new peer address.
481  */
482 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
483 {
484         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
485         set_bit(OPENING, &con->state);
486         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
487
488         memcpy(&con->peer_addr, addr, sizeof(*addr));
489         con->delay = 0;      /* reset backoff memory */
490         queue_con(con);
491 }
492 EXPORT_SYMBOL(ceph_con_open);
493
494 /*
495  * return true if this connection ever successfully opened
496  */
497 bool ceph_con_opened(struct ceph_connection *con)
498 {
499         return con->connect_seq > 0;
500 }
501
502 /*
503  * generic get/put
504  */
505 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
506 {
507         int nref = __atomic_add_unless(&con->nref, 1, 0);
508
509         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
510
511         return nref ? con : NULL;
512 }
513
514 void ceph_con_put(struct ceph_connection *con)
515 {
516         int nref = atomic_dec_return(&con->nref);
517
518         BUG_ON(nref < 0);
519         if (nref == 0) {
520                 BUG_ON(con->sock);
521                 kfree(con);
522         }
523         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
524 }
525
526 /*
527  * initialize a new connection.
528  */
529 void ceph_con_init(struct ceph_connection *con, void *private,
530         const struct ceph_connection_operations *ops,
531         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
532 {
533         dout("con_init %p\n", con);
534         memset(con, 0, sizeof(*con));
535         con->private = private;
536         con->ops = ops;
537         atomic_set(&con->nref, 1);
538         con->msgr = msgr;
539
540         con_sock_state_init(con);
541
542         con->peer_name.type = (__u8) entity_type;
543         con->peer_name.num = cpu_to_le64(entity_num);
544
545         mutex_init(&con->mutex);
546         INIT_LIST_HEAD(&con->out_queue);
547         INIT_LIST_HEAD(&con->out_sent);
548         INIT_DELAYED_WORK(&con->work, con_work);
549
550         set_bit(CLOSED, &con->state);
551 }
552 EXPORT_SYMBOL(ceph_con_init);
553
554
555 /*
556  * We maintain a global counter to order connection attempts.  Get
557  * a unique seq greater than @gt.
558  */
559 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
560 {
561         u32 ret;
562
563         spin_lock(&msgr->global_seq_lock);
564         if (msgr->global_seq < gt)
565                 msgr->global_seq = gt;
566         ret = ++msgr->global_seq;
567         spin_unlock(&msgr->global_seq_lock);
568         return ret;
569 }
570
571 static void con_out_kvec_reset(struct ceph_connection *con)
572 {
573         con->out_kvec_left = 0;
574         con->out_kvec_bytes = 0;
575         con->out_kvec_cur = &con->out_kvec[0];
576 }
577
578 static void con_out_kvec_add(struct ceph_connection *con,
579                                 size_t size, void *data)
580 {
581         int index;
582
583         index = con->out_kvec_left;
584         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
585
586         con->out_kvec[index].iov_len = size;
587         con->out_kvec[index].iov_base = data;
588         con->out_kvec_left++;
589         con->out_kvec_bytes += size;
590 }
591
592 /*
593  * Prepare footer for currently outgoing message, and finish things
594  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
595  */
596 static void prepare_write_message_footer(struct ceph_connection *con)
597 {
598         struct ceph_msg *m = con->out_msg;
599         int v = con->out_kvec_left;
600
601         dout("prepare_write_message_footer %p\n", con);
602         con->out_kvec_is_msg = true;
603         con->out_kvec[v].iov_base = &m->footer;
604         con->out_kvec[v].iov_len = sizeof(m->footer);
605         con->out_kvec_bytes += sizeof(m->footer);
606         con->out_kvec_left++;
607         con->out_more = m->more_to_follow;
608         con->out_msg_done = true;
609 }
610
611 /*
612  * Prepare headers for the next outgoing message.
613  */
614 static void prepare_write_message(struct ceph_connection *con)
615 {
616         struct ceph_msg *m;
617         u32 crc;
618
619         con_out_kvec_reset(con);
620         con->out_kvec_is_msg = true;
621         con->out_msg_done = false;
622
623         /* Sneak an ack in there first?  If we can get it into the same
624          * TCP packet that's a good thing. */
625         if (con->in_seq > con->in_seq_acked) {
626                 con->in_seq_acked = con->in_seq;
627                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
628                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
629                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
630                         &con->out_temp_ack);
631         }
632
633         BUG_ON(list_empty(&con->out_queue));
634         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
635         con->out_msg = m;
636         BUG_ON(m->con != con);
637
638         /* put message on sent list */
639         ceph_msg_get(m);
640         list_move_tail(&m->list_head, &con->out_sent);
641
642         /*
643          * only assign outgoing seq # if we haven't sent this message
644          * yet.  if it is requeued, resend with it's original seq.
645          */
646         if (m->needs_out_seq) {
647                 m->hdr.seq = cpu_to_le64(++con->out_seq);
648                 m->needs_out_seq = false;
649         }
650
651         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
652              m, con->out_seq, le16_to_cpu(m->hdr.type),
653              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
654              le32_to_cpu(m->hdr.data_len),
655              m->nr_pages);
656         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
657
658         /* tag + hdr + front + middle */
659         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
660         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
661         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
662
663         if (m->middle)
664                 con_out_kvec_add(con, m->middle->vec.iov_len,
665                         m->middle->vec.iov_base);
666
667         /* fill in crc (except data pages), footer */
668         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
669         con->out_msg->hdr.crc = cpu_to_le32(crc);
670         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
671
672         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
673         con->out_msg->footer.front_crc = cpu_to_le32(crc);
674         if (m->middle) {
675                 crc = crc32c(0, m->middle->vec.iov_base,
676                                 m->middle->vec.iov_len);
677                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
678         } else
679                 con->out_msg->footer.middle_crc = 0;
680         con->out_msg->footer.data_crc = 0;
681         dout("prepare_write_message front_crc %u data_crc %u\n",
682              le32_to_cpu(con->out_msg->footer.front_crc),
683              le32_to_cpu(con->out_msg->footer.middle_crc));
684
685         /* is there a data payload? */
686         if (le32_to_cpu(m->hdr.data_len) > 0) {
687                 /* initialize page iterator */
688                 con->out_msg_pos.page = 0;
689                 if (m->pages)
690                         con->out_msg_pos.page_pos = m->page_alignment;
691                 else
692                         con->out_msg_pos.page_pos = 0;
693                 con->out_msg_pos.data_pos = 0;
694                 con->out_msg_pos.did_page_crc = false;
695                 con->out_more = 1;  /* data + footer will follow */
696         } else {
697                 /* no, queue up footer too and be done */
698                 prepare_write_message_footer(con);
699         }
700
701         set_bit(WRITE_PENDING, &con->flags);
702 }
703
704 /*
705  * Prepare an ack.
706  */
707 static void prepare_write_ack(struct ceph_connection *con)
708 {
709         dout("prepare_write_ack %p %llu -> %llu\n", con,
710              con->in_seq_acked, con->in_seq);
711         con->in_seq_acked = con->in_seq;
712
713         con_out_kvec_reset(con);
714
715         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
716
717         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
718         con_out_kvec_add(con, sizeof (con->out_temp_ack),
719                                 &con->out_temp_ack);
720
721         con->out_more = 1;  /* more will follow.. eventually.. */
722         set_bit(WRITE_PENDING, &con->flags);
723 }
724
725 /*
726  * Prepare to write keepalive byte.
727  */
728 static void prepare_write_keepalive(struct ceph_connection *con)
729 {
730         dout("prepare_write_keepalive %p\n", con);
731         con_out_kvec_reset(con);
732         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
733         set_bit(WRITE_PENDING, &con->flags);
734 }
735
736 /*
737  * Connection negotiation.
738  */
739
740 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
741                                                 int *auth_proto)
742 {
743         struct ceph_auth_handshake *auth;
744
745         if (!con->ops->get_authorizer) {
746                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
747                 con->out_connect.authorizer_len = 0;
748
749                 return NULL;
750         }
751
752         /* Can't hold the mutex while getting authorizer */
753
754         mutex_unlock(&con->mutex);
755
756         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
757
758         mutex_lock(&con->mutex);
759
760         if (IS_ERR(auth))
761                 return auth;
762         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
763                 return ERR_PTR(-EAGAIN);
764
765         con->auth_reply_buf = auth->authorizer_reply_buf;
766         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
767
768
769         return auth;
770 }
771
772 /*
773  * We connected to a peer and are saying hello.
