libceph: just set SOCK_CLOSED when state changes
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 set_bit(SOCK_CLOSED, &con->flags);
265                 queue_con(con);
266                 break;
267         case TCP_ESTABLISHED:
268                 dout("%s TCP_ESTABLISHED\n", __func__);
269                 con_sock_state_connected(con);
270                 queue_con(con);
271                 break;
272         default:        /* Everything else is uninteresting */
273                 break;
274         }
275 }
276
277 /*
278  * set up socket callbacks
279  */
280 static void set_sock_callbacks(struct socket *sock,
281                                struct ceph_connection *con)
282 {
283         struct sock *sk = sock->sk;
284         sk->sk_user_data = con;
285         sk->sk_data_ready = ceph_sock_data_ready;
286         sk->sk_write_space = ceph_sock_write_space;
287         sk->sk_state_change = ceph_sock_state_change;
288 }
289
290
291 /*
292  * socket helpers
293  */
294
295 /*
296  * initiate connection to a remote socket.
297  */
298 static int ceph_tcp_connect(struct ceph_connection *con)
299 {
300         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
301         struct socket *sock;
302         int ret;
303
304         BUG_ON(con->sock);
305         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
306                                IPPROTO_TCP, &sock);
307         if (ret)
308                 return ret;
309         sock->sk->sk_allocation = GFP_NOFS;
310
311 #ifdef CONFIG_LOCKDEP
312         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
313 #endif
314
315         set_sock_callbacks(sock, con);
316
317         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
318
319         con_sock_state_connecting(con);
320         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
321                                  O_NONBLOCK);
322         if (ret == -EINPROGRESS) {
323                 dout("connect %s EINPROGRESS sk_state = %u\n",
324                      ceph_pr_addr(&con->peer_addr.in_addr),
325                      sock->sk->sk_state);
326         } else if (ret < 0) {
327                 pr_err("connect %s error %d\n",
328                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
329                 sock_release(sock);
330                 con->error_msg = "connect error";
331
332                 return ret;
333         }
334         con->sock = sock;
335         return 0;
336 }
337
338 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
339 {
340         struct kvec iov = {buf, len};
341         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
342         int r;
343
344         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
345         if (r == -EAGAIN)
346                 r = 0;
347         return r;
348 }
349
350 /*
351  * write something.  @more is true if caller will be sending more data
352  * shortly.
353  */
354 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
355                      size_t kvlen, size_t len, int more)
356 {
357         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
358         int r;
359
360         if (more)
361                 msg.msg_flags |= MSG_MORE;
362         else
363                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
364
365         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
366         if (r == -EAGAIN)
367                 r = 0;
368         return r;
369 }
370
371 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
372                      int offset, size_t size, int more)
373 {
374         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
375         int ret;
376
377         ret = kernel_sendpage(sock, page, offset, size, flags);
378         if (ret == -EAGAIN)
379                 ret = 0;
380
381         return ret;
382 }
383
384
385 /*
386  * Shutdown/close the socket for the given connection.
387  */
388 static int con_close_socket(struct ceph_connection *con)
389 {
390         int rc;
391
392         dout("con_close_socket on %p sock %p\n", con, con->sock);
393         if (!con->sock)
394                 return 0;
395         set_bit(SOCK_CLOSED, &con->flags);
396         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
397         sock_release(con->sock);
398         con->sock = NULL;
399         clear_bit(SOCK_CLOSED, &con->flags);
400         con_sock_state_closed(con);
401         return rc;
402 }
403
404 /*
405  * Reset a connection.  Discard all incoming and outgoing messages
406  * and clear *_seq state.
407  */
408 static void ceph_msg_remove(struct ceph_msg *msg)
409 {
410         list_del_init(&msg->list_head);
411         BUG_ON(msg->con == NULL);
412         msg->con->ops->put(msg->con);
413         msg->con = NULL;
414
415         ceph_msg_put(msg);
416 }
417 static void ceph_msg_remove_list(struct list_head *head)
418 {
419         while (!list_empty(head)) {
420                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
421                                                         list_head);
422                 ceph_msg_remove(msg);
423         }
424 }
425
426 static void reset_connection(struct ceph_connection *con)
427 {
428         /* reset connection, out_queue, msg_ and connect_seq */
429         /* discard existing out_queue and msg_seq */
430         ceph_msg_remove_list(&con->out_queue);
431         ceph_msg_remove_list(&con->out_sent);
432
433         if (con->in_msg) {
434                 BUG_ON(con->in_msg->con != con);
435                 con->in_msg->con = NULL;
436                 ceph_msg_put(con->in_msg);
437                 con->in_msg = NULL;
438                 con->ops->put(con);
439         }
440
441         con->connect_seq = 0;
442         con->out_seq = 0;
443         if (con->out_msg) {
444                 ceph_msg_put(con->out_msg);
445                 con->out_msg = NULL;
446         }
447         con->in_seq = 0;
448         con->in_seq_acked = 0;
449 }
450
451 /*
452  * mark a peer down.  drop any open connections.
453  */
454 void ceph_con_close(struct ceph_connection *con)
455 {
456         dout("con_close %p peer %s\n", con,
457              ceph_pr_addr(&con->peer_addr.in_addr));
458         clear_bit(NEGOTIATING, &con->state);
459         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
460         set_bit(CLOSED, &con->state);
461
462         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
463         clear_bit(KEEPALIVE_PENDING, &con->flags);
464         clear_bit(WRITE_PENDING, &con->flags);
465
466         mutex_lock(&con->mutex);
467         reset_connection(con);
468         con->peer_global_seq = 0;
469         cancel_delayed_work(&con->work);
470         mutex_unlock(&con->mutex);
471         queue_con(con);
472 }
473 EXPORT_SYMBOL(ceph_con_close);
474
475 /*
476  * Reopen a closed connection, with a new peer address.
477  */
478 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
479 {
480         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
481         set_bit(OPENING, &con->state);
482         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
483
484         memcpy(&con->peer_addr, addr, sizeof(*addr));
485         con->delay = 0;      /* reset backoff memory */
486         queue_con(con);
487 }
488 EXPORT_SYMBOL(ceph_con_open);
489
490 /*
491  * return true if this connection ever successfully opened
492  */
493 bool ceph_con_opened(struct ceph_connection *con)
494 {
495         return con->connect_seq > 0;
496 }
497
498 /*
499  * initialize a new connection.
500  */
501 void ceph_con_init(struct ceph_connection *con, void *private,
502         const struct ceph_connection_operations *ops,
503         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
504 {
505         dout("con_init %p\n", con);
506         memset(con, 0, sizeof(*con));
507         con->private = private;
508         con->ops = ops;
509         con->msgr = msgr;
510
511         con_sock_state_init(con);
512
513         con->peer_name.type = (__u8) entity_type;
514         con->peer_name.num = cpu_to_le64(entity_num);
515
516         mutex_init(&con->mutex);
517         INIT_LIST_HEAD(&con->out_queue);
518         INIT_LIST_HEAD(&con->out_sent);
519         INIT_DELAYED_WORK(&con->work, con_work);
520
521         set_bit(CLOSED, &con->state);
522 }
523 EXPORT_SYMBOL(ceph_con_init);
524
525
526 /*
527  * We maintain a global counter to order connection attempts.  Get
528  * a unique seq greater than @gt.
529  */
530 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
531 {
532         u32 ret;
533
534         spin_lock(&msgr->global_seq_lock);
535         if (msgr->global_seq < gt)
536                 msgr->global_seq = gt;
537         ret = ++msgr->global_seq;
538         spin_unlock(&msgr->global_seq_lock);
539         return ret;
540 }
541
542 static void con_out_kvec_reset(struct ceph_connection *con)
543 {
544         con->out_kvec_left = 0;
545         con->out_kvec_bytes = 0;
546         con->out_kvec_cur = &con->out_kvec[0];
547 }
548
549 static void con_out_kvec_add(struct ceph_connection *con,
550                                 size_t size, void *data)
551 {
552         int index;
553
554         index = con->out_kvec_left;
555         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
556
557         con->out_kvec[index].iov_len = size;
558         con->out_kvec[index].iov_base = data;
559         con->out_kvec_left++;
560         con->out_kvec_bytes += size;
561 }
562
563 #ifdef CONFIG_BLOCK
564 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
565 {
566         if (!bio) {
567                 *iter = NULL;
568                 *seg = 0;
569                 return;
570         }
571         *iter = bio;
572         *seg = bio->bi_idx;
573 }
574
575 static void iter_bio_next(struct bio **bio_iter, int *seg)
576 {
577         if (*bio_iter == NULL)
578                 return;
579
580         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
581
582         (*seg)++;
583         if (*seg == (*bio_iter)->bi_vcnt)
584                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
585 }
586 #endif
587
588 static void prepare_write_message_data(struct ceph_connection *con)
589 {
590         struct ceph_msg *msg = con->out_msg;
591
592         BUG_ON(!msg);
593         BUG_ON(!msg->hdr.data_len);
594
595         /* initialize page iterator */
596         con->out_msg_pos.page = 0;
597         if (msg->pages)
598                 con->out_msg_pos.page_pos = msg->page_alignment;
599         else
600                 con->out_msg_pos.page_pos = 0;
601 #ifdef CONFIG_BLOCK
602         if (msg->bio)
603                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
604 #endif
605         con->out_msg_pos.data_pos = 0;
606         con->out_msg_pos.did_page_crc = false;
607         con->out_more = 1;  /* data + footer will follow */
608 }
609
610 /*
611  * Prepare footer for currently outgoing message, and finish things
612  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
613  */
614 static void prepare_write_message_footer(struct ceph_connection *con)
615 {
616         struct ceph_msg *m = con->out_msg;
617         int v = con->out_kvec_left;
618
619         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
620
621         dout("prepare_write_message_footer %p\n", con);
622         con->out_kvec_is_msg = true;
623         con->out_kvec[v].iov_base = &m->footer;
624         con->out_kvec[v].iov_len = sizeof(m->footer);
625         con->out_kvec_bytes += sizeof(m->footer);
626         con->out_kvec_left++;
627         con->out_more = m->more_to_follow;
628         con->out_msg_done = true;
629 }
630
631 /*
632  * Prepare headers for the next outgoing message.
