libceph: don't use bio_iter as a flag
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         con_sock_state_connecting(con);
325         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326                                  O_NONBLOCK);
327         if (ret == -EINPROGRESS) {
328                 dout("connect %s EINPROGRESS sk_state = %u\n",
329                      ceph_pr_addr(&con->peer_addr.in_addr),
330                      sock->sk->sk_state);
331         } else if (ret < 0) {
332                 pr_err("connect %s error %d\n",
333                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
334                 sock_release(sock);
335                 con->error_msg = "connect error";
336
337                 return ret;
338         }
339         con->sock = sock;
340         return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345         struct kvec iov = {buf, len};
346         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347         int r;
348
349         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350         if (r == -EAGAIN)
351                 r = 0;
352         return r;
353 }
354
355 /*
356  * write something.  @more is true if caller will be sending more data
357  * shortly.
358  */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360                      size_t kvlen, size_t len, int more)
361 {
362         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363         int r;
364
365         if (more)
366                 msg.msg_flags |= MSG_MORE;
367         else
368                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
369
370         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371         if (r == -EAGAIN)
372                 r = 0;
373         return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377                      int offset, size_t size, int more)
378 {
379         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380         int ret;
381
382         ret = kernel_sendpage(sock, page, offset, size, flags);
383         if (ret == -EAGAIN)
384                 ret = 0;
385
386         return ret;
387 }
388
389
390 /*
391  * Shutdown/close the socket for the given connection.
392  */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395         int rc;
396
397         dout("con_close_socket on %p sock %p\n", con, con->sock);
398         if (!con->sock)
399                 return 0;
400         set_bit(SOCK_CLOSED, &con->state);
401         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402         sock_release(con->sock);
403         con->sock = NULL;
404         clear_bit(SOCK_CLOSED, &con->state);
405         con_sock_state_closed(con);
406         return rc;
407 }
408
409 /*
410  * Reset a connection.  Discard all incoming and outgoing messages
411  * and clear *_seq state.
412  */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415         list_del_init(&msg->list_head);
416         BUG_ON(msg->con == NULL);
417         msg->con->ops->put(msg->con);
418         msg->con = NULL;
419
420         ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424         while (!list_empty(head)) {
425                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426                                                         list_head);
427                 ceph_msg_remove(msg);
428         }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433         /* reset connection, out_queue, msg_ and connect_seq */
434         /* discard existing out_queue and msg_seq */
435         ceph_msg_remove_list(&con->out_queue);
436         ceph_msg_remove_list(&con->out_sent);
437
438         if (con->in_msg) {
439                 BUG_ON(con->in_msg->con != con);
440                 con->in_msg->con = NULL;
441                 ceph_msg_put(con->in_msg);
442                 con->in_msg = NULL;
443                 con->ops->put(con);
444         }
445
446         con->connect_seq = 0;
447         con->out_seq = 0;
448         if (con->out_msg) {
449                 ceph_msg_put(con->out_msg);
450                 con->out_msg = NULL;
451         }
452         con->in_seq = 0;
453         con->in_seq_acked = 0;
454 }
455
456 /*
457  * mark a peer down.  drop any open connections.
458  */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461         dout("con_close %p peer %s\n", con,
462              ceph_pr_addr(&con->peer_addr.in_addr));
463         clear_bit(NEGOTIATING, &con->state);
464         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
465         set_bit(CLOSED, &con->state);
466
467         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
468         clear_bit(KEEPALIVE_PENDING, &con->flags);
469         clear_bit(WRITE_PENDING, &con->flags);
470
471         mutex_lock(&con->mutex);
472         reset_connection(con);
473         con->peer_global_seq = 0;
474         cancel_delayed_work(&con->work);
475         mutex_unlock(&con->mutex);
476         queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481  * Reopen a closed connection, with a new peer address.
482  */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486         set_bit(OPENING, &con->state);
487         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489         memcpy(&con->peer_addr, addr, sizeof(*addr));
490         con->delay = 0;      /* reset backoff memory */
491         queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496  * return true if this connection ever successfully opened
497  */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500         return con->connect_seq > 0;
501 }
502
503 /*
504  * initialize a new connection.
505  */
506 void ceph_con_init(struct ceph_connection *con, void *private,
507         const struct ceph_connection_operations *ops,
508         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
509 {
510         dout("con_init %p\n", con);
511         memset(con, 0, sizeof(*con));
512         con->private = private;
513         con->ops = ops;
514         con->msgr = msgr;
515
516         con_sock_state_init(con);
517
518         con->peer_name.type = (__u8) entity_type;
519         con->peer_name.num = cpu_to_le64(entity_num);
520
521         mutex_init(&con->mutex);
522         INIT_LIST_HEAD(&con->out_queue);
523         INIT_LIST_HEAD(&con->out_sent);
524         INIT_DELAYED_WORK(&con->work, con_work);
525
526         set_bit(CLOSED, &con->state);
527 }
528 EXPORT_SYMBOL(ceph_con_init);
529
530
531 /*
532  * We maintain a global counter to order connection attempts.  Get
533  * a unique seq greater than @gt.
534  */
535 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
536 {
537         u32 ret;
538
539         spin_lock(&msgr->global_seq_lock);
540         if (msgr->global_seq < gt)
541                 msgr->global_seq = gt;
542         ret = ++msgr->global_seq;
543         spin_unlock(&msgr->global_seq_lock);
544         return ret;
545 }
546
547 static void con_out_kvec_reset(struct ceph_connection *con)
548 {
549         con->out_kvec_left = 0;
550         con->out_kvec_bytes = 0;
551         con->out_kvec_cur = &con->out_kvec[0];
552 }
553
554 static void con_out_kvec_add(struct ceph_connection *con,
555                                 size_t size, void *data)
556 {
557         int index;
558
559         index = con->out_kvec_left;
560         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
561
562         con->out_kvec[index].iov_len = size;
563         con->out_kvec[index].iov_base = data;
564         con->out_kvec_left++;
565         con->out_kvec_bytes += size;
566 }
567
568 #ifdef CONFIG_BLOCK
569 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
570 {
571         if (!bio) {
572                 *iter = NULL;
573                 *seg = 0;
574                 return;
575         }
576         *iter = bio;
577         *seg = bio->bi_idx;
578 }
579
580 static void iter_bio_next(struct bio **bio_iter, int *seg)
581 {
582         if (*bio_iter == NULL)
583                 return;
584
585         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
586
587         (*seg)++;
588         if (*seg == (*bio_iter)->bi_vcnt)
589                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
590 }
591 #endif
592
593 static void prepare_write_message_data(struct ceph_connection *con)
594 {
595         struct ceph_msg *msg = con->out_msg;
596
597         BUG_ON(!msg);
598         BUG_ON(!msg->hdr.data_len);
599
600         /* initialize page iterator */
601         con->out_msg_pos.page = 0;
602         if (msg->pages)
603                 con->out_msg_pos.page_pos = msg->page_alignment;
604         else
605                 con->out_msg_pos.page_pos = 0;
606 #ifdef CONFIG_BLOCK
607         if (msg->bio)
608                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
609 #endif
610         con->out_msg_pos.data_pos = 0;
611         con->out_msg_pos.did_page_crc = false;
612         con->out_more = 1;  /* data + footer will follow */
613 }
614
615 /*
616  * Prepare footer for currently outgoing message, and finish things
617  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
618  */
619 static void prepare_write_message_footer(struct ceph_connection *con)
620 {
621         struct ceph_msg *m = con->out_msg;
622         int v = con->out_kvec_left;
623
624         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
625
626         dout("prepare_write_message_footer %p\n", con);
627         con->out_kvec_is_msg = true;
628         con->out_kvec[v].iov_base = &m->footer;
629         con->out_kvec[v].iov_len = sizeof(m->footer);
630         con->out_kvec_bytes += sizeof(m->footer);
631         con->out_kvec_left++;
632         con->out_more = m->more_to_follow;
633         con->out_msg_done = true;
634 }
635
636 /*
637  * Prepare headers for the next outgoing message.
638  */
639 static void prepare_write_message(struct ceph_connection *con)
640 {
641         struct ceph_msg *m;
642         u32 crc;
643
644         con_out_kvec_reset(con);
645         con->out_kvec_is_msg = true;
646         con->out_msg_done = false;
647
648         /* Sneak an ack in there first?  If we can get it into the same
649          * TCP packet that's a good thing. */
650         if (con->in_seq > con->in_seq_acked) {
651                 con->in_seq_acked = con->in_seq;
652                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
653                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
654                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
655                         &con->out_temp_ack);
656         }
657
658         BUG_ON(list_empty(&con->out_queue));
659         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
660         con->out_msg = m;
661         BUG_ON(m->con != con);
662
663         /* put message on sent list */
664         ceph_msg_get(m);
665         list_move_tail(&m->list_head, &con->out_sent);
666
667         /*
668          * only assign outgoing seq # if we haven't sent this message
669          * yet.  if it is requeued, resend with it's original seq.