774  */
775 static void prepare_write_banner(struct ceph_connection *con)
776 {
777         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
778         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
779                                         &con->msgr->my_enc_addr);
780
781         con->out_more = 0;
782         set_bit(WRITE_PENDING, &con->flags);
783 }
784
785 static int prepare_write_connect(struct ceph_connection *con)
786 {
787         unsigned global_seq = get_global_seq(con->msgr, 0);
788         int proto;
789         int auth_proto;
790         struct ceph_auth_handshake *auth;
791
792         switch (con->peer_name.type) {
793         case CEPH_ENTITY_TYPE_MON:
794                 proto = CEPH_MONC_PROTOCOL;
795                 break;
796         case CEPH_ENTITY_TYPE_OSD:
797                 proto = CEPH_OSDC_PROTOCOL;
798                 break;
799         case CEPH_ENTITY_TYPE_MDS:
800                 proto = CEPH_MDSC_PROTOCOL;
801                 break;
802         default:
803                 BUG();
804         }
805
806         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
807              con->connect_seq, global_seq, proto);
808
809         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
810         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
811         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
812         con->out_connect.global_seq = cpu_to_le32(global_seq);
813         con->out_connect.protocol_version = cpu_to_le32(proto);
814         con->out_connect.flags = 0;
815
816         auth_proto = CEPH_AUTH_UNKNOWN;
817         auth = get_connect_authorizer(con, &auth_proto);
818         if (IS_ERR(auth))
819                 return PTR_ERR(auth);
820
821         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
822         con->out_connect.authorizer_len = auth ?
823                 cpu_to_le32(auth->authorizer_buf_len) : 0;
824
825         con_out_kvec_add(con, sizeof (con->out_connect),
826                                         &con->out_connect);
827         if (auth && auth->authorizer_buf_len)
828                 con_out_kvec_add(con, auth->authorizer_buf_len,
829                                         auth->authorizer_buf);
830
831         con->out_more = 0;
832         set_bit(WRITE_PENDING, &con->flags);
833
834         return 0;
835 }
836
837 /*
838  * write as much of pending kvecs to the socket as we can.
839  *  1 -> done
840  *  0 -> socket full, but more to do
841  * <0 -> error
842  */
843 static int write_partial_kvec(struct ceph_connection *con)
844 {
845         int ret;
846
847         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
848         while (con->out_kvec_bytes > 0) {
849                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
850                                        con->out_kvec_left, con->out_kvec_bytes,
851                                        con->out_more);
852                 if (ret <= 0)
853                         goto out;
854                 con->out_kvec_bytes -= ret;
855                 if (con->out_kvec_bytes == 0)
856                         break;            /* done */
857
858                 /* account for full iov entries consumed */
859                 while (ret >= con->out_kvec_cur->iov_len) {
860                         BUG_ON(!con->out_kvec_left);
861                         ret -= con->out_kvec_cur->iov_len;
862                         con->out_kvec_cur++;
863                         con->out_kvec_left--;
864                 }
865                 /* and for a partially-consumed entry */
866                 if (ret) {
867                         con->out_kvec_cur->iov_len -= ret;
868                         con->out_kvec_cur->iov_base += ret;
869                 }
870         }
871         con->out_kvec_left = 0;
872         con->out_kvec_is_msg = false;
873         ret = 1;
874 out:
875         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
876              con->out_kvec_bytes, con->out_kvec_left, ret);
877         return ret;  /* done! */
878 }
879
880 #ifdef CONFIG_BLOCK
881 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
882 {
883         if (!bio) {
884                 *iter = NULL;
885                 *seg = 0;
886                 return;
887         }
888         *iter = bio;
889         *seg = bio->bi_idx;
890 }
891
892 static void iter_bio_next(struct bio **bio_iter, int *seg)
893 {
894         if (*bio_iter == NULL)
895                 return;
896
897         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
898
899         (*seg)++;
900         if (*seg == (*bio_iter)->bi_vcnt)
901                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
902 }
903 #endif
904
905 /*
906  * Write as much message data payload as we can.  If we finish, queue
907  * up the footer.
908  *  1 -> done, footer is now queued in out_kvec[].
909  *  0 -> socket full, but more to do
910  * <0 -> error
911  */
912 static int write_partial_msg_pages(struct ceph_connection *con)
913 {
914         struct ceph_msg *msg = con->out_msg;
915         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
916         size_t len;
917         bool do_datacrc = !con->msgr->nocrc;
918         int ret;
919         int total_max_write;
920         int in_trail = 0;
921         size_t trail_len = (msg->trail ? msg->trail->length : 0);
922
923         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
924              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
925              con->out_msg_pos.page_pos);
926
927 #ifdef CONFIG_BLOCK
928         if (msg->bio && !msg->bio_iter)
929                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
930 #endif
931
932         while (data_len > con->out_msg_pos.data_pos) {
933                 struct page *page = NULL;
934                 int max_write = PAGE_SIZE;
935                 int bio_offset = 0;
936
937                 total_max_write = data_len - trail_len -
938                         con->out_msg_pos.data_pos;
939
940                 /*
941                  * if we are calculating the data crc (the default), we need
942                  * to map the page.  if our pages[] has been revoked, use the
943                  * zero page.
944                  */
945
946                 /* have we reached the trail part of the data? */
947                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
948                         in_trail = 1;
949
950                         total_max_write = data_len - con->out_msg_pos.data_pos;
951
952                         page = list_first_entry(&msg->trail->head,
953                                                 struct page, lru);
954                         max_write = PAGE_SIZE;
955                 } else if (msg->pages) {
956                         page = msg->pages[con->out_msg_pos.page];
957                 } else if (msg->pagelist) {
958                         page = list_first_entry(&msg->pagelist->head,
959                                                 struct page, lru);
960 #ifdef CONFIG_BLOCK
961                 } else if (msg->bio) {
962                         struct bio_vec *bv;
963
964                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
965                         page = bv->bv_page;
966                         bio_offset = bv->bv_offset;
967                         max_write = bv->bv_len;
968 #endif
969                 } else {
970                         page = zero_page;
971                 }
972                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
973                             total_max_write);
974
975                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
976                         void *base;
977                         u32 crc;
978                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
979                         char *kaddr;
980
981                         kaddr = kmap(page);
982                         BUG_ON(kaddr == NULL);
983                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
984                         crc = crc32c(tmpcrc, base, len);
985                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
986                         con->out_msg_pos.did_page_crc = true;
987                 }
988                 ret = ceph_tcp_sendpage(con->sock, page,
989                                       con->out_msg_pos.page_pos + bio_offset,
990                                       len, 1);
991
992                 if (do_datacrc)
993                         kunmap(page);
994
995                 if (ret <= 0)
996                         goto out;
997
998                 con->out_msg_pos.data_pos += ret;
999                 con->out_msg_pos.page_pos += ret;
1000                 if (ret == len) {
1001                         con->out_msg_pos.page_pos = 0;
1002                         con->out_msg_pos.page++;
1003                         con->out_msg_pos.did_page_crc = false;
1004                         if (in_trail)
1005                                 list_move_tail(&page->lru,
1006                                                &msg->trail->head);
1007                         else if (msg->pagelist)
1008                                 list_move_tail(&page->lru,
1009                                                &msg->pagelist->head);
1010 #ifdef CONFIG_BLOCK
1011                         else if (msg->bio)
1012                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1013 #endif
1014                 }
1015         }
1016
1017         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1018
1019         /* prepare and queue up footer, too */
1020         if (!do_datacrc)
1021                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1022         con_out_kvec_reset(con);
1023         prepare_write_message_footer(con);
1024         ret = 1;
1025 out:
1026         return ret;
1027 }
1028
1029 /*
1030  * write some zeros
1031  */
1032 static int write_partial_skip(struct ceph_connection *con)
1033 {
1034         int ret;
1035
1036         while (con->out_skip > 0) {
1037                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1038
1039                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1040                 if (ret <= 0)
1041                         goto out;
1042                 con->out_skip -= ret;
1043         }
1044         ret = 1;
1045 out:
1046         return ret;
1047 }
1048
1049 /*
1050  * Prepare to read connection handshake, or an ack.
1051  */
1052 static void prepare_read_banner(struct ceph_connection *con)
1053 {
1054         dout("prepare_read_banner %p\n", con);
1055         con->in_base_pos = 0;
1056 }
1057
1058 static void prepare_read_connect(struct ceph_connection *con)
1059 {
1060         dout("prepare_read_connect %p\n", con);
1061         con->in_base_pos = 0;
1062 }
1063
1064 static void prepare_read_ack(struct ceph_connection *con)
1065 {
1066         dout("prepare_read_ack %p\n", con);
1067         con->in_base_pos = 0;
1068 }
1069
1070 static void prepare_read_tag(struct ceph_connection *con)
1071 {
1072         dout("prepare_read_tag %p\n", con);
1073         con->in_base_pos = 0;
1074         con->in_tag = CEPH_MSGR_TAG_READY;
1075 }
1076
1077 /*
1078  * Prepare to read a message.