633  */
634 static void prepare_write_message(struct ceph_connection *con)
635 {
636         struct ceph_msg *m;
637         u32 crc;
638
639         con_out_kvec_reset(con);
640         con->out_kvec_is_msg = true;
641         con->out_msg_done = false;
642
643         /* Sneak an ack in there first?  If we can get it into the same
644          * TCP packet that's a good thing. */
645         if (con->in_seq > con->in_seq_acked) {
646                 con->in_seq_acked = con->in_seq;
647                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
648                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
649                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
650                         &con->out_temp_ack);
651         }
652
653         BUG_ON(list_empty(&con->out_queue));
654         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
655         con->out_msg = m;
656         BUG_ON(m->con != con);
657
658         /* put message on sent list */
659         ceph_msg_get(m);
660         list_move_tail(&m->list_head, &con->out_sent);
661
662         /*
663          * only assign outgoing seq # if we haven't sent this message
664          * yet.  if it is requeued, resend with it's original seq.
665          */
666         if (m->needs_out_seq) {
667                 m->hdr.seq = cpu_to_le64(++con->out_seq);
668                 m->needs_out_seq = false;
669         }
670
671         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
672              m, con->out_seq, le16_to_cpu(m->hdr.type),
673              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
674              le32_to_cpu(m->hdr.data_len),
675              m->nr_pages);
676         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
677
678         /* tag + hdr + front + middle */
679         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
680         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
681         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
682
683         if (m->middle)
684                 con_out_kvec_add(con, m->middle->vec.iov_len,
685                         m->middle->vec.iov_base);
686
687         /* fill in crc (except data pages), footer */
688         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
689         con->out_msg->hdr.crc = cpu_to_le32(crc);
690         con->out_msg->footer.flags = 0;
691
692         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
693         con->out_msg->footer.front_crc = cpu_to_le32(crc);
694         if (m->middle) {
695                 crc = crc32c(0, m->middle->vec.iov_base,
696                                 m->middle->vec.iov_len);
697                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
698         } else
699                 con->out_msg->footer.middle_crc = 0;
700         dout("%s front_crc %u middle_crc %u\n", __func__,
701              le32_to_cpu(con->out_msg->footer.front_crc),
702              le32_to_cpu(con->out_msg->footer.middle_crc));
703
704         /* is there a data payload? */
705         con->out_msg->footer.data_crc = 0;
706         if (m->hdr.data_len)
707                 prepare_write_message_data(con);
708         else
709                 /* no, queue up footer too and be done */
710                 prepare_write_message_footer(con);
711
712         set_bit(WRITE_PENDING, &con->flags);
713 }
714
715 /*
716  * Prepare an ack.
717  */
718 static void prepare_write_ack(struct ceph_connection *con)
719 {
720         dout("prepare_write_ack %p %llu -> %llu\n", con,
721              con->in_seq_acked, con->in_seq);
722         con->in_seq_acked = con->in_seq;
723
724         con_out_kvec_reset(con);
725
726         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
727
728         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
729         con_out_kvec_add(con, sizeof (con->out_temp_ack),
730                                 &con->out_temp_ack);
731
732         con->out_more = 1;  /* more will follow.. eventually.. */
733         set_bit(WRITE_PENDING, &con->flags);
734 }
735
736 /*
737  * Prepare to write keepalive byte.
738  */
739 static void prepare_write_keepalive(struct ceph_connection *con)
740 {
741         dout("prepare_write_keepalive %p\n", con);
742         con_out_kvec_reset(con);
743         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
744         set_bit(WRITE_PENDING, &con->flags);
745 }
746
747 /*
748  * Connection negotiation.
749  */
750
751 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
752                                                 int *auth_proto)
753 {
754         struct ceph_auth_handshake *auth;
755
756         if (!con->ops->get_authorizer) {
757                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
758                 con->out_connect.authorizer_len = 0;
759
760                 return NULL;
761         }
762
763         /* Can't hold the mutex while getting authorizer */
764
765         mutex_unlock(&con->mutex);
766
767         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
768
769         mutex_lock(&con->mutex);
770
771         if (IS_ERR(auth))
772                 return auth;
773         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
774                 return ERR_PTR(-EAGAIN);
775
776         con->auth_reply_buf = auth->authorizer_reply_buf;
777         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
778
779
780         return auth;
781 }
782
783 /*
784  * We connected to a peer and are saying hello.
785  */
786 static void prepare_write_banner(struct ceph_connection *con)
787 {
788         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
789         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
790                                         &con->msgr->my_enc_addr);
791
792         con->out_more = 0;
793         set_bit(WRITE_PENDING, &con->flags);
794 }
795
796 static int prepare_write_connect(struct ceph_connection *con)
797 {
798         unsigned int global_seq = get_global_seq(con->msgr, 0);
799         int proto;
800         int auth_proto;
801         struct ceph_auth_handshake *auth;
802
803         switch (con->peer_name.type) {
804         case CEPH_ENTITY_TYPE_MON:
805                 proto = CEPH_MONC_PROTOCOL;
806                 break;
807         case CEPH_ENTITY_TYPE_OSD:
808                 proto = CEPH_OSDC_PROTOCOL;
809                 break;
810         case CEPH_ENTITY_TYPE_MDS:
811                 proto = CEPH_MDSC_PROTOCOL;
812                 break;
813         default:
814                 BUG();
815         }
816
817         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
818              con->connect_seq, global_seq, proto);
819
820         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
821         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
822         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
823         con->out_connect.global_seq = cpu_to_le32(global_seq);
824         con->out_connect.protocol_version = cpu_to_le32(proto);
825         con->out_connect.flags = 0;
826
827         auth_proto = CEPH_AUTH_UNKNOWN;
828         auth = get_connect_authorizer(con, &auth_proto);
829         if (IS_ERR(auth))
830                 return PTR_ERR(auth);
831
832         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
833         con->out_connect.authorizer_len = auth ?
834                 cpu_to_le32(auth->authorizer_buf_len) : 0;
835
836         con_out_kvec_add(con, sizeof (con->out_connect),
837                                         &con->out_connect);
838         if (auth && auth->authorizer_buf_len)
839                 con_out_kvec_add(con, auth->authorizer_buf_len,
840                                         auth->authorizer_buf);
841
842         con->out_more = 0;
843         set_bit(WRITE_PENDING, &con->flags);
844
845         return 0;
846 }
847
848 /*
849  * write as much of pending kvecs to the socket as we can.
850  *  1 -> done
851  *  0 -> socket full, but more to do
852  * <0 -> error
853  */
854 static int write_partial_kvec(struct ceph_connection *con)
855 {
856         int ret;
857
858         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
859         while (con->out_kvec_bytes > 0) {
860                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
861                                        con->out_kvec_left, con->out_kvec_bytes,
862                                        con->out_more);
863                 if (ret <= 0)
864                         goto out;
865                 con->out_kvec_bytes -= ret;
866                 if (con->out_kvec_bytes == 0)
867                         break;            /* done */
868
869                 /* account for full iov entries consumed */
870                 while (ret >= con->out_kvec_cur->iov_len) {
871                         BUG_ON(!con->out_kvec_left);
872                         ret -= con->out_kvec_cur->iov_len;
873                         con->out_kvec_cur++;
874                         con->out_kvec_left--;
875                 }
876                 /* and for a partially-consumed entry */
877                 if (ret) {
878                         con->out_kvec_cur->iov_len -= ret;
879                         con->out_kvec_cur->iov_base += ret;
880                 }
881         }
882         con->out_kvec_left = 0;
883         con->out_kvec_is_msg = false;
884         ret = 1;
885 out:
886         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
887              con->out_kvec_bytes, con->out_kvec_left, ret);
888         return ret;  /* done! */
889 }
890
891 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
892                         size_t len, size_t sent, bool in_trail)
893 {
894         struct ceph_msg *msg = con->out_msg;
895
896         BUG_ON(!msg);
897         BUG_ON(!sent);
898
899         con->out_msg_pos.data_pos += sent;
900         con->out_msg_pos.page_pos += sent;
901         if (sent == len) {
902                 con->out_msg_pos.page_pos = 0;
903                 con->out_msg_pos.page++;
904                 con->out_msg_pos.did_page_crc = false;
905                 if (in_trail)
906                         list_move_tail(&page->lru,
907                                        &msg->trail->head);
908                 else if (msg->pagelist)
909                         list_move_tail(&page->lru,
910                                        &msg->pagelist->head);
911 #ifdef CONFIG_BLOCK
912                 else if (msg->bio)
913                         iter_bio_next(&msg->bio_iter, &msg->bio_seg);
914 #endif
915         }
916 }
917
918 /*
919  * Write as much message data payload as we can.  If we finish, queue
920  * up the footer.