670          */
671         if (m->needs_out_seq) {
672                 m->hdr.seq = cpu_to_le64(++con->out_seq);
673                 m->needs_out_seq = false;
674         }
675
676         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
677              m, con->out_seq, le16_to_cpu(m->hdr.type),
678              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
679              le32_to_cpu(m->hdr.data_len),
680              m->nr_pages);
681         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
682
683         /* tag + hdr + front + middle */
684         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
685         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
686         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
687
688         if (m->middle)
689                 con_out_kvec_add(con, m->middle->vec.iov_len,
690                         m->middle->vec.iov_base);
691
692         /* fill in crc (except data pages), footer */
693         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
694         con->out_msg->hdr.crc = cpu_to_le32(crc);
695         con->out_msg->footer.flags = 0;
696
697         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
698         con->out_msg->footer.front_crc = cpu_to_le32(crc);
699         if (m->middle) {
700                 crc = crc32c(0, m->middle->vec.iov_base,
701                                 m->middle->vec.iov_len);
702                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
703         } else
704                 con->out_msg->footer.middle_crc = 0;
705         dout("%s front_crc %u middle_crc %u\n", __func__,
706              le32_to_cpu(con->out_msg->footer.front_crc),
707              le32_to_cpu(con->out_msg->footer.middle_crc));
708
709         /* is there a data payload? */
710         con->out_msg->footer.data_crc = 0;
711         if (m->hdr.data_len)
712                 prepare_write_message_data(con);
713         else
714                 /* no, queue up footer too and be done */
715                 prepare_write_message_footer(con);
716
717         set_bit(WRITE_PENDING, &con->flags);
718 }
719
720 /*
721  * Prepare an ack.
722  */
723 static void prepare_write_ack(struct ceph_connection *con)
724 {
725         dout("prepare_write_ack %p %llu -> %llu\n", con,
726              con->in_seq_acked, con->in_seq);
727         con->in_seq_acked = con->in_seq;
728
729         con_out_kvec_reset(con);
730
731         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732
733         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734         con_out_kvec_add(con, sizeof (con->out_temp_ack),
735                                 &con->out_temp_ack);
736
737         con->out_more = 1;  /* more will follow.. eventually.. */
738         set_bit(WRITE_PENDING, &con->flags);
739 }
740
741 /*
742  * Prepare to write keepalive byte.
743  */
744 static void prepare_write_keepalive(struct ceph_connection *con)
745 {
746         dout("prepare_write_keepalive %p\n", con);
747         con_out_kvec_reset(con);
748         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
749         set_bit(WRITE_PENDING, &con->flags);
750 }
751
752 /*
753  * Connection negotiation.
754  */
755
756 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
757                                                 int *auth_proto)
758 {
759         struct ceph_auth_handshake *auth;
760
761         if (!con->ops->get_authorizer) {
762                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
763                 con->out_connect.authorizer_len = 0;
764
765                 return NULL;
766         }
767
768         /* Can't hold the mutex while getting authorizer */
769
770         mutex_unlock(&con->mutex);
771
772         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
773
774         mutex_lock(&con->mutex);
775
776         if (IS_ERR(auth))
777                 return auth;
778         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
779                 return ERR_PTR(-EAGAIN);
780
781         con->auth_reply_buf = auth->authorizer_reply_buf;
782         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
783
784
785         return auth;
786 }
787
788 /*
789  * We connected to a peer and are saying hello.
790  */
791 static void prepare_write_banner(struct ceph_connection *con)
792 {
793         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
794         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
795                                         &con->msgr->my_enc_addr);
796
797         con->out_more = 0;
798         set_bit(WRITE_PENDING, &con->flags);
799 }
800
801 static int prepare_write_connect(struct ceph_connection *con)
802 {
803         unsigned int global_seq = get_global_seq(con->msgr, 0);
804         int proto;
805         int auth_proto;
806         struct ceph_auth_handshake *auth;
807
808         switch (con->peer_name.type) {
809         case CEPH_ENTITY_TYPE_MON:
810                 proto = CEPH_MONC_PROTOCOL;
811                 break;
812         case CEPH_ENTITY_TYPE_OSD:
813                 proto = CEPH_OSDC_PROTOCOL;
814                 break;
815         case CEPH_ENTITY_TYPE_MDS:
816                 proto = CEPH_MDSC_PROTOCOL;
817                 break;
818         default:
819                 BUG();
820         }
821
822         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
823              con->connect_seq, global_seq, proto);
824
825         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
826         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
827         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
828         con->out_connect.global_seq = cpu_to_le32(global_seq);
829         con->out_connect.protocol_version = cpu_to_le32(proto);
830         con->out_connect.flags = 0;
831
832         auth_proto = CEPH_AUTH_UNKNOWN;
833         auth = get_connect_authorizer(con, &auth_proto);
834         if (IS_ERR(auth))
835                 return PTR_ERR(auth);
836
837         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
838         con->out_connect.authorizer_len = auth ?
839                 cpu_to_le32(auth->authorizer_buf_len) : 0;
840
841         con_out_kvec_add(con, sizeof (con->out_connect),
842                                         &con->out_connect);
843         if (auth && auth->authorizer_buf_len)
844                 con_out_kvec_add(con, auth->authorizer_buf_len,
845                                         auth->authorizer_buf);
846
847         con->out_more = 0;
848         set_bit(WRITE_PENDING, &con->flags);
849
850         return 0;
851 }
852
853 /*
854  * write as much of pending kvecs to the socket as we can.
855  *  1 -> done
856  *  0 -> socket full, but more to do
857  * <0 -> error
858  */
859 static int write_partial_kvec(struct ceph_connection *con)
860 {
861         int ret;
862
863         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
864         while (con->out_kvec_bytes > 0) {
865                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
866                                        con->out_kvec_left, con->out_kvec_bytes,
867                                        con->out_more);
868                 if (ret <= 0)
869                         goto out;
870                 con->out_kvec_bytes -= ret;
871                 if (con->out_kvec_bytes == 0)
872                         break;            /* done */
873
874                 /* account for full iov entries consumed */
875                 while (ret >= con->out_kvec_cur->iov_len) {
876                         BUG_ON(!con->out_kvec_left);
877                         ret -= con->out_kvec_cur->iov_len;
878                         con->out_kvec_cur++;
879                         con->out_kvec_left--;
880                 }
881                 /* and for a partially-consumed entry */
882                 if (ret) {
883                         con->out_kvec_cur->iov_len -= ret;
884                         con->out_kvec_cur->iov_base += ret;
885                 }
886         }
887         con->out_kvec_left = 0;
888         con->out_kvec_is_msg = false;
889         ret = 1;
890 out:
891         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
892              con->out_kvec_bytes, con->out_kvec_left, ret);
893         return ret;  /* done! */
894 }
895
896 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
897                         size_t len, size_t sent, bool in_trail)
898 {
899         struct ceph_msg *msg = con->out_msg;
900
901         BUG_ON(!msg);
902         BUG_ON(!sent);
903
904         con->out_msg_pos.data_pos += sent;
905         con->out_msg_pos.page_pos += sent;
906         if (sent == len) {
907                 con->out_msg_pos.page_pos = 0;
908                 con->out_msg_pos.page++;
909                 con->out_msg_pos.did_page_crc = false;
910                 if (in_trail)
911                         list_move_tail(&page->lru,
912                                        &msg->trail->head);
913                 else if (msg->pagelist)
914                         list_move_tail(&page->lru,
915                                        &msg->pagelist->head);
916 #ifdef CONFIG_BLOCK
917                 else if (msg->bio)
918                         iter_bio_next(&msg->bio_iter, &msg->bio_seg);
919 #endif
920         }
921 }
922
923 /*
924  * Write as much message data payload as we can.  If we finish, queue
925  * up the footer.
926  *  1 -> done, footer is now queued in out_kvec[].
927  *  0 -> socket full, but more to do
928  * <0 -> error
929  */
930 static int write_partial_msg_pages(struct ceph_connection *con)
931 {
932         struct ceph_msg *msg = con->out_msg;
933         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
934         size_t len;
935         bool do_datacrc = !con->msgr->nocrc;
936         int ret;
937         int total_max_write;
938         bool in_trail = false;
939         size_t trail_len = (msg->trail ? msg->trail->length : 0);
940
941         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
942              con, msg, con->out_msg_pos.page, msg->nr_pages,
943              con->out_msg_pos.page_pos);
944
945         while (data_len > con->out_msg_pos.data_pos) {
946                 struct page *page = NULL;
947                 int max_write = PAGE_SIZE;
948                 int bio_offset = 0;
949
950                 total_max_write = data_len - trail_len -
951                         con->out_msg_pos.data_pos;
952
953                 /*
954                  * if we are calculating the data crc (the default), we need
955                  * to map the page.  if our pages[] has been revoked, use the
956                  * zero page.
