libceph: don't touch con state in con_close_socket()
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 set_bit(SOCK_CLOSED, &con->flags);
265                 queue_con(con);
266                 break;
267         case TCP_ESTABLISHED:
268                 dout("%s TCP_ESTABLISHED\n", __func__);
269                 con_sock_state_connected(con);
270                 queue_con(con);
271                 break;
272         default:        /* Everything else is uninteresting */
273                 break;
274         }
275 }
276
277 /*
278  * set up socket callbacks
279  */
280 static void set_sock_callbacks(struct socket *sock,
281                                struct ceph_connection *con)
282 {
283         struct sock *sk = sock->sk;
284         sk->sk_user_data = con;
285         sk->sk_data_ready = ceph_sock_data_ready;
286         sk->sk_write_space = ceph_sock_write_space;
287         sk->sk_state_change = ceph_sock_state_change;
288 }
289
290
291 /*
292  * socket helpers
293  */
294
295 /*
296  * initiate connection to a remote socket.
297  */
298 static int ceph_tcp_connect(struct ceph_connection *con)
299 {
300         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
301         struct socket *sock;
302         int ret;
303
304         BUG_ON(con->sock);
305         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
306                                IPPROTO_TCP, &sock);
307         if (ret)
308                 return ret;
309         sock->sk->sk_allocation = GFP_NOFS;
310
311 #ifdef CONFIG_LOCKDEP
312         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
313 #endif
314
315         set_sock_callbacks(sock, con);
316
317         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
318
319         con_sock_state_connecting(con);
320         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
321                                  O_NONBLOCK);
322         if (ret == -EINPROGRESS) {
323                 dout("connect %s EINPROGRESS sk_state = %u\n",
324                      ceph_pr_addr(&con->peer_addr.in_addr),
325                      sock->sk->sk_state);
326         } else if (ret < 0) {
327                 pr_err("connect %s error %d\n",
328                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
329                 sock_release(sock);
330                 con->error_msg = "connect error";
331
332                 return ret;
333         }
334         con->sock = sock;
335         return 0;
336 }
337
338 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
339 {
340         struct kvec iov = {buf, len};
341         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
342         int r;
343
344         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
345         if (r == -EAGAIN)
346                 r = 0;
347         return r;
348 }
349
350 /*
351  * write something.  @more is true if caller will be sending more data
352  * shortly.
353  */
354 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
355                      size_t kvlen, size_t len, int more)
356 {
357         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
358         int r;
359
360         if (more)
361                 msg.msg_flags |= MSG_MORE;
362         else
363                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
364
365         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
366         if (r == -EAGAIN)
367                 r = 0;
368         return r;
369 }
370
371 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
372                      int offset, size_t size, int more)
373 {
374         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
375         int ret;
376
377         ret = kernel_sendpage(sock, page, offset, size, flags);
378         if (ret == -EAGAIN)
379                 ret = 0;
380
381         return ret;
382 }
383
384
385 /*
386  * Shutdown/close the socket for the given connection.
387  */
388 static int con_close_socket(struct ceph_connection *con)
389 {
390         int rc;
391
392         dout("con_close_socket on %p sock %p\n", con, con->sock);
393         if (!con->sock)
394                 return 0;
395         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
396         sock_release(con->sock);
397         con->sock = NULL;
398
399         /*
400          * Forcibly clear the SOCK_CLOSE flag.  It gets set
401          * independent of the connection mutex, and we could have
402          * received a socket close event before we had the chance to
403          * shut the socket down.
404          */
405         clear_bit(SOCK_CLOSED, &con->flags);
406         con_sock_state_closed(con);
407         return rc;
408 }
409
410 /*
411  * Reset a connection.  Discard all incoming and outgoing messages
412  * and clear *_seq state.
413  */
414 static void ceph_msg_remove(struct ceph_msg *msg)
415 {
416         list_del_init(&msg->list_head);
417         BUG_ON(msg->con == NULL);
418         msg->con->ops->put(msg->con);
419         msg->con = NULL;
420
421         ceph_msg_put(msg);
422 }
423 static void ceph_msg_remove_list(struct list_head *head)
424 {
425         while (!list_empty(head)) {
426                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
427                                                         list_head);
428                 ceph_msg_remove(msg);
429         }
430 }
431
432 static void reset_connection(struct ceph_connection *con)
433 {
434         /* reset connection, out_queue, msg_ and connect_seq */
435         /* discard existing out_queue and msg_seq */
436         ceph_msg_remove_list(&con->out_queue);
437         ceph_msg_remove_list(&con->out_sent);
438
439         if (con->in_msg) {
440                 BUG_ON(con->in_msg->con != con);
441                 con->in_msg->con = NULL;
442                 ceph_msg_put(con->in_msg);
443                 con->in_msg = NULL;
444                 con->ops->put(con);
445         }
446
447         con->connect_seq = 0;
448         con->out_seq = 0;
449         if (con->out_msg) {
450                 ceph_msg_put(con->out_msg);
451                 con->out_msg = NULL;
452         }
453         con->in_seq = 0;
454         con->in_seq_acked = 0;
455 }
456
457 /*
458  * mark a peer down.  drop any open connections.
459  */
460 void ceph_con_close(struct ceph_connection *con)
461 {
462         dout("con_close %p peer %s\n", con,
463              ceph_pr_addr(&con->peer_addr.in_addr));
464         clear_bit(NEGOTIATING, &con->state);
465         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
466         set_bit(CLOSED, &con->state);
467
468         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
469         clear_bit(KEEPALIVE_PENDING, &con->flags);
470         clear_bit(WRITE_PENDING, &con->flags);
471
472         mutex_lock(&con->mutex);
473         reset_connection(con);
474         con->peer_global_seq = 0;
475         cancel_delayed_work(&con->work);
476         mutex_unlock(&con->mutex);
477         queue_con(con);
478 }
479 EXPORT_SYMBOL(ceph_con_close);
480
481 /*
482  * Reopen a closed connection, with a new peer address.
483  */
484 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
485 {
486         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
487         set_bit(OPENING, &con->state);
488         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
489
490         memcpy(&con->peer_addr, addr, sizeof(*addr));
491         con->delay = 0;      /* reset backoff memory */
492         queue_con(con);
493 }
494 EXPORT_SYMBOL(ceph_con_open);
495
496 /*
497  * return true if this connection ever successfully opened
498  */
499 bool ceph_con_opened(struct ceph_connection *con)
500 {
501         return con->connect_seq > 0;
502 }
503
504 /*
505  * initialize a new connection.
506  */
507 void ceph_con_init(struct ceph_connection *con, void *private,
508         const struct ceph_connection_operations *ops,
509         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
510 {
511         dout("con_init %p\n", con);
512         memset(con, 0, sizeof(*con));
513         con->private = private;
514         con->ops = ops;
515         con->msgr = msgr;
516
517         con_sock_state_init(con);
518
519         con->peer_name.type = (__u8) entity_type;
520         con->peer_name.num = cpu_to_le64(entity_num);
521
522         mutex_init(&con->mutex);
523         INIT_LIST_HEAD(&con->out_queue);
524         INIT_LIST_HEAD(&con->out_sent);
525         INIT_DELAYED_WORK(&con->work, con_work);
526
527         set_bit(CLOSED, &con->state);
528 }
529 EXPORT_SYMBOL(ceph_con_init);
530
531
532 /*
533  * We maintain a global counter to order connection attempts.  Get
534  * a unique seq greater than @gt.
535  */
536 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
537 {
538         u32 ret;
539
540         spin_lock(&msgr->global_seq_lock);
541         if (msgr->global_seq < gt)
542                 msgr->global_seq = gt;
543         ret = ++msgr->global_seq;
544         spin_unlock(&msgr->global_seq_lock);
545         return ret;
546 }
547
548 static void con_out_kvec_reset(struct ceph_connection *con)
549 {
550         con->out_kvec_left = 0;
551         con->out_kvec_bytes = 0;
552         con->out_kvec_cur = &con->out_kvec[0];
553 }
554
555 static void con_out_kvec_add(struct ceph_connection *con,
556                                 size_t size, void *data)
557 {
558         int index;
559
560         index = con->out_kvec_left;
561         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
562
563         con->out_kvec[index].iov_len = size;
564         con->out_kvec[index].iov_base = data;
565         con->out_kvec_left++;
566         con->out_kvec_bytes += size;
567 }
568
569 #ifdef CONFIG_BLOCK
570 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
571 {
572         if (!bio) {
573                 *iter = NULL;
574                 *seg = 0;
575                 return;
576         }
577         *iter = bio;
578         *seg = bio->bi_idx;
579 }
580
581 static void iter_bio_next(struct bio **bio_iter, int *seg)
582 {
583         if (*bio_iter == NULL)
584                 return;
585
586         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
587
588         (*seg)++;
589         if (*seg == (*bio_iter)->bi_vcnt)
590                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
591 }
592 #endif
593
594 static void prepare_write_message_data(struct ceph_connection *con)
595 {
596         struct ceph_msg *msg = con->out_msg;
597
598         BUG_ON(!msg);
599         BUG_ON(!msg->hdr.data_len);
600
601         /* initialize page iterator */
602         con->out_msg_pos.page = 0;
603         if (msg->pages)
604                 con->out_msg_pos.page_pos = msg->page_alignment;
605         else
606                 con->out_msg_pos.page_pos = 0;
607 #ifdef CONFIG_BLOCK
608         if (msg->bio)
609                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
610 #endif
611         con->out_msg_pos.data_pos = 0;
612         con->out_msg_pos.did_page_crc = false;
613         con->out_more = 1;  /* data + footer will follow */
614 }
615
616 /*
617  * Prepare footer for currently outgoing message, and finish things
618  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
619  */
620 static void prepare_write_message_footer(struct ceph_connection *con)
621 {
622         struct ceph_msg *m = con->out_msg;
623         int v = con->out_kvec_left;
624
625         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
626
627         dout("prepare_write_message_footer %p\n", con);
628         con->out_kvec_is_msg = true;
629         con->out_kvec[v].iov_base = &m->footer;
630         con->out_kvec[v].iov_len = sizeof(m->footer);
631         con->out_kvec_bytes += sizeof(m->footer);
632         con->out_kvec_left++;
633         con->out_more = m->more_to_follow;
634         con->out_msg_done = true;
635 }
636
637 /*
638  * Prepare headers for the next outgoing message.