1079  */
1080 static int prepare_read_message(struct ceph_connection *con)
1081 {
1082         dout("prepare_read_message %p\n", con);
1083         BUG_ON(con->in_msg != NULL);
1084         con->in_base_pos = 0;
1085         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1086         return 0;
1087 }
1088
1089
1090 static int read_partial(struct ceph_connection *con,
1091                         int end, int size, void *object)
1092 {
1093         while (con->in_base_pos < end) {
1094                 int left = end - con->in_base_pos;
1095                 int have = size - left;
1096                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1097                 if (ret <= 0)
1098                         return ret;
1099                 con->in_base_pos += ret;
1100         }
1101         return 1;
1102 }
1103
1104
1105 /*
1106  * Read all or part of the connect-side handshake on a new connection
1107  */
1108 static int read_partial_banner(struct ceph_connection *con)
1109 {
1110         int size;
1111         int end;
1112         int ret;
1113
1114         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1115
1116         /* peer's banner */
1117         size = strlen(CEPH_BANNER);
1118         end = size;
1119         ret = read_partial(con, end, size, con->in_banner);
1120         if (ret <= 0)
1121                 goto out;
1122
1123         size = sizeof (con->actual_peer_addr);
1124         end += size;
1125         ret = read_partial(con, end, size, &con->actual_peer_addr);
1126         if (ret <= 0)
1127                 goto out;
1128
1129         size = sizeof (con->peer_addr_for_me);
1130         end += size;
1131         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1132         if (ret <= 0)
1133                 goto out;
1134
1135 out:
1136         return ret;
1137 }
1138
1139 static int read_partial_connect(struct ceph_connection *con)
1140 {
1141         int size;
1142         int end;
1143         int ret;
1144
1145         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1146
1147         size = sizeof (con->in_reply);
1148         end = size;
1149         ret = read_partial(con, end, size, &con->in_reply);
1150         if (ret <= 0)
1151                 goto out;
1152
1153         size = le32_to_cpu(con->in_reply.authorizer_len);
1154         end += size;
1155         ret = read_partial(con, end, size, con->auth_reply_buf);
1156         if (ret <= 0)
1157                 goto out;
1158
1159         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1160              con, (int)con->in_reply.tag,
1161              le32_to_cpu(con->in_reply.connect_seq),
1162              le32_to_cpu(con->in_reply.global_seq));
1163 out:
1164         return ret;
1165
1166 }
1167
1168 /*
1169  * Verify the hello banner looks okay.
1170  */
1171 static int verify_hello(struct ceph_connection *con)
1172 {
1173         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1174                 pr_err("connect to %s got bad banner\n",
1175                        ceph_pr_addr(&con->peer_addr.in_addr));
1176                 con->error_msg = "protocol error, bad banner";
1177                 return -1;
1178         }
1179         return 0;
1180 }
1181
1182 static bool addr_is_blank(struct sockaddr_storage *ss)
1183 {
1184         switch (ss->ss_family) {
1185         case AF_INET:
1186                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1187         case AF_INET6:
1188                 return
1189                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1190                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1191                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1192                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1193         }
1194         return false;
1195 }
1196
1197 static int addr_port(struct sockaddr_storage *ss)
1198 {
1199         switch (ss->ss_family) {
1200         case AF_INET:
1201                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1202         case AF_INET6:
1203                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1204         }
1205         return 0;
1206 }
1207
1208 static void addr_set_port(struct sockaddr_storage *ss, int p)
1209 {
1210         switch (ss->ss_family) {
1211         case AF_INET:
1212                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1213                 break;
1214         case AF_INET6:
1215                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1216                 break;
1217         }
1218 }
1219
1220 /*
1221  * Unlike other *_pton function semantics, zero indicates success.
1222  */
1223 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1224                 char delim, const char **ipend)
1225 {
1226         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1227         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1228
1229         memset(ss, 0, sizeof(*ss));
1230
1231         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1232                 ss->ss_family = AF_INET;
1233                 return 0;
1234         }
1235
1236         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1237                 ss->ss_family = AF_INET6;
1238                 return 0;
1239         }
1240
1241         return -EINVAL;
1242 }
1243
1244 /*
1245  * Extract hostname string and resolve using kernel DNS facility.
1246  */
1247 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1248 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1249                 struct sockaddr_storage *ss, char delim, const char **ipend)
1250 {
1251         const char *end, *delim_p;
1252         char *colon_p, *ip_addr = NULL;
1253         int ip_len, ret;
1254
1255         /*
1256          * The end of the hostname occurs immediately preceding the delimiter or
1257          * the port marker (':') where the delimiter takes precedence.
1258          */
1259         delim_p = memchr(name, delim, namelen);
1260         colon_p = memchr(name, ':', namelen);
1261
1262         if (delim_p && colon_p)
1263                 end = delim_p < colon_p ? delim_p : colon_p;
1264         else if (!delim_p && colon_p)
1265                 end = colon_p;
1266         else {
1267                 end = delim_p;
1268                 if (!end) /* case: hostname:/ */
1269                         end = name + namelen;
1270         }
1271
1272         if (end <= name)
1273                 return -EINVAL;
1274
1275         /* do dns_resolve upcall */
1276         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1277         if (ip_len > 0)
1278                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1279         else
1280                 ret = -ESRCH;
1281
1282         kfree(ip_addr);
1283
1284         *ipend = end;
1285
1286         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1287                         ret, ret ? "failed" : ceph_pr_addr(ss));
1288
1289         return ret;
1290 }
1291 #else
1292 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1293                 struct sockaddr_storage *ss, char delim, const char **ipend)
1294 {
1295         return -EINVAL;
1296 }
1297 #endif
1298
1299 /*
1300  * Parse a server name (IP or hostname). If a valid IP address is not found
1301  * then try to extract a hostname to resolve using userspace DNS upcall.
1302  */
1303 static int ceph_parse_server_name(const char *name, size_t namelen,
1304                         struct sockaddr_storage *ss, char delim, const char **ipend)
1305 {
1306         int ret;
1307
1308         ret = ceph_pton(name, namelen, ss, delim, ipend);
1309         if (ret)
1310                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1311
1312         return ret;
1313 }
1314
1315 /*
1316  * Parse an ip[:port] list into an addr array.  Use the default
1317  * monitor port if a port isn't specified.
1318  */
1319 int ceph_parse_ips(const char *c, const char *end,
1320                    struct ceph_entity_addr *addr,
1321                    int max_count, int *count)
1322 {
1323         int i, ret = -EINVAL;
1324         const char *p = c;
1325
1326         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1327         for (i = 0; i < max_count; i++) {
1328                 const char *ipend;
1329                 struct sockaddr_storage *ss = &addr[i].in_addr;
1330                 int port;
1331                 char delim = ',';
1332
1333                 if (*p == '[') {
1334                         delim = ']';
1335                         p++;
1336                 }
1337
1338                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1339                 if (ret)
1340                         goto bad;
1341                 ret = -EINVAL;
1342
1343                 p = ipend;
1344
1345                 if (delim == ']') {
1346                         if (*p != ']') {
1347                                 dout("missing matching ']'\n");
1348                                 goto bad;
1349                         }
1350                         p++;
1351                 }
1352
1353                 /* port? */
1354                 if (p < end && *p == ':') {
1355                         port = 0;
1356                         p++;
1357                         while (p < end && *p >= '0' && *p <= '9') {
1358                                 port = (port * 10) + (*p - '0');
1359                                 p++;
1360                         }
1361                         if (port > 65535 || port == 0)
1362                                 goto bad;
1363                 } else {
1364                         port = CEPH_MON_PORT;
1365                 }
1366
1367                 addr_set_port(ss, port);
1368
1369                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1370
1371                 if (p == end)
1372                         break;
1373                 if (*p != ',')
1374                         goto bad;
1375                 p++;
1376         }
1377
1378         if (p != end)
1379                 goto bad;
1380
1381         if (count)
1382                 *count = i + 1;
1383         return 0;
1384
1385 bad:
1386         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1387         return ret;
1388 }
1389 EXPORT_SYMBOL(ceph_parse_ips);
1390
1391 static int process_banner(struct ceph_connection *con)
1392 {
1393         dout("process_banner on %p\n", con);
1394
1395         if (verify_hello(con) < 0)
1396                 return -1;
1397
1398         ceph_decode_addr(&con->actual_peer_addr);
1399         ceph_decode_addr(&con->peer_addr_for_me);
1400
1401         /*
1402          * Make sure the other end is who we wanted.  note that the other
1403          * end may not yet know their ip address, so if it's 0.0.0.0, give
1404          * them the benefit of the doubt.
