libceph: move init_bio_*() functions up
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         con_sock_state_connecting(con);
325         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326                                  O_NONBLOCK);
327         if (ret == -EINPROGRESS) {
328                 dout("connect %s EINPROGRESS sk_state = %u\n",
329                      ceph_pr_addr(&con->peer_addr.in_addr),
330                      sock->sk->sk_state);
331         } else if (ret < 0) {
332                 pr_err("connect %s error %d\n",
333                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
334                 sock_release(sock);
335                 con->error_msg = "connect error";
336
337                 return ret;
338         }
339         con->sock = sock;
340         return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345         struct kvec iov = {buf, len};
346         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347         int r;
348
349         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350         if (r == -EAGAIN)
351                 r = 0;
352         return r;
353 }
354
355 /*
356  * write something.  @more is true if caller will be sending more data
357  * shortly.
358  */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360                      size_t kvlen, size_t len, int more)
361 {
362         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363         int r;
364
365         if (more)
366                 msg.msg_flags |= MSG_MORE;
367         else
368                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
369
370         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371         if (r == -EAGAIN)
372                 r = 0;
373         return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377                      int offset, size_t size, int more)
378 {
379         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380         int ret;
381
382         ret = kernel_sendpage(sock, page, offset, size, flags);
383         if (ret == -EAGAIN)
384                 ret = 0;
385
386         return ret;
387 }
388
389
390 /*
391  * Shutdown/close the socket for the given connection.
392  */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395         int rc;
396
397         dout("con_close_socket on %p sock %p\n", con, con->sock);
398         if (!con->sock)
399                 return 0;
400         set_bit(SOCK_CLOSED, &con->state);
401         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402         sock_release(con->sock);
403         con->sock = NULL;
404         clear_bit(SOCK_CLOSED, &con->state);
405         con_sock_state_closed(con);
406         return rc;
407 }
408
409 /*
410  * Reset a connection.  Discard all incoming and outgoing messages
411  * and clear *_seq state.
412  */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415         list_del_init(&msg->list_head);
416         BUG_ON(msg->con == NULL);
417         msg->con->ops->put(msg->con);
418         msg->con = NULL;
419
420         ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424         while (!list_empty(head)) {
425                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426                                                         list_head);
427                 ceph_msg_remove(msg);
428         }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433         /* reset connection, out_queue, msg_ and connect_seq */
434         /* discard existing out_queue and msg_seq */
435         ceph_msg_remove_list(&con->out_queue);
436         ceph_msg_remove_list(&con->out_sent);
437
438         if (con->in_msg) {
439                 BUG_ON(con->in_msg->con != con);
440                 con->in_msg->con = NULL;
441                 ceph_msg_put(con->in_msg);
442                 con->in_msg = NULL;
443                 con->ops->put(con);
444         }
445
446         con->connect_seq = 0;
447         con->out_seq = 0;
448         if (con->out_msg) {
449                 ceph_msg_put(con->out_msg);
450                 con->out_msg = NULL;
451         }
452         con->in_seq = 0;
453         con->in_seq_acked = 0;
454 }
455
456 /*
457  * mark a peer down.  drop any open connections.
458  */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461         dout("con_close %p peer %s\n", con,
462              ceph_pr_addr(&con->peer_addr.in_addr));
463         clear_bit(NEGOTIATING, &con->state);
464         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
465         set_bit(CLOSED, &con->state);
466
467         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
468         clear_bit(KEEPALIVE_PENDING, &con->flags);
469         clear_bit(WRITE_PENDING, &con->flags);
470
471         mutex_lock(&con->mutex);
472         reset_connection(con);
473         con->peer_global_seq = 0;
474         cancel_delayed_work(&con->work);
475         mutex_unlock(&con->mutex);
476         queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481  * Reopen a closed connection, with a new peer address.
482  */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486         set_bit(OPENING, &con->state);
487         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489         memcpy(&con->peer_addr, addr, sizeof(*addr));
490         con->delay = 0;      /* reset backoff memory */
491         queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496  * return true if this connection ever successfully opened
497  */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500         return con->connect_seq > 0;
501 }
502
503 /*
504  * initialize a new connection.