639  */
640 static void prepare_write_message(struct ceph_connection *con)
641 {
642         struct ceph_msg *m;
643         u32 crc;
644
645         con_out_kvec_reset(con);
646         con->out_kvec_is_msg = true;
647         con->out_msg_done = false;
648
649         /* Sneak an ack in there first?  If we can get it into the same
650          * TCP packet that's a good thing. */
651         if (con->in_seq > con->in_seq_acked) {
652                 con->in_seq_acked = con->in_seq;
653                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
654                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
655                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
656                         &con->out_temp_ack);
657         }
658
659         BUG_ON(list_empty(&con->out_queue));
660         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
661         con->out_msg = m;
662         BUG_ON(m->con != con);
663
664         /* put message on sent list */
665         ceph_msg_get(m);
666         list_move_tail(&m->list_head, &con->out_sent);
667
668         /*
669          * only assign outgoing seq # if we haven't sent this message
670          * yet.  if it is requeued, resend with it's original seq.
671          */
672         if (m->needs_out_seq) {
673                 m->hdr.seq = cpu_to_le64(++con->out_seq);
674                 m->needs_out_seq = false;
675         }
676
677         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
678              m, con->out_seq, le16_to_cpu(m->hdr.type),
679              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
680              le32_to_cpu(m->hdr.data_len),
681              m->nr_pages);
682         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
683
684         /* tag + hdr + front + middle */
685         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
686         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
687         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
688
689         if (m->middle)
690                 con_out_kvec_add(con, m->middle->vec.iov_len,
691                         m->middle->vec.iov_base);
692
693         /* fill in crc (except data pages), footer */
694         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
695         con->out_msg->hdr.crc = cpu_to_le32(crc);
696         con->out_msg->footer.flags = 0;
697
698         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
699         con->out_msg->footer.front_crc = cpu_to_le32(crc);
700         if (m->middle) {
701                 crc = crc32c(0, m->middle->vec.iov_base,
702                                 m->middle->vec.iov_len);
703                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
704         } else
705                 con->out_msg->footer.middle_crc = 0;
706         dout("%s front_crc %u middle_crc %u\n", __func__,
707              le32_to_cpu(con->out_msg->footer.front_crc),
708              le32_to_cpu(con->out_msg->footer.middle_crc));
709
710         /* is there a data payload? */
711         con->out_msg->footer.data_crc = 0;
712         if (m->hdr.data_len)
713                 prepare_write_message_data(con);
714         else
715                 /* no, queue up footer too and be done */
716                 prepare_write_message_footer(con);
717
718         set_bit(WRITE_PENDING, &con->flags);
719 }
720
721 /*
722  * Prepare an ack.
723  */
724 static void prepare_write_ack(struct ceph_connection *con)
725 {
726         dout("prepare_write_ack %p %llu -> %llu\n", con,
727              con->in_seq_acked, con->in_seq);
728         con->in_seq_acked = con->in_seq;
729
730         con_out_kvec_reset(con);
731
732         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
733
734         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
735         con_out_kvec_add(con, sizeof (con->out_temp_ack),
736                                 &con->out_temp_ack);
737
738         con->out_more = 1;  /* more will follow.. eventually.. */
739         set_bit(WRITE_PENDING, &con->flags);
740 }
741
742 /*
743  * Prepare to write keepalive byte.
744  */
745 static void prepare_write_keepalive(struct ceph_connection *con)
746 {
747         dout("prepare_write_keepalive %p\n", con);
748         con_out_kvec_reset(con);
749         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
750         set_bit(WRITE_PENDING, &con->flags);
751 }
752
753 /*
754  * Connection negotiation.
755  */
756
757 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
758                                                 int *auth_proto)
759 {
760         struct ceph_auth_handshake *auth;
761
762         if (!con->ops->get_authorizer) {
763                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
764                 con->out_connect.authorizer_len = 0;
765
766                 return NULL;
767         }
768
769         /* Can't hold the mutex while getting authorizer */
770
771         mutex_unlock(&con->mutex);
772
773         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
774
775         mutex_lock(&con->mutex);
776
777         if (IS_ERR(auth))
778                 return auth;
779         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
780                 return ERR_PTR(-EAGAIN);
781
782         con->auth_reply_buf = auth->authorizer_reply_buf;
783         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
784
785
786         return auth;
787 }
788
789 /*
790  * We connected to a peer and are saying hello.
791  */
792 static void prepare_write_banner(struct ceph_connection *con)
793 {
794         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
795         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
796                                         &con->msgr->my_enc_addr);
797
798         con->out_more = 0;
799         set_bit(WRITE_PENDING, &con->flags);
800 }
801
802 static int prepare_write_connect(struct ceph_connection *con)
803 {
804         unsigned int global_seq = get_global_seq(con->msgr, 0);
805         int proto;
806         int auth_proto;
807         struct ceph_auth_handshake *auth;
808
809         switch (con->peer_name.type) {
810         case CEPH_ENTITY_TYPE_MON:
811                 proto = CEPH_MONC_PROTOCOL;
812                 break;
813         case CEPH_ENTITY_TYPE_OSD:
814                 proto = CEPH_OSDC_PROTOCOL;
815                 break;
816         case CEPH_ENTITY_TYPE_MDS:
817                 proto = CEPH_MDSC_PROTOCOL;
818                 break;
819         default:
820                 BUG();
821         }
822
823         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
824              con->connect_seq, global_seq, proto);
825
826         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
827         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
828         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
829         con->out_connect.global_seq = cpu_to_le32(global_seq);
830         con->out_connect.protocol_version = cpu_to_le32(proto);
831         con->out_connect.flags = 0;
832
833         auth_proto = CEPH_AUTH_UNKNOWN;
834         auth = get_connect_authorizer(con, &auth_proto);
835         if (IS_ERR(auth))
836                 return PTR_ERR(auth);
837
838         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
839         con->out_connect.authorizer_len = auth ?
840                 cpu_to_le32(auth->authorizer_buf_len) : 0;
841
842         con_out_kvec_add(con, sizeof (con->out_connect),
843                                         &con->out_connect);
844         if (auth && auth->authorizer_buf_len)
845                 con_out_kvec_add(con, auth->authorizer_buf_len,
846                                         auth->authorizer_buf);
847
848         con->out_more = 0;
849         set_bit(WRITE_PENDING, &con->flags);
850
851         return 0;
852 }
853
854 /*
855  * write as much of pending kvecs to the socket as we can.
856  *  1 -> done
857  *  0 -> socket full, but more to do
858  * <0 -> error
859  */
860 static int write_partial_kvec(struct ceph_connection *con)
861 {
862         int ret;
863
864         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
865         while (con->out_kvec_bytes > 0) {
866                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
867                                        con->out_kvec_left, con->out_kvec_bytes,
868                                        con->out_more);
869                 if (ret <= 0)
870                         goto out;
871                 con->out_kvec_bytes -= ret;
872                 if (con->out_kvec_bytes == 0)
873                         break;            /* done */
874
875                 /* account for full iov entries consumed */
876                 while (ret >= con->out_kvec_cur->iov_len) {
877                         BUG_ON(!con->out_kvec_left);
878                         ret -= con->out_kvec_cur->iov_len;
879                         con->out_kvec_cur++;
880                         con->out_kvec_left--;
881                 }
882                 /* and for a partially-consumed entry */
883                 if (ret) {
884                         con->out_kvec_cur->iov_len -= ret;
885                         con->out_kvec_cur->iov_base += ret;
886                 }
887         }
888         con->out_kvec_left = 0;
889         con->out_kvec_is_msg = false;
890         ret = 1;
891 out:
892         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
893              con->out_kvec_bytes, con->out_kvec_left, ret);
894         return ret;  /* done! */
895 }
896
897 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
898                         size_t len, size_t sent, bool in_trail)
899 {
900         struct ceph_msg *msg = con->out_msg;
901
902         BUG_ON(!msg);
903         BUG_ON(!sent);
904
905         con->out_msg_pos.data_pos += sent;
906         con->out_msg_pos.page_pos += sent;
907         if (sent == len) {
908                 con->out_msg_pos.page_pos = 0;
909                 con->out_msg_pos.page++;
910                 con->out_msg_pos.did_page_crc = false;
911                 if (in_trail)
912                         list_move_tail(&page->lru,
913                                        &msg->trail->head);
914                 else if (msg->pagelist)
915                         list_move_tail(&page->lru,
916                                        &msg->pagelist->head);
917 #ifdef CONFIG_BLOCK
918                 else if (msg->bio)
919                         iter_bio_next(&msg->bio_iter, &msg->bio_seg);
920 #endif
921         }
922 }
923
924 /*
925  * Write as much message data payload as we can.  If we finish, queue
926  * up the footer.