957                  */
958
959                 /* have we reached the trail part of the data? */
960                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
961                         in_trail = true;
962
963                         total_max_write = data_len - con->out_msg_pos.data_pos;
964
965                         page = list_first_entry(&msg->trail->head,
966                                                 struct page, lru);
967                 } else if (msg->pages) {
968                         page = msg->pages[con->out_msg_pos.page];
969                 } else if (msg->pagelist) {
970                         page = list_first_entry(&msg->pagelist->head,
971                                                 struct page, lru);
972 #ifdef CONFIG_BLOCK
973                 } else if (msg->bio) {
974                         struct bio_vec *bv;
975
976                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
977                         page = bv->bv_page;
978                         bio_offset = bv->bv_offset;
979                         max_write = bv->bv_len;
980 #endif
981                 } else {
982                         page = zero_page;
983                 }
984                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
985                             total_max_write);
986
987                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
988                         void *base;
989                         u32 crc;
990                         u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
991                         char *kaddr;
992
993                         kaddr = kmap(page);
994                         BUG_ON(kaddr == NULL);
995                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
996                         crc = crc32c(tmpcrc, base, len);
997                         msg->footer.data_crc = cpu_to_le32(crc);
998                         con->out_msg_pos.did_page_crc = true;
999                 }
1000                 ret = ceph_tcp_sendpage(con->sock, page,
1001                                       con->out_msg_pos.page_pos + bio_offset,
1002                                       len, 1);
1003
1004                 if (do_datacrc)
1005                         kunmap(page);
1006
1007                 if (ret <= 0)
1008                         goto out;
1009
1010                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1011         }
1012
1013         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1014
1015         /* prepare and queue up footer, too */
1016         if (!do_datacrc)
1017                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1018         con_out_kvec_reset(con);
1019         prepare_write_message_footer(con);
1020         ret = 1;
1021 out:
1022         return ret;
1023 }
1024
1025 /*
1026  * write some zeros
1027  */
1028 static int write_partial_skip(struct ceph_connection *con)
1029 {
1030         int ret;
1031
1032         while (con->out_skip > 0) {
1033                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1034
1035                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1036                 if (ret <= 0)
1037                         goto out;
1038                 con->out_skip -= ret;
1039         }
1040         ret = 1;
1041 out:
1042         return ret;
1043 }
1044
1045 /*
1046  * Prepare to read connection handshake, or an ack.
1047  */
1048 static void prepare_read_banner(struct ceph_connection *con)
1049 {
1050         dout("prepare_read_banner %p\n", con);
1051         con->in_base_pos = 0;
1052 }
1053
1054 static void prepare_read_connect(struct ceph_connection *con)
1055 {
1056         dout("prepare_read_connect %p\n", con);
1057         con->in_base_pos = 0;
1058 }
1059
1060 static void prepare_read_ack(struct ceph_connection *con)
1061 {
1062         dout("prepare_read_ack %p\n", con);
1063         con->in_base_pos = 0;
1064 }
1065
1066 static void prepare_read_tag(struct ceph_connection *con)
1067 {
1068         dout("prepare_read_tag %p\n", con);
1069         con->in_base_pos = 0;
1070         con->in_tag = CEPH_MSGR_TAG_READY;
1071 }
1072
1073 /*
1074  * Prepare to read a message.
1075  */
1076 static int prepare_read_message(struct ceph_connection *con)
1077 {
1078         dout("prepare_read_message %p\n", con);
1079         BUG_ON(con->in_msg != NULL);
1080         con->in_base_pos = 0;
1081         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1082         return 0;
1083 }
1084
1085
1086 static int read_partial(struct ceph_connection *con,
1087                         int end, int size, void *object)
1088 {
1089         while (con->in_base_pos < end) {
1090                 int left = end - con->in_base_pos;
1091                 int have = size - left;
1092                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1093                 if (ret <= 0)
1094                         return ret;
1095                 con->in_base_pos += ret;
1096         }
1097         return 1;
1098 }
1099
1100
1101 /*
1102  * Read all or part of the connect-side handshake on a new connection
1103  */
1104 static int read_partial_banner(struct ceph_connection *con)
1105 {
1106         int size;
1107         int end;
1108         int ret;
1109
1110         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1111
1112         /* peer's banner */
1113         size = strlen(CEPH_BANNER);
1114         end = size;
1115         ret = read_partial(con, end, size, con->in_banner);
1116         if (ret <= 0)
1117                 goto out;
1118
1119         size = sizeof (con->actual_peer_addr);
1120         end += size;
1121         ret = read_partial(con, end, size, &con->actual_peer_addr);
1122         if (ret <= 0)
1123                 goto out;
1124
1125         size = sizeof (con->peer_addr_for_me);
1126         end += size;
1127         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1128         if (ret <= 0)
1129                 goto out;
1130
1131 out:
1132         return ret;
1133 }
1134
1135 static int read_partial_connect(struct ceph_connection *con)
1136 {
1137         int size;
1138         int end;
1139         int ret;
1140
1141         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1142
1143         size = sizeof (con->in_reply);
1144         end = size;
1145         ret = read_partial(con, end, size, &con->in_reply);
1146         if (ret <= 0)
1147                 goto out;
1148
1149         size = le32_to_cpu(con->in_reply.authorizer_len);
1150         end += size;
1151         ret = read_partial(con, end, size, con->auth_reply_buf);
1152         if (ret <= 0)
1153                 goto out;
1154
1155         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1156              con, (int)con->in_reply.tag,
1157              le32_to_cpu(con->in_reply.connect_seq),
1158              le32_to_cpu(con->in_reply.global_seq));
1159 out:
1160         return ret;
1161
1162 }
1163
1164 /*
1165  * Verify the hello banner looks okay.
1166  */
1167 static int verify_hello(struct ceph_connection *con)
1168 {
1169         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1170                 pr_err("connect to %s got bad banner\n",
1171                        ceph_pr_addr(&con->peer_addr.in_addr));
1172                 con->error_msg = "protocol error, bad banner";
1173                 return -1;
1174         }
1175         return 0;
1176 }
1177
1178 static bool addr_is_blank(struct sockaddr_storage *ss)
1179 {
1180         switch (ss->ss_family) {
1181         case AF_INET:
1182                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1183         case AF_INET6:
1184                 return
1185                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1186                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1187                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1188                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1189         }
1190         return false;
1191 }
1192
1193 static int addr_port(struct sockaddr_storage *ss)
1194 {
1195         switch (ss->ss_family) {
1196         case AF_INET:
1197                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1198         case AF_INET6:
1199                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1200         }
1201         return 0;
1202 }
1203
1204 static void addr_set_port(struct sockaddr_storage *ss, int p)
1205 {
1206         switch (ss->ss_family) {
1207         case AF_INET:
1208                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1209                 break;
1210         case AF_INET6:
1211                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1212                 break;
1213         }
1214 }
1215
1216 /*
1217  * Unlike other *_pton function semantics, zero indicates success.
1218  */
1219 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1220                 char delim, const char **ipend)
1221 {
1222         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1223         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1224
1225         memset(ss, 0, sizeof(*ss));
1226
1227         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1228                 ss->ss_family = AF_INET;
1229                 return 0;
1230         }
1231
1232         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1233                 ss->ss_family = AF_INET6;
1234                 return 0;
1235         }
1236
1237         return -EINVAL;
1238 }
1239
1240 /*
1241  * Extract hostname string and resolve using kernel DNS facility.
1242  */
1243 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1244 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1245                 struct sockaddr_storage *ss, char delim, const char **ipend)
1246 {
1247         const char *end, *delim_p;
1248         char *colon_p, *ip_addr = NULL;
1249         int ip_len, ret;
1250
1251         /*
1252          * The end of the hostname occurs immediately preceding the delimiter or
1253          * the port marker (':') where the delimiter takes precedence.
1254          */
1255         delim_p = memchr(name, delim, namelen);
1256         colon_p = memchr(name, ':', namelen);
1257
1258         if (delim_p && colon_p)
1259                 end = delim_p < colon_p ? delim_p : colon_p;
1260         else if (!delim_p && colon_p)
1261                 end = colon_p;
1262         else {
1263                 end = delim_p;
1264                 if (!end) /* case: hostname:/ */
1265                         end = name + namelen;
1266         }
1267
1268         if (end <= name)
1269                 return -EINVAL;
1270
1271         /* do dns_resolve upcall */
1272         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1273         if (ip_len > 0)
1274                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1275         else
1276                 ret = -ESRCH;
1277
1278         kfree(ip_addr);
1279
1280         *ipend = end;
1281
1282         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1283                         ret, ret ? "failed" : ceph_pr_addr(ss));
1284
1285         return ret;
1286 }
1287 #else
1288 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1289                 struct sockaddr_storage *ss, char delim, const char **ipend)
1290 {
1291         return -EINVAL;
1292 }
1293 #endif
1294
1295 /*
1296  * Parse a server name (IP or hostname). If a valid IP address is not found
1297  * then try to extract a hostname to resolve using userspace DNS upcall.
1298  */
1299 static int ceph_parse_server_name(const char *name, size_t namelen,
1300                         struct sockaddr_storage *ss, char delim, const char **ipend)
1301 {
1302         int ret;
1303
1304         ret = ceph_pton(name, namelen, ss, delim, ipend);
1305         if (ret)
1306                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1307
1308         return ret;
1309 }
1310
1311 /*
1312  * Parse an ip[:port] list into an addr array.  Use the default
1313  * monitor port if a port isn't specified.