505  */
506 void ceph_con_init(struct ceph_connection *con, void *private,
507         const struct ceph_connection_operations *ops,
508         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
509 {
510         dout("con_init %p\n", con);
511         memset(con, 0, sizeof(*con));
512         con->private = private;
513         con->ops = ops;
514         con->msgr = msgr;
515
516         con_sock_state_init(con);
517
518         con->peer_name.type = (__u8) entity_type;
519         con->peer_name.num = cpu_to_le64(entity_num);
520
521         mutex_init(&con->mutex);
522         INIT_LIST_HEAD(&con->out_queue);
523         INIT_LIST_HEAD(&con->out_sent);
524         INIT_DELAYED_WORK(&con->work, con_work);
525
526         set_bit(CLOSED, &con->state);
527 }
528 EXPORT_SYMBOL(ceph_con_init);
529
530
531 /*
532  * We maintain a global counter to order connection attempts.  Get
533  * a unique seq greater than @gt.
534  */
535 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
536 {
537         u32 ret;
538
539         spin_lock(&msgr->global_seq_lock);
540         if (msgr->global_seq < gt)
541                 msgr->global_seq = gt;
542         ret = ++msgr->global_seq;
543         spin_unlock(&msgr->global_seq_lock);
544         return ret;
545 }
546
547 static void con_out_kvec_reset(struct ceph_connection *con)
548 {
549         con->out_kvec_left = 0;
550         con->out_kvec_bytes = 0;
551         con->out_kvec_cur = &con->out_kvec[0];
552 }
553
554 static void con_out_kvec_add(struct ceph_connection *con,
555                                 size_t size, void *data)
556 {
557         int index;
558
559         index = con->out_kvec_left;
560         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
561
562         con->out_kvec[index].iov_len = size;
563         con->out_kvec[index].iov_base = data;
564         con->out_kvec_left++;
565         con->out_kvec_bytes += size;
566 }
567
568 #ifdef CONFIG_BLOCK
569 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
570 {
571         if (!bio) {
572                 *iter = NULL;
573                 *seg = 0;
574                 return;
575         }
576         *iter = bio;
577         *seg = bio->bi_idx;
578 }
579
580 static void iter_bio_next(struct bio **bio_iter, int *seg)
581 {
582         if (*bio_iter == NULL)
583                 return;
584
585         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
586
587         (*seg)++;
588         if (*seg == (*bio_iter)->bi_vcnt)
589                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
590 }
591 #endif
592
593 static void prepare_write_message_data(struct ceph_connection *con)
594 {
595         struct ceph_msg *msg = con->out_msg;
596
597         BUG_ON(!msg);
598         BUG_ON(!msg->hdr.data_len);
599
600         /* initialize page iterator */
601         con->out_msg_pos.page = 0;
602         if (msg->pages)
603                 con->out_msg_pos.page_pos = msg->page_alignment;
604         else
605                 con->out_msg_pos.page_pos = 0;
606         con->out_msg_pos.data_pos = 0;
607         con->out_msg_pos.did_page_crc = false;
608         con->out_more = 1;  /* data + footer will follow */
609 }
610
611 /*
612  * Prepare footer for currently outgoing message, and finish things
613  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
614  */
615 static void prepare_write_message_footer(struct ceph_connection *con)
616 {
617         struct ceph_msg *m = con->out_msg;
618         int v = con->out_kvec_left;
619
620         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
621
622         dout("prepare_write_message_footer %p\n", con);
623         con->out_kvec_is_msg = true;
624         con->out_kvec[v].iov_base = &m->footer;
625         con->out_kvec[v].iov_len = sizeof(m->footer);
626         con->out_kvec_bytes += sizeof(m->footer);
627         con->out_kvec_left++;
628         con->out_more = m->more_to_follow;
629         con->out_msg_done = true;
630 }
631
632 /*
633  * Prepare headers for the next outgoing message.