927  *  1 -> done, footer is now queued in out_kvec[].
928  *  0 -> socket full, but more to do
929  * <0 -> error
930  */
931 static int write_partial_msg_pages(struct ceph_connection *con)
932 {
933         struct ceph_msg *msg = con->out_msg;
934         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
935         size_t len;
936         bool do_datacrc = !con->msgr->nocrc;
937         int ret;
938         int total_max_write;
939         bool in_trail = false;
940         size_t trail_len = (msg->trail ? msg->trail->length : 0);
941
942         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
943              con, msg, con->out_msg_pos.page, msg->nr_pages,
944              con->out_msg_pos.page_pos);
945
946         while (data_len > con->out_msg_pos.data_pos) {
947                 struct page *page = NULL;
948                 int max_write = PAGE_SIZE;
949                 int bio_offset = 0;
950
951                 total_max_write = data_len - trail_len -
952                         con->out_msg_pos.data_pos;
953
954                 /*
955                  * if we are calculating the data crc (the default), we need
956                  * to map the page.  if our pages[] has been revoked, use the
957                  * zero page.
958                  */
959
960                 /* have we reached the trail part of the data? */
961                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
962                         in_trail = true;
963
964                         total_max_write = data_len - con->out_msg_pos.data_pos;
965
966                         page = list_first_entry(&msg->trail->head,
967                                                 struct page, lru);
968                 } else if (msg->pages) {
969                         page = msg->pages[con->out_msg_pos.page];
970                 } else if (msg->pagelist) {
971                         page = list_first_entry(&msg->pagelist->head,
972                                                 struct page, lru);
973 #ifdef CONFIG_BLOCK
974                 } else if (msg->bio) {
975                         struct bio_vec *bv;
976
977                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
978                         page = bv->bv_page;
979                         bio_offset = bv->bv_offset;
980                         max_write = bv->bv_len;
981 #endif
982                 } else {
983                         page = zero_page;
984                 }
985                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
986                             total_max_write);
987
988                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
989                         void *base;
990                         u32 crc;
991                         u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
992                         char *kaddr;
993
994                         kaddr = kmap(page);
995                         BUG_ON(kaddr == NULL);
996                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
997                         crc = crc32c(tmpcrc, base, len);
998                         msg->footer.data_crc = cpu_to_le32(crc);
999                         con->out_msg_pos.did_page_crc = true;
1000                 }
1001                 ret = ceph_tcp_sendpage(con->sock, page,
1002                                       con->out_msg_pos.page_pos + bio_offset,
1003                                       len, 1);
1004
1005                 if (do_datacrc)
1006                         kunmap(page);
1007
1008                 if (ret <= 0)
1009                         goto out;
1010
1011                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1012         }
1013
1014         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1015
1016         /* prepare and queue up footer, too */
1017         if (!do_datacrc)
1018                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1019         con_out_kvec_reset(con);
1020         prepare_write_message_footer(con);
1021         ret = 1;
1022 out:
1023         return ret;
1024 }
1025
1026 /*
1027  * write some zeros
1028  */
1029 static int write_partial_skip(struct ceph_connection *con)
1030 {
1031         int ret;
1032
1033         while (con->out_skip > 0) {
1034                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1035
1036                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1037                 if (ret <= 0)
1038                         goto out;
1039                 con->out_skip -= ret;
1040         }
1041         ret = 1;
1042 out:
1043         return ret;
1044 }
1045
1046 /*
1047  * Prepare to read connection handshake, or an ack.
1048  */
1049 static void prepare_read_banner(struct ceph_connection *con)
1050 {
1051         dout("prepare_read_banner %p\n", con);
1052         con->in_base_pos = 0;
1053 }
1054
1055 static void prepare_read_connect(struct ceph_connection *con)
1056 {
1057         dout("prepare_read_connect %p\n", con);
1058         con->in_base_pos = 0;
1059 }
1060
1061 static void prepare_read_ack(struct ceph_connection *con)
1062 {
1063         dout("prepare_read_ack %p\n", con);
1064         con->in_base_pos = 0;
1065 }
1066
1067 static void prepare_read_tag(struct ceph_connection *con)
1068 {
1069         dout("prepare_read_tag %p\n", con);
1070         con->in_base_pos = 0;
1071         con->in_tag = CEPH_MSGR_TAG_READY;
1072 }
1073
1074 /*
1075  * Prepare to read a message.
1076  */
1077 static int prepare_read_message(struct ceph_connection *con)
1078 {
1079         dout("prepare_read_message %p\n", con);
1080         BUG_ON(con->in_msg != NULL);
1081         con->in_base_pos = 0;
1082         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1083         return 0;
1084 }
1085
1086
1087 static int read_partial(struct ceph_connection *con,
1088                         int end, int size, void *object)
1089 {
1090         while (con->in_base_pos < end) {
1091                 int left = end - con->in_base_pos;
1092                 int have = size - left;
1093                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1094                 if (ret <= 0)
1095                         return ret;
1096                 con->in_base_pos += ret;
1097         }
1098         return 1;
1099 }
1100
1101
1102 /*
1103  * Read all or part of the connect-side handshake on a new connection
1104  */
1105 static int read_partial_banner(struct ceph_connection *con)
1106 {
1107         int size;
1108         int end;
1109         int ret;
1110
1111         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1112
1113         /* peer's banner */
1114         size = strlen(CEPH_BANNER);
1115         end = size;
1116         ret = read_partial(con, end, size, con->in_banner);
1117         if (ret <= 0)
1118                 goto out;
1119
1120         size = sizeof (con->actual_peer_addr);
1121         end += size;
1122         ret = read_partial(con, end, size, &con->actual_peer_addr);
1123         if (ret <= 0)
1124                 goto out;
1125
1126         size = sizeof (con->peer_addr_for_me);
1127         end += size;
1128         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1129         if (ret <= 0)
1130                 goto out;
1131
1132 out:
1133         return ret;
1134 }
1135
1136 static int read_partial_connect(struct ceph_connection *con)
1137 {
1138         int size;
1139         int end;
1140         int ret;
1141
1142         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1143
1144         size = sizeof (con->in_reply);
1145         end = size;
1146         ret = read_partial(con, end, size, &con->in_reply);
1147         if (ret <= 0)
1148                 goto out;
1149
1150         size = le32_to_cpu(con->in_reply.authorizer_len);
1151         end += size;
1152         ret = read_partial(con, end, size, con->auth_reply_buf);
1153         if (ret <= 0)
1154                 goto out;
1155
1156         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1157              con, (int)con->in_reply.tag,
1158              le32_to_cpu(con->in_reply.connect_seq),
1159              le32_to_cpu(con->in_reply.global_seq));
1160 out:
1161         return ret;
1162
1163 }
1164
1165 /*
1166  * Verify the hello banner looks okay.
1167  */
1168 static int verify_hello(struct ceph_connection *con)
1169 {
1170         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1171                 pr_err("connect to %s got bad banner\n",
1172                        ceph_pr_addr(&con->peer_addr.in_addr));
1173                 con->error_msg = "protocol error, bad banner";
1174                 return -1;
1175         }
1176         return 0;
1177 }
1178
1179 static bool addr_is_blank(struct sockaddr_storage *ss)
1180 {
1181         switch (ss->ss_family) {
1182         case AF_INET:
1183                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1184         case AF_INET6:
1185                 return
1186                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1187                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1188                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1189                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1190         }
1191         return false;
1192 }
1193
1194 static int addr_port(struct sockaddr_storage *ss)
1195 {
1196         switch (ss->ss_family) {
1197         case AF_INET:
1198                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1199         case AF_INET6:
1200                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1201         }
1202         return 0;
1203 }
1204
1205 static void addr_set_port(struct sockaddr_storage *ss, int p)
1206 {
1207         switch (ss->ss_family) {
1208         case AF_INET:
1209                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1210                 break;
1211         case AF_INET6:
1212                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1213                 break;
1214         }
1215 }
1216
1217 /*
1218  * Unlike other *_pton function semantics, zero indicates success.
1219  */
1220 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1221                 char delim, const char **ipend)
1222 {
1223         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1224         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1225
1226         memset(ss, 0, sizeof(*ss));
1227
1228         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1229                 ss->ss_family = AF_INET;
1230                 return 0;
1231         }
1232
1233         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1234                 ss->ss_family = AF_INET6;
1235                 return 0;
1236         }
1237
1238         return -EINVAL;
1239 }
1240
1241 /*
1242  * Extract hostname string and resolve using kernel DNS facility.
1243  */
1244 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1245 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1246                 struct sockaddr_storage *ss, char delim, const char **ipend)
1247 {
1248         const char *end, *delim_p;
1249         char *colon_p, *ip_addr = NULL;
1250         int ip_len, ret;
1251
1252         /*
1253          * The end of the hostname occurs immediately preceding the delimiter or
1254          * the port marker (':') where the delimiter takes precedence.