1405          */
1406         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1407                    sizeof(con->peer_addr)) != 0 &&
1408             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1409               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1410                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1411                            ceph_pr_addr(&con->peer_addr.in_addr),
1412                            (int)le32_to_cpu(con->peer_addr.nonce),
1413                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1414                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1415                 con->error_msg = "wrong peer at address";
1416                 return -1;
1417         }
1418
1419         /*
1420          * did we learn our address?
1421          */
1422         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1423                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1424
1425                 memcpy(&con->msgr->inst.addr.in_addr,
1426                        &con->peer_addr_for_me.in_addr,
1427                        sizeof(con->peer_addr_for_me.in_addr));
1428                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1429                 encode_my_addr(con->msgr);
1430                 dout("process_banner learned my addr is %s\n",
1431                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1432         }
1433
1434         set_bit(NEGOTIATING, &con->state);
1435         prepare_read_connect(con);
1436         return 0;
1437 }
1438
1439 static void fail_protocol(struct ceph_connection *con)
1440 {
1441         reset_connection(con);
1442         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1443 }
1444
1445 static int process_connect(struct ceph_connection *con)
1446 {
1447         u64 sup_feat = con->msgr->supported_features;
1448         u64 req_feat = con->msgr->required_features;
1449         u64 server_feat = le64_to_cpu(con->in_reply.features);
1450         int ret;
1451
1452         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1453
1454         switch (con->in_reply.tag) {
1455         case CEPH_MSGR_TAG_FEATURES:
1456                 pr_err("%s%lld %s feature set mismatch,"
1457                        " my %llx < server's %llx, missing %llx\n",
1458                        ENTITY_NAME(con->peer_name),
1459                        ceph_pr_addr(&con->peer_addr.in_addr),
1460                        sup_feat, server_feat, server_feat & ~sup_feat);
1461                 con->error_msg = "missing required protocol features";
1462                 fail_protocol(con);
1463                 return -1;
1464
1465         case CEPH_MSGR_TAG_BADPROTOVER:
1466                 pr_err("%s%lld %s protocol version mismatch,"
1467                        " my %d != server's %d\n",
1468                        ENTITY_NAME(con->peer_name),
1469                        ceph_pr_addr(&con->peer_addr.in_addr),
1470                        le32_to_cpu(con->out_connect.protocol_version),
1471                        le32_to_cpu(con->in_reply.protocol_version));
1472                 con->error_msg = "protocol version mismatch";
1473                 fail_protocol(con);
1474                 return -1;
1475
1476         case CEPH_MSGR_TAG_BADAUTHORIZER:
1477                 con->auth_retry++;
1478                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1479                      con->auth_retry);
1480                 if (con->auth_retry == 2) {
1481                         con->error_msg = "connect authorization failure";
1482                         return -1;
1483                 }
1484                 con->auth_retry = 1;
1485                 con_out_kvec_reset(con);
1486                 ret = prepare_write_connect(con);
1487                 if (ret < 0)
1488                         return ret;
1489                 prepare_read_connect(con);
1490                 break;
1491
1492         case CEPH_MSGR_TAG_RESETSESSION:
1493                 /*
1494                  * If we connected with a large connect_seq but the peer
1495                  * has no record of a session with us (no connection, or
1496                  * connect_seq == 0), they will send RESETSESION to indicate
1497                  * that they must have reset their session, and may have
1498                  * dropped messages.
1499                  */
1500                 dout("process_connect got RESET peer seq %u\n",
1501                      le32_to_cpu(con->in_connect.connect_seq));
1502                 pr_err("%s%lld %s connection reset\n",
1503                        ENTITY_NAME(con->peer_name),
1504                        ceph_pr_addr(&con->peer_addr.in_addr));
1505                 reset_connection(con);
1506                 con_out_kvec_reset(con);
1507                 ret = prepare_write_connect(con);
1508                 if (ret < 0)
1509                         return ret;
1510                 prepare_read_connect(con);
1511
1512                 /* Tell ceph about it. */
1513                 mutex_unlock(&con->mutex);
1514                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1515                 if (con->ops->peer_reset)
1516                         con->ops->peer_reset(con);
1517                 mutex_lock(&con->mutex);
1518                 if (test_bit(CLOSED, &con->state) ||
1519                     test_bit(OPENING, &con->state))
1520                         return -EAGAIN;
1521                 break;
1522
1523         case CEPH_MSGR_TAG_RETRY_SESSION:
1524                 /*
1525                  * If we sent a smaller connect_seq than the peer has, try
1526                  * again with a larger value.
1527                  */
1528                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1529                      le32_to_cpu(con->out_connect.connect_seq),
1530                      le32_to_cpu(con->in_connect.connect_seq));
1531                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1532                 con_out_kvec_reset(con);
1533                 ret = prepare_write_connect(con);
1534                 if (ret < 0)
1535                         return ret;
1536                 prepare_read_connect(con);
1537                 break;
1538
1539         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1540                 /*
1541                  * If we sent a smaller global_seq than the peer has, try
1542                  * again with a larger value.
1543                  */
1544                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1545                      con->peer_global_seq,
1546                      le32_to_cpu(con->in_connect.global_seq));
1547                 get_global_seq(con->msgr,
1548                                le32_to_cpu(con->in_connect.global_seq));
1549                 con_out_kvec_reset(con);
1550                 ret = prepare_write_connect(con);
1551                 if (ret < 0)
1552                         return ret;
1553                 prepare_read_connect(con);
1554                 break;
1555
1556         case CEPH_MSGR_TAG_READY:
1557                 if (req_feat & ~server_feat) {
1558                         pr_err("%s%lld %s protocol feature mismatch,"
1559                                " my required %llx > server's %llx, need %llx\n",
1560                                ENTITY_NAME(con->peer_name),
1561                                ceph_pr_addr(&con->peer_addr.in_addr),
1562                                req_feat, server_feat, req_feat & ~server_feat);
1563                         con->error_msg = "missing required protocol features";
1564                         fail_protocol(con);
1565                         return -1;
1566                 }
1567                 clear_bit(CONNECTING, &con->state);
1568                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1569                 con->connect_seq++;
1570                 con->peer_features = server_feat;
1571                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1572                      con->peer_global_seq,
1573                      le32_to_cpu(con->in_reply.connect_seq),
1574                      con->connect_seq);
1575                 WARN_ON(con->connect_seq !=
1576                         le32_to_cpu(con->in_reply.connect_seq));
1577
1578                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1579                         set_bit(LOSSYTX, &con->flags);
1580
1581                 prepare_read_tag(con);
1582                 break;
1583
1584         case CEPH_MSGR_TAG_WAIT:
1585                 /*
1586                  * If there is a connection race (we are opening
1587                  * connections to each other), one of us may just have
1588                  * to WAIT.  This shouldn't happen if we are the
1589                  * client.
1590                  */
1591                 pr_err("process_connect got WAIT as client\n");
1592                 con->error_msg = "protocol error, got WAIT as client";
1593                 return -1;
1594
1595         default:
1596                 pr_err("connect protocol error, will retry\n");
1597                 con->error_msg = "protocol error, garbage tag during connect";
1598                 return -1;
1599         }
1600         return 0;
1601 }
1602
1603
1604 /*
1605  * read (part of) an ack
1606  */
1607 static int read_partial_ack(struct ceph_connection *con)
1608 {
1609         int size = sizeof (con->in_temp_ack);
1610         int end = size;
1611
1612         return read_partial(con, end, size, &con->in_temp_ack);
1613 }
1614
1615
1616 /*
1617  * We can finally discard anything that's been acked.