1314  */
1315 int ceph_parse_ips(const char *c, const char *end,
1316                    struct ceph_entity_addr *addr,
1317                    int max_count, int *count)
1318 {
1319         int i, ret = -EINVAL;
1320         const char *p = c;
1321
1322         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1323         for (i = 0; i < max_count; i++) {
1324                 const char *ipend;
1325                 struct sockaddr_storage *ss = &addr[i].in_addr;
1326                 int port;
1327                 char delim = ',';
1328
1329                 if (*p == '[') {
1330                         delim = ']';
1331                         p++;
1332                 }
1333
1334                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1335                 if (ret)
1336                         goto bad;
1337                 ret = -EINVAL;
1338
1339                 p = ipend;
1340
1341                 if (delim == ']') {
1342                         if (*p != ']') {
1343                                 dout("missing matching ']'\n");
1344                                 goto bad;
1345                         }
1346                         p++;
1347                 }
1348
1349                 /* port? */
1350                 if (p < end && *p == ':') {
1351                         port = 0;
1352                         p++;
1353                         while (p < end && *p >= '0' && *p <= '9') {
1354                                 port = (port * 10) + (*p - '0');
1355                                 p++;
1356                         }
1357                         if (port > 65535 || port == 0)
1358                                 goto bad;
1359                 } else {
1360                         port = CEPH_MON_PORT;
1361                 }
1362
1363                 addr_set_port(ss, port);
1364
1365                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1366
1367                 if (p == end)
1368                         break;
1369                 if (*p != ',')
1370                         goto bad;
1371                 p++;
1372         }
1373
1374         if (p != end)
1375                 goto bad;
1376
1377         if (count)
1378                 *count = i + 1;
1379         return 0;
1380
1381 bad:
1382         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1383         return ret;
1384 }
1385 EXPORT_SYMBOL(ceph_parse_ips);
1386
1387 static int process_banner(struct ceph_connection *con)
1388 {
1389         dout("process_banner on %p\n", con);
1390
1391         if (verify_hello(con) < 0)
1392                 return -1;
1393
1394         ceph_decode_addr(&con->actual_peer_addr);
1395         ceph_decode_addr(&con->peer_addr_for_me);
1396
1397         /*
1398          * Make sure the other end is who we wanted.  note that the other
1399          * end may not yet know their ip address, so if it's 0.0.0.0, give
1400          * them the benefit of the doubt.
1401          */
1402         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1403                    sizeof(con->peer_addr)) != 0 &&
1404             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1405               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1406                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1407                            ceph_pr_addr(&con->peer_addr.in_addr),
1408                            (int)le32_to_cpu(con->peer_addr.nonce),
1409                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1410                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1411                 con->error_msg = "wrong peer at address";
1412                 return -1;
1413         }
1414
1415         /*
1416          * did we learn our address?
1417          */
1418         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1419                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1420
1421                 memcpy(&con->msgr->inst.addr.in_addr,
1422                        &con->peer_addr_for_me.in_addr,
1423                        sizeof(con->peer_addr_for_me.in_addr));
1424                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1425                 encode_my_addr(con->msgr);
1426                 dout("process_banner learned my addr is %s\n",
1427                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1428         }
1429
1430         set_bit(NEGOTIATING, &con->state);
1431         prepare_read_connect(con);
1432         return 0;
1433 }
1434
1435 static void fail_protocol(struct ceph_connection *con)
1436 {
1437         reset_connection(con);
1438         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1439 }
1440
1441 static int process_connect(struct ceph_connection *con)
1442 {
1443         u64 sup_feat = con->msgr->supported_features;
1444         u64 req_feat = con->msgr->required_features;
1445         u64 server_feat = le64_to_cpu(con->in_reply.features);
1446         int ret;
1447
1448         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1449
1450         switch (con->in_reply.tag) {
1451         case CEPH_MSGR_TAG_FEATURES:
1452                 pr_err("%s%lld %s feature set mismatch,"
1453                        " my %llx < server's %llx, missing %llx\n",
1454                        ENTITY_NAME(con->peer_name),
1455                        ceph_pr_addr(&con->peer_addr.in_addr),
1456                        sup_feat, server_feat, server_feat & ~sup_feat);
1457                 con->error_msg = "missing required protocol features";
1458                 fail_protocol(con);
1459                 return -1;
1460
1461         case CEPH_MSGR_TAG_BADPROTOVER:
1462                 pr_err("%s%lld %s protocol version mismatch,"
1463                        " my %d != server's %d\n",
1464                        ENTITY_NAME(con->peer_name),
1465                        ceph_pr_addr(&con->peer_addr.in_addr),
1466                        le32_to_cpu(con->out_connect.protocol_version),
1467                        le32_to_cpu(con->in_reply.protocol_version));
1468                 con->error_msg = "protocol version mismatch";
1469                 fail_protocol(con);
1470                 return -1;
1471
1472         case CEPH_MSGR_TAG_BADAUTHORIZER:
1473                 con->auth_retry++;
1474                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1475                      con->auth_retry);
1476                 if (con->auth_retry == 2) {
1477                         con->error_msg = "connect authorization failure";
1478                         return -1;
1479                 }
1480                 con->auth_retry = 1;
1481                 con_out_kvec_reset(con);
1482                 ret = prepare_write_connect(con);
1483                 if (ret < 0)
1484                         return ret;
1485                 prepare_read_connect(con);
1486                 break;
1487
1488         case CEPH_MSGR_TAG_RESETSESSION:
1489                 /*
1490                  * If we connected with a large connect_seq but the peer
1491                  * has no record of a session with us (no connection, or
1492                  * connect_seq == 0), they will send RESETSESION to indicate
1493                  * that they must have reset their session, and may have
1494                  * dropped messages.
1495                  */
1496                 dout("process_connect got RESET peer seq %u\n",
1497                      le32_to_cpu(con->in_connect.connect_seq));
1498                 pr_err("%s%lld %s connection reset\n",
1499                        ENTITY_NAME(con->peer_name),
1500                        ceph_pr_addr(&con->peer_addr.in_addr));
1501                 reset_connection(con);
1502                 con_out_kvec_reset(con);
1503                 ret = prepare_write_connect(con);
1504                 if (ret < 0)
1505                         return ret;
1506                 prepare_read_connect(con);
1507
1508                 /* Tell ceph about it. */
1509                 mutex_unlock(&con->mutex);
1510                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1511                 if (con->ops->peer_reset)
1512                         con->ops->peer_reset(con);
1513                 mutex_lock(&con->mutex);
1514                 if (test_bit(CLOSED, &con->state) ||
1515                     test_bit(OPENING, &con->state))
1516                         return -EAGAIN;
1517                 break;
1518
1519         case CEPH_MSGR_TAG_RETRY_SESSION:
1520                 /*
1521                  * If we sent a smaller connect_seq than the peer has, try
1522                  * again with a larger value.
1523                  */
1524                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1525                      le32_to_cpu(con->out_connect.connect_seq),
1526                      le32_to_cpu(con->in_connect.connect_seq));
1527                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1528                 con_out_kvec_reset(con);
1529                 ret = prepare_write_connect(con);
1530                 if (ret < 0)
1531                         return ret;
1532                 prepare_read_connect(con);
1533                 break;
1534
1535         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1536                 /*
1537                  * If we sent a smaller global_seq than the peer has, try
1538                  * again with a larger value.
1539                  */
1540                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1541                      con->peer_global_seq,
1542                      le32_to_cpu(con->in_connect.global_seq));
1543                 get_global_seq(con->msgr,
1544                                le32_to_cpu(con->in_connect.global_seq));
1545                 con_out_kvec_reset(con);
1546                 ret = prepare_write_connect(con);
1547                 if (ret < 0)
1548                         return ret;
1549                 prepare_read_connect(con);
1550                 break;
1551
1552         case CEPH_MSGR_TAG_READY:
1553                 if (req_feat & ~server_feat) {
1554                         pr_err("%s%lld %s protocol feature mismatch,"
1555                                " my required %llx > server's %llx, need %llx\n",
1556                                ENTITY_NAME(con->peer_name),
1557                                ceph_pr_addr(&con->peer_addr.in_addr),
1558                                req_feat, server_feat, req_feat & ~server_feat);
1559                         con->error_msg = "missing required protocol features";
1560                         fail_protocol(con);
1561                         return -1;
1562                 }
1563                 clear_bit(CONNECTING, &con->state);
1564                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1565                 con->connect_seq++;
1566                 con->peer_features = server_feat;
1567                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1568                      con->peer_global_seq,
1569                      le32_to_cpu(con->in_reply.connect_seq),
1570                      con->connect_seq);
1571                 WARN_ON(con->connect_seq !=
1572                         le32_to_cpu(con->in_reply.connect_seq));
1573
1574                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1575                         set_bit(LOSSYTX, &con->flags);
1576
1577                 prepare_read_tag(con);
1578                 break;
1579
1580         case CEPH_MSGR_TAG_WAIT:
1581                 /*
1582                  * If there is a connection race (we are opening
1583                  * connections to each other), one of us may just have
1584                  * to WAIT.  This shouldn't happen if we are the
1585                  * client.