921  *  1 -> done, footer is now queued in out_kvec[].
922  *  0 -> socket full, but more to do
923  * <0 -> error
924  */
925 static int write_partial_msg_pages(struct ceph_connection *con)
926 {
927         struct ceph_msg *msg = con->out_msg;
928         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
929         size_t len;
930         bool do_datacrc = !con->msgr->nocrc;
931         int ret;
932         int total_max_write;
933         bool in_trail = false;
934         size_t trail_len = (msg->trail ? msg->trail->length : 0);
935
936         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
937              con, msg, con->out_msg_pos.page, msg->nr_pages,
938              con->out_msg_pos.page_pos);
939
940         while (data_len > con->out_msg_pos.data_pos) {
941                 struct page *page = NULL;
942                 int max_write = PAGE_SIZE;
943                 int bio_offset = 0;
944
945                 total_max_write = data_len - trail_len -
946                         con->out_msg_pos.data_pos;
947
948                 /*
949                  * if we are calculating the data crc (the default), we need
950                  * to map the page.  if our pages[] has been revoked, use the
951                  * zero page.
952                  */
953
954                 /* have we reached the trail part of the data? */
955                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
956                         in_trail = true;
957
958                         total_max_write = data_len - con->out_msg_pos.data_pos;
959
960                         page = list_first_entry(&msg->trail->head,
961                                                 struct page, lru);
962                 } else if (msg->pages) {
963                         page = msg->pages[con->out_msg_pos.page];
964                 } else if (msg->pagelist) {
965                         page = list_first_entry(&msg->pagelist->head,
966                                                 struct page, lru);
967 #ifdef CONFIG_BLOCK
968                 } else if (msg->bio) {
969                         struct bio_vec *bv;
970
971                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
972                         page = bv->bv_page;
973                         bio_offset = bv->bv_offset;
974                         max_write = bv->bv_len;
975 #endif
976                 } else {
977                         page = zero_page;
978                 }
979                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
980                             total_max_write);
981
982                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
983                         void *base;
984                         u32 crc;
985                         u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
986                         char *kaddr;
987
988                         kaddr = kmap(page);
989                         BUG_ON(kaddr == NULL);
990                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
991                         crc = crc32c(tmpcrc, base, len);
992                         msg->footer.data_crc = cpu_to_le32(crc);
993                         con->out_msg_pos.did_page_crc = true;
994                 }
995                 ret = ceph_tcp_sendpage(con->sock, page,
996                                       con->out_msg_pos.page_pos + bio_offset,
997                                       len, 1);
998
999                 if (do_datacrc)
1000                         kunmap(page);
1001
1002                 if (ret <= 0)
1003                         goto out;
1004
1005                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1006         }
1007
1008         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1009
1010         /* prepare and queue up footer, too */
1011         if (!do_datacrc)
1012                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1013         con_out_kvec_reset(con);
1014         prepare_write_message_footer(con);
1015         ret = 1;
1016 out:
1017         return ret;
1018 }
1019
1020 /*
1021  * write some zeros
1022  */
1023 static int write_partial_skip(struct ceph_connection *con)
1024 {
1025         int ret;
1026
1027         while (con->out_skip > 0) {
1028                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1029
1030                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1031                 if (ret <= 0)
1032                         goto out;
1033                 con->out_skip -= ret;
1034         }
1035         ret = 1;
1036 out:
1037         return ret;
1038 }
1039
1040 /*
1041  * Prepare to read connection handshake, or an ack.
1042  */
1043 static void prepare_read_banner(struct ceph_connection *con)
1044 {
1045         dout("prepare_read_banner %p\n", con);
1046         con->in_base_pos = 0;
1047 }
1048
1049 static void prepare_read_connect(struct ceph_connection *con)
1050 {
1051         dout("prepare_read_connect %p\n", con);
1052         con->in_base_pos = 0;
1053 }
1054
1055 static void prepare_read_ack(struct ceph_connection *con)
1056 {
1057         dout("prepare_read_ack %p\n", con);
1058         con->in_base_pos = 0;
1059 }
1060
1061 static void prepare_read_tag(struct ceph_connection *con)
1062 {
1063         dout("prepare_read_tag %p\n", con);
1064         con->in_base_pos = 0;
1065         con->in_tag = CEPH_MSGR_TAG_READY;
1066 }
1067
1068 /*
1069  * Prepare to read a message.
1070  */
1071 static int prepare_read_message(struct ceph_connection *con)
1072 {
1073         dout("prepare_read_message %p\n", con);
1074         BUG_ON(con->in_msg != NULL);
1075         con->in_base_pos = 0;
1076         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1077         return 0;
1078 }
1079
1080
1081 static int read_partial(struct ceph_connection *con,
1082                         int end, int size, void *object)
1083 {
1084         while (con->in_base_pos < end) {
1085                 int left = end - con->in_base_pos;
1086                 int have = size - left;
1087                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1088                 if (ret <= 0)
1089                         return ret;
1090                 con->in_base_pos += ret;
1091         }
1092         return 1;
1093 }
1094
1095
1096 /*
1097  * Read all or part of the connect-side handshake on a new connection
1098  */
1099 static int read_partial_banner(struct ceph_connection *con)
1100 {
1101         int size;
1102         int end;
1103         int ret;
1104
1105         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1106
1107         /* peer's banner */
1108         size = strlen(CEPH_BANNER);
1109         end = size;
1110         ret = read_partial(con, end, size, con->in_banner);
1111         if (ret <= 0)
1112                 goto out;
1113
1114         size = sizeof (con->actual_peer_addr);
1115         end += size;
1116         ret = read_partial(con, end, size, &con->actual_peer_addr);
1117         if (ret <= 0)
1118                 goto out;
1119
1120         size = sizeof (con->peer_addr_for_me);
1121         end += size;
1122         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1123         if (ret <= 0)
1124                 goto out;
1125
1126 out:
1127         return ret;
1128 }
1129
1130 static int read_partial_connect(struct ceph_connection *con)
1131 {
1132         int size;
1133         int end;
1134         int ret;
1135
1136         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1137
1138         size = sizeof (con->in_reply);
1139         end = size;
1140         ret = read_partial(con, end, size, &con->in_reply);
1141         if (ret <= 0)
1142                 goto out;
1143
1144         size = le32_to_cpu(con->in_reply.authorizer_len);
1145         end += size;
1146         ret = read_partial(con, end, size, con->auth_reply_buf);
1147         if (ret <= 0)
1148                 goto out;
1149
1150         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1151              con, (int)con->in_reply.tag,
1152              le32_to_cpu(con->in_reply.connect_seq),
1153              le32_to_cpu(con->in_reply.global_seq));
1154 out:
1155         return ret;
1156
1157 }
1158
1159 /*
1160  * Verify the hello banner looks okay.
1161  */
1162 static int verify_hello(struct ceph_connection *con)
1163 {
1164         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1165                 pr_err("connect to %s got bad banner\n",
1166                        ceph_pr_addr(&con->peer_addr.in_addr));
1167                 con->error_msg = "protocol error, bad banner";
1168                 return -1;
1169         }
1170         return 0;
1171 }
1172
1173 static bool addr_is_blank(struct sockaddr_storage *ss)
1174 {
1175         switch (ss->ss_family) {
1176         case AF_INET:
1177                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1178         case AF_INET6:
1179                 return
1180                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1181                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1182                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1183                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1184         }
1185         return false;
1186 }
1187
1188 static int addr_port(struct sockaddr_storage *ss)
1189 {
1190         switch (ss->ss_family) {
1191         case AF_INET:
1192                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1193         case AF_INET6:
1194                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1195         }
1196         return 0;
1197 }
1198
1199 static void addr_set_port(struct sockaddr_storage *ss, int p)
1200 {
1201         switch (ss->ss_family) {
1202         case AF_INET:
1203                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1204                 break;
1205         case AF_INET6:
1206                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1207                 break;
1208         }
1209 }
1210
1211 /*
1212  * Unlike other *_pton function semantics, zero indicates success.
1213  */
1214 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1215                 char delim, const char **ipend)
1216 {
1217         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1218         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1219
1220         memset(ss, 0, sizeof(*ss));
1221
1222         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1223                 ss->ss_family = AF_INET;
1224                 return 0;
1225         }
1226
1227         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1228                 ss->ss_family = AF_INET6;
1229                 return 0;
1230         }
1231
1232         return -EINVAL;
1233 }
1234
1235 /*
1236  * Extract hostname string and resolve using kernel DNS facility.
1237  */
1238 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1239 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1240                 struct sockaddr_storage *ss, char delim, const char **ipend)
1241 {
1242         const char *end, *delim_p;
1243         char *colon_p, *ip_addr = NULL;
1244         int ip_len, ret;
1245
1246         /*
1247          * The end of the hostname occurs immediately preceding the delimiter or
1248          * the port marker (':') where the delimiter takes precedence.