1618  */
1619 static void process_ack(struct ceph_connection *con)
1620 {
1621         struct ceph_msg *m;
1622         u64 ack = le64_to_cpu(con->in_temp_ack);
1623         u64 seq;
1624
1625         while (!list_empty(&con->out_sent)) {
1626                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1627                                      list_head);
1628                 seq = le64_to_cpu(m->hdr.seq);
1629                 if (seq > ack)
1630                         break;
1631                 dout("got ack for seq %llu type %d at %p\n", seq,
1632                      le16_to_cpu(m->hdr.type), m);
1633                 m->ack_stamp = jiffies;
1634                 ceph_msg_remove(m);
1635         }
1636         prepare_read_tag(con);
1637 }
1638
1639
1640
1641
1642 static int read_partial_message_section(struct ceph_connection *con,
1643                                         struct kvec *section,
1644                                         unsigned int sec_len, u32 *crc)
1645 {
1646         int ret, left;
1647
1648         BUG_ON(!section);
1649
1650         while (section->iov_len < sec_len) {
1651                 BUG_ON(section->iov_base == NULL);
1652                 left = sec_len - section->iov_len;
1653                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1654                                        section->iov_len, left);
1655                 if (ret <= 0)
1656                         return ret;
1657                 section->iov_len += ret;
1658         }
1659         if (section->iov_len == sec_len)
1660                 *crc = crc32c(0, section->iov_base, section->iov_len);
1661
1662         return 1;
1663 }
1664
1665 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1666                                 struct ceph_msg_header *hdr);
1667
1668
1669 static int read_partial_message_pages(struct ceph_connection *con,
1670                                       struct page **pages,
1671                                       unsigned data_len, bool do_datacrc)
1672 {
1673         void *p;
1674         int ret;
1675         int left;
1676
1677         left = min((int)(data_len - con->in_msg_pos.data_pos),
1678                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1679         /* (page) data */
1680         BUG_ON(pages == NULL);
1681         p = kmap(pages[con->in_msg_pos.page]);
1682         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1683                                left);
1684         if (ret > 0 && do_datacrc)
1685                 con->in_data_crc =
1686                         crc32c(con->in_data_crc,
1687                                   p + con->in_msg_pos.page_pos, ret);
1688         kunmap(pages[con->in_msg_pos.page]);
1689         if (ret <= 0)
1690                 return ret;
1691         con->in_msg_pos.data_pos += ret;
1692         con->in_msg_pos.page_pos += ret;
1693         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1694                 con->in_msg_pos.page_pos = 0;
1695                 con->in_msg_pos.page++;
1696         }
1697
1698         return ret;
1699 }
1700
1701 #ifdef CONFIG_BLOCK
1702 static int read_partial_message_bio(struct ceph_connection *con,
1703                                     struct bio **bio_iter, int *bio_seg,
1704                                     unsigned data_len, bool do_datacrc)
1705 {
1706         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1707         void *p;
1708         int ret, left;
1709
1710         if (IS_ERR(bv))
1711                 return PTR_ERR(bv);
1712
1713         left = min((int)(data_len - con->in_msg_pos.data_pos),
1714                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1715
1716         p = kmap(bv->bv_page) + bv->bv_offset;
1717
1718         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1719                                left);
1720         if (ret > 0 && do_datacrc)
1721                 con->in_data_crc =
1722                         crc32c(con->in_data_crc,
1723                                   p + con->in_msg_pos.page_pos, ret);
1724         kunmap(bv->bv_page);
1725         if (ret <= 0)
1726                 return ret;
1727         con->in_msg_pos.data_pos += ret;
1728         con->in_msg_pos.page_pos += ret;
1729         if (con->in_msg_pos.page_pos == bv->bv_len) {
1730                 con->in_msg_pos.page_pos = 0;
1731                 iter_bio_next(bio_iter, bio_seg);
1732         }
1733
1734         return ret;
1735 }
1736 #endif
1737
1738 /*
1739  * read (part of) a message.
1740  */
1741 static int read_partial_message(struct ceph_connection *con)
1742 {
1743         struct ceph_msg *m = con->in_msg;
1744         int size;
1745         int end;
1746         int ret;
1747         unsigned front_len, middle_len, data_len;
1748         bool do_datacrc = !con->msgr->nocrc;
1749         u64 seq;
1750         u32 crc;
1751
1752         dout("read_partial_message con %p msg %p\n", con, m);
1753
1754         /* header */
1755         size = sizeof (con->in_hdr);
1756         end = size;
1757         ret = read_partial(con, end, size, &con->in_hdr);
1758         if (ret <= 0)
1759                 return ret;
1760
1761         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1762         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1763                 pr_err("read_partial_message bad hdr "
1764                        " crc %u != expected %u\n",
1765                        crc, con->in_hdr.crc);
1766                 return -EBADMSG;
1767         }
1768
1769         front_len = le32_to_cpu(con->in_hdr.front_len);
1770         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1771                 return -EIO;
1772         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1773         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1774                 return -EIO;
1775         data_len = le32_to_cpu(con->in_hdr.data_len);
1776         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1777                 return -EIO;
1778
1779         /* verify seq# */
1780         seq = le64_to_cpu(con->in_hdr.seq);
1781         if ((s64)seq - (s64)con->in_seq < 1) {
1782                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1783                         ENTITY_NAME(con->peer_name),
1784                         ceph_pr_addr(&con->peer_addr.in_addr),
1785                         seq, con->in_seq + 1);
1786                 con->in_base_pos = -front_len - middle_len - data_len -
1787                         sizeof(m->footer);
1788                 con->in_tag = CEPH_MSGR_TAG_READY;
1789                 return 0;
1790         } else if ((s64)seq - (s64)con->in_seq > 1) {
1791                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1792                        seq, con->in_seq + 1);
1793                 con->error_msg = "bad message sequence # for incoming message";
1794                 return -EBADMSG;
1795         }
1796
1797         /* allocate message? */
1798         if (!con->in_msg) {
1799                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1800                      con->in_hdr.front_len, con->in_hdr.data_len);
1801                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1802                         /* skip this message */
1803                         dout("alloc_msg said skip message\n");
1804                         BUG_ON(con->in_msg);
1805                         con->in_base_pos = -front_len - middle_len - data_len -
1806                                 sizeof(m->footer);
1807                         con->in_tag = CEPH_MSGR_TAG_READY;
1808                         con->in_seq++;
1809                         return 0;
1810                 }
1811                 if (!con->in_msg) {
1812                         con->error_msg =
1813                                 "error allocating memory for incoming message";
1814                         return -ENOMEM;
1815                 }
1816
1817                 BUG_ON(con->in_msg->con != con);
1818                 m = con->in_msg;
1819                 m->front.iov_len = 0;    /* haven't read it yet */
1820                 if (m->middle)
1821                         m->middle->vec.iov_len = 0;
1822
1823                 con->in_msg_pos.page = 0;
1824                 if (m->pages)
1825                         con->in_msg_pos.page_pos = m->page_alignment;
1826                 else
1827                         con->in_msg_pos.page_pos = 0;
1828                 con->in_msg_pos.data_pos = 0;
1829         }
1830
1831         /* front */
1832         ret = read_partial_message_section(con, &m->front, front_len,
1833                                            &con->in_front_crc);
1834         if (ret <= 0)
1835                 return ret;
1836
1837         /* middle */
1838         if (m->middle) {
1839                 ret = read_partial_message_section(con, &m->middle->vec,
1840                                                    middle_len,
1841                                                    &con->in_middle_crc);
1842                 if (ret <= 0)
1843                         return ret;
1844         }
1845 #ifdef CONFIG_BLOCK
1846         if (m->bio && !m->bio_iter)
1847                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1848 #endif
1849
1850         /* (page) data */
1851         while (con->in_msg_pos.data_pos < data_len) {
1852                 if (m->pages) {
1853                         ret = read_partial_message_pages(con, m->pages,
1854                                                  data_len, do_datacrc);
1855                         if (ret <= 0)
1856                                 return ret;
1857 #ifdef CONFIG_BLOCK
1858                 } else if (m->bio) {
1859
1860                         ret = read_partial_message_bio(con,
1861                                                  &m->bio_iter, &m->bio_seg,
1862                                                  data_len, do_datacrc);
1863                         if (ret <= 0)
1864                                 return ret;
1865 #endif
1866                 } else {
1867                         BUG_ON(1);
1868                 }
1869         }
1870
1871         /* footer */
1872         size = sizeof (m->footer);
1873         end += size;
1874         ret = read_partial(con, end, size, &m->footer);
1875         if (ret <= 0)
1876                 return ret;
1877
1878         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1879              m, front_len, m->footer.front_crc, middle_len,
1880              m->footer.middle_crc, data_len, m->footer.data_crc);
1881
1882         /* crc ok? */
1883         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1884                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1885                        m, con->in_front_crc, m->footer.front_crc);
1886                 return -EBADMSG;
1887         }
1888         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1889                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1890                        m, con->in_middle_crc, m->footer.middle_crc);
1891                 return -EBADMSG;
1892         }
1893         if (do_datacrc &&
1894             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1895             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1896                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1897                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1898                 return -EBADMSG;
1899         }
1900
1901         return 1; /* done! */
1902 }
1903
1904 /*
1905  * Process message.  This happens in the worker thread.  The callback should
1906  * be careful not to do anything that waits on other incoming messages or it
1907  * may deadlock.