1586                  */
1587                 pr_err("process_connect got WAIT as client\n");
1588                 con->error_msg = "protocol error, got WAIT as client";
1589                 return -1;
1590
1591         default:
1592                 pr_err("connect protocol error, will retry\n");
1593                 con->error_msg = "protocol error, garbage tag during connect";
1594                 return -1;
1595         }
1596         return 0;
1597 }
1598
1599
1600 /*
1601  * read (part of) an ack
1602  */
1603 static int read_partial_ack(struct ceph_connection *con)
1604 {
1605         int size = sizeof (con->in_temp_ack);
1606         int end = size;
1607
1608         return read_partial(con, end, size, &con->in_temp_ack);
1609 }
1610
1611
1612 /*
1613  * We can finally discard anything that's been acked.
1614  */
1615 static void process_ack(struct ceph_connection *con)
1616 {
1617         struct ceph_msg *m;
1618         u64 ack = le64_to_cpu(con->in_temp_ack);
1619         u64 seq;
1620
1621         while (!list_empty(&con->out_sent)) {
1622                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1623                                      list_head);
1624                 seq = le64_to_cpu(m->hdr.seq);
1625                 if (seq > ack)
1626                         break;
1627                 dout("got ack for seq %llu type %d at %p\n", seq,
1628                      le16_to_cpu(m->hdr.type), m);
1629                 m->ack_stamp = jiffies;
1630                 ceph_msg_remove(m);
1631         }
1632         prepare_read_tag(con);
1633 }
1634
1635
1636
1637
1638 static int read_partial_message_section(struct ceph_connection *con,
1639                                         struct kvec *section,
1640                                         unsigned int sec_len, u32 *crc)
1641 {
1642         int ret, left;
1643
1644         BUG_ON(!section);
1645
1646         while (section->iov_len < sec_len) {
1647                 BUG_ON(section->iov_base == NULL);
1648                 left = sec_len - section->iov_len;
1649                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1650                                        section->iov_len, left);
1651                 if (ret <= 0)
1652                         return ret;
1653                 section->iov_len += ret;
1654         }
1655         if (section->iov_len == sec_len)
1656                 *crc = crc32c(0, section->iov_base, section->iov_len);
1657
1658         return 1;
1659 }
1660
1661 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1662                                 struct ceph_msg_header *hdr);
1663
1664
1665 static int read_partial_message_pages(struct ceph_connection *con,
1666                                       struct page **pages,
1667                                       unsigned int data_len, bool do_datacrc)
1668 {
1669         void *p;
1670         int ret;
1671         int left;
1672
1673         left = min((int)(data_len - con->in_msg_pos.data_pos),
1674                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1675         /* (page) data */
1676         BUG_ON(pages == NULL);
1677         p = kmap(pages[con->in_msg_pos.page]);
1678         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1679                                left);
1680         if (ret > 0 && do_datacrc)
1681                 con->in_data_crc =
1682                         crc32c(con->in_data_crc,
1683                                   p + con->in_msg_pos.page_pos, ret);
1684         kunmap(pages[con->in_msg_pos.page]);
1685         if (ret <= 0)
1686                 return ret;
1687         con->in_msg_pos.data_pos += ret;
1688         con->in_msg_pos.page_pos += ret;
1689         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1690                 con->in_msg_pos.page_pos = 0;
1691                 con->in_msg_pos.page++;
1692         }
1693
1694         return ret;
1695 }
1696
1697 #ifdef CONFIG_BLOCK
1698 static int read_partial_message_bio(struct ceph_connection *con,
1699                                     struct bio **bio_iter, int *bio_seg,
1700                                     unsigned int data_len, bool do_datacrc)
1701 {
1702         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1703         void *p;
1704         int ret, left;
1705
1706         if (IS_ERR(bv))
1707                 return PTR_ERR(bv);
1708
1709         left = min((int)(data_len - con->in_msg_pos.data_pos),
1710                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1711
1712         p = kmap(bv->bv_page) + bv->bv_offset;
1713
1714         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1715                                left);
1716         if (ret > 0 && do_datacrc)
1717                 con->in_data_crc =
1718                         crc32c(con->in_data_crc,
1719                                   p + con->in_msg_pos.page_pos, ret);
1720         kunmap(bv->bv_page);
1721         if (ret <= 0)
1722                 return ret;
1723         con->in_msg_pos.data_pos += ret;
1724         con->in_msg_pos.page_pos += ret;
1725         if (con->in_msg_pos.page_pos == bv->bv_len) {
1726                 con->in_msg_pos.page_pos = 0;
1727                 iter_bio_next(bio_iter, bio_seg);
1728         }
1729
1730         return ret;
1731 }
1732 #endif
1733
1734 /*
1735  * read (part of) a message.
1736  */
1737 static int read_partial_message(struct ceph_connection *con)
1738 {
1739         struct ceph_msg *m = con->in_msg;
1740         int size;
1741         int end;
1742         int ret;
1743         unsigned int front_len, middle_len, data_len;
1744         bool do_datacrc = !con->msgr->nocrc;
1745         u64 seq;
1746         u32 crc;
1747
1748         dout("read_partial_message con %p msg %p\n", con, m);
1749
1750         /* header */
1751         size = sizeof (con->in_hdr);
1752         end = size;
1753         ret = read_partial(con, end, size, &con->in_hdr);
1754         if (ret <= 0)
1755                 return ret;
1756
1757         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1758         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1759                 pr_err("read_partial_message bad hdr "
1760                        " crc %u != expected %u\n",
1761                        crc, con->in_hdr.crc);
1762                 return -EBADMSG;
1763         }
1764
1765         front_len = le32_to_cpu(con->in_hdr.front_len);
1766         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1767                 return -EIO;
1768         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1769         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1770                 return -EIO;
1771         data_len = le32_to_cpu(con->in_hdr.data_len);
1772         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1773                 return -EIO;
1774
1775         /* verify seq# */
1776         seq = le64_to_cpu(con->in_hdr.seq);
1777         if ((s64)seq - (s64)con->in_seq < 1) {
1778                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1779                         ENTITY_NAME(con->peer_name),
1780                         ceph_pr_addr(&con->peer_addr.in_addr),
1781                         seq, con->in_seq + 1);
1782                 con->in_base_pos = -front_len - middle_len - data_len -
1783                         sizeof(m->footer);
1784                 con->in_tag = CEPH_MSGR_TAG_READY;
1785                 return 0;
1786         } else if ((s64)seq - (s64)con->in_seq > 1) {
1787                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1788                        seq, con->in_seq + 1);
1789                 con->error_msg = "bad message sequence # for incoming message";
1790                 return -EBADMSG;
1791         }
1792
1793         /* allocate message? */
1794         if (!con->in_msg) {
1795                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1796                      con->in_hdr.front_len, con->in_hdr.data_len);
1797                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1798                         /* skip this message */
1799                         dout("alloc_msg said skip message\n");
1800                         BUG_ON(con->in_msg);
1801                         con->in_base_pos = -front_len - middle_len - data_len -
1802                                 sizeof(m->footer);
1803                         con->in_tag = CEPH_MSGR_TAG_READY;
1804                         con->in_seq++;
1805                         return 0;
1806                 }
1807                 if (!con->in_msg) {
1808                         con->error_msg =
1809                                 "error allocating memory for incoming message";
1810                         return -ENOMEM;
1811                 }
1812
1813                 BUG_ON(con->in_msg->con != con);
1814                 m = con->in_msg;
1815                 m->front.iov_len = 0;    /* haven't read it yet */
1816                 if (m->middle)
1817                         m->middle->vec.iov_len = 0;
1818
1819                 con->in_msg_pos.page = 0;
1820                 if (m->pages)
1821                         con->in_msg_pos.page_pos = m->page_alignment;
1822                 else
1823                         con->in_msg_pos.page_pos = 0;
1824                 con->in_msg_pos.data_pos = 0;
1825         }
1826
1827         /* front */
1828         ret = read_partial_message_section(con, &m->front, front_len,
1829                                            &con->in_front_crc);
1830         if (ret <= 0)
1831                 return ret;
1832
1833         /* middle */
1834         if (m->middle) {
1835                 ret = read_partial_message_section(con, &m->middle->vec,
1836                                                    middle_len,
1837                                                    &con->in_middle_crc);
1838                 if (ret <= 0)
1839                         return ret;
1840         }
1841 #ifdef CONFIG_BLOCK
1842         if (m->bio && !m->bio_iter)
1843                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1844 #endif
1845
1846         /* (page) data */
1847         while (con->in_msg_pos.data_pos < data_len) {
1848                 if (m->pages) {
1849                         ret = read_partial_message_pages(con, m->pages,
1850                                                  data_len, do_datacrc);
1851                         if (ret <= 0)
1852                                 return ret;
1853 #ifdef CONFIG_BLOCK
1854                 } else if (m->bio) {
1855
1856                         ret = read_partial_message_bio(con,
1857                                                  &m->bio_iter, &m->bio_seg,
1858                                                  data_len, do_datacrc);
1859                         if (ret <= 0)
1860                                 return ret;
1861 #endif
1862                 } else {
1863                         BUG_ON(1);
1864                 }
1865         }
1866
1867         /* footer */
1868         size = sizeof (m->footer);
1869         end += size;
1870         ret = read_partial(con, end, size, &m->footer);
1871         if (ret <= 0)
1872                 return ret;
1873
1874         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1875              m, front_len, m->footer.front_crc, middle_len,
1876              m->footer.middle_crc, data_len, m->footer.data_crc);
1877
1878         /* crc ok? */
1879         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1880                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1881                        m, con->in_front_crc, m->footer.front_crc);
1882                 return -EBADMSG;
1883         }
1884         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1885                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1886                        m, con->in_middle_crc, m->footer.middle_crc);
1887                 return -EBADMSG;
1888         }
1889         if (do_datacrc &&
1890             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1891             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1892                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1893                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1894                 return -EBADMSG;
1895         }
1896
1897         return 1; /* done! */
1898 }
1899
1900 /*
1901  * Process message.  This happens in the worker thread.  The callback should
1902  * be careful not to do anything that waits on other incoming messages or it
1903  * may deadlock.