1255          */
1256         delim_p = memchr(name, delim, namelen);
1257         colon_p = memchr(name, ':', namelen);
1258
1259         if (delim_p && colon_p)
1260                 end = delim_p < colon_p ? delim_p : colon_p;
1261         else if (!delim_p && colon_p)
1262                 end = colon_p;
1263         else {
1264                 end = delim_p;
1265                 if (!end) /* case: hostname:/ */
1266                         end = name + namelen;
1267         }
1268
1269         if (end <= name)
1270                 return -EINVAL;
1271
1272         /* do dns_resolve upcall */
1273         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1274         if (ip_len > 0)
1275                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1276         else
1277                 ret = -ESRCH;
1278
1279         kfree(ip_addr);
1280
1281         *ipend = end;
1282
1283         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1284                         ret, ret ? "failed" : ceph_pr_addr(ss));
1285
1286         return ret;
1287 }
1288 #else
1289 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1290                 struct sockaddr_storage *ss, char delim, const char **ipend)
1291 {
1292         return -EINVAL;
1293 }
1294 #endif
1295
1296 /*
1297  * Parse a server name (IP or hostname). If a valid IP address is not found
1298  * then try to extract a hostname to resolve using userspace DNS upcall.
1299  */
1300 static int ceph_parse_server_name(const char *name, size_t namelen,
1301                         struct sockaddr_storage *ss, char delim, const char **ipend)
1302 {
1303         int ret;
1304
1305         ret = ceph_pton(name, namelen, ss, delim, ipend);
1306         if (ret)
1307                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1308
1309         return ret;
1310 }
1311
1312 /*
1313  * Parse an ip[:port] list into an addr array.  Use the default
1314  * monitor port if a port isn't specified.
1315  */
1316 int ceph_parse_ips(const char *c, const char *end,
1317                    struct ceph_entity_addr *addr,
1318                    int max_count, int *count)
1319 {
1320         int i, ret = -EINVAL;
1321         const char *p = c;
1322
1323         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1324         for (i = 0; i < max_count; i++) {
1325                 const char *ipend;
1326                 struct sockaddr_storage *ss = &addr[i].in_addr;
1327                 int port;
1328                 char delim = ',';
1329
1330                 if (*p == '[') {
1331                         delim = ']';
1332                         p++;
1333                 }
1334
1335                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1336                 if (ret)
1337                         goto bad;
1338                 ret = -EINVAL;
1339
1340                 p = ipend;
1341
1342                 if (delim == ']') {
1343                         if (*p != ']') {
1344                                 dout("missing matching ']'\n");
1345                                 goto bad;
1346                         }
1347                         p++;
1348                 }
1349
1350                 /* port? */
1351                 if (p < end && *p == ':') {
1352                         port = 0;
1353                         p++;
1354                         while (p < end && *p >= '0' && *p <= '9') {
1355                                 port = (port * 10) + (*p - '0');
1356                                 p++;
1357                         }
1358                         if (port > 65535 || port == 0)
1359                                 goto bad;
1360                 } else {
1361                         port = CEPH_MON_PORT;
1362                 }
1363
1364                 addr_set_port(ss, port);
1365
1366                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1367
1368                 if (p == end)
1369                         break;
1370                 if (*p != ',')
1371                         goto bad;
1372                 p++;
1373         }
1374
1375         if (p != end)
1376                 goto bad;
1377
1378         if (count)
1379                 *count = i + 1;
1380         return 0;
1381
1382 bad:
1383         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(ceph_parse_ips);
1387
1388 static int process_banner(struct ceph_connection *con)
1389 {
1390         dout("process_banner on %p\n", con);
1391
1392         if (verify_hello(con) < 0)
1393                 return -1;
1394
1395         ceph_decode_addr(&con->actual_peer_addr);
1396         ceph_decode_addr(&con->peer_addr_for_me);
1397
1398         /*
1399          * Make sure the other end is who we wanted.  note that the other
1400          * end may not yet know their ip address, so if it's 0.0.0.0, give
1401          * them the benefit of the doubt.
1402          */
1403         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1404                    sizeof(con->peer_addr)) != 0 &&
1405             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1406               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1407                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1408                            ceph_pr_addr(&con->peer_addr.in_addr),
1409                            (int)le32_to_cpu(con->peer_addr.nonce),
1410                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1411                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1412                 con->error_msg = "wrong peer at address";
1413                 return -1;
1414         }
1415
1416         /*
1417          * did we learn our address?
1418          */
1419         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1420                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1421
1422                 memcpy(&con->msgr->inst.addr.in_addr,
1423                        &con->peer_addr_for_me.in_addr,
1424                        sizeof(con->peer_addr_for_me.in_addr));
1425                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1426                 encode_my_addr(con->msgr);
1427                 dout("process_banner learned my addr is %s\n",
1428                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1429         }
1430
1431         set_bit(NEGOTIATING, &con->state);
1432         prepare_read_connect(con);
1433         return 0;
1434 }
1435
1436 static void fail_protocol(struct ceph_connection *con)
1437 {
1438         reset_connection(con);
1439         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1440 }
1441
1442 static int process_connect(struct ceph_connection *con)
1443 {
1444         u64 sup_feat = con->msgr->supported_features;
1445         u64 req_feat = con->msgr->required_features;
1446         u64 server_feat = le64_to_cpu(con->in_reply.features);
1447         int ret;
1448
1449         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1450
1451         switch (con->in_reply.tag) {
1452         case CEPH_MSGR_TAG_FEATURES:
1453                 pr_err("%s%lld %s feature set mismatch,"
1454                        " my %llx < server's %llx, missing %llx\n",
1455                        ENTITY_NAME(con->peer_name),
1456                        ceph_pr_addr(&con->peer_addr.in_addr),
1457                        sup_feat, server_feat, server_feat & ~sup_feat);
1458                 con->error_msg = "missing required protocol features";
1459                 fail_protocol(con);
1460                 return -1;
1461
1462         case CEPH_MSGR_TAG_BADPROTOVER:
1463                 pr_err("%s%lld %s protocol version mismatch,"
1464                        " my %d != server's %d\n",
1465                        ENTITY_NAME(con->peer_name),
1466                        ceph_pr_addr(&con->peer_addr.in_addr),
1467                        le32_to_cpu(con->out_connect.protocol_version),
1468                        le32_to_cpu(con->in_reply.protocol_version));
1469                 con->error_msg = "protocol version mismatch";
1470                 fail_protocol(con);
1471                 return -1;
1472
1473         case CEPH_MSGR_TAG_BADAUTHORIZER:
1474                 con->auth_retry++;
1475                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1476                      con->auth_retry);
1477                 if (con->auth_retry == 2) {
1478                         con->error_msg = "connect authorization failure";
1479                         return -1;
1480                 }
1481                 con->auth_retry = 1;
1482                 con_out_kvec_reset(con);
1483                 ret = prepare_write_connect(con);
1484                 if (ret < 0)
1485                         return ret;
1486                 prepare_read_connect(con);
1487                 break;
1488
1489         case CEPH_MSGR_TAG_RESETSESSION:
1490                 /*
1491                  * If we connected with a large connect_seq but the peer
1492                  * has no record of a session with us (no connection, or
1493                  * connect_seq == 0), they will send RESETSESION to indicate
1494                  * that they must have reset their session, and may have
1495                  * dropped messages.
1496                  */
1497                 dout("process_connect got RESET peer seq %u\n",
1498                      le32_to_cpu(con->in_connect.connect_seq));
1499                 pr_err("%s%lld %s connection reset\n",
1500                        ENTITY_NAME(con->peer_name),
1501                        ceph_pr_addr(&con->peer_addr.in_addr));
1502                 reset_connection(con);
1503                 con_out_kvec_reset(con);
1504                 ret = prepare_write_connect(con);
1505                 if (ret < 0)
1506                         return ret;
1507                 prepare_read_connect(con);
1508
1509                 /* Tell ceph about it. */
1510                 mutex_unlock(&con->mutex);
1511                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1512                 if (con->ops->peer_reset)
1513                         con->ops->peer_reset(con);
1514                 mutex_lock(&con->mutex);
1515                 if (test_bit(CLOSED, &con->state) ||
1516                     test_bit(OPENING, &con->state))
1517                         return -EAGAIN;
1518                 break;
1519
1520         case CEPH_MSGR_TAG_RETRY_SESSION:
1521                 /*
1522                  * If we sent a smaller connect_seq than the peer has, try
1523                  * again with a larger value.
1524                  */
1525                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1526                      le32_to_cpu(con->out_connect.connect_seq),
1527                      le32_to_cpu(con->in_connect.connect_seq));
1528                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1529                 con_out_kvec_reset(con);
1530                 ret = prepare_write_connect(con);
1531                 if (ret < 0)
1532                         return ret;
1533                 prepare_read_connect(con);
1534                 break;
1535
1536         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1537                 /*
1538                  * If we sent a smaller global_seq than the peer has, try
1539                  * again with a larger value.