1249          */
1250         delim_p = memchr(name, delim, namelen);
1251         colon_p = memchr(name, ':', namelen);
1252
1253         if (delim_p && colon_p)
1254                 end = delim_p < colon_p ? delim_p : colon_p;
1255         else if (!delim_p && colon_p)
1256                 end = colon_p;
1257         else {
1258                 end = delim_p;
1259                 if (!end) /* case: hostname:/ */
1260                         end = name + namelen;
1261         }
1262
1263         if (end <= name)
1264                 return -EINVAL;
1265
1266         /* do dns_resolve upcall */
1267         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1268         if (ip_len > 0)
1269                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1270         else
1271                 ret = -ESRCH;
1272
1273         kfree(ip_addr);
1274
1275         *ipend = end;
1276
1277         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1278                         ret, ret ? "failed" : ceph_pr_addr(ss));
1279
1280         return ret;
1281 }
1282 #else
1283 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1284                 struct sockaddr_storage *ss, char delim, const char **ipend)
1285 {
1286         return -EINVAL;
1287 }
1288 #endif
1289
1290 /*
1291  * Parse a server name (IP or hostname). If a valid IP address is not found
1292  * then try to extract a hostname to resolve using userspace DNS upcall.
1293  */
1294 static int ceph_parse_server_name(const char *name, size_t namelen,
1295                         struct sockaddr_storage *ss, char delim, const char **ipend)
1296 {
1297         int ret;
1298
1299         ret = ceph_pton(name, namelen, ss, delim, ipend);
1300         if (ret)
1301                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1302
1303         return ret;
1304 }
1305
1306 /*
1307  * Parse an ip[:port] list into an addr array.  Use the default
1308  * monitor port if a port isn't specified.
1309  */
1310 int ceph_parse_ips(const char *c, const char *end,
1311                    struct ceph_entity_addr *addr,
1312                    int max_count, int *count)
1313 {
1314         int i, ret = -EINVAL;
1315         const char *p = c;
1316
1317         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1318         for (i = 0; i < max_count; i++) {
1319                 const char *ipend;
1320                 struct sockaddr_storage *ss = &addr[i].in_addr;
1321                 int port;
1322                 char delim = ',';
1323
1324                 if (*p == '[') {
1325                         delim = ']';
1326                         p++;
1327                 }
1328
1329                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1330                 if (ret)
1331                         goto bad;
1332                 ret = -EINVAL;
1333
1334                 p = ipend;
1335
1336                 if (delim == ']') {
1337                         if (*p != ']') {
1338                                 dout("missing matching ']'\n");
1339                                 goto bad;
1340                         }
1341                         p++;
1342                 }
1343
1344                 /* port? */
1345                 if (p < end && *p == ':') {
1346                         port = 0;
1347                         p++;
1348                         while (p < end && *p >= '0' && *p <= '9') {
1349                                 port = (port * 10) + (*p - '0');
1350                                 p++;
1351                         }
1352                         if (port > 65535 || port == 0)
1353                                 goto bad;
1354                 } else {
1355                         port = CEPH_MON_PORT;
1356                 }
1357
1358                 addr_set_port(ss, port);
1359
1360                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1361
1362                 if (p == end)
1363                         break;
1364                 if (*p != ',')
1365                         goto bad;
1366                 p++;
1367         }
1368
1369         if (p != end)
1370                 goto bad;
1371
1372         if (count)
1373                 *count = i + 1;
1374         return 0;
1375
1376 bad:
1377         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(ceph_parse_ips);
1381
1382 static int process_banner(struct ceph_connection *con)
1383 {
1384         dout("process_banner on %p\n", con);
1385
1386         if (verify_hello(con) < 0)
1387                 return -1;
1388
1389         ceph_decode_addr(&con->actual_peer_addr);
1390         ceph_decode_addr(&con->peer_addr_for_me);
1391
1392         /*
1393          * Make sure the other end is who we wanted.  note that the other
1394          * end may not yet know their ip address, so if it's 0.0.0.0, give
1395          * them the benefit of the doubt.
1396          */
1397         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1398                    sizeof(con->peer_addr)) != 0 &&
1399             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1400               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1401                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1402                            ceph_pr_addr(&con->peer_addr.in_addr),
1403                            (int)le32_to_cpu(con->peer_addr.nonce),
1404                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1405                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1406                 con->error_msg = "wrong peer at address";
1407                 return -1;
1408         }
1409
1410         /*
1411          * did we learn our address?
1412          */
1413         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1414                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1415
1416                 memcpy(&con->msgr->inst.addr.in_addr,
1417                        &con->peer_addr_for_me.in_addr,
1418                        sizeof(con->peer_addr_for_me.in_addr));
1419                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1420                 encode_my_addr(con->msgr);
1421                 dout("process_banner learned my addr is %s\n",
1422                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1423         }
1424
1425         set_bit(NEGOTIATING, &con->state);
1426         prepare_read_connect(con);
1427         return 0;
1428 }
1429
1430 static void fail_protocol(struct ceph_connection *con)
1431 {
1432         reset_connection(con);
1433         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1434 }
1435
1436 static int process_connect(struct ceph_connection *con)
1437 {
1438         u64 sup_feat = con->msgr->supported_features;
1439         u64 req_feat = con->msgr->required_features;
1440         u64 server_feat = le64_to_cpu(con->in_reply.features);
1441         int ret;
1442
1443         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1444
1445         switch (con->in_reply.tag) {
1446         case CEPH_MSGR_TAG_FEATURES:
1447                 pr_err("%s%lld %s feature set mismatch,"
1448                        " my %llx < server's %llx, missing %llx\n",
1449                        ENTITY_NAME(con->peer_name),
1450                        ceph_pr_addr(&con->peer_addr.in_addr),
1451                        sup_feat, server_feat, server_feat & ~sup_feat);
1452                 con->error_msg = "missing required protocol features";
1453                 fail_protocol(con);
1454                 return -1;
1455
1456         case CEPH_MSGR_TAG_BADPROTOVER:
1457                 pr_err("%s%lld %s protocol version mismatch,"
1458                        " my %d != server's %d\n",
1459                        ENTITY_NAME(con->peer_name),
1460                        ceph_pr_addr(&con->peer_addr.in_addr),
1461                        le32_to_cpu(con->out_connect.protocol_version),
1462                        le32_to_cpu(con->in_reply.protocol_version));
1463                 con->error_msg = "protocol version mismatch";
1464                 fail_protocol(con);
1465                 return -1;
1466
1467         case CEPH_MSGR_TAG_BADAUTHORIZER:
1468                 con->auth_retry++;
1469                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1470                      con->auth_retry);
1471                 if (con->auth_retry == 2) {
1472                         con->error_msg = "connect authorization failure";
1473                         return -1;
1474                 }
1475                 con->auth_retry = 1;
1476                 con_out_kvec_reset(con);
1477                 ret = prepare_write_connect(con);
1478                 if (ret < 0)
1479                         return ret;
1480                 prepare_read_connect(con);
1481                 break;
1482
1483         case CEPH_MSGR_TAG_RESETSESSION:
1484                 /*
1485                  * If we connected with a large connect_seq but the peer
1486                  * has no record of a session with us (no connection, or
1487                  * connect_seq == 0), they will send RESETSESION to indicate
1488                  * that they must have reset their session, and may have
1489                  * dropped messages.
1490                  */
1491                 dout("process_connect got RESET peer seq %u\n",
1492                      le32_to_cpu(con->in_connect.connect_seq));
1493                 pr_err("%s%lld %s connection reset\n",
1494                        ENTITY_NAME(con->peer_name),
1495                        ceph_pr_addr(&con->peer_addr.in_addr));
1496                 reset_connection(con);
1497                 con_out_kvec_reset(con);
1498                 ret = prepare_write_connect(con);
1499                 if (ret < 0)
1500                         return ret;
1501                 prepare_read_connect(con);
1502
1503                 /* Tell ceph about it. */
1504                 mutex_unlock(&con->mutex);
1505                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1506                 if (con->ops->peer_reset)
1507                         con->ops->peer_reset(con);
1508                 mutex_lock(&con->mutex);
1509                 if (test_bit(CLOSED, &con->state) ||
1510                     test_bit(OPENING, &con->state))
1511                         return -EAGAIN;
1512                 break;
1513
1514         case CEPH_MSGR_TAG_RETRY_SESSION:
1515                 /*
1516                  * If we sent a smaller connect_seq than the peer has, try
1517                  * again with a larger value.
1518                  */
1519                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1520                      le32_to_cpu(con->out_connect.connect_seq),
1521                      le32_to_cpu(con->in_connect.connect_seq));
1522                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1523                 con_out_kvec_reset(con);
1524                 ret = prepare_write_connect(con);
1525                 if (ret < 0)
1526                         return ret;
1527                 prepare_read_connect(con);
1528                 break;
1529
1530         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1531                 /*
1532                  * If we sent a smaller global_seq than the peer has, try
1533                  * again with a larger value.