634  */
635 static void prepare_write_message(struct ceph_connection *con)
636 {
637         struct ceph_msg *m;
638         u32 crc;
639
640         con_out_kvec_reset(con);
641         con->out_kvec_is_msg = true;
642         con->out_msg_done = false;
643
644         /* Sneak an ack in there first?  If we can get it into the same
645          * TCP packet that's a good thing. */
646         if (con->in_seq > con->in_seq_acked) {
647                 con->in_seq_acked = con->in_seq;
648                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
649                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
650                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
651                         &con->out_temp_ack);
652         }
653
654         BUG_ON(list_empty(&con->out_queue));
655         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
656         con->out_msg = m;
657         BUG_ON(m->con != con);
658
659         /* put message on sent list */
660         ceph_msg_get(m);
661         list_move_tail(&m->list_head, &con->out_sent);
662
663         /*
664          * only assign outgoing seq # if we haven't sent this message
665          * yet.  if it is requeued, resend with it's original seq.
666          */
667         if (m->needs_out_seq) {
668                 m->hdr.seq = cpu_to_le64(++con->out_seq);
669                 m->needs_out_seq = false;
670         }
671 #ifdef CONFIG_BLOCK
672         else
673                 m->bio_iter = NULL;
674 #endif
675
676         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
677              m, con->out_seq, le16_to_cpu(m->hdr.type),
678              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
679              le32_to_cpu(m->hdr.data_len),
680              m->nr_pages);
681         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
682
683         /* tag + hdr + front + middle */
684         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
685         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
686         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
687
688         if (m->middle)
689                 con_out_kvec_add(con, m->middle->vec.iov_len,
690                         m->middle->vec.iov_base);
691
692         /* fill in crc (except data pages), footer */
693         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
694         con->out_msg->hdr.crc = cpu_to_le32(crc);
695         con->out_msg->footer.flags = 0;
696
697         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
698         con->out_msg->footer.front_crc = cpu_to_le32(crc);
699         if (m->middle) {
700                 crc = crc32c(0, m->middle->vec.iov_base,
701                                 m->middle->vec.iov_len);
702                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
703         } else
704                 con->out_msg->footer.middle_crc = 0;
705         dout("%s front_crc %u middle_crc %u\n", __func__,
706              le32_to_cpu(con->out_msg->footer.front_crc),
707              le32_to_cpu(con->out_msg->footer.middle_crc));
708
709         /* is there a data payload? */
710         con->out_msg->footer.data_crc = 0;
711         if (m->hdr.data_len)
712                 prepare_write_message_data(con);
713         else
714                 /* no, queue up footer too and be done */
715                 prepare_write_message_footer(con);
716
717         set_bit(WRITE_PENDING, &con->flags);
718 }
719
720 /*
721  * Prepare an ack.
722  */
723 static void prepare_write_ack(struct ceph_connection *con)
724 {
725         dout("prepare_write_ack %p %llu -> %llu\n", con,
726              con->in_seq_acked, con->in_seq);
727         con->in_seq_acked = con->in_seq;
728
729         con_out_kvec_reset(con);
730
731         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732
733         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734         con_out_kvec_add(con, sizeof (con->out_temp_ack),
735                                 &con->out_temp_ack);
736
737         con->out_more = 1;  /* more will follow.. eventually.. */
738         set_bit(WRITE_PENDING, &con->flags);
739 }
740
741 /*
742  * Prepare to write keepalive byte.
743  */
744 static void prepare_write_keepalive(struct ceph_connection *con)
745 {
746         dout("prepare_write_keepalive %p\n", con);
747         con_out_kvec_reset(con);
748         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
749         set_bit(WRITE_PENDING, &con->flags);
750 }
751
752 /*
753  * Connection negotiation.
754  */
755
756 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
757                                                 int *auth_proto)
758 {
759         struct ceph_auth_handshake *auth;
760
761         if (!con->ops->get_authorizer) {
762                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
763                 con->out_connect.authorizer_len = 0;
764
765                 return NULL;
766         }
767
768         /* Can't hold the mutex while getting authorizer */
769
770         mutex_unlock(&con->mutex);
771
772         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
773
774         mutex_lock(&con->mutex);
775
776         if (IS_ERR(auth))
777                 return auth;
778         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
779                 return ERR_PTR(-EAGAIN);
780
781         con->auth_reply_buf = auth->authorizer_reply_buf;
782         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
783
784
785         return auth;
786 }
787
788 /*
789  * We connected to a peer and are saying hello.