1908  */
1909 static void process_message(struct ceph_connection *con)
1910 {
1911         struct ceph_msg *msg;
1912
1913         BUG_ON(con->in_msg->con != con);
1914         con->in_msg->con = NULL;
1915         msg = con->in_msg;
1916         con->in_msg = NULL;
1917
1918         /* if first message, set peer_name */
1919         if (con->peer_name.type == 0)
1920                 con->peer_name = msg->hdr.src;
1921
1922         con->in_seq++;
1923         mutex_unlock(&con->mutex);
1924
1925         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1926              msg, le64_to_cpu(msg->hdr.seq),
1927              ENTITY_NAME(msg->hdr.src),
1928              le16_to_cpu(msg->hdr.type),
1929              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1930              le32_to_cpu(msg->hdr.front_len),
1931              le32_to_cpu(msg->hdr.data_len),
1932              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1933         con->ops->dispatch(con, msg);
1934
1935         mutex_lock(&con->mutex);
1936         prepare_read_tag(con);
1937 }
1938
1939
1940 /*
1941  * Write something to the socket.  Called in a worker thread when the
1942  * socket appears to be writeable and we have something ready to send.
1943  */
1944 static int try_write(struct ceph_connection *con)
1945 {
1946         int ret = 1;
1947
1948         dout("try_write start %p state %lu nref %d\n", con, con->state,
1949              atomic_read(&con->nref));
1950
1951 more:
1952         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1953
1954         /* open the socket first? */
1955         if (con->sock == NULL) {
1956                 clear_bit(NEGOTIATING, &con->state);
1957                 set_bit(CONNECTING, &con->state);
1958
1959                 con_out_kvec_reset(con);
1960                 prepare_write_banner(con);
1961                 ret = prepare_write_connect(con);
1962                 if (ret < 0)
1963                         goto out;
1964                 prepare_read_banner(con);
1965
1966                 BUG_ON(con->in_msg);
1967                 con->in_tag = CEPH_MSGR_TAG_READY;
1968                 dout("try_write initiating connect on %p new state %lu\n",
1969                      con, con->state);
1970                 ret = ceph_tcp_connect(con);
1971                 if (ret < 0) {
1972                         con->error_msg = "connect error";
1973                         goto out;
1974                 }
1975         }
1976
1977 more_kvec:
1978         /* kvec data queued? */
1979         if (con->out_skip) {
1980                 ret = write_partial_skip(con);
1981                 if (ret <= 0)
1982                         goto out;
1983         }
1984         if (con->out_kvec_left) {
1985                 ret = write_partial_kvec(con);
1986                 if (ret <= 0)
1987                         goto out;
1988         }
1989
1990         /* msg pages? */
1991         if (con->out_msg) {
1992                 if (con->out_msg_done) {
1993                         ceph_msg_put(con->out_msg);
1994                         con->out_msg = NULL;   /* we're done with this one */
1995                         goto do_next;
1996                 }
1997
1998                 ret = write_partial_msg_pages(con);
1999                 if (ret == 1)
2000                         goto more_kvec;  /* we need to send the footer, too! */
2001                 if (ret == 0)
2002                         goto out;
2003                 if (ret < 0) {
2004                         dout("try_write write_partial_msg_pages err %d\n",
2005                              ret);
2006                         goto out;
2007                 }
2008         }
2009
2010 do_next:
2011         if (!test_bit(CONNECTING, &con->state)) {
2012                 /* is anything else pending? */
2013                 if (!list_empty(&con->out_queue)) {
2014                         prepare_write_message(con);
2015                         goto more;
2016                 }
2017                 if (con->in_seq > con->in_seq_acked) {
2018                         prepare_write_ack(con);
2019                         goto more;
2020                 }
2021                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2022                         prepare_write_keepalive(con);
2023                         goto more;
2024                 }
2025         }
2026
2027         /* Nothing to do! */
2028         clear_bit(WRITE_PENDING, &con->flags);
2029         dout("try_write nothing else to write.\n");
2030         ret = 0;
2031 out:
2032         dout("try_write done on %p ret %d\n", con, ret);
2033         return ret;
2034 }
2035
2036
2037
2038 /*
2039  * Read what we can from the socket.
2040  */
2041 static int try_read(struct ceph_connection *con)
2042 {
2043         int ret = -1;
2044
2045         if (!con->sock)
2046                 return 0;
2047
2048         if (test_bit(STANDBY, &con->state))
2049                 return 0;
2050
2051         dout("try_read start on %p\n", con);
2052
2053 more:
2054         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2055              con->in_base_pos);
2056
2057         /*
2058          * process_connect and process_message drop and re-take
2059          * con->mutex.  make sure we handle a racing close or reopen.
2060          */
2061         if (test_bit(CLOSED, &con->state) ||
2062             test_bit(OPENING, &con->state)) {
2063                 ret = -EAGAIN;
2064                 goto out;
2065         }
2066
2067         if (test_bit(CONNECTING, &con->state)) {
2068                 if (!test_bit(NEGOTIATING, &con->state)) {
2069                         dout("try_read connecting\n");
2070                         ret = read_partial_banner(con);
2071                         if (ret <= 0)
2072                                 goto out;
2073                         ret = process_banner(con);
2074                         if (ret < 0)
2075                                 goto out;
2076                 }
2077                 ret = read_partial_connect(con);
2078                 if (ret <= 0)
2079                         goto out;
2080                 ret = process_connect(con);
2081                 if (ret < 0)
2082                         goto out;
2083                 goto more;
2084         }
2085
2086         if (con->in_base_pos < 0) {
2087                 /*
2088                  * skipping + discarding content.
2089                  *
2090                  * FIXME: there must be a better way to do this!
2091                  */
2092                 static char buf[SKIP_BUF_SIZE];
2093                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2094
2095                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2096                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2097                 if (ret <= 0)
2098                         goto out;
2099                 con->in_base_pos += ret;
2100                 if (con->in_base_pos)
2101                         goto more;
2102         }
2103         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2104                 /*
2105                  * what's next?
2106                  */
2107                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2108                 if (ret <= 0)
2109                         goto out;
2110                 dout("try_read got tag %d\n", (int)con->in_tag);
2111                 switch (con->in_tag) {
2112                 case CEPH_MSGR_TAG_MSG:
2113                         prepare_read_message(con);
2114                         break;
2115                 case CEPH_MSGR_TAG_ACK:
2116                         prepare_read_ack(con);
2117                         break;
2118                 case CEPH_MSGR_TAG_CLOSE:
2119                         set_bit(CLOSED, &con->state);   /* fixme */
2120                         goto out;
2121                 default:
2122                         goto bad_tag;
2123                 }
2124         }
2125         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2126                 ret = read_partial_message(con);
2127                 if (ret <= 0) {
2128                         switch (ret) {
2129                         case -EBADMSG:
2130                                 con->error_msg = "bad crc";
2131                                 ret = -EIO;
2132                                 break;
2133                         case -EIO:
2134                                 con->error_msg = "io error";
2135                                 break;
2136                         }
2137                         goto out;
2138                 }
2139                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2140                         goto more;
2141                 process_message(con);
2142                 goto more;
2143         }
2144         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2145                 ret = read_partial_ack(con);
2146                 if (ret <= 0)
2147                         goto out;
2148                 process_ack(con);
2149                 goto more;
2150         }
2151
2152 out:
2153         dout("try_read done on %p ret %d\n", con, ret);
2154         return ret;
2155
2156 bad_tag:
2157         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2158         con->error_msg = "protocol error, garbage tag";
2159         ret = -1;
2160         goto out;
2161 }
2162
2163
2164 /*
2165  * Atomically queue work on a connection.  Bump @con reference to
2166  * avoid races with connection teardown.
2167  */
2168 static void queue_con(struct ceph_connection *con)
2169 {
2170         if (!con->ops->get(con)) {
2171                 dout("queue_con %p ref count 0\n", con);
2172                 return;
2173         }
2174
2175         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2176                 dout("queue_con %p - already queued\n", con);
2177                 con->ops->put(con);
2178         } else {
2179                 dout("queue_con %p\n", con);
2180         }
2181 }
2182
2183 /*
2184  * Do some work on a connection.  Drop a connection ref when we're done.