1534                  */
1535                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1536                      con->peer_global_seq,
1537                      le32_to_cpu(con->in_connect.global_seq));
1538                 get_global_seq(con->msgr,
1539                                le32_to_cpu(con->in_connect.global_seq));
1540                 con_out_kvec_reset(con);
1541                 ret = prepare_write_connect(con);
1542                 if (ret < 0)
1543                         return ret;
1544                 prepare_read_connect(con);
1545                 break;
1546
1547         case CEPH_MSGR_TAG_READY:
1548                 if (req_feat & ~server_feat) {
1549                         pr_err("%s%lld %s protocol feature mismatch,"
1550                                " my required %llx > server's %llx, need %llx\n",
1551                                ENTITY_NAME(con->peer_name),
1552                                ceph_pr_addr(&con->peer_addr.in_addr),
1553                                req_feat, server_feat, req_feat & ~server_feat);
1554                         con->error_msg = "missing required protocol features";
1555                         fail_protocol(con);
1556                         return -1;
1557                 }
1558                 clear_bit(CONNECTING, &con->state);
1559                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1560                 con->connect_seq++;
1561                 con->peer_features = server_feat;
1562                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1563                      con->peer_global_seq,
1564                      le32_to_cpu(con->in_reply.connect_seq),
1565                      con->connect_seq);
1566                 WARN_ON(con->connect_seq !=
1567                         le32_to_cpu(con->in_reply.connect_seq));
1568
1569                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1570                         set_bit(LOSSYTX, &con->flags);
1571
1572                 prepare_read_tag(con);
1573                 break;
1574
1575         case CEPH_MSGR_TAG_WAIT:
1576                 /*
1577                  * If there is a connection race (we are opening
1578                  * connections to each other), one of us may just have
1579                  * to WAIT.  This shouldn't happen if we are the
1580                  * client.
1581                  */
1582                 pr_err("process_connect got WAIT as client\n");
1583                 con->error_msg = "protocol error, got WAIT as client";
1584                 return -1;
1585
1586         default:
1587                 pr_err("connect protocol error, will retry\n");
1588                 con->error_msg = "protocol error, garbage tag during connect";
1589                 return -1;
1590         }
1591         return 0;
1592 }
1593
1594
1595 /*
1596  * read (part of) an ack
1597  */
1598 static int read_partial_ack(struct ceph_connection *con)
1599 {
1600         int size = sizeof (con->in_temp_ack);
1601         int end = size;
1602
1603         return read_partial(con, end, size, &con->in_temp_ack);
1604 }
1605
1606
1607 /*
1608  * We can finally discard anything that's been acked.
1609  */
1610 static void process_ack(struct ceph_connection *con)
1611 {
1612         struct ceph_msg *m;
1613         u64 ack = le64_to_cpu(con->in_temp_ack);
1614         u64 seq;
1615
1616         while (!list_empty(&con->out_sent)) {
1617                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1618                                      list_head);
1619                 seq = le64_to_cpu(m->hdr.seq);
1620                 if (seq > ack)
1621                         break;
1622                 dout("got ack for seq %llu type %d at %p\n", seq,
1623                      le16_to_cpu(m->hdr.type), m);
1624                 m->ack_stamp = jiffies;
1625                 ceph_msg_remove(m);
1626         }
1627         prepare_read_tag(con);
1628 }
1629
1630
1631
1632
1633 static int read_partial_message_section(struct ceph_connection *con,
1634                                         struct kvec *section,
1635                                         unsigned int sec_len, u32 *crc)
1636 {
1637         int ret, left;
1638
1639         BUG_ON(!section);
1640
1641         while (section->iov_len < sec_len) {
1642                 BUG_ON(section->iov_base == NULL);
1643                 left = sec_len - section->iov_len;
1644                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1645                                        section->iov_len, left);
1646                 if (ret <= 0)
1647                         return ret;
1648                 section->iov_len += ret;
1649         }
1650         if (section->iov_len == sec_len)
1651                 *crc = crc32c(0, section->iov_base, section->iov_len);
1652
1653         return 1;
1654 }
1655
1656 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1657                                 struct ceph_msg_header *hdr);
1658
1659
1660 static int read_partial_message_pages(struct ceph_connection *con,
1661                                       struct page **pages,
1662                                       unsigned int data_len, bool do_datacrc)
1663 {
1664         void *p;
1665         int ret;
1666         int left;
1667
1668         left = min((int)(data_len - con->in_msg_pos.data_pos),
1669                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1670         /* (page) data */
1671         BUG_ON(pages == NULL);
1672         p = kmap(pages[con->in_msg_pos.page]);
1673         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1674                                left);
1675         if (ret > 0 && do_datacrc)
1676                 con->in_data_crc =
1677                         crc32c(con->in_data_crc,
1678                                   p + con->in_msg_pos.page_pos, ret);
1679         kunmap(pages[con->in_msg_pos.page]);
1680         if (ret <= 0)
1681                 return ret;
1682         con->in_msg_pos.data_pos += ret;
1683         con->in_msg_pos.page_pos += ret;
1684         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1685                 con->in_msg_pos.page_pos = 0;
1686                 con->in_msg_pos.page++;
1687         }
1688
1689         return ret;
1690 }
1691
1692 #ifdef CONFIG_BLOCK
1693 static int read_partial_message_bio(struct ceph_connection *con,
1694                                     struct bio **bio_iter, int *bio_seg,
1695                                     unsigned int data_len, bool do_datacrc)
1696 {
1697         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1698         void *p;
1699         int ret, left;
1700
1701         if (IS_ERR(bv))
1702                 return PTR_ERR(bv);
1703
1704         left = min((int)(data_len - con->in_msg_pos.data_pos),
1705                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1706
1707         p = kmap(bv->bv_page) + bv->bv_offset;
1708
1709         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1710                                left);
1711         if (ret > 0 && do_datacrc)
1712                 con->in_data_crc =
1713                         crc32c(con->in_data_crc,
1714                                   p + con->in_msg_pos.page_pos, ret);
1715         kunmap(bv->bv_page);
1716         if (ret <= 0)
1717                 return ret;
1718         con->in_msg_pos.data_pos += ret;
1719         con->in_msg_pos.page_pos += ret;
1720         if (con->in_msg_pos.page_pos == bv->bv_len) {
1721                 con->in_msg_pos.page_pos = 0;
1722                 iter_bio_next(bio_iter, bio_seg);
1723         }
1724
1725         return ret;
1726 }
1727 #endif
1728
1729 /*
1730  * read (part of) a message.
1731  */
1732 static int read_partial_message(struct ceph_connection *con)
1733 {
1734         struct ceph_msg *m = con->in_msg;
1735         int size;
1736         int end;
1737         int ret;
1738         unsigned int front_len, middle_len, data_len;
1739         bool do_datacrc = !con->msgr->nocrc;
1740         u64 seq;
1741         u32 crc;
1742
1743         dout("read_partial_message con %p msg %p\n", con, m);
1744
1745         /* header */
1746         size = sizeof (con->in_hdr);
1747         end = size;
1748         ret = read_partial(con, end, size, &con->in_hdr);
1749         if (ret <= 0)
1750                 return ret;
1751
1752         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1753         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1754                 pr_err("read_partial_message bad hdr "
1755                        " crc %u != expected %u\n",
1756                        crc, con->in_hdr.crc);
1757                 return -EBADMSG;
1758         }
1759
1760         front_len = le32_to_cpu(con->in_hdr.front_len);
1761         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1762                 return -EIO;
1763         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1764         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1765                 return -EIO;
1766         data_len = le32_to_cpu(con->in_hdr.data_len);
1767         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1768                 return -EIO;
1769
1770         /* verify seq# */
1771         seq = le64_to_cpu(con->in_hdr.seq);
1772         if ((s64)seq - (s64)con->in_seq < 1) {
1773                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1774                         ENTITY_NAME(con->peer_name),
1775                         ceph_pr_addr(&con->peer_addr.in_addr),
1776                         seq, con->in_seq + 1);
1777                 con->in_base_pos = -front_len - middle_len - data_len -
1778                         sizeof(m->footer);
1779                 con->in_tag = CEPH_MSGR_TAG_READY;
1780                 return 0;
1781         } else if ((s64)seq - (s64)con->in_seq > 1) {
1782                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1783                        seq, con->in_seq + 1);
1784                 con->error_msg = "bad message sequence # for incoming message";
1785                 return -EBADMSG;
1786         }
1787
1788         /* allocate message? */
1789         if (!con->in_msg) {
1790                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1791                      con->in_hdr.front_len, con->in_hdr.data_len);
1792                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1793                         /* skip this message */
1794                         dout("alloc_msg said skip message\n");
1795                         BUG_ON(con->in_msg);
1796                         con->in_base_pos = -front_len - middle_len - data_len -
1797                                 sizeof(m->footer);
1798                         con->in_tag = CEPH_MSGR_TAG_READY;
1799                         con->in_seq++;
1800                         return 0;
1801                 }
1802                 if (!con->in_msg) {
1803                         con->error_msg =
1804                                 "error allocating memory for incoming message";
1805                         return -ENOMEM;
1806                 }
1807
1808                 BUG_ON(con->in_msg->con != con);
1809                 m = con->in_msg;
1810                 m->front.iov_len = 0;    /* haven't read it yet */
1811                 if (m->middle)
1812                         m->middle->vec.iov_len = 0;
1813
1814                 con->in_msg_pos.page = 0;
1815                 if (m->pages)
1816                         con->in_msg_pos.page_pos = m->page_alignment;
1817                 else
1818                         con->in_msg_pos.page_pos = 0;
1819                 con->in_msg_pos.data_pos = 0;
1820         }
1821
1822         /* front */
1823         ret = read_partial_message_section(con, &m->front, front_len,
1824                                            &con->in_front_crc);
1825         if (ret <= 0)
1826                 return ret;
1827
1828         /* middle */
1829         if (m->middle) {
1830                 ret = read_partial_message_section(con, &m->middle->vec,
1831                                                    middle_len,
1832                                                    &con->in_middle_crc);
1833                 if (ret <= 0)
1834                         return ret;
1835         }
1836 #ifdef CONFIG_BLOCK
1837         if (m->bio && !m->bio_iter)
1838                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1839 #endif
1840
1841         /* (page) data */
1842         while (con->in_msg_pos.data_pos < data_len) {
1843                 if (m->pages) {
1844                         ret = read_partial_message_pages(con, m->pages,
1845                                                  data_len, do_datacrc);
1846                         if (ret <= 0)
1847                                 return ret;
1848 #ifdef CONFIG_BLOCK
1849                 } else if (m->bio) {
1850
1851                         ret = read_partial_message_bio(con,
1852                                                  &m->bio_iter, &m->bio_seg,
1853                                                  data_len, do_datacrc);
1854                         if (ret <= 0)
1855                                 return ret;
1856 #endif
1857                 } else {
1858                         BUG_ON(1);
1859                 }
1860         }
1861
1862         /* footer */
1863         size = sizeof (m->footer);
1864         end += size;
1865         ret = read_partial(con, end, size, &m->footer);
1866         if (ret <= 0)
1867                 return ret;
1868
1869         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1870              m, front_len, m->footer.front_crc, middle_len,
1871              m->footer.middle_crc, data_len, m->footer.data_crc);
1872
1873         /* crc ok? */
1874         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1875                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1876                        m, con->in_front_crc, m->footer.front_crc);
1877                 return -EBADMSG;
1878         }
1879         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1880                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1881                        m, con->in_middle_crc, m->footer.middle_crc);
1882                 return -EBADMSG;
1883         }
1884         if (do_datacrc &&
1885             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1886             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1887                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1888                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1889                 return -EBADMSG;
1890         }
1891
1892         return 1; /* done! */
1893 }
1894
1895 /*
1896  * Process message.  This happens in the worker thread.  The callback should
1897  * be careful not to do anything that waits on other incoming messages or it
1898  * may deadlock.