790  */
791 static void prepare_write_banner(struct ceph_connection *con)
792 {
793         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
794         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
795                                         &con->msgr->my_enc_addr);
796
797         con->out_more = 0;
798         set_bit(WRITE_PENDING, &con->flags);
799 }
800
801 static int prepare_write_connect(struct ceph_connection *con)
802 {
803         unsigned int global_seq = get_global_seq(con->msgr, 0);
804         int proto;
805         int auth_proto;
806         struct ceph_auth_handshake *auth;
807
808         switch (con->peer_name.type) {
809         case CEPH_ENTITY_TYPE_MON:
810                 proto = CEPH_MONC_PROTOCOL;
811                 break;
812         case CEPH_ENTITY_TYPE_OSD:
813                 proto = CEPH_OSDC_PROTOCOL;
814                 break;
815         case CEPH_ENTITY_TYPE_MDS:
816                 proto = CEPH_MDSC_PROTOCOL;
817                 break;
818         default:
819                 BUG();
820         }
821
822         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
823              con->connect_seq, global_seq, proto);
824
825         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
826         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
827         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
828         con->out_connect.global_seq = cpu_to_le32(global_seq);
829         con->out_connect.protocol_version = cpu_to_le32(proto);
830         con->out_connect.flags = 0;
831
832         auth_proto = CEPH_AUTH_UNKNOWN;
833         auth = get_connect_authorizer(con, &auth_proto);
834         if (IS_ERR(auth))
835                 return PTR_ERR(auth);
836
837         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
838         con->out_connect.authorizer_len = auth ?
839                 cpu_to_le32(auth->authorizer_buf_len) : 0;
840
841         con_out_kvec_add(con, sizeof (con->out_connect),
842                                         &con->out_connect);
843         if (auth && auth->authorizer_buf_len)
844                 con_out_kvec_add(con, auth->authorizer_buf_len,
845                                         auth->authorizer_buf);
846
847         con->out_more = 0;
848         set_bit(WRITE_PENDING, &con->flags);
849
850         return 0;
851 }
852
853 /*
854  * write as much of pending kvecs to the socket as we can.
855  *  1 -> done
856  *  0 -> socket full, but more to do
857  * <0 -> error
858  */
859 static int write_partial_kvec(struct ceph_connection *con)
860 {
861         int ret;
862
863         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
864         while (con->out_kvec_bytes > 0) {
865                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
866                                        con->out_kvec_left, con->out_kvec_bytes,
867                                        con->out_more);
868                 if (ret <= 0)
869                         goto out;
870                 con->out_kvec_bytes -= ret;
871                 if (con->out_kvec_bytes == 0)
872                         break;            /* done */
873
874                 /* account for full iov entries consumed */
875                 while (ret >= con->out_kvec_cur->iov_len) {
876                         BUG_ON(!con->out_kvec_left);
877                         ret -= con->out_kvec_cur->iov_len;
878                         con->out_kvec_cur++;
879                         con->out_kvec_left--;
880                 }
881                 /* and for a partially-consumed entry */
882                 if (ret) {
883                         con->out_kvec_cur->iov_len -= ret;
884                         con->out_kvec_cur->iov_base += ret;
885                 }
886         }
887         con->out_kvec_left = 0;
888         con->out_kvec_is_msg = false;
889         ret = 1;
890 out:
891         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
892              con->out_kvec_bytes, con->out_kvec_left, ret);
893         return ret;  /* done! */
894 }
895
896 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
897                         size_t len, size_t sent, bool in_trail)
898 {
899         struct ceph_msg *msg = con->out_msg;
900
901         BUG_ON(!msg);
902         BUG_ON(!sent);
903
904         con->out_msg_pos.data_pos += sent;
905         con->out_msg_pos.page_pos += sent;
906         if (sent == len) {
907                 con->out_msg_pos.page_pos = 0;
908                 con->out_msg_pos.page++;
909                 con->out_msg_pos.did_page_crc = false;
910                 if (in_trail)
911                         list_move_tail(&page->lru,
912                                        &msg->trail->head);
913                 else if (msg->pagelist)
914                         list_move_tail(&page->lru,
915                                        &msg->pagelist->head);
916 #ifdef CONFIG_BLOCK
917                 else if (msg->bio)
918                         iter_bio_next(&msg->bio_iter, &msg->bio_seg);
919 #endif
920         }
921 }
922
923 /*
924  * Write as much message data payload as we can.  If we finish, queue
925  * up the footer.