1540                  */
1541                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1542                      con->peer_global_seq,
1543                      le32_to_cpu(con->in_connect.global_seq));
1544                 get_global_seq(con->msgr,
1545                                le32_to_cpu(con->in_connect.global_seq));
1546                 con_out_kvec_reset(con);
1547                 ret = prepare_write_connect(con);
1548                 if (ret < 0)
1549                         return ret;
1550                 prepare_read_connect(con);
1551                 break;
1552
1553         case CEPH_MSGR_TAG_READY:
1554                 if (req_feat & ~server_feat) {
1555                         pr_err("%s%lld %s protocol feature mismatch,"
1556                                " my required %llx > server's %llx, need %llx\n",
1557                                ENTITY_NAME(con->peer_name),
1558                                ceph_pr_addr(&con->peer_addr.in_addr),
1559                                req_feat, server_feat, req_feat & ~server_feat);
1560                         con->error_msg = "missing required protocol features";
1561                         fail_protocol(con);
1562                         return -1;
1563                 }
1564                 clear_bit(CONNECTING, &con->state);
1565                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1566                 con->connect_seq++;
1567                 con->peer_features = server_feat;
1568                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1569                      con->peer_global_seq,
1570                      le32_to_cpu(con->in_reply.connect_seq),
1571                      con->connect_seq);
1572                 WARN_ON(con->connect_seq !=
1573                         le32_to_cpu(con->in_reply.connect_seq));
1574
1575                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1576                         set_bit(LOSSYTX, &con->flags);
1577
1578                 prepare_read_tag(con);
1579                 break;
1580
1581         case CEPH_MSGR_TAG_WAIT:
1582                 /*
1583                  * If there is a connection race (we are opening
1584                  * connections to each other), one of us may just have
1585                  * to WAIT.  This shouldn't happen if we are the
1586                  * client.
1587                  */
1588                 pr_err("process_connect got WAIT as client\n");
1589                 con->error_msg = "protocol error, got WAIT as client";
1590                 return -1;
1591
1592         default:
1593                 pr_err("connect protocol error, will retry\n");
1594                 con->error_msg = "protocol error, garbage tag during connect";
1595                 return -1;
1596         }
1597         return 0;
1598 }
1599
1600
1601 /*
1602  * read (part of) an ack
1603  */
1604 static int read_partial_ack(struct ceph_connection *con)
1605 {
1606         int size = sizeof (con->in_temp_ack);
1607         int end = size;
1608
1609         return read_partial(con, end, size, &con->in_temp_ack);
1610 }
1611
1612
1613 /*
1614  * We can finally discard anything that's been acked.
1615  */
1616 static void process_ack(struct ceph_connection *con)
1617 {
1618         struct ceph_msg *m;
1619         u64 ack = le64_to_cpu(con->in_temp_ack);
1620         u64 seq;
1621
1622         while (!list_empty(&con->out_sent)) {
1623                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1624                                      list_head);
1625                 seq = le64_to_cpu(m->hdr.seq);
1626                 if (seq > ack)
1627                         break;
1628                 dout("got ack for seq %llu type %d at %p\n", seq,
1629                      le16_to_cpu(m->hdr.type), m);
1630                 m->ack_stamp = jiffies;
1631                 ceph_msg_remove(m);
1632         }
1633         prepare_read_tag(con);
1634 }
1635
1636
1637
1638
1639 static int read_partial_message_section(struct ceph_connection *con,
1640                                         struct kvec *section,
1641                                         unsigned int sec_len, u32 *crc)
1642 {
1643         int ret, left;
1644
1645         BUG_ON(!section);
1646
1647         while (section->iov_len < sec_len) {
1648                 BUG_ON(section->iov_base == NULL);
1649                 left = sec_len - section->iov_len;
1650                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1651                                        section->iov_len, left);
1652                 if (ret <= 0)
1653                         return ret;
1654                 section->iov_len += ret;
1655         }
1656         if (section->iov_len == sec_len)
1657                 *crc = crc32c(0, section->iov_base, section->iov_len);
1658
1659         return 1;
1660 }
1661
1662 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1663                                 struct ceph_msg_header *hdr);
1664
1665
1666 static int read_partial_message_pages(struct ceph_connection *con,
1667                                       struct page **pages,
1668                                       unsigned int data_len, bool do_datacrc)
1669 {
1670         void *p;
1671         int ret;
1672         int left;
1673
1674         left = min((int)(data_len - con->in_msg_pos.data_pos),
1675                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1676         /* (page) data */
1677         BUG_ON(pages == NULL);
1678         p = kmap(pages[con->in_msg_pos.page]);
1679         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1680                                left);
1681         if (ret > 0 && do_datacrc)
1682                 con->in_data_crc =
1683                         crc32c(con->in_data_crc,
1684                                   p + con->in_msg_pos.page_pos, ret);
1685         kunmap(pages[con->in_msg_pos.page]);
1686         if (ret <= 0)
1687                 return ret;
1688         con->in_msg_pos.data_pos += ret;
1689         con->in_msg_pos.page_pos += ret;
1690         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1691                 con->in_msg_pos.page_pos = 0;
1692                 con->in_msg_pos.page++;
1693         }
1694
1695         return ret;
1696 }
1697
1698 #ifdef CONFIG_BLOCK
1699 static int read_partial_message_bio(struct ceph_connection *con,
1700                                     struct bio **bio_iter, int *bio_seg,
1701                                     unsigned int data_len, bool do_datacrc)
1702 {
1703         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1704         void *p;
1705         int ret, left;
1706
1707         if (IS_ERR(bv))
1708                 return PTR_ERR(bv);
1709
1710         left = min((int)(data_len - con->in_msg_pos.data_pos),
1711                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1712
1713         p = kmap(bv->bv_page) + bv->bv_offset;
1714
1715         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1716                                left);
1717         if (ret > 0 && do_datacrc)
1718                 con->in_data_crc =
1719                         crc32c(con->in_data_crc,
1720                                   p + con->in_msg_pos.page_pos, ret);
1721         kunmap(bv->bv_page);
1722         if (ret <= 0)
1723                 return ret;
1724         con->in_msg_pos.data_pos += ret;
1725         con->in_msg_pos.page_pos += ret;
1726         if (con->in_msg_pos.page_pos == bv->bv_len) {
1727                 con->in_msg_pos.page_pos = 0;
1728                 iter_bio_next(bio_iter, bio_seg);
1729         }
1730
1731         return ret;
1732 }
1733 #endif
1734
1735 /*
1736  * read (part of) a message.
1737  */
1738 static int read_partial_message(struct ceph_connection *con)
1739 {
1740         struct ceph_msg *m = con->in_msg;
1741         int size;
1742         int end;
1743         int ret;
1744         unsigned int front_len, middle_len, data_len;
1745         bool do_datacrc = !con->msgr->nocrc;
1746         u64 seq;
1747         u32 crc;
1748
1749         dout("read_partial_message con %p msg %p\n", con, m);
1750
1751         /* header */
1752         size = sizeof (con->in_hdr);
1753         end = size;
1754         ret = read_partial(con, end, size, &con->in_hdr);
1755         if (ret <= 0)
1756                 return ret;
1757
1758         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1759         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1760                 pr_err("read_partial_message bad hdr "
1761                        " crc %u != expected %u\n",
1762                        crc, con->in_hdr.crc);
1763                 return -EBADMSG;
1764         }
1765
1766         front_len = le32_to_cpu(con->in_hdr.front_len);
1767         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1768                 return -EIO;
1769         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1770         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1771                 return -EIO;
1772         data_len = le32_to_cpu(con->in_hdr.data_len);
1773         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1774                 return -EIO;
1775
1776         /* verify seq# */
1777         seq = le64_to_cpu(con->in_hdr.seq);
1778         if ((s64)seq - (s64)con->in_seq < 1) {
1779                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1780                         ENTITY_NAME(con->peer_name),
1781                         ceph_pr_addr(&con->peer_addr.in_addr),
1782                         seq, con->in_seq + 1);
1783                 con->in_base_pos = -front_len - middle_len - data_len -
1784                         sizeof(m->footer);
1785                 con->in_tag = CEPH_MSGR_TAG_READY;
1786                 return 0;
1787         } else if ((s64)seq - (s64)con->in_seq > 1) {
1788                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1789                        seq, con->in_seq + 1);
1790                 con->error_msg = "bad message sequence # for incoming message";
1791                 return -EBADMSG;
1792         }
1793
1794         /* allocate message? */
1795         if (!con->in_msg) {
1796                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1797                      con->in_hdr.front_len, con->in_hdr.data_len);
1798                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1799                         /* skip this message */
1800                         dout("alloc_msg said skip message\n");
1801                         BUG_ON(con->in_msg);
1802                         con->in_base_pos = -front_len - middle_len - data_len -
1803                                 sizeof(m->footer);
1804                         con->in_tag = CEPH_MSGR_TAG_READY;
1805                         con->in_seq++;
1806                         return 0;
1807                 }
1808                 if (!con->in_msg) {
1809                         con->error_msg =
1810                                 "error allocating memory for incoming message";
1811                         return -ENOMEM;
1812                 }
1813
1814                 BUG_ON(con->in_msg->con != con);
1815                 m = con->in_msg;
1816                 m->front.iov_len = 0;    /* haven't read it yet */
1817                 if (m->middle)
1818                         m->middle->vec.iov_len = 0;
1819
1820                 con->in_msg_pos.page = 0;
1821                 if (m->pages)
1822                         con->in_msg_pos.page_pos = m->page_alignment;
1823                 else
1824                         con->in_msg_pos.page_pos = 0;
1825                 con->in_msg_pos.data_pos = 0;
1826         }
1827
1828         /* front */
1829         ret = read_partial_message_section(con, &m->front, front_len,
1830                                            &con->in_front_crc);
1831         if (ret <= 0)
1832                 return ret;
1833
1834         /* middle */
1835         if (m->middle) {
1836                 ret = read_partial_message_section(con, &m->middle->vec,
1837                                                    middle_len,
1838                                                    &con->in_middle_crc);
1839                 if (ret <= 0)
1840                         return ret;
1841         }
1842 #ifdef CONFIG_BLOCK
1843         if (m->bio && !m->bio_iter)
1844                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1845 #endif
1846
1847         /* (page) data */
1848         while (con->in_msg_pos.data_pos < data_len) {
1849                 if (m->pages) {
1850                         ret = read_partial_message_pages(con, m->pages,
1851                                                  data_len, do_datacrc);
1852                         if (ret <= 0)
1853                                 return ret;
1854 #ifdef CONFIG_BLOCK
1855                 } else if (m->bio) {
1856
1857                         ret = read_partial_message_bio(con,
1858                                                  &m->bio_iter, &m->bio_seg,
1859                                                  data_len, do_datacrc);
1860                         if (ret <= 0)
1861                                 return ret;
1862 #endif
1863                 } else {
1864                         BUG_ON(1);
1865                 }
1866         }
1867
1868         /* footer */
1869         size = sizeof (m->footer);
1870         end += size;
1871         ret = read_partial(con, end, size, &m->footer);
1872         if (ret <= 0)
1873                 return ret;
1874
1875         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1876              m, front_len, m->footer.front_crc, middle_len,
1877              m->footer.middle_crc, data_len, m->footer.data_crc);
1878
1879         /* crc ok? */
1880         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1881                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1882                        m, con->in_front_crc, m->footer.front_crc);
1883                 return -EBADMSG;
1884         }
1885         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1886                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1887                        m, con->in_middle_crc, m->footer.middle_crc);
1888                 return -EBADMSG;
1889         }
1890         if (do_datacrc &&
1891             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1892             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1893                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1894                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1895                 return -EBADMSG;
1896         }
1897
1898         return 1; /* done! */
1899 }
1900
1901 /*
1902  * Process message.  This happens in the worker thread.  The callback should
1903  * be careful not to do anything that waits on other incoming messages or it
1904  * may deadlock.