1904  */
1905 static void process_message(struct ceph_connection *con)
1906 {
1907         struct ceph_msg *msg;
1908
1909         BUG_ON(con->in_msg->con != con);
1910         con->in_msg->con = NULL;
1911         msg = con->in_msg;
1912         con->in_msg = NULL;
1913         con->ops->put(con);
1914
1915         /* if first message, set peer_name */
1916         if (con->peer_name.type == 0)
1917                 con->peer_name = msg->hdr.src;
1918
1919         con->in_seq++;
1920         mutex_unlock(&con->mutex);
1921
1922         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1923              msg, le64_to_cpu(msg->hdr.seq),
1924              ENTITY_NAME(msg->hdr.src),
1925              le16_to_cpu(msg->hdr.type),
1926              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1927              le32_to_cpu(msg->hdr.front_len),
1928              le32_to_cpu(msg->hdr.data_len),
1929              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1930         con->ops->dispatch(con, msg);
1931
1932         mutex_lock(&con->mutex);
1933         prepare_read_tag(con);
1934 }
1935
1936
1937 /*
1938  * Write something to the socket.  Called in a worker thread when the
1939  * socket appears to be writeable and we have something ready to send.
1940  */
1941 static int try_write(struct ceph_connection *con)
1942 {
1943         int ret = 1;
1944
1945         dout("try_write start %p state %lu\n", con, con->state);
1946
1947 more:
1948         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1949
1950         /* open the socket first? */
1951         if (con->sock == NULL) {
1952                 clear_bit(NEGOTIATING, &con->state);
1953                 set_bit(CONNECTING, &con->state);
1954
1955                 con_out_kvec_reset(con);
1956                 prepare_write_banner(con);
1957                 ret = prepare_write_connect(con);
1958                 if (ret < 0)
1959                         goto out;
1960                 prepare_read_banner(con);
1961
1962                 BUG_ON(con->in_msg);
1963                 con->in_tag = CEPH_MSGR_TAG_READY;
1964                 dout("try_write initiating connect on %p new state %lu\n",
1965                      con, con->state);
1966                 ret = ceph_tcp_connect(con);
1967                 if (ret < 0) {
1968                         con->error_msg = "connect error";
1969                         goto out;
1970                 }
1971         }
1972
1973 more_kvec:
1974         /* kvec data queued? */
1975         if (con->out_skip) {
1976                 ret = write_partial_skip(con);
1977                 if (ret <= 0)
1978                         goto out;
1979         }
1980         if (con->out_kvec_left) {
1981                 ret = write_partial_kvec(con);
1982                 if (ret <= 0)
1983                         goto out;
1984         }
1985
1986         /* msg pages? */
1987         if (con->out_msg) {
1988                 if (con->out_msg_done) {
1989                         ceph_msg_put(con->out_msg);
1990                         con->out_msg = NULL;   /* we're done with this one */
1991                         goto do_next;
1992                 }
1993
1994                 ret = write_partial_msg_pages(con);
1995                 if (ret == 1)
1996                         goto more_kvec;  /* we need to send the footer, too! */
1997                 if (ret == 0)
1998                         goto out;
1999                 if (ret < 0) {
2000                         dout("try_write write_partial_msg_pages err %d\n",
2001                              ret);
2002                         goto out;
2003                 }
2004         }
2005
2006 do_next:
2007         if (!test_bit(CONNECTING, &con->state)) {
2008                 /* is anything else pending? */
2009                 if (!list_empty(&con->out_queue)) {
2010                         prepare_write_message(con);
2011                         goto more;
2012                 }
2013                 if (con->in_seq > con->in_seq_acked) {
2014                         prepare_write_ack(con);
2015                         goto more;
2016                 }
2017                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2018                         prepare_write_keepalive(con);
2019                         goto more;
2020                 }
2021         }
2022
2023         /* Nothing to do! */
2024         clear_bit(WRITE_PENDING, &con->flags);
2025         dout("try_write nothing else to write.\n");
2026         ret = 0;
2027 out:
2028         dout("try_write done on %p ret %d\n", con, ret);
2029         return ret;
2030 }
2031
2032
2033
2034 /*
2035  * Read what we can from the socket.
2036  */
2037 static int try_read(struct ceph_connection *con)
2038 {
2039         int ret = -1;
2040
2041         if (!con->sock)
2042                 return 0;
2043
2044         if (test_bit(STANDBY, &con->state))
2045                 return 0;
2046
2047         dout("try_read start on %p\n", con);
2048
2049 more:
2050         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2051              con->in_base_pos);
2052
2053         /*
2054          * process_connect and process_message drop and re-take
2055          * con->mutex.  make sure we handle a racing close or reopen.
2056          */
2057         if (test_bit(CLOSED, &con->state) ||
2058             test_bit(OPENING, &con->state)) {
2059                 ret = -EAGAIN;
2060                 goto out;
2061         }
2062
2063         if (test_bit(CONNECTING, &con->state)) {
2064                 if (!test_bit(NEGOTIATING, &con->state)) {
2065                         dout("try_read connecting\n");
2066                         ret = read_partial_banner(con);
2067                         if (ret <= 0)
2068                                 goto out;
2069                         ret = process_banner(con);
2070                         if (ret < 0)
2071                                 goto out;
2072                 }
2073                 ret = read_partial_connect(con);
2074                 if (ret <= 0)
2075                         goto out;
2076                 ret = process_connect(con);
2077                 if (ret < 0)
2078                         goto out;
2079                 goto more;
2080         }
2081
2082         if (con->in_base_pos < 0) {
2083                 /*
2084                  * skipping + discarding content.
2085                  *
2086                  * FIXME: there must be a better way to do this!
2087                  */
2088                 static char buf[SKIP_BUF_SIZE];
2089                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2090
2091                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2092                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2093                 if (ret <= 0)
2094                         goto out;
2095                 con->in_base_pos += ret;
2096                 if (con->in_base_pos)
2097                         goto more;
2098         }
2099         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2100                 /*
2101                  * what's next?
2102                  */
2103                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2104                 if (ret <= 0)
2105                         goto out;
2106                 dout("try_read got tag %d\n", (int)con->in_tag);
2107                 switch (con->in_tag) {
2108                 case CEPH_MSGR_TAG_MSG:
2109                         prepare_read_message(con);
2110                         break;
2111                 case CEPH_MSGR_TAG_ACK:
2112                         prepare_read_ack(con);
2113                         break;
2114                 case CEPH_MSGR_TAG_CLOSE:
2115                         set_bit(CLOSED, &con->state);   /* fixme */
2116                         goto out;
2117                 default:
2118                         goto bad_tag;
2119                 }
2120         }
2121         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2122                 ret = read_partial_message(con);
2123                 if (ret <= 0) {
2124                         switch (ret) {
2125                         case -EBADMSG:
2126                                 con->error_msg = "bad crc";
2127                                 ret = -EIO;
2128                                 break;
2129                         case -EIO:
2130                                 con->error_msg = "io error";
2131                                 break;
2132                         }
2133                         goto out;
2134                 }
2135                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2136                         goto more;
2137                 process_message(con);
2138                 goto more;
2139         }
2140         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2141                 ret = read_partial_ack(con);
2142                 if (ret <= 0)
2143                         goto out;
2144                 process_ack(con);
2145                 goto more;
2146         }
2147
2148 out:
2149         dout("try_read done on %p ret %d\n", con, ret);
2150         return ret;
2151
2152 bad_tag:
2153         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2154         con->error_msg = "protocol error, garbage tag";
2155         ret = -1;
2156         goto out;
2157 }
2158
2159
2160 /*
2161  * Atomically queue work on a connection.  Bump @con reference to
2162  * avoid races with connection teardown.
2163  */
2164 static void queue_con(struct ceph_connection *con)
2165 {
2166         if (!con->ops->get(con)) {
2167                 dout("queue_con %p ref count 0\n", con);
2168                 return;
2169         }
2170
2171         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2172                 dout("queue_con %p - already queued\n", con);
2173                 con->ops->put(con);
2174         } else {
2175                 dout("queue_con %p\n", con);
2176         }
2177 }
2178
2179 /*
2180  * Do some work on a connection.  Drop a connection ref when we're done.