926  *  1 -> done, footer is now queued in out_kvec[].
927  *  0 -> socket full, but more to do
928  * <0 -> error
929  */
930 static int write_partial_msg_pages(struct ceph_connection *con)
931 {
932         struct ceph_msg *msg = con->out_msg;
933         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
934         size_t len;
935         bool do_datacrc = !con->msgr->nocrc;
936         int ret;
937         int total_max_write;
938         bool in_trail = false;
939         size_t trail_len = (msg->trail ? msg->trail->length : 0);
940
941         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
942              con, msg, con->out_msg_pos.page, msg->nr_pages,
943              con->out_msg_pos.page_pos);
944
945 #ifdef CONFIG_BLOCK
946         if (msg->bio && !msg->bio_iter)
947                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
948 #endif
949
950         while (data_len > con->out_msg_pos.data_pos) {
951                 struct page *page = NULL;
952                 int max_write = PAGE_SIZE;
953                 int bio_offset = 0;
954
955                 total_max_write = data_len - trail_len -
956                         con->out_msg_pos.data_pos;
957
958                 /*
959                  * if we are calculating the data crc (the default), we need
960                  * to map the page.  if our pages[] has been revoked, use the
961                  * zero page.
962                  */
963
964                 /* have we reached the trail part of the data? */
965                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
966                         in_trail = true;
967
968                         total_max_write = data_len - con->out_msg_pos.data_pos;
969
970                         page = list_first_entry(&msg->trail->head,
971                                                 struct page, lru);
972                 } else if (msg->pages) {
973                         page = msg->pages[con->out_msg_pos.page];
974                 } else if (msg->pagelist) {
975                         page = list_first_entry(&msg->pagelist->head,
976                                                 struct page, lru);
977 #ifdef CONFIG_BLOCK
978                 } else if (msg->bio) {
979                         struct bio_vec *bv;
980
981                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
982                         page = bv->bv_page;
983                         bio_offset = bv->bv_offset;
984                         max_write = bv->bv_len;
985 #endif
986                 } else {
987                         page = zero_page;
988                 }
989                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
990                             total_max_write);
991
992                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
993                         void *base;
994                         u32 crc;
995                         u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
996                         char *kaddr;
997
998                         kaddr = kmap(page);
999                         BUG_ON(kaddr == NULL);
1000                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1001                         crc = crc32c(tmpcrc, base, len);
1002                         msg->footer.data_crc = cpu_to_le32(crc);
1003                         con->out_msg_pos.did_page_crc = true;
1004                 }
1005                 ret = ceph_tcp_sendpage(con->sock, page,
1006                                       con->out_msg_pos.page_pos + bio_offset,
1007                                       len, 1);
1008
1009                 if (do_datacrc)
1010                         kunmap(page);
1011
1012                 if (ret <= 0)
1013                         goto out;
1014
1015                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1016         }
1017
1018         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1019
1020         /* prepare and queue up footer, too */
1021         if (!do_datacrc)
1022                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1023         con_out_kvec_reset(con);
1024         prepare_write_message_footer(con);
1025         ret = 1;
1026 out:
1027         return ret;
1028 }
1029
1030 /*
1031  * write some zeros
1032  */
1033 static int write_partial_skip(struct ceph_connection *con)
1034 {
1035         int ret;
1036
1037         while (con->out_skip > 0) {
1038                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1039
1040                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1041                 if (ret <= 0)
1042                         goto out;
1043                 con->out_skip -= ret;
1044         }
1045         ret = 1;
1046 out:
1047         return ret;
1048 }
1049
1050 /*
1051  * Prepare to read connection handshake, or an ack.