1905  */
1906 static void process_message(struct ceph_connection *con)
1907 {
1908         struct ceph_msg *msg;
1909
1910         BUG_ON(con->in_msg->con != con);
1911         con->in_msg->con = NULL;
1912         msg = con->in_msg;
1913         con->in_msg = NULL;
1914         con->ops->put(con);
1915
1916         /* if first message, set peer_name */
1917         if (con->peer_name.type == 0)
1918                 con->peer_name = msg->hdr.src;
1919
1920         con->in_seq++;
1921         mutex_unlock(&con->mutex);
1922
1923         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1924              msg, le64_to_cpu(msg->hdr.seq),
1925              ENTITY_NAME(msg->hdr.src),
1926              le16_to_cpu(msg->hdr.type),
1927              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1928              le32_to_cpu(msg->hdr.front_len),
1929              le32_to_cpu(msg->hdr.data_len),
1930              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1931         con->ops->dispatch(con, msg);
1932
1933         mutex_lock(&con->mutex);
1934         prepare_read_tag(con);
1935 }
1936
1937
1938 /*
1939  * Write something to the socket.  Called in a worker thread when the
1940  * socket appears to be writeable and we have something ready to send.
1941  */
1942 static int try_write(struct ceph_connection *con)
1943 {
1944         int ret = 1;
1945
1946         dout("try_write start %p state %lu\n", con, con->state);
1947
1948 more:
1949         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1950
1951         /* open the socket first? */
1952         if (con->sock == NULL) {
1953                 clear_bit(NEGOTIATING, &con->state);
1954                 set_bit(CONNECTING, &con->state);
1955
1956                 con_out_kvec_reset(con);
1957                 prepare_write_banner(con);
1958                 ret = prepare_write_connect(con);
1959                 if (ret < 0)
1960                         goto out;
1961                 prepare_read_banner(con);
1962
1963                 BUG_ON(con->in_msg);
1964                 con->in_tag = CEPH_MSGR_TAG_READY;
1965                 dout("try_write initiating connect on %p new state %lu\n",
1966                      con, con->state);
1967                 ret = ceph_tcp_connect(con);
1968                 if (ret < 0) {
1969                         con->error_msg = "connect error";
1970                         goto out;
1971                 }
1972         }
1973
1974 more_kvec:
1975         /* kvec data queued? */
1976         if (con->out_skip) {
1977                 ret = write_partial_skip(con);
1978                 if (ret <= 0)
1979                         goto out;
1980         }
1981         if (con->out_kvec_left) {
1982                 ret = write_partial_kvec(con);
1983                 if (ret <= 0)
1984                         goto out;
1985         }
1986
1987         /* msg pages? */
1988         if (con->out_msg) {
1989                 if (con->out_msg_done) {
1990                         ceph_msg_put(con->out_msg);
1991                         con->out_msg = NULL;   /* we're done with this one */
1992                         goto do_next;
1993                 }
1994
1995                 ret = write_partial_msg_pages(con);
1996                 if (ret == 1)
1997                         goto more_kvec;  /* we need to send the footer, too! */
1998                 if (ret == 0)
1999                         goto out;
2000                 if (ret < 0) {
2001                         dout("try_write write_partial_msg_pages err %d\n",
2002                              ret);
2003                         goto out;
2004                 }
2005         }
2006
2007 do_next:
2008         if (!test_bit(CONNECTING, &con->state)) {
2009                 /* is anything else pending? */
2010                 if (!list_empty(&con->out_queue)) {
2011                         prepare_write_message(con);
2012                         goto more;
2013                 }
2014                 if (con->in_seq > con->in_seq_acked) {
2015                         prepare_write_ack(con);
2016                         goto more;
2017                 }
2018                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2019                         prepare_write_keepalive(con);
2020                         goto more;
2021                 }
2022         }
2023
2024         /* Nothing to do! */
2025         clear_bit(WRITE_PENDING, &con->flags);
2026         dout("try_write nothing else to write.\n");
2027         ret = 0;
2028 out:
2029         dout("try_write done on %p ret %d\n", con, ret);
2030         return ret;
2031 }
2032
2033
2034
2035 /*
2036  * Read what we can from the socket.
2037  */
2038 static int try_read(struct ceph_connection *con)
2039 {
2040         int ret = -1;
2041
2042         if (!con->sock)
2043                 return 0;
2044
2045         if (test_bit(STANDBY, &con->state))
2046                 return 0;
2047
2048         dout("try_read start on %p\n", con);
2049
2050 more:
2051         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2052              con->in_base_pos);
2053
2054         /*
2055          * process_connect and process_message drop and re-take
2056          * con->mutex.  make sure we handle a racing close or reopen.
2057          */
2058         if (test_bit(CLOSED, &con->state) ||
2059             test_bit(OPENING, &con->state)) {
2060                 ret = -EAGAIN;
2061                 goto out;
2062         }
2063
2064         if (test_bit(CONNECTING, &con->state)) {
2065                 if (!test_bit(NEGOTIATING, &con->state)) {
2066                         dout("try_read connecting\n");
2067                         ret = read_partial_banner(con);
2068                         if (ret <= 0)
2069                                 goto out;
2070                         ret = process_banner(con);
2071                         if (ret < 0)
2072                                 goto out;
2073                 }
2074                 ret = read_partial_connect(con);
2075                 if (ret <= 0)
2076                         goto out;
2077                 ret = process_connect(con);
2078                 if (ret < 0)
2079                         goto out;
2080                 goto more;
2081         }
2082
2083         if (con->in_base_pos < 0) {
2084                 /*
2085                  * skipping + discarding content.
2086                  *
2087                  * FIXME: there must be a better way to do this!
2088                  */
2089                 static char buf[SKIP_BUF_SIZE];
2090                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2091
2092                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2093                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2094                 if (ret <= 0)
2095                         goto out;
2096                 con->in_base_pos += ret;
2097                 if (con->in_base_pos)
2098                         goto more;
2099         }
2100         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2101                 /*
2102                  * what's next?
2103                  */
2104                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2105                 if (ret <= 0)
2106                         goto out;
2107                 dout("try_read got tag %d\n", (int)con->in_tag);
2108                 switch (con->in_tag) {
2109                 case CEPH_MSGR_TAG_MSG:
2110                         prepare_read_message(con);
2111                         break;
2112                 case CEPH_MSGR_TAG_ACK:
2113                         prepare_read_ack(con);
2114                         break;
2115                 case CEPH_MSGR_TAG_CLOSE:
2116                         set_bit(CLOSED, &con->state);   /* fixme */
2117                         goto out;
2118                 default:
2119                         goto bad_tag;
2120                 }
2121         }
2122         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2123                 ret = read_partial_message(con);
2124                 if (ret <= 0) {
2125                         switch (ret) {
2126                         case -EBADMSG:
2127                                 con->error_msg = "bad crc";
2128                                 ret = -EIO;
2129                                 break;
2130                         case -EIO:
2131                                 con->error_msg = "io error";
2132                                 break;
2133                         }
2134                         goto out;
2135                 }
2136                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2137                         goto more;
2138                 process_message(con);
2139                 goto more;
2140         }
2141         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2142                 ret = read_partial_ack(con);
2143                 if (ret <= 0)
2144                         goto out;
2145                 process_ack(con);
2146                 goto more;
2147         }
2148
2149 out:
2150         dout("try_read done on %p ret %d\n", con, ret);
2151         return ret;
2152
2153 bad_tag:
2154         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2155         con->error_msg = "protocol error, garbage tag";
2156         ret = -1;
2157         goto out;
2158 }
2159
2160
2161 /*
2162  * Atomically queue work on a connection.  Bump @con reference to
2163  * avoid races with connection teardown.