2181  */
2182 static void con_work(struct work_struct *work)
2183 {
2184         struct ceph_connection *con = container_of(work, struct ceph_connection,
2185                                                    work.work);
2186         int ret;
2187
2188         mutex_lock(&con->mutex);
2189 restart:
2190         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2191                 dout("con_work %p backing off\n", con);
2192                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2193                                        round_jiffies_relative(con->delay))) {
2194                         dout("con_work %p backoff %lu\n", con, con->delay);
2195                         mutex_unlock(&con->mutex);
2196                         return;
2197                 } else {
2198                         con->ops->put(con);
2199                         dout("con_work %p FAILED to back off %lu\n", con,
2200                              con->delay);
2201                 }
2202         }
2203
2204         if (test_bit(STANDBY, &con->state)) {
2205                 dout("con_work %p STANDBY\n", con);
2206                 goto done;
2207         }
2208         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2209                 dout("con_work CLOSED\n");
2210                 con_close_socket(con);
2211                 goto done;
2212         }
2213         if (test_and_clear_bit(OPENING, &con->state)) {
2214                 /* reopen w/ new peer */
2215                 dout("con_work OPENING\n");
2216                 con_close_socket(con);
2217         }
2218
2219         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2220                 goto fault;
2221
2222         ret = try_read(con);
2223         if (ret == -EAGAIN)
2224                 goto restart;
2225         if (ret < 0)
2226                 goto fault;
2227
2228         ret = try_write(con);
2229         if (ret == -EAGAIN)
2230                 goto restart;
2231         if (ret < 0)
2232                 goto fault;
2233
2234 done:
2235         mutex_unlock(&con->mutex);
2236 done_unlocked:
2237         con->ops->put(con);
2238         return;
2239
2240 fault:
2241         mutex_unlock(&con->mutex);
2242         ceph_fault(con);     /* error/fault path */
2243         goto done_unlocked;
2244 }
2245
2246
2247 /*
2248  * Generic error/fault handler.  A retry mechanism is used with
2249  * exponential backoff
2250  */
2251 static void ceph_fault(struct ceph_connection *con)
2252 {
2253         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2254                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2255         dout("fault %p state %lu to peer %s\n",
2256              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2257
2258         if (test_bit(LOSSYTX, &con->flags)) {
2259                 dout("fault on LOSSYTX channel\n");
2260                 goto out;
2261         }
2262
2263         mutex_lock(&con->mutex);
2264         if (test_bit(CLOSED, &con->state))
2265                 goto out_unlock;
2266
2267         con_close_socket(con);
2268
2269         if (con->in_msg) {
2270                 BUG_ON(con->in_msg->con != con);
2271                 con->in_msg->con = NULL;
2272                 ceph_msg_put(con->in_msg);
2273                 con->in_msg = NULL;
2274                 con->ops->put(con);
2275         }
2276
2277         /* Requeue anything that hasn't been acked */
2278         list_splice_init(&con->out_sent, &con->out_queue);
2279
2280         /* If there are no messages queued or keepalive pending, place
2281          * the connection in a STANDBY state */
2282         if (list_empty(&con->out_queue) &&
2283             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2284                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2285                 clear_bit(WRITE_PENDING, &con->flags);
2286                 set_bit(STANDBY, &con->state);
2287         } else {
2288                 /* retry after a delay. */
2289                 if (con->delay == 0)
2290                         con->delay = BASE_DELAY_INTERVAL;
2291                 else if (con->delay < MAX_DELAY_INTERVAL)
2292                         con->delay *= 2;
2293                 con->ops->get(con);
2294                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2295                                        round_jiffies_relative(con->delay))) {
2296                         dout("fault queued %p delay %lu\n", con, con->delay);
2297                 } else {
2298                         con->ops->put(con);
2299                         dout("fault failed to queue %p delay %lu, backoff\n",
2300                              con, con->delay);
2301                         /*
2302                          * In many cases we see a socket state change
2303                          * while con_work is running and end up
2304                          * queuing (non-delayed) work, such that we
2305                          * can't backoff with a delay.  Set a flag so
2306                          * that when con_work restarts we schedule the
2307                          * delay then.
2308                          */
2309                         set_bit(BACKOFF, &con->flags);
2310                 }
2311         }
2312
2313 out_unlock:
2314         mutex_unlock(&con->mutex);
2315 out:
2316         /*
2317          * in case we faulted due to authentication, invalidate our
2318          * current tickets so that we can get new ones.
2319          */
2320         if (con->auth_retry && con->ops->invalidate_authorizer) {
2321                 dout("calling invalidate_authorizer()\n");
2322                 con->ops->invalidate_authorizer(con);
2323         }
2324
2325         if (con->ops->fault)
2326                 con->ops->fault(con);
2327 }
2328
2329
2330
2331 /*
2332  * initialize a new messenger instance
2333  */
2334 void ceph_messenger_init(struct ceph_messenger *msgr,
2335                         struct ceph_entity_addr *myaddr,
2336                         u32 supported_features,
2337                         u32 required_features,
2338                         bool nocrc)
2339 {
2340         msgr->supported_features = supported_features;
2341         msgr->required_features = required_features;
2342
2343         spin_lock_init(&msgr->global_seq_lock);
2344
2345         if (myaddr)
2346                 msgr->inst.addr = *myaddr;
2347
2348         /* select a random nonce */
2349         msgr->inst.addr.type = 0;
2350         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2351         encode_my_addr(msgr);
2352         msgr->nocrc = nocrc;
2353
2354         dout("%s %p\n", __func__, msgr);
2355 }
2356 EXPORT_SYMBOL(ceph_messenger_init);
2357
2358 static void clear_standby(struct ceph_connection *con)
2359 {
2360         /* come back from STANDBY? */
2361         if (test_and_clear_bit(STANDBY, &con->state)) {
2362                 mutex_lock(&con->mutex);
2363                 dout("clear_standby %p and ++connect_seq\n", con);
2364                 con->connect_seq++;
2365                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2366                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2367                 mutex_unlock(&con->mutex);
2368         }
2369 }
2370
2371 /*
2372  * Queue up an outgoing message on the given connection.
2373  */
2374 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2375 {
2376         if (test_bit(CLOSED, &con->state)) {
2377                 dout("con_send %p closed, dropping %p\n", con, msg);
2378                 ceph_msg_put(msg);
2379                 return;
2380         }
2381
2382         /* set src+dst */
2383         msg->hdr.src = con->msgr->inst.name;
2384
2385         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2386
2387         msg->needs_out_seq = true;
2388
2389         /* queue */
2390         mutex_lock(&con->mutex);
2391
2392         BUG_ON(msg->con != NULL);
2393         msg->con = con->ops->get(con);
2394         BUG_ON(msg->con == NULL);
2395
2396         BUG_ON(!list_empty(&msg->list_head));
2397         list_add_tail(&msg->list_head, &con->out_queue);
2398         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2399              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2400              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2401              le32_to_cpu(msg->hdr.front_len),
2402              le32_to_cpu(msg->hdr.middle_len),
2403              le32_to_cpu(msg->hdr.data_len));
2404         mutex_unlock(&con->mutex);
2405
2406         /* if there wasn't anything waiting to send before, queue
2407          * new work */
2408         clear_standby(con);
2409         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2410                 queue_con(con);
2411 }
2412 EXPORT_SYMBOL(ceph_con_send);
2413
2414 /*
2415  * Revoke a message that was previously queued for send
2416  */
2417 void ceph_msg_revoke(struct ceph_msg *msg)
2418 {
2419         struct ceph_connection *con = msg->con;
2420
2421         if (!con)
2422                 return;         /* Message not in our possession */
2423
2424         mutex_lock(&con->mutex);
2425         if (!list_empty(&msg->list_head)) {
2426                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2427                 list_del_init(&msg->list_head);
2428                 BUG_ON(msg->con == NULL);
2429                 msg->con->ops->put(msg->con);
2430                 msg->con = NULL;
2431                 msg->hdr.seq = 0;
2432
2433                 ceph_msg_put(msg);
2434         }
2435         if (con->out_msg == msg) {
2436                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2437                 con->out_msg = NULL;
2438                 if (con->out_kvec_is_msg) {
2439                         con->out_skip = con->out_kvec_bytes;
2440                         con->out_kvec_is_msg = false;
2441                 }
2442                 msg->hdr.seq = 0;
2443
2444                 ceph_msg_put(msg);
2445         }
2446         mutex_unlock(&con->mutex);
2447 }
2448
2449 /*
2450  * Revoke a message that we may be reading data into
2451  */
2452 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2453 {
2454         struct ceph_connection *con;
2455
2456         BUG_ON(msg == NULL);
2457         if (!msg->con) {
2458                 dout("%s msg %p null con\n", __func__, msg);
2459
2460                 return;         /* Message not in our possession */
2461         }
2462
2463         con = msg->con;
2464         mutex_lock(&con->mutex);
2465         if (con->in_msg == msg) {
2466                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2467                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2468                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2469
2470                 /* skip rest of message */
2471                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2472                 con->in_base_pos = con->in_base_pos -
2473                                 sizeof(struct ceph_msg_header) -
2474                                 front_len -
2475                                 middle_len -
2476                                 data_len -
2477                                 sizeof(struct ceph_msg_footer);
2478                 ceph_msg_put(con->in_msg);
2479                 con->in_msg = NULL;
2480                 con->in_tag = CEPH_MSGR_TAG_READY;
2481                 con->in_seq++;
2482         } else {
2483                 dout("%s %p in_msg %p msg %p no-op\n",
2484                      __func__, con, con->in_msg, msg);
2485         }
2486         mutex_unlock(&con->mutex);
2487 }
2488
2489 /*
2490  * Queue a keepalive byte to ensure the tcp connection is alive.