1052  */
1053 static void prepare_read_banner(struct ceph_connection *con)
1054 {
1055         dout("prepare_read_banner %p\n", con);
1056         con->in_base_pos = 0;
1057 }
1058
1059 static void prepare_read_connect(struct ceph_connection *con)
1060 {
1061         dout("prepare_read_connect %p\n", con);
1062         con->in_base_pos = 0;
1063 }
1064
1065 static void prepare_read_ack(struct ceph_connection *con)
1066 {
1067         dout("prepare_read_ack %p\n", con);
1068         con->in_base_pos = 0;
1069 }
1070
1071 static void prepare_read_tag(struct ceph_connection *con)
1072 {
1073         dout("prepare_read_tag %p\n", con);
1074         con->in_base_pos = 0;
1075         con->in_tag = CEPH_MSGR_TAG_READY;
1076 }
1077
1078 /*
1079  * Prepare to read a message.
1080  */
1081 static int prepare_read_message(struct ceph_connection *con)
1082 {
1083         dout("prepare_read_message %p\n", con);
1084         BUG_ON(con->in_msg != NULL);
1085         con->in_base_pos = 0;
1086         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1087         return 0;
1088 }
1089
1090
1091 static int read_partial(struct ceph_connection *con,
1092                         int end, int size, void *object)
1093 {
1094         while (con->in_base_pos < end) {
1095                 int left = end - con->in_base_pos;
1096                 int have = size - left;
1097                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1098                 if (ret <= 0)
1099                         return ret;
1100                 con->in_base_pos += ret;
1101         }
1102         return 1;
1103 }
1104
1105
1106 /*
1107  * Read all or part of the connect-side handshake on a new connection
1108  */
1109 static int read_partial_banner(struct ceph_connection *con)
1110 {
1111         int size;
1112         int end;
1113         int ret;
1114
1115         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1116
1117         /* peer's banner */
1118         size = strlen(CEPH_BANNER);
1119         end = size;
1120         ret = read_partial(con, end, size, con->in_banner);
1121         if (ret <= 0)
1122                 goto out;
1123
1124         size = sizeof (con->actual_peer_addr);
1125         end += size;
1126         ret = read_partial(con, end, size, &con->actual_peer_addr);
1127         if (ret <= 0)
1128                 goto out;
1129
1130         size = sizeof (con->peer_addr_for_me);
1131         end += size;
1132         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1133         if (ret <= 0)
1134                 goto out;
1135
1136 out:
1137         return ret;
1138 }
1139
1140 static int read_partial_connect(struct ceph_connection *con)
1141 {
1142         int size;
1143         int end;
1144         int ret;
1145
1146         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1147
1148         size = sizeof (con->in_reply);
1149         end = size;
1150         ret = read_partial(con, end, size, &con->in_reply);
1151         if (ret <= 0)
1152                 goto out;
1153
1154         size = le32_to_cpu(con->in_reply.authorizer_len);
1155         end += size;
1156         ret = read_partial(con, end, size, con->auth_reply_buf);
1157         if (ret <= 0)
1158                 goto out;
1159
1160         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1161              con, (int)con->in_reply.tag,
1162              le32_to_cpu(con->in_reply.connect_seq),
1163              le32_to_cpu(con->in_reply.global_seq));
1164 out:
1165         return ret;
1166
1167 }
1168
1169 /*
1170  * Verify the hello banner looks okay.
1171  */
1172 static int verify_hello(struct ceph_connection *con)
1173 {
1174         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1175                 pr_err("connect to %s got bad banner\n",
1176                        ceph_pr_addr(&con->peer_addr.in_addr));
1177                 con->error_msg = "protocol error, bad banner";
1178                 return -1;
1179         }
1180         return 0;
1181 }
1182
1183 static bool addr_is_blank(struct sockaddr_storage *ss)
1184 {
1185         switch (ss->ss_family) {
1186         case AF_INET:
1187                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1188         case AF_INET6:
1189                 return
1190                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1191                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1192                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1193                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1194         }
1195         return false;
1196 }
1197
1198 static int addr_port(struct sockaddr_storage *ss)
1199 {
1200         switch (ss->ss_family) {
1201         case AF_INET:
1202                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1203         case AF_INET6:
1204                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1205         }
1206         return 0;
1207 }
1208
1209 static void addr_set_port(struct sockaddr_storage *ss, int p)
1210 {
1211         switch (ss->ss_family) {
1212         case AF_INET:
1213                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1214                 break;
1215         case AF_INET6:
1216                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1217                 break;
1218         }
1219 }
1220
1221 /*
1222  * Unlike other *_pton function semantics, zero indicates success.