2164  */
2165 static void queue_con(struct ceph_connection *con)
2166 {
2167         if (!con->ops->get(con)) {
2168                 dout("queue_con %p ref count 0\n", con);
2169                 return;
2170         }
2171
2172         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2173                 dout("queue_con %p - already queued\n", con);
2174                 con->ops->put(con);
2175         } else {
2176                 dout("queue_con %p\n", con);
2177         }
2178 }
2179
2180 /*
2181  * Do some work on a connection.  Drop a connection ref when we're done.
2182  */
2183 static void con_work(struct work_struct *work)
2184 {
2185         struct ceph_connection *con = container_of(work, struct ceph_connection,
2186                                                    work.work);
2187         int ret;
2188
2189         mutex_lock(&con->mutex);
2190 restart:
2191         if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2192                 if (test_bit(CONNECTING, &con->state))
2193                         con->error_msg = "connection failed";
2194                 else
2195                         con->error_msg = "socket closed";
2196                 goto fault;
2197         }
2198
2199         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2200                 dout("con_work %p backing off\n", con);
2201                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2202                                        round_jiffies_relative(con->delay))) {
2203                         dout("con_work %p backoff %lu\n", con, con->delay);
2204                         mutex_unlock(&con->mutex);
2205                         return;
2206                 } else {
2207                         con->ops->put(con);
2208                         dout("con_work %p FAILED to back off %lu\n", con,
2209                              con->delay);
2210                 }
2211         }
2212
2213         if (test_bit(STANDBY, &con->state)) {
2214                 dout("con_work %p STANDBY\n", con);
2215                 goto done;
2216         }
2217         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2218                 dout("con_work CLOSED\n");
2219                 con_close_socket(con);
2220                 goto done;
2221         }
2222         if (test_and_clear_bit(OPENING, &con->state)) {
2223                 /* reopen w/ new peer */
2224                 dout("con_work OPENING\n");
2225                 con_close_socket(con);
2226         }
2227
2228         ret = try_read(con);
2229         if (ret == -EAGAIN)
2230                 goto restart;
2231         if (ret < 0)
2232                 goto fault;
2233
2234         ret = try_write(con);
2235         if (ret == -EAGAIN)
2236                 goto restart;
2237         if (ret < 0)
2238                 goto fault;
2239
2240 done:
2241         mutex_unlock(&con->mutex);
2242 done_unlocked:
2243         con->ops->put(con);
2244         return;
2245
2246 fault:
2247         mutex_unlock(&con->mutex);
2248         ceph_fault(con);     /* error/fault path */
2249         goto done_unlocked;
2250 }
2251
2252
2253 /*
2254  * Generic error/fault handler.  A retry mechanism is used with
2255  * exponential backoff
2256  */
2257 static void ceph_fault(struct ceph_connection *con)
2258 {
2259         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2260                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2261         dout("fault %p state %lu to peer %s\n",
2262              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2263
2264         if (test_bit(LOSSYTX, &con->flags)) {
2265                 dout("fault on LOSSYTX channel\n");
2266                 goto out;
2267         }
2268
2269         mutex_lock(&con->mutex);
2270         if (test_bit(CLOSED, &con->state))
2271                 goto out_unlock;
2272
2273         con_close_socket(con);
2274
2275         if (con->in_msg) {
2276                 BUG_ON(con->in_msg->con != con);
2277                 con->in_msg->con = NULL;
2278                 ceph_msg_put(con->in_msg);
2279                 con->in_msg = NULL;
2280                 con->ops->put(con);
2281         }
2282
2283         /* Requeue anything that hasn't been acked */
2284         list_splice_init(&con->out_sent, &con->out_queue);
2285
2286         /* If there are no messages queued or keepalive pending, place
2287          * the connection in a STANDBY state */
2288         if (list_empty(&con->out_queue) &&
2289             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2290                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2291                 clear_bit(WRITE_PENDING, &con->flags);
2292                 set_bit(STANDBY, &con->state);
2293         } else {
2294                 /* retry after a delay. */
2295                 if (con->delay == 0)
2296                         con->delay = BASE_DELAY_INTERVAL;
2297                 else if (con->delay < MAX_DELAY_INTERVAL)
2298                         con->delay *= 2;
2299                 con->ops->get(con);
2300                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2301                                        round_jiffies_relative(con->delay))) {
2302                         dout("fault queued %p delay %lu\n", con, con->delay);
2303                 } else {
2304                         con->ops->put(con);
2305                         dout("fault failed to queue %p delay %lu, backoff\n",
2306                              con, con->delay);
2307                         /*
2308                          * In many cases we see a socket state change
2309                          * while con_work is running and end up
2310                          * queuing (non-delayed) work, such that we
2311                          * can't backoff with a delay.  Set a flag so
2312                          * that when con_work restarts we schedule the
2313                          * delay then.
2314                          */
2315                         set_bit(BACKOFF, &con->flags);
2316                 }
2317         }
2318
2319 out_unlock:
2320         mutex_unlock(&con->mutex);
2321 out:
2322         /*
2323          * in case we faulted due to authentication, invalidate our
2324          * current tickets so that we can get new ones.
2325          */
2326         if (con->auth_retry && con->ops->invalidate_authorizer) {
2327                 dout("calling invalidate_authorizer()\n");
2328                 con->ops->invalidate_authorizer(con);
2329         }
2330
2331         if (con->ops->fault)
2332                 con->ops->fault(con);
2333 }
2334
2335
2336
2337 /*
2338  * initialize a new messenger instance
2339  */
2340 void ceph_messenger_init(struct ceph_messenger *msgr,
2341                         struct ceph_entity_addr *myaddr,
2342                         u32 supported_features,
2343                         u32 required_features,
2344                         bool nocrc)
2345 {
2346         msgr->supported_features = supported_features;
2347         msgr->required_features = required_features;
2348
2349         spin_lock_init(&msgr->global_seq_lock);
2350
2351         if (myaddr)
2352                 msgr->inst.addr = *myaddr;
2353
2354         /* select a random nonce */
2355         msgr->inst.addr.type = 0;
2356         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2357         encode_my_addr(msgr);
2358         msgr->nocrc = nocrc;
2359
2360         dout("%s %p\n", __func__, msgr);
2361 }
2362 EXPORT_SYMBOL(ceph_messenger_init);
2363
2364 static void clear_standby(struct ceph_connection *con)
2365 {
2366         /* come back from STANDBY? */
2367         if (test_and_clear_bit(STANDBY, &con->state)) {
2368                 mutex_lock(&con->mutex);
2369                 dout("clear_standby %p and ++connect_seq\n", con);
2370                 con->connect_seq++;
2371                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2372                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2373                 mutex_unlock(&con->mutex);
2374         }
2375 }
2376
2377 /*
2378  * Queue up an outgoing message on the given connection.
2379  */
2380 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2381 {
2382         if (test_bit(CLOSED, &con->state)) {
2383                 dout("con_send %p closed, dropping %p\n", con, msg);
2384                 ceph_msg_put(msg);
2385                 return;
2386         }
2387
2388         /* set src+dst */
2389         msg->hdr.src = con->msgr->inst.name;
2390
2391         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2392
2393         msg->needs_out_seq = true;
2394
2395         /* queue */
2396         mutex_lock(&con->mutex);
2397
2398         BUG_ON(msg->con != NULL);
2399         msg->con = con->ops->get(con);
2400         BUG_ON(msg->con == NULL);
2401
2402         BUG_ON(!list_empty(&msg->list_head));
2403         list_add_tail(&msg->list_head, &con->out_queue);
2404         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2405              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2406              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2407              le32_to_cpu(msg->hdr.front_len),
2408              le32_to_cpu(msg->hdr.middle_len),
2409              le32_to_cpu(msg->hdr.data_len));
2410         mutex_unlock(&con->mutex);
2411
2412         /* if there wasn't anything waiting to send before, queue
2413          * new work */
2414         clear_standby(con);
2415         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2416                 queue_con(con);
2417 }
2418 EXPORT_SYMBOL(ceph_con_send);
2419
2420 /*
2421  * Revoke a message that was previously queued for send
2422  */
2423 void ceph_msg_revoke(struct ceph_msg *msg)
2424 {
2425         struct ceph_connection *con = msg->con;
2426
2427         if (!con)
2428                 return;         /* Message not in our possession */
2429
2430         mutex_lock(&con->mutex);
2431         if (!list_empty(&msg->list_head)) {
2432                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2433                 list_del_init(&msg->list_head);
2434                 BUG_ON(msg->con == NULL);
2435                 msg->con->ops->put(msg->con);
2436                 msg->con = NULL;
2437                 msg->hdr.seq = 0;
2438
2439                 ceph_msg_put(msg);
2440         }
2441         if (con->out_msg == msg) {
2442                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2443                 con->out_msg = NULL;
2444                 if (con->out_kvec_is_msg) {
2445                         con->out_skip = con->out_kvec_bytes;
2446                         con->out_kvec_is_msg = false;
2447                 }
2448                 msg->hdr.seq = 0;
2449
2450                 ceph_msg_put(msg);
2451         }
2452         mutex_unlock(&con->mutex);
2453 }
2454
2455 /*
2456  * Revoke a message that we may be reading data into
2457  */
2458 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2459 {
2460         struct ceph_connection *con;
2461
2462         BUG_ON(msg == NULL);
2463         if (!msg->con) {
2464                 dout("%s msg %p null con\n", __func__, msg);
2465
2466                 return;         /* Message not in our possession */
2467         }
2468
2469         con = msg->con;
2470         mutex_lock(&con->mutex);
2471         if (con->in_msg == msg) {
2472                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2473                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2474                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2475
2476                 /* skip rest of message */
2477                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2478                 con->in_base_pos = con->in_base_pos -
2479                                 sizeof(struct ceph_msg_header) -
2480                                 front_len -
2481                                 middle_len -
2482                                 data_len -
2483                                 sizeof(struct ceph_msg_footer);
2484                 ceph_msg_put(con->in_msg);
2485                 con->in_msg = NULL;
2486                 con->in_tag = CEPH_MSGR_TAG_READY;
2487                 con->in_seq++;
2488         } else {
2489                 dout("%s %p in_msg %p msg %p no-op\n",
2490                      __func__, con, con->in_msg, msg);
2491         }
2492         mutex_unlock(&con->mutex);
2493 }
2494
2495 /*
2496  * Queue a keepalive byte to ensure the tcp connection is alive.