1899  */
1900 static void process_message(struct ceph_connection *con)
1901 {
1902         struct ceph_msg *msg;
1903
1904         BUG_ON(con->in_msg->con != con);
1905         con->in_msg->con = NULL;
1906         msg = con->in_msg;
1907         con->in_msg = NULL;
1908         con->ops->put(con);
1909
1910         /* if first message, set peer_name */
1911         if (con->peer_name.type == 0)
1912                 con->peer_name = msg->hdr.src;
1913
1914         con->in_seq++;
1915         mutex_unlock(&con->mutex);
1916
1917         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1918              msg, le64_to_cpu(msg->hdr.seq),
1919              ENTITY_NAME(msg->hdr.src),
1920              le16_to_cpu(msg->hdr.type),
1921              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1922              le32_to_cpu(msg->hdr.front_len),
1923              le32_to_cpu(msg->hdr.data_len),
1924              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1925         con->ops->dispatch(con, msg);
1926
1927         mutex_lock(&con->mutex);
1928         prepare_read_tag(con);
1929 }
1930
1931
1932 /*
1933  * Write something to the socket.  Called in a worker thread when the
1934  * socket appears to be writeable and we have something ready to send.
1935  */
1936 static int try_write(struct ceph_connection *con)
1937 {
1938         int ret = 1;
1939
1940         dout("try_write start %p state %lu\n", con, con->state);
1941
1942 more:
1943         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1944
1945         /* open the socket first? */
1946         if (con->sock == NULL) {
1947                 clear_bit(NEGOTIATING, &con->state);
1948                 set_bit(CONNECTING, &con->state);
1949
1950                 con_out_kvec_reset(con);
1951                 prepare_write_banner(con);
1952                 ret = prepare_write_connect(con);
1953                 if (ret < 0)
1954                         goto out;
1955                 prepare_read_banner(con);
1956
1957                 BUG_ON(con->in_msg);
1958                 con->in_tag = CEPH_MSGR_TAG_READY;
1959                 dout("try_write initiating connect on %p new state %lu\n",
1960                      con, con->state);
1961                 ret = ceph_tcp_connect(con);
1962                 if (ret < 0) {
1963                         con->error_msg = "connect error";
1964                         goto out;
1965                 }
1966         }
1967
1968 more_kvec:
1969         /* kvec data queued? */
1970         if (con->out_skip) {
1971                 ret = write_partial_skip(con);
1972                 if (ret <= 0)
1973                         goto out;
1974         }
1975         if (con->out_kvec_left) {
1976                 ret = write_partial_kvec(con);
1977                 if (ret <= 0)
1978                         goto out;
1979         }
1980
1981         /* msg pages? */
1982         if (con->out_msg) {
1983                 if (con->out_msg_done) {
1984                         ceph_msg_put(con->out_msg);
1985                         con->out_msg = NULL;   /* we're done with this one */
1986                         goto do_next;
1987                 }
1988
1989                 ret = write_partial_msg_pages(con);
1990                 if (ret == 1)
1991                         goto more_kvec;  /* we need to send the footer, too! */
1992                 if (ret == 0)
1993                         goto out;
1994                 if (ret < 0) {
1995                         dout("try_write write_partial_msg_pages err %d\n",
1996                              ret);
1997                         goto out;
1998                 }
1999         }
2000
2001 do_next:
2002         if (!test_bit(CONNECTING, &con->state)) {
2003                 /* is anything else pending? */
2004                 if (!list_empty(&con->out_queue)) {
2005                         prepare_write_message(con);
2006                         goto more;
2007                 }
2008                 if (con->in_seq > con->in_seq_acked) {
2009                         prepare_write_ack(con);
2010                         goto more;
2011                 }
2012                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2013                         prepare_write_keepalive(con);
2014                         goto more;
2015                 }
2016         }
2017
2018         /* Nothing to do! */
2019         clear_bit(WRITE_PENDING, &con->flags);
2020         dout("try_write nothing else to write.\n");
2021         ret = 0;
2022 out:
2023         dout("try_write done on %p ret %d\n", con, ret);
2024         return ret;
2025 }
2026
2027
2028
2029 /*
2030  * Read what we can from the socket.
2031  */
2032 static int try_read(struct ceph_connection *con)
2033 {
2034         int ret = -1;
2035
2036         if (!con->sock)
2037                 return 0;
2038
2039         if (test_bit(STANDBY, &con->state))
2040                 return 0;
2041
2042         dout("try_read start on %p\n", con);
2043
2044 more:
2045         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2046              con->in_base_pos);
2047
2048         /*
2049          * process_connect and process_message drop and re-take
2050          * con->mutex.  make sure we handle a racing close or reopen.
2051          */
2052         if (test_bit(CLOSED, &con->state) ||
2053             test_bit(OPENING, &con->state)) {
2054                 ret = -EAGAIN;
2055                 goto out;
2056         }
2057
2058         if (test_bit(CONNECTING, &con->state)) {
2059                 if (!test_bit(NEGOTIATING, &con->state)) {
2060                         dout("try_read connecting\n");
2061                         ret = read_partial_banner(con);
2062                         if (ret <= 0)
2063                                 goto out;
2064                         ret = process_banner(con);
2065                         if (ret < 0)
2066                                 goto out;
2067                 }
2068                 ret = read_partial_connect(con);
2069                 if (ret <= 0)
2070                         goto out;
2071                 ret = process_connect(con);
2072                 if (ret < 0)
2073                         goto out;
2074                 goto more;
2075         }
2076
2077         if (con->in_base_pos < 0) {
2078                 /*
2079                  * skipping + discarding content.
2080                  *
2081                  * FIXME: there must be a better way to do this!
2082                  */
2083                 static char buf[SKIP_BUF_SIZE];
2084                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2085
2086                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2087                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2088                 if (ret <= 0)
2089                         goto out;
2090                 con->in_base_pos += ret;
2091                 if (con->in_base_pos)
2092                         goto more;
2093         }
2094         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2095                 /*
2096                  * what's next?
2097                  */
2098                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2099                 if (ret <= 0)
2100                         goto out;
2101                 dout("try_read got tag %d\n", (int)con->in_tag);
2102                 switch (con->in_tag) {
2103                 case CEPH_MSGR_TAG_MSG:
2104                         prepare_read_message(con);
2105                         break;
2106                 case CEPH_MSGR_TAG_ACK:
2107                         prepare_read_ack(con);
2108                         break;
2109                 case CEPH_MSGR_TAG_CLOSE:
2110                         set_bit(CLOSED, &con->state);   /* fixme */
2111                         goto out;
2112                 default:
2113                         goto bad_tag;
2114                 }
2115         }
2116         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2117                 ret = read_partial_message(con);
2118                 if (ret <= 0) {
2119                         switch (ret) {
2120                         case -EBADMSG:
2121                                 con->error_msg = "bad crc";
2122                                 ret = -EIO;
2123                                 break;
2124                         case -EIO:
2125                                 con->error_msg = "io error";
2126                                 break;
2127                         }
2128                         goto out;
2129                 }
2130                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2131                         goto more;
2132                 process_message(con);
2133                 goto more;
2134         }
2135         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2136                 ret = read_partial_ack(con);
2137                 if (ret <= 0)
2138                         goto out;
2139                 process_ack(con);
2140                 goto more;
2141         }
2142
2143 out:
2144         dout("try_read done on %p ret %d\n", con, ret);
2145         return ret;
2146
2147 bad_tag:
2148         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2149         con->error_msg = "protocol error, garbage tag";
2150         ret = -1;
2151         goto out;
2152 }
2153
2154
2155 /*
2156  * Atomically queue work on a connection.  Bump @con reference to
2157  * avoid races with connection teardown.