1223  */
1224 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1225                 char delim, const char **ipend)
1226 {
1227         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1228         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1229
1230         memset(ss, 0, sizeof(*ss));
1231
1232         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1233                 ss->ss_family = AF_INET;
1234                 return 0;
1235         }
1236
1237         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1238                 ss->ss_family = AF_INET6;
1239                 return 0;
1240         }
1241
1242         return -EINVAL;
1243 }
1244
1245 /*
1246  * Extract hostname string and resolve using kernel DNS facility.
1247  */
1248 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1249 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1250                 struct sockaddr_storage *ss, char delim, const char **ipend)
1251 {
1252         const char *end, *delim_p;
1253         char *colon_p, *ip_addr = NULL;
1254         int ip_len, ret;
1255
1256         /*
1257          * The end of the hostname occurs immediately preceding the delimiter or
1258          * the port marker (':') where the delimiter takes precedence.
1259          */
1260         delim_p = memchr(name, delim, namelen);
1261         colon_p = memchr(name, ':', namelen);
1262
1263         if (delim_p && colon_p)
1264                 end = delim_p < colon_p ? delim_p : colon_p;
1265         else if (!delim_p && colon_p)
1266                 end = colon_p;
1267         else {
1268                 end = delim_p;
1269                 if (!end) /* case: hostname:/ */
1270                         end = name + namelen;
1271         }
1272
1273         if (end <= name)
1274                 return -EINVAL;
1275
1276         /* do dns_resolve upcall */
1277         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1278         if (ip_len > 0)
1279                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1280         else
1281                 ret = -ESRCH;
1282
1283         kfree(ip_addr);
1284
1285         *ipend = end;
1286
1287         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1288                         ret, ret ? "failed" : ceph_pr_addr(ss));
1289
1290         return ret;
1291 }
1292 #else
1293 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1294                 struct sockaddr_storage *ss, char delim, const char **ipend)
1295 {
1296         return -EINVAL;
1297 }
1298 #endif
1299
1300 /*
1301  * Parse a server name (IP or hostname). If a valid IP address is not found
1302  * then try to extract a hostname to resolve using userspace DNS upcall.
1303  */
1304 static int ceph_parse_server_name(const char *name, size_t namelen,
1305                         struct sockaddr_storage *ss, char delim, const char **ipend)
1306 {
1307         int ret;
1308
1309         ret = ceph_pton(name, namelen, ss, delim, ipend);
1310         if (ret)
1311                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1312
1313         return ret;
1314 }
1315
1316 /*
1317  * Parse an ip[:port] list into an addr array.  Use the default
1318  * monitor port if a port isn't specified.
1319  */
1320 int ceph_parse_ips(const char *c, const char *end,
1321                    struct ceph_entity_addr *addr,
1322                    int max_count, int *count)
1323 {
1324         int i, ret = -EINVAL;
1325         const char *p = c;
1326
1327         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1328         for (i = 0; i < max_count; i++) {
1329                 const char *ipend;
1330                 struct sockaddr_storage *ss = &addr[i].in_addr;
1331                 int port;
1332                 char delim = ',';
1333
1334                 if (*p == '[') {
1335                         delim = ']';
1336                         p++;
1337                 }
1338
1339                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1340                 if (ret)
1341                         goto bad;
1342                 ret = -EINVAL;
1343
1344                 p = ipend;
1345
1346                 if (delim == ']') {
1347                         if (*p != ']') {
1348                                 dout("missing matching ']'\n");
1349                                 goto bad;
1350                         }
1351                         p++;
1352                 }
1353
1354                 /* port? */
1355                 if (p < end && *p == ':') {
1356                         port = 0;
1357                         p++;
1358                         while (p < end && *p >= '0' && *p <= '9') {
1359                                 port = (port * 10) + (*p - '0');
1360                                 p++;
1361                         }
1362                         if (port > 65535 || port == 0)
1363                                 goto bad;
1364                 } else {
1365                         port = CEPH_MON_PORT;
1366                 }
1367
1368                 addr_set_port(ss, port);
1369
1370                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1371
1372                 if (p == end)
1373                         break;
1374                 if (*p != ',')
1375                         goto bad;
1376                 p++;
1377         }
1378
1379         if (p != end)
1380                 goto bad;
1381
1382         if (count)
1383                 *count = i + 1;
1384         return 0;
1385
1386 bad:
1387         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1388         return ret;
1389 }
1390 EXPORT_SYMBOL(ceph_parse_ips);
1391
1392 static int process_banner(struct ceph_connection *con)
1393 {
1394         dout("process_banner on %p\n", con);
1395
1396         if (verify_hello(con) < 0)
1397                 return -1;
1398
1399         ceph_decode_addr(&con->actual_peer_addr);
1400         ceph_decode_addr(&con->peer_addr_for_me);
1401
1402         /*
1403          * Make sure the other end is who we wanted.  note that the other
1404          * end may not yet know their ip address, so if it's 0.0.0.0, give
1405          * them the benefit of the doubt.