2497  */
2498 void ceph_con_keepalive(struct ceph_connection *con)
2499 {
2500         dout("con_keepalive %p\n", con);
2501         clear_standby(con);
2502         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2503             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2504                 queue_con(con);
2505 }
2506 EXPORT_SYMBOL(ceph_con_keepalive);
2507
2508
2509 /*
2510  * construct a new message with given type, size
2511  * the new msg has a ref count of 1.
2512  */
2513 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2514                               bool can_fail)
2515 {
2516         struct ceph_msg *m;
2517
2518         m = kmalloc(sizeof(*m), flags);
2519         if (m == NULL)
2520                 goto out;
2521         kref_init(&m->kref);
2522
2523         m->con = NULL;
2524         INIT_LIST_HEAD(&m->list_head);
2525
2526         m->hdr.tid = 0;
2527         m->hdr.type = cpu_to_le16(type);
2528         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2529         m->hdr.version = 0;
2530         m->hdr.front_len = cpu_to_le32(front_len);
2531         m->hdr.middle_len = 0;
2532         m->hdr.data_len = 0;
2533         m->hdr.data_off = 0;
2534         m->hdr.reserved = 0;
2535         m->footer.front_crc = 0;
2536         m->footer.middle_crc = 0;
2537         m->footer.data_crc = 0;
2538         m->footer.flags = 0;
2539         m->front_max = front_len;
2540         m->front_is_vmalloc = false;
2541         m->more_to_follow = false;
2542         m->ack_stamp = 0;
2543         m->pool = NULL;
2544
2545         /* middle */
2546         m->middle = NULL;
2547
2548         /* data */
2549         m->nr_pages = 0;
2550         m->page_alignment = 0;
2551         m->pages = NULL;
2552         m->pagelist = NULL;
2553         m->bio = NULL;
2554         m->bio_iter = NULL;
2555         m->bio_seg = 0;
2556         m->trail = NULL;
2557
2558         /* front */
2559         if (front_len) {
2560                 if (front_len > PAGE_CACHE_SIZE) {
2561                         m->front.iov_base = __vmalloc(front_len, flags,
2562                                                       PAGE_KERNEL);
2563                         m->front_is_vmalloc = true;
2564                 } else {
2565                         m->front.iov_base = kmalloc(front_len, flags);
2566                 }
2567                 if (m->front.iov_base == NULL) {
2568                         dout("ceph_msg_new can't allocate %d bytes\n",
2569                              front_len);
2570                         goto out2;
2571                 }
2572         } else {
2573                 m->front.iov_base = NULL;
2574         }
2575         m->front.iov_len = front_len;
2576
2577         dout("ceph_msg_new %p front %d\n", m, front_len);
2578         return m;
2579
2580 out2:
2581         ceph_msg_put(m);
2582 out:
2583         if (!can_fail) {
2584                 pr_err("msg_new can't create type %d front %d\n", type,
2585                        front_len);
2586                 WARN_ON(1);
2587         } else {
2588                 dout("msg_new can't create type %d front %d\n", type,
2589                      front_len);
2590         }
2591         return NULL;
2592 }
2593 EXPORT_SYMBOL(ceph_msg_new);
2594
2595 /*
2596  * Allocate "middle" portion of a message, if it is needed and wasn't
2597  * allocated by alloc_msg.  This allows us to read a small fixed-size
2598  * per-type header in the front and then gracefully fail (i.e.,
2599  * propagate the error to the caller based on info in the front) when
2600  * the middle is too large.
2601  */
2602 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2603 {
2604         int type = le16_to_cpu(msg->hdr.type);
2605         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2606
2607         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2608              ceph_msg_type_name(type), middle_len);
2609         BUG_ON(!middle_len);
2610         BUG_ON(msg->middle);
2611
2612         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2613         if (!msg->middle)
2614                 return -ENOMEM;
2615         return 0;
2616 }
2617
2618 /*
2619  * Allocate a message for receiving an incoming message on a
2620  * connection, and save the result in con->in_msg.  Uses the
2621  * connection's private alloc_msg op if available.
2622  *
2623  * Returns true if the message should be skipped, false otherwise.
2624  * If true is returned (skip message), con->in_msg will be NULL.
2625  * If false is returned, con->in_msg will contain a pointer to the
2626  * newly-allocated message, or NULL in case of memory exhaustion.
2627  */
2628 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2629                                 struct ceph_msg_header *hdr)
2630 {
2631         int type = le16_to_cpu(hdr->type);
2632         int front_len = le32_to_cpu(hdr->front_len);
2633         int middle_len = le32_to_cpu(hdr->middle_len);
2634         int ret;
2635
2636         BUG_ON(con->in_msg != NULL);
2637
2638         if (con->ops->alloc_msg) {
2639                 int skip = 0;
2640
2641                 mutex_unlock(&con->mutex);
2642                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2643                 mutex_lock(&con->mutex);
2644                 if (con->in_msg) {
2645                         con->in_msg->con = con->ops->get(con);
2646                         BUG_ON(con->in_msg->con == NULL);
2647                 }
2648                 if (skip)
2649                         con->in_msg = NULL;
2650
2651                 if (!con->in_msg)
2652                         return skip != 0;
2653         }
2654         if (!con->in_msg) {
2655                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2656                 if (!con->in_msg) {
2657                         pr_err("unable to allocate msg type %d len %d\n",
2658                                type, front_len);
2659                         return false;
2660                 }
2661                 con->in_msg->con = con->ops->get(con);
2662                 BUG_ON(con->in_msg->con == NULL);
2663                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2664         }
2665         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2666
2667         if (middle_len && !con->in_msg->middle) {
2668                 ret = ceph_alloc_middle(con, con->in_msg);
2669                 if (ret < 0) {
2670                         ceph_msg_put(con->in_msg);
2671                         con->in_msg = NULL;
2672                 }
2673         }
2674
2675         return false;
2676 }
2677
2678
2679 /*
2680  * Free a generically kmalloc'd message.
2681  */
2682 void ceph_msg_kfree(struct ceph_msg *m)
2683 {
2684         dout("msg_kfree %p\n", m);
2685         if (m->front_is_vmalloc)
2686                 vfree(m->front.iov_base);
2687         else
2688                 kfree(m->front.iov_base);
2689         kfree(m);
2690 }
2691
2692 /*
2693  * Drop a msg ref.  Destroy as needed.
2694  */
2695 void ceph_msg_last_put(struct kref *kref)
2696 {
2697         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2698
2699         dout("ceph_msg_put last one on %p\n", m);
2700         WARN_ON(!list_empty(&m->list_head));
2701
2702         /* drop middle, data, if any */
2703         if (m->middle) {
2704                 ceph_buffer_put(m->middle);
2705                 m->middle = NULL;
2706         }
2707         m->nr_pages = 0;
2708         m->pages = NULL;
2709
2710         if (m->pagelist) {
2711                 ceph_pagelist_release(m->pagelist);
2712                 kfree(m->pagelist);
2713                 m->pagelist = NULL;
2714         }
2715
2716         m->trail = NULL;
2717
2718         if (m->pool)
2719                 ceph_msgpool_put(m->pool, m);
2720         else
2721                 ceph_msg_kfree(m);
2722 }
2723 EXPORT_SYMBOL(ceph_msg_last_put);
2724
2725 void ceph_msg_dump(struct ceph_msg *msg)
2726 {
2727         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2728                  msg->front_max, msg->nr_pages);
2729         print_hex_dump(KERN_DEBUG, "header: ",
2730                        DUMP_PREFIX_OFFSET, 16, 1,
2731                        &msg->hdr, sizeof(msg->hdr), true);
2732         print_hex_dump(KERN_DEBUG, " front: ",
2733                        DUMP_PREFIX_OFFSET, 16, 1,
2734                        msg->front.iov_base, msg->front.iov_len, true);
2735         if (msg->middle)
2736                 print_hex_dump(KERN_DEBUG, "middle: ",
2737                                DUMP_PREFIX_OFFSET, 16, 1,
2738                                msg->middle->vec.iov_base,
2739                                msg->middle->vec.iov_len, true);
2740         print_hex_dump(KERN_DEBUG, "footer: ",
2741                        DUMP_PREFIX_OFFSET, 16, 1,
2742                        &msg->footer, sizeof(msg->footer), true);
2743 }
2744 EXPORT_SYMBOL(ceph_msg_dump);