2185  */
2186 static void con_work(struct work_struct *work)
2187 {
2188         struct ceph_connection *con = container_of(work, struct ceph_connection,
2189                                                    work.work);
2190         int ret;
2191
2192         mutex_lock(&con->mutex);
2193 restart:
2194         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2195                 dout("con_work %p backing off\n", con);
2196                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2197                                        round_jiffies_relative(con->delay))) {
2198                         dout("con_work %p backoff %lu\n", con, con->delay);
2199                         mutex_unlock(&con->mutex);
2200                         return;
2201                 } else {
2202                         con->ops->put(con);
2203                         dout("con_work %p FAILED to back off %lu\n", con,
2204                              con->delay);
2205                 }
2206         }
2207
2208         if (test_bit(STANDBY, &con->state)) {
2209                 dout("con_work %p STANDBY\n", con);
2210                 goto done;
2211         }
2212         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2213                 dout("con_work CLOSED\n");
2214                 con_close_socket(con);
2215                 goto done;
2216         }
2217         if (test_and_clear_bit(OPENING, &con->state)) {
2218                 /* reopen w/ new peer */
2219                 dout("con_work OPENING\n");
2220                 con_close_socket(con);
2221         }
2222
2223         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2224                 goto fault;
2225
2226         ret = try_read(con);
2227         if (ret == -EAGAIN)
2228                 goto restart;
2229         if (ret < 0)
2230                 goto fault;
2231
2232         ret = try_write(con);
2233         if (ret == -EAGAIN)
2234                 goto restart;
2235         if (ret < 0)
2236                 goto fault;
2237
2238 done:
2239         mutex_unlock(&con->mutex);
2240 done_unlocked:
2241         con->ops->put(con);
2242         return;
2243
2244 fault:
2245         mutex_unlock(&con->mutex);
2246         ceph_fault(con);     /* error/fault path */
2247         goto done_unlocked;
2248 }
2249
2250
2251 /*
2252  * Generic error/fault handler.  A retry mechanism is used with
2253  * exponential backoff
2254  */
2255 static void ceph_fault(struct ceph_connection *con)
2256 {
2257         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2258                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2259         dout("fault %p state %lu to peer %s\n",
2260              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2261
2262         if (test_bit(LOSSYTX, &con->flags)) {
2263                 dout("fault on LOSSYTX channel\n");
2264                 goto out;
2265         }
2266
2267         mutex_lock(&con->mutex);
2268         if (test_bit(CLOSED, &con->state))
2269                 goto out_unlock;
2270
2271         con_close_socket(con);
2272
2273         if (con->in_msg) {
2274                 BUG_ON(con->in_msg->con != con);
2275                 con->in_msg->con = NULL;
2276                 ceph_msg_put(con->in_msg);
2277                 con->in_msg = NULL;
2278         }
2279
2280         /* Requeue anything that hasn't been acked */
2281         list_splice_init(&con->out_sent, &con->out_queue);
2282
2283         /* If there are no messages queued or keepalive pending, place
2284          * the connection in a STANDBY state */
2285         if (list_empty(&con->out_queue) &&
2286             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2287                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2288                 clear_bit(WRITE_PENDING, &con->flags);
2289                 set_bit(STANDBY, &con->state);
2290         } else {
2291                 /* retry after a delay. */
2292                 if (con->delay == 0)
2293                         con->delay = BASE_DELAY_INTERVAL;
2294                 else if (con->delay < MAX_DELAY_INTERVAL)
2295                         con->delay *= 2;
2296                 con->ops->get(con);
2297                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2298                                        round_jiffies_relative(con->delay))) {
2299                         dout("fault queued %p delay %lu\n", con, con->delay);
2300                 } else {
2301                         con->ops->put(con);
2302                         dout("fault failed to queue %p delay %lu, backoff\n",
2303                              con, con->delay);
2304                         /*
2305                          * In many cases we see a socket state change
2306                          * while con_work is running and end up
2307                          * queuing (non-delayed) work, such that we
2308                          * can't backoff with a delay.  Set a flag so
2309                          * that when con_work restarts we schedule the
2310                          * delay then.
2311                          */
2312                         set_bit(BACKOFF, &con->flags);
2313                 }
2314         }
2315
2316 out_unlock:
2317         mutex_unlock(&con->mutex);
2318 out:
2319         /*
2320          * in case we faulted due to authentication, invalidate our
2321          * current tickets so that we can get new ones.
2322          */
2323         if (con->auth_retry && con->ops->invalidate_authorizer) {
2324                 dout("calling invalidate_authorizer()\n");
2325                 con->ops->invalidate_authorizer(con);
2326         }
2327
2328         if (con->ops->fault)
2329                 con->ops->fault(con);
2330 }
2331
2332
2333
2334 /*
2335  * initialize a new messenger instance
2336  */
2337 void ceph_messenger_init(struct ceph_messenger *msgr,
2338                         struct ceph_entity_addr *myaddr,
2339                         u32 supported_features,
2340                         u32 required_features,
2341                         bool nocrc)
2342 {
2343         msgr->supported_features = supported_features;
2344         msgr->required_features = required_features;
2345
2346         spin_lock_init(&msgr->global_seq_lock);
2347
2348         if (myaddr)
2349                 msgr->inst.addr = *myaddr;
2350
2351         /* select a random nonce */
2352         msgr->inst.addr.type = 0;
2353         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2354         encode_my_addr(msgr);
2355         msgr->nocrc = nocrc;
2356
2357         dout("%s %p\n", __func__, msgr);
2358 }
2359 EXPORT_SYMBOL(ceph_messenger_init);
2360
2361 static void clear_standby(struct ceph_connection *con)
2362 {
2363         /* come back from STANDBY? */
2364         if (test_and_clear_bit(STANDBY, &con->state)) {
2365                 mutex_lock(&con->mutex);
2366                 dout("clear_standby %p and ++connect_seq\n", con);
2367                 con->connect_seq++;
2368                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2369                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2370                 mutex_unlock(&con->mutex);
2371         }
2372 }
2373
2374 /*
2375  * Queue up an outgoing message on the given connection.
2376  */
2377 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2378 {
2379         if (test_bit(CLOSED, &con->state)) {
2380                 dout("con_send %p closed, dropping %p\n", con, msg);
2381                 ceph_msg_put(msg);
2382                 return;
2383         }
2384
2385         /* set src+dst */
2386         msg->hdr.src = con->msgr->inst.name;
2387
2388         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2389
2390         msg->needs_out_seq = true;
2391
2392         /* queue */
2393         mutex_lock(&con->mutex);
2394         BUG_ON(msg->con != NULL);
2395         msg->con = con;
2396         BUG_ON(!list_empty(&msg->list_head));
2397         list_add_tail(&msg->list_head, &con->out_queue);
2398         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2399              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2400              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2401              le32_to_cpu(msg->hdr.front_len),
2402              le32_to_cpu(msg->hdr.middle_len),
2403              le32_to_cpu(msg->hdr.data_len));
2404         mutex_unlock(&con->mutex);
2405
2406         /* if there wasn't anything waiting to send before, queue
2407          * new work */
2408         clear_standby(con);
2409         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2410                 queue_con(con);
2411 }
2412 EXPORT_SYMBOL(ceph_con_send);
2413
2414 /*
2415  * Revoke a message that was previously queued for send
2416  */
2417 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2418 {
2419         mutex_lock(&con->mutex);
2420         if (!list_empty(&msg->list_head)) {
2421                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2422                 list_del_init(&msg->list_head);
2423                 BUG_ON(msg->con == NULL);
2424                 msg->con = NULL;
2425
2426                 ceph_msg_put(msg);
2427                 msg->hdr.seq = 0;
2428         }
2429         if (con->out_msg == msg) {
2430                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2431                 con->out_msg = NULL;
2432                 if (con->out_kvec_is_msg) {
2433                         con->out_skip = con->out_kvec_bytes;
2434                         con->out_kvec_is_msg = false;
2435                 }
2436                 ceph_msg_put(msg);
2437                 msg->hdr.seq = 0;
2438         }
2439         mutex_unlock(&con->mutex);
2440 }
2441
2442 /*
2443  * Revoke a message that we may be reading data into
2444  */
2445 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2446 {
2447         mutex_lock(&con->mutex);
2448         if (con->in_msg && con->in_msg == msg) {
2449                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2450                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2451                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2452
2453                 /* skip rest of message */
2454                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2455                         con->in_base_pos = con->in_base_pos -
2456                                 sizeof(struct ceph_msg_header) -
2457                                 front_len -
2458                                 middle_len -
2459                                 data_len -
2460                                 sizeof(struct ceph_msg_footer);
2461                 ceph_msg_put(con->in_msg);
2462                 con->in_msg = NULL;
2463                 con->in_tag = CEPH_MSGR_TAG_READY;
2464                 con->in_seq++;
2465         } else {
2466                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2467                      con, con->in_msg, msg);
2468         }
2469         mutex_unlock(&con->mutex);
2470 }
2471
2472 /*
2473  * Queue a keepalive byte to ensure the tcp connection is alive.