2158  */
2159 static void queue_con(struct ceph_connection *con)
2160 {
2161         if (!con->ops->get(con)) {
2162                 dout("queue_con %p ref count 0\n", con);
2163                 return;
2164         }
2165
2166         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2167                 dout("queue_con %p - already queued\n", con);
2168                 con->ops->put(con);
2169         } else {
2170                 dout("queue_con %p\n", con);
2171         }
2172 }
2173
2174 /*
2175  * Do some work on a connection.  Drop a connection ref when we're done.
2176  */
2177 static void con_work(struct work_struct *work)
2178 {
2179         struct ceph_connection *con = container_of(work, struct ceph_connection,
2180                                                    work.work);
2181         int ret;
2182
2183         mutex_lock(&con->mutex);
2184 restart:
2185         if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2186                 if (test_bit(CONNECTING, &con->state))
2187                         con->error_msg = "connection failed";
2188                 else
2189                         con->error_msg = "socket closed";
2190                 goto fault;
2191         }
2192
2193         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2194                 dout("con_work %p backing off\n", con);
2195                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2196                                        round_jiffies_relative(con->delay))) {
2197                         dout("con_work %p backoff %lu\n", con, con->delay);
2198                         mutex_unlock(&con->mutex);
2199                         return;
2200                 } else {
2201                         con->ops->put(con);
2202                         dout("con_work %p FAILED to back off %lu\n", con,
2203                              con->delay);
2204                 }
2205         }
2206
2207         if (test_bit(STANDBY, &con->state)) {
2208                 dout("con_work %p STANDBY\n", con);
2209                 goto done;
2210         }
2211         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2212                 dout("con_work CLOSED\n");
2213                 con_close_socket(con);
2214                 goto done;
2215         }
2216         if (test_and_clear_bit(OPENING, &con->state)) {
2217                 /* reopen w/ new peer */
2218                 dout("con_work OPENING\n");
2219                 con_close_socket(con);
2220         }
2221
2222         ret = try_read(con);
2223         if (ret == -EAGAIN)
2224                 goto restart;
2225         if (ret < 0)
2226                 goto fault;
2227
2228         ret = try_write(con);
2229         if (ret == -EAGAIN)
2230                 goto restart;
2231         if (ret < 0)
2232                 goto fault;
2233
2234 done:
2235         mutex_unlock(&con->mutex);
2236 done_unlocked:
2237         con->ops->put(con);
2238         return;
2239
2240 fault:
2241         mutex_unlock(&con->mutex);
2242         ceph_fault(con);     /* error/fault path */
2243         goto done_unlocked;
2244 }
2245
2246
2247 /*
2248  * Generic error/fault handler.  A retry mechanism is used with
2249  * exponential backoff
2250  */
2251 static void ceph_fault(struct ceph_connection *con)
2252 {
2253         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2254                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2255         dout("fault %p state %lu to peer %s\n",
2256              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2257
2258         if (test_bit(LOSSYTX, &con->flags)) {
2259                 dout("fault on LOSSYTX channel\n");
2260                 goto out;
2261         }
2262
2263         mutex_lock(&con->mutex);
2264         if (test_bit(CLOSED, &con->state))
2265                 goto out_unlock;
2266
2267         con_close_socket(con);
2268
2269         if (con->in_msg) {
2270                 BUG_ON(con->in_msg->con != con);
2271                 con->in_msg->con = NULL;
2272                 ceph_msg_put(con->in_msg);
2273                 con->in_msg = NULL;
2274                 con->ops->put(con);
2275         }
2276
2277         /* Requeue anything that hasn't been acked */
2278         list_splice_init(&con->out_sent, &con->out_queue);
2279
2280         /* If there are no messages queued or keepalive pending, place
2281          * the connection in a STANDBY state */
2282         if (list_empty(&con->out_queue) &&
2283             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2284                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2285                 clear_bit(WRITE_PENDING, &con->flags);
2286                 set_bit(STANDBY, &con->state);
2287         } else {
2288                 /* retry after a delay. */
2289                 if (con->delay == 0)
2290                         con->delay = BASE_DELAY_INTERVAL;
2291                 else if (con->delay < MAX_DELAY_INTERVAL)
2292                         con->delay *= 2;
2293                 con->ops->get(con);
2294                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2295                                        round_jiffies_relative(con->delay))) {
2296                         dout("fault queued %p delay %lu\n", con, con->delay);
2297                 } else {
2298                         con->ops->put(con);
2299                         dout("fault failed to queue %p delay %lu, backoff\n",
2300                              con, con->delay);
2301                         /*
2302                          * In many cases we see a socket state change
2303                          * while con_work is running and end up
2304                          * queuing (non-delayed) work, such that we
2305                          * can't backoff with a delay.  Set a flag so
2306                          * that when con_work restarts we schedule the
2307                          * delay then.
2308                          */
2309                         set_bit(BACKOFF, &con->flags);
2310                 }
2311         }
2312
2313 out_unlock:
2314         mutex_unlock(&con->mutex);
2315 out:
2316         /*
2317          * in case we faulted due to authentication, invalidate our
2318          * current tickets so that we can get new ones.
2319          */
2320         if (con->auth_retry && con->ops->invalidate_authorizer) {
2321                 dout("calling invalidate_authorizer()\n");
2322                 con->ops->invalidate_authorizer(con);
2323         }
2324
2325         if (con->ops->fault)
2326                 con->ops->fault(con);
2327 }
2328
2329
2330
2331 /*
2332  * initialize a new messenger instance
2333  */
2334 void ceph_messenger_init(struct ceph_messenger *msgr,
2335                         struct ceph_entity_addr *myaddr,
2336                         u32 supported_features,
2337                         u32 required_features,
2338                         bool nocrc)
2339 {
2340         msgr->supported_features = supported_features;
2341         msgr->required_features = required_features;
2342
2343         spin_lock_init(&msgr->global_seq_lock);
2344
2345         if (myaddr)
2346                 msgr->inst.addr = *myaddr;
2347
2348         /* select a random nonce */
2349         msgr->inst.addr.type = 0;
2350         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2351         encode_my_addr(msgr);
2352         msgr->nocrc = nocrc;
2353
2354         dout("%s %p\n", __func__, msgr);
2355 }
2356 EXPORT_SYMBOL(ceph_messenger_init);
2357
2358 static void clear_standby(struct ceph_connection *con)
2359 {
2360         /* come back from STANDBY? */
2361         if (test_and_clear_bit(STANDBY, &con->state)) {
2362                 mutex_lock(&con->mutex);
2363                 dout("clear_standby %p and ++connect_seq\n", con);
2364                 con->connect_seq++;
2365                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2366                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2367                 mutex_unlock(&con->mutex);
2368         }
2369 }
2370
2371 /*
2372  * Queue up an outgoing message on the given connection.
2373  */
2374 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2375 {
2376         if (test_bit(CLOSED, &con->state)) {
2377                 dout("con_send %p closed, dropping %p\n", con, msg);
2378                 ceph_msg_put(msg);
2379                 return;
2380         }
2381
2382         /* set src+dst */
2383         msg->hdr.src = con->msgr->inst.name;
2384
2385         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2386
2387         msg->needs_out_seq = true;
2388
2389         /* queue */
2390         mutex_lock(&con->mutex);
2391
2392         BUG_ON(msg->con != NULL);
2393         msg->con = con->ops->get(con);
2394         BUG_ON(msg->con == NULL);
2395
2396         BUG_ON(!list_empty(&msg->list_head));
2397         list_add_tail(&msg->list_head, &con->out_queue);
2398         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2399              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2400              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2401              le32_to_cpu(msg->hdr.front_len),
2402              le32_to_cpu(msg->hdr.middle_len),
2403              le32_to_cpu(msg->hdr.data_len));
2404         mutex_unlock(&con->mutex);
2405
2406         /* if there wasn't anything waiting to send before, queue
2407          * new work */
2408         clear_standby(con);
2409         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2410                 queue_con(con);
2411 }
2412 EXPORT_SYMBOL(ceph_con_send);
2413
2414 /*
2415  * Revoke a message that was previously queued for send
2416  */
2417 void ceph_msg_revoke(struct ceph_msg *msg)
2418 {
2419         struct ceph_connection *con = msg->con;
2420
2421         if (!con)
2422                 return;         /* Message not in our possession */
2423
2424         mutex_lock(&con->mutex);
2425         if (!list_empty(&msg->list_head)) {
2426                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2427                 list_del_init(&msg->list_head);
2428                 BUG_ON(msg->con == NULL);
2429                 msg->con->ops->put(msg->con);
2430                 msg->con = NULL;
2431                 msg->hdr.seq = 0;
2432
2433                 ceph_msg_put(msg);
2434         }
2435         if (con->out_msg == msg) {
2436                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2437                 con->out_msg = NULL;
2438                 if (con->out_kvec_is_msg) {
2439                         con->out_skip = con->out_kvec_bytes;
2440                         con->out_kvec_is_msg = false;
2441                 }
2442                 msg->hdr.seq = 0;
2443
2444                 ceph_msg_put(msg);
2445         }
2446         mutex_unlock(&con->mutex);
2447 }
2448
2449 /*
2450  * Revoke a message that we may be reading data into
2451  */
2452 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2453 {
2454         struct ceph_connection *con;
2455
2456         BUG_ON(msg == NULL);
2457         if (!msg->con) {
2458                 dout("%s msg %p null con\n", __func__, msg);
2459
2460                 return;         /* Message not in our possession */
2461         }
2462
2463         con = msg->con;
2464         mutex_lock(&con->mutex);
2465         if (con->in_msg == msg) {
2466                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2467                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2468                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2469
2470                 /* skip rest of message */
2471                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2472                 con->in_base_pos = con->in_base_pos -
2473                                 sizeof(struct ceph_msg_header) -
2474                                 front_len -
2475                                 middle_len -
2476                                 data_len -
2477                                 sizeof(struct ceph_msg_footer);
2478                 ceph_msg_put(con->in_msg);
2479                 con->in_msg = NULL;
2480                 con->in_tag = CEPH_MSGR_TAG_READY;
2481                 con->in_seq++;
2482         } else {
2483                 dout("%s %p in_msg %p msg %p no-op\n",
2484                      __func__, con, con->in_msg, msg);
2485         }
2486         mutex_unlock(&con->mutex);
2487 }
2488
2489 /*
2490  * Queue a keepalive byte to ensure the tcp connection is alive.