2491  */
2492 void ceph_con_keepalive(struct ceph_connection *con)
2493 {
2494         dout("con_keepalive %p\n", con);
2495         clear_standby(con);
2496         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2497             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2498                 queue_con(con);
2499 }
2500 EXPORT_SYMBOL(ceph_con_keepalive);
2501
2502
2503 /*
2504  * construct a new message with given type, size
2505  * the new msg has a ref count of 1.
2506  */
2507 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2508                               bool can_fail)
2509 {
2510         struct ceph_msg *m;
2511
2512         m = kmalloc(sizeof(*m), flags);
2513         if (m == NULL)
2514                 goto out;
2515         kref_init(&m->kref);
2516
2517         m->con = NULL;
2518         INIT_LIST_HEAD(&m->list_head);
2519
2520         m->hdr.tid = 0;
2521         m->hdr.type = cpu_to_le16(type);
2522         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2523         m->hdr.version = 0;
2524         m->hdr.front_len = cpu_to_le32(front_len);
2525         m->hdr.middle_len = 0;
2526         m->hdr.data_len = 0;
2527         m->hdr.data_off = 0;
2528         m->hdr.reserved = 0;
2529         m->footer.front_crc = 0;
2530         m->footer.middle_crc = 0;
2531         m->footer.data_crc = 0;
2532         m->footer.flags = 0;
2533         m->front_max = front_len;
2534         m->front_is_vmalloc = false;
2535         m->more_to_follow = false;
2536         m->ack_stamp = 0;
2537         m->pool = NULL;
2538
2539         /* middle */
2540         m->middle = NULL;
2541
2542         /* data */
2543         m->nr_pages = 0;
2544         m->page_alignment = 0;
2545         m->pages = NULL;
2546         m->pagelist = NULL;
2547         m->bio = NULL;
2548         m->bio_iter = NULL;
2549         m->bio_seg = 0;
2550         m->trail = NULL;
2551
2552         /* front */
2553         if (front_len) {
2554                 if (front_len > PAGE_CACHE_SIZE) {
2555                         m->front.iov_base = __vmalloc(front_len, flags,
2556                                                       PAGE_KERNEL);
2557                         m->front_is_vmalloc = true;
2558                 } else {
2559                         m->front.iov_base = kmalloc(front_len, flags);
2560                 }
2561                 if (m->front.iov_base == NULL) {
2562                         dout("ceph_msg_new can't allocate %d bytes\n",
2563                              front_len);
2564                         goto out2;
2565                 }
2566         } else {
2567                 m->front.iov_base = NULL;
2568         }
2569         m->front.iov_len = front_len;
2570
2571         dout("ceph_msg_new %p front %d\n", m, front_len);
2572         return m;
2573
2574 out2:
2575         ceph_msg_put(m);
2576 out:
2577         if (!can_fail) {
2578                 pr_err("msg_new can't create type %d front %d\n", type,
2579                        front_len);
2580                 WARN_ON(1);
2581         } else {
2582                 dout("msg_new can't create type %d front %d\n", type,
2583                      front_len);
2584         }
2585         return NULL;
2586 }
2587 EXPORT_SYMBOL(ceph_msg_new);
2588
2589 /*
2590  * Allocate "middle" portion of a message, if it is needed and wasn't
2591  * allocated by alloc_msg.  This allows us to read a small fixed-size
2592  * per-type header in the front and then gracefully fail (i.e.,
2593  * propagate the error to the caller based on info in the front) when
2594  * the middle is too large.
2595  */
2596 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2597 {
2598         int type = le16_to_cpu(msg->hdr.type);
2599         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2600
2601         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2602              ceph_msg_type_name(type), middle_len);
2603         BUG_ON(!middle_len);
2604         BUG_ON(msg->middle);
2605
2606         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2607         if (!msg->middle)
2608                 return -ENOMEM;
2609         return 0;
2610 }
2611
2612 /*
2613  * Allocate a message for receiving an incoming message on a
2614  * connection, and save the result in con->in_msg.  Uses the
2615  * connection's private alloc_msg op if available.
2616  *
2617  * Returns true if the message should be skipped, false otherwise.
2618  * If true is returned (skip message), con->in_msg will be NULL.
2619  * If false is returned, con->in_msg will contain a pointer to the
2620  * newly-allocated message, or NULL in case of memory exhaustion.
2621  */
2622 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2623                                 struct ceph_msg_header *hdr)
2624 {
2625         int type = le16_to_cpu(hdr->type);
2626         int front_len = le32_to_cpu(hdr->front_len);
2627         int middle_len = le32_to_cpu(hdr->middle_len);
2628         int ret;
2629
2630         BUG_ON(con->in_msg != NULL);
2631
2632         if (con->ops->alloc_msg) {
2633                 int skip = 0;
2634
2635                 mutex_unlock(&con->mutex);
2636                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2637                 mutex_lock(&con->mutex);
2638                 if (con->in_msg) {
2639                         con->in_msg->con = con->ops->get(con);
2640                         BUG_ON(con->in_msg->con == NULL);
2641                 }
2642                 if (skip)
2643                         con->in_msg = NULL;
2644
2645                 if (!con->in_msg)
2646                         return skip != 0;
2647         }
2648         if (!con->in_msg) {
2649                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2650                 if (!con->in_msg) {
2651                         pr_err("unable to allocate msg type %d len %d\n",
2652                                type, front_len);
2653                         return false;
2654                 }
2655                 con->in_msg->con = con->ops->get(con);
2656                 BUG_ON(con->in_msg->con == NULL);
2657                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2658         }
2659         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2660
2661         if (middle_len && !con->in_msg->middle) {
2662                 ret = ceph_alloc_middle(con, con->in_msg);
2663                 if (ret < 0) {
2664                         ceph_msg_put(con->in_msg);
2665                         con->in_msg = NULL;
2666                 }
2667         }
2668
2669         return false;
2670 }
2671
2672
2673 /*
2674  * Free a generically kmalloc'd message.
2675  */
2676 void ceph_msg_kfree(struct ceph_msg *m)
2677 {
2678         dout("msg_kfree %p\n", m);
2679         if (m->front_is_vmalloc)
2680                 vfree(m->front.iov_base);
2681         else
2682                 kfree(m->front.iov_base);
2683         kfree(m);
2684 }
2685
2686 /*
2687  * Drop a msg ref.  Destroy as needed.
2688  */
2689 void ceph_msg_last_put(struct kref *kref)
2690 {
2691         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2692
2693         dout("ceph_msg_put last one on %p\n", m);
2694         WARN_ON(!list_empty(&m->list_head));
2695
2696         /* drop middle, data, if any */
2697         if (m->middle) {
2698                 ceph_buffer_put(m->middle);
2699                 m->middle = NULL;
2700         }
2701         m->nr_pages = 0;
2702         m->pages = NULL;
2703
2704         if (m->pagelist) {
2705                 ceph_pagelist_release(m->pagelist);
2706                 kfree(m->pagelist);
2707                 m->pagelist = NULL;
2708         }
2709
2710         m->trail = NULL;
2711
2712         if (m->pool)
2713                 ceph_msgpool_put(m->pool, m);
2714         else
2715                 ceph_msg_kfree(m);
2716 }
2717 EXPORT_SYMBOL(ceph_msg_last_put);
2718
2719 void ceph_msg_dump(struct ceph_msg *msg)
2720 {
2721         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2722                  msg->front_max, msg->nr_pages);
2723         print_hex_dump(KERN_DEBUG, "header: ",
2724                        DUMP_PREFIX_OFFSET, 16, 1,
2725                        &msg->hdr, sizeof(msg->hdr), true);
2726         print_hex_dump(KERN_DEBUG, " front: ",
2727                        DUMP_PREFIX_OFFSET, 16, 1,
2728                        msg->front.iov_base, msg->front.iov_len, true);
2729         if (msg->middle)
2730                 print_hex_dump(KERN_DEBUG, "middle: ",
2731                                DUMP_PREFIX_OFFSET, 16, 1,
2732                                msg->middle->vec.iov_base,
2733                                msg->middle->vec.iov_len, true);
2734         print_hex_dump(KERN_DEBUG, "footer: ",
2735                        DUMP_PREFIX_OFFSET, 16, 1,
2736                        &msg->footer, sizeof(msg->footer), true);
2737 }
2738 EXPORT_SYMBOL(ceph_msg_dump);