2474  */
2475 void ceph_con_keepalive(struct ceph_connection *con)
2476 {
2477         dout("con_keepalive %p\n", con);
2478         clear_standby(con);
2479         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2480             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2481                 queue_con(con);
2482 }
2483 EXPORT_SYMBOL(ceph_con_keepalive);
2484
2485
2486 /*
2487  * construct a new message with given type, size
2488  * the new msg has a ref count of 1.
2489  */
2490 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2491                               bool can_fail)
2492 {
2493         struct ceph_msg *m;
2494
2495         m = kmalloc(sizeof(*m), flags);
2496         if (m == NULL)
2497                 goto out;
2498         kref_init(&m->kref);
2499
2500         m->con = NULL;
2501         INIT_LIST_HEAD(&m->list_head);
2502
2503         m->hdr.tid = 0;
2504         m->hdr.type = cpu_to_le16(type);
2505         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2506         m->hdr.version = 0;
2507         m->hdr.front_len = cpu_to_le32(front_len);
2508         m->hdr.middle_len = 0;
2509         m->hdr.data_len = 0;
2510         m->hdr.data_off = 0;
2511         m->hdr.reserved = 0;
2512         m->footer.front_crc = 0;
2513         m->footer.middle_crc = 0;
2514         m->footer.data_crc = 0;
2515         m->footer.flags = 0;
2516         m->front_max = front_len;
2517         m->front_is_vmalloc = false;
2518         m->more_to_follow = false;
2519         m->ack_stamp = 0;
2520         m->pool = NULL;
2521
2522         /* middle */
2523         m->middle = NULL;
2524
2525         /* data */
2526         m->nr_pages = 0;
2527         m->page_alignment = 0;
2528         m->pages = NULL;
2529         m->pagelist = NULL;
2530         m->bio = NULL;
2531         m->bio_iter = NULL;
2532         m->bio_seg = 0;
2533         m->trail = NULL;
2534
2535         /* front */
2536         if (front_len) {
2537                 if (front_len > PAGE_CACHE_SIZE) {
2538                         m->front.iov_base = __vmalloc(front_len, flags,
2539                                                       PAGE_KERNEL);
2540                         m->front_is_vmalloc = true;
2541                 } else {
2542                         m->front.iov_base = kmalloc(front_len, flags);
2543                 }
2544                 if (m->front.iov_base == NULL) {
2545                         dout("ceph_msg_new can't allocate %d bytes\n",
2546                              front_len);
2547                         goto out2;
2548                 }
2549         } else {
2550                 m->front.iov_base = NULL;
2551         }
2552         m->front.iov_len = front_len;
2553
2554         dout("ceph_msg_new %p front %d\n", m, front_len);
2555         return m;
2556
2557 out2:
2558         ceph_msg_put(m);
2559 out:
2560         if (!can_fail) {
2561                 pr_err("msg_new can't create type %d front %d\n", type,
2562                        front_len);
2563                 WARN_ON(1);
2564         } else {
2565                 dout("msg_new can't create type %d front %d\n", type,
2566                      front_len);
2567         }
2568         return NULL;
2569 }
2570 EXPORT_SYMBOL(ceph_msg_new);
2571
2572 /*
2573  * Allocate "middle" portion of a message, if it is needed and wasn't
2574  * allocated by alloc_msg.  This allows us to read a small fixed-size
2575  * per-type header in the front and then gracefully fail (i.e.,
2576  * propagate the error to the caller based on info in the front) when
2577  * the middle is too large.
2578  */
2579 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2580 {
2581         int type = le16_to_cpu(msg->hdr.type);
2582         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2583
2584         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2585              ceph_msg_type_name(type), middle_len);
2586         BUG_ON(!middle_len);
2587         BUG_ON(msg->middle);
2588
2589         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2590         if (!msg->middle)
2591                 return -ENOMEM;
2592         return 0;
2593 }
2594
2595 /*
2596  * Allocate a message for receiving an incoming message on a
2597  * connection, and save the result in con->in_msg.  Uses the
2598  * connection's private alloc_msg op if available.
2599  *
2600  * Returns true if the message should be skipped, false otherwise.
2601  * If true is returned (skip message), con->in_msg will be NULL.
2602  * If false is returned, con->in_msg will contain a pointer to the
2603  * newly-allocated message, or NULL in case of memory exhaustion.
2604  */
2605 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2606                                 struct ceph_msg_header *hdr)
2607 {
2608         int type = le16_to_cpu(hdr->type);
2609         int front_len = le32_to_cpu(hdr->front_len);
2610         int middle_len = le32_to_cpu(hdr->middle_len);
2611         int ret;
2612
2613         BUG_ON(con->in_msg != NULL);
2614
2615         if (con->ops->alloc_msg) {
2616                 int skip = 0;
2617
2618                 mutex_unlock(&con->mutex);
2619                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2620                 mutex_lock(&con->mutex);
2621                 if (con->in_msg)
2622                         con->in_msg->con = con;
2623                 if (skip)
2624                         con->in_msg = NULL;
2625
2626                 if (!con->in_msg)
2627                         return skip != 0;
2628         }
2629         if (!con->in_msg) {
2630                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2631                 if (!con->in_msg) {
2632                         pr_err("unable to allocate msg type %d len %d\n",
2633                                type, front_len);
2634                         return false;
2635                 }
2636                 con->in_msg->con = con;
2637                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2638         }
2639         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2640
2641         if (middle_len && !con->in_msg->middle) {
2642                 ret = ceph_alloc_middle(con, con->in_msg);
2643                 if (ret < 0) {
2644                         ceph_msg_put(con->in_msg);
2645                         con->in_msg = NULL;
2646                 }
2647         }
2648
2649         return false;
2650 }
2651
2652
2653 /*
2654  * Free a generically kmalloc'd message.
2655  */
2656 void ceph_msg_kfree(struct ceph_msg *m)
2657 {
2658         dout("msg_kfree %p\n", m);
2659         if (m->front_is_vmalloc)
2660                 vfree(m->front.iov_base);
2661         else
2662                 kfree(m->front.iov_base);
2663         kfree(m);
2664 }
2665
2666 /*
2667  * Drop a msg ref.  Destroy as needed.
2668  */
2669 void ceph_msg_last_put(struct kref *kref)
2670 {
2671         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2672
2673         dout("ceph_msg_put last one on %p\n", m);
2674         WARN_ON(!list_empty(&m->list_head));
2675
2676         /* drop middle, data, if any */
2677         if (m->middle) {
2678                 ceph_buffer_put(m->middle);
2679                 m->middle = NULL;
2680         }
2681         m->nr_pages = 0;
2682         m->pages = NULL;
2683
2684         if (m->pagelist) {
2685                 ceph_pagelist_release(m->pagelist);
2686                 kfree(m->pagelist);
2687                 m->pagelist = NULL;
2688         }
2689
2690         m->trail = NULL;
2691
2692         if (m->pool)
2693                 ceph_msgpool_put(m->pool, m);
2694         else
2695                 ceph_msg_kfree(m);
2696 }
2697 EXPORT_SYMBOL(ceph_msg_last_put);
2698
2699 void ceph_msg_dump(struct ceph_msg *msg)
2700 {
2701         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2702                  msg->front_max, msg->nr_pages);
2703         print_hex_dump(KERN_DEBUG, "header: ",
2704                        DUMP_PREFIX_OFFSET, 16, 1,
2705                        &msg->hdr, sizeof(msg->hdr), true);
2706         print_hex_dump(KERN_DEBUG, " front: ",
2707                        DUMP_PREFIX_OFFSET, 16, 1,
2708                        msg->front.iov_base, msg->front.iov_len, true);
2709         if (msg->middle)
2710                 print_hex_dump(KERN_DEBUG, "middle: ",
2711                                DUMP_PREFIX_OFFSET, 16, 1,
2712                                msg->middle->vec.iov_base,
2713                                msg->middle->vec.iov_len, true);
2714         print_hex_dump(KERN_DEBUG, "footer: ",
2715                        DUMP_PREFIX_OFFSET, 16, 1,
2716                        &msg->footer, sizeof(msg->footer), true);
2717 }
2718 EXPORT_SYMBOL(ceph_msg_dump);