2491  */
2492 void ceph_con_keepalive(struct ceph_connection *con)
2493 {
2494         dout("con_keepalive %p\n", con);
2495         clear_standby(con);
2496         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2497             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2498                 queue_con(con);
2499 }
2500 EXPORT_SYMBOL(ceph_con_keepalive);
2501
2502
2503 /*
2504  * construct a new message with given type, size
2505  * the new msg has a ref count of 1.
2506  */
2507 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2508                               bool can_fail)
2509 {
2510         struct ceph_msg *m;
2511
2512         m = kmalloc(sizeof(*m), flags);
2513         if (m == NULL)
2514                 goto out;
2515         kref_init(&m->kref);
2516
2517         m->con = NULL;
2518         INIT_LIST_HEAD(&m->list_head);
2519
2520         m->hdr.tid = 0;
2521         m->hdr.type = cpu_to_le16(type);
2522         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2523         m->hdr.version = 0;
2524         m->hdr.front_len = cpu_to_le32(front_len);
2525         m->hdr.middle_len = 0;
2526         m->hdr.data_len = 0;
2527         m->hdr.data_off = 0;
2528         m->hdr.reserved = 0;
2529         m->footer.front_crc = 0;
2530         m->footer.middle_crc = 0;
2531         m->footer.data_crc = 0;
2532         m->footer.flags = 0;
2533         m->front_max = front_len;
2534         m->front_is_vmalloc = false;
2535         m->more_to_follow = false;
2536         m->ack_stamp = 0;
2537         m->pool = NULL;
2538
2539         /* middle */
2540         m->middle = NULL;
2541
2542         /* data */
2543         m->nr_pages = 0;
2544         m->page_alignment = 0;
2545         m->pages = NULL;
2546         m->pagelist = NULL;
2547         m->bio = NULL;
2548         m->bio_iter = NULL;
2549         m->bio_seg = 0;
2550         m->trail = NULL;
2551
2552         /* front */
2553         if (front_len) {
2554                 if (front_len > PAGE_CACHE_SIZE) {
2555                         m->front.iov_base = __vmalloc(front_len, flags,
2556                                                       PAGE_KERNEL);
2557                         m->front_is_vmalloc = true;
2558                 } else {
2559                         m->front.iov_base = kmalloc(front_len, flags);
2560                 }
2561                 if (m->front.iov_base == NULL) {
2562                         dout("ceph_msg_new can't allocate %d bytes\n",
2563                              front_len);
2564                         goto out2;
2565                 }
2566         } else {
2567                 m->front.iov_base = NULL;
2568         }
2569         m->front.iov_len = front_len;
2570
2571         dout("ceph_msg_new %p front %d\n", m, front_len);
2572         return m;
2573
2574 out2:
2575         ceph_msg_put(m);
2576 out:
2577         if (!can_fail) {
2578                 pr_err("msg_new can't create type %d front %d\n", type,
2579                        front_len);
2580                 WARN_ON(1);
2581         } else {
2582                 dout("msg_new can't create type %d front %d\n", type,
2583                      front_len);
2584         }
2585         return NULL;
2586 }
2587 EXPORT_SYMBOL(ceph_msg_new);
2588
2589 /*
2590  * Allocate "middle" portion of a message, if it is needed and wasn't
2591  * allocated by alloc_msg.  This allows us to read a small fixed-size
2592  * per-type header in the front and then gracefully fail (i.e.,
2593  * propagate the error to the caller based on info in the front) when
2594  * the middle is too large.
2595  */
2596 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2597 {
2598         int type = le16_to_cpu(msg->hdr.type);
2599         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2600
2601         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2602              ceph_msg_type_name(type), middle_len);
2603         BUG_ON(!middle_len);
2604         BUG_ON(msg->middle);
2605
2606         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2607         if (!msg->middle)
2608                 return -ENOMEM;
2609         return 0;
2610 }
2611
2612 /*
2613  * Allocate a message for receiving an incoming message on a
2614  * connection, and save the result in con->in_msg.  Uses the
2615  * connection's private alloc_msg op if available.
2616  *
2617  * Returns true if the message should be skipped, false otherwise.
2618  * If true is returned (skip message), con->in_msg will be NULL.
2619  * If false is returned, con->in_msg will contain a pointer to the
2620  * newly-allocated message, or NULL in case of memory exhaustion.
2621  */
2622 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2623                                 struct ceph_msg_header *hdr)
2624 {
2625         int type = le16_to_cpu(hdr->type);
2626         int front_len = le32_to_cpu(hdr->front_len);
2627         int middle_len = le32_to_cpu(hdr->middle_len);
2628         int ret;
2629
2630         BUG_ON(con->in_msg != NULL);
2631
2632         if (con->ops->alloc_msg) {
2633                 int skip = 0;
2634
2635                 mutex_unlock(&con->mutex);
2636                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2637                 mutex_lock(&con->mutex);
2638                 if (con->in_msg) {
2639                         con->in_msg->con = con->ops->get(con);
2640                         BUG_ON(con->in_msg->con == NULL);
2641                 }
2642                 if (skip)
2643                         con->in_msg = NULL;
2644
2645                 if (!con->in_msg)
2646                         return skip != 0;
2647         }
2648         if (!con->in_msg) {
2649                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2650                 if (!con->in_msg) {
2651                         pr_err("unable to allocate msg type %d len %d\n",
2652                                type, front_len);
2653                         return false;
2654                 }
2655                 con->in_msg->con = con->ops->get(con);
2656                 BUG_ON(con->in_msg->con == NULL);
2657                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2658         }
2659         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2660
2661         if (middle_len && !con->in_msg->middle) {
2662                 ret = ceph_alloc_middle(con, con->in_msg);
2663                 if (ret < 0) {
2664                         ceph_msg_put(con->in_msg);
2665                         con->in_msg = NULL;
2666                 }
2667         }
2668
2669         return false;
2670 }
2671
2672
2673 /*
2674  * Free a generically kmalloc'd message.
2675  */
2676 void ceph_msg_kfree(struct ceph_msg *m)
2677 {
2678         dout("msg_kfree %p\n", m);
2679         if (m->front_is_vmalloc)
2680                 vfree(m->front.iov_base);
2681         else
2682                 kfree(m->front.iov_base);
2683         kfree(m);
2684 }
2685
2686 /*
2687  * Drop a msg ref.  Destroy as needed.
2688  */
2689 void ceph_msg_last_put(struct kref *kref)
2690 {
2691         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2692
2693         dout("ceph_msg_put last one on %p\n", m);
2694         WARN_ON(!list_empty(&m->list_head));
2695
2696         /* drop middle, data, if any */
2697         if (m->middle) {
2698                 ceph_buffer_put(m->middle);
2699                 m->middle = NULL;
2700         }
2701         m->nr_pages = 0;
2702         m->pages = NULL;
2703
2704         if (m->pagelist) {
2705                 ceph_pagelist_release(m->pagelist);
2706                 kfree(m->pagelist);
2707                 m->pagelist = NULL;
2708         }
2709
2710         m->trail = NULL;
2711
2712         if (m->pool)
2713                 ceph_msgpool_put(m->pool, m);
2714         else
2715                 ceph_msg_kfree(m);
2716 }
2717 EXPORT_SYMBOL(ceph_msg_last_put);
2718
2719 void ceph_msg_dump(struct ceph_msg *msg)
2720 {
2721         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2722                  msg->front_max, msg->nr_pages);
2723         print_hex_dump(KERN_DEBUG, "header: ",
2724                        DUMP_PREFIX_OFFSET, 16, 1,
2725                        &msg->hdr, sizeof(msg->hdr), true);
2726         print_hex_dump(KERN_DEBUG, " front: ",
2727                        DUMP_PREFIX_OFFSET, 16, 1,
2728                        msg->front.iov_base, msg->front.iov_len, true);
2729         if (msg->middle)
2730                 print_hex_dump(KERN_DEBUG, "middle: ",
2731                                DUMP_PREFIX_OFFSET, 16, 1,
2732                                msg->middle->vec.iov_base,
2733                                msg->middle->vec.iov_len, true);
2734         print_hex_dump(KERN_DEBUG, "footer: ",
2735                        DUMP_PREFIX_OFFSET, 16, 1,
2736                        &msg->footer, sizeof(msg->footer), true);
2737 }
2738 EXPORT_SYMBOL(ceph_msg_dump);