1406          */
1407         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1408                    sizeof(con->peer_addr)) != 0 &&
1409             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1410               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1411                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1412                            ceph_pr_addr(&con->peer_addr.in_addr),
1413                            (int)le32_to_cpu(con->peer_addr.nonce),
1414                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1415                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1416                 con->error_msg = "wrong peer at address";
1417                 return -1;
1418         }
1419
1420         /*
1421          * did we learn our address?
1422          */
1423         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1424                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1425
1426                 memcpy(&con->msgr->inst.addr.in_addr,
1427                        &con->peer_addr_for_me.in_addr,
1428                        sizeof(con->peer_addr_for_me.in_addr));
1429                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1430                 encode_my_addr(con->msgr);
1431                 dout("process_banner learned my addr is %s\n",
1432                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1433         }
1434
1435         set_bit(NEGOTIATING, &con->state);
1436         prepare_read_connect(con);
1437         return 0;
1438 }
1439
1440 static void fail_protocol(struct ceph_connection *con)
1441 {
1442         reset_connection(con);
1443         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1444 }
1445
1446 static int process_connect(struct ceph_connection *con)
1447 {
1448         u64 sup_feat = con->msgr->supported_features;
1449         u64 req_feat = con->msgr->required_features;
1450         u64 server_feat = le64_to_cpu(con->in_reply.features);
1451         int ret;
1452
1453         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1454
1455         switch (con->in_reply.tag) {
1456         case CEPH_MSGR_TAG_FEATURES:
1457                 pr_err("%s%lld %s feature set mismatch,"
1458                        " my %llx < server's %llx, missing %llx\n",
1459                        ENTITY_NAME(con->peer_name),
1460                        ceph_pr_addr(&con->peer_addr.in_addr),
1461                        sup_feat, server_feat, server_feat & ~sup_feat);
1462                 con->error_msg = "missing required protocol features";
1463                 fail_protocol(con);
1464                 return -1;
1465
1466         case CEPH_MSGR_TAG_BADPROTOVER:
1467                 pr_err("%s%lld %s protocol version mismatch,"
1468                        " my %d != server's %d\n",
1469                        ENTITY_NAME(con->peer_name),
1470                        ceph_pr_addr(&con->peer_addr.in_addr),
1471                        le32_to_cpu(con->out_connect.protocol_version),
1472                        le32_to_cpu(con->in_reply.protocol_version));
1473                 con->error_msg = "protocol version mismatch";
1474                 fail_protocol(con);
1475                 return -1;
1476
1477         case CEPH_MSGR_TAG_BADAUTHORIZER:
1478                 con->auth_retry++;
1479                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1480                      con->auth_retry);
1481                 if (con->auth_retry == 2) {
1482                         con->error_msg = "connect authorization failure";
1483                         return -1;
1484                 }
1485                 con->auth_retry = 1;
1486                 con_out_kvec_reset(con);
1487                 ret = prepare_write_connect(con);
1488                 if (ret < 0)
1489                         return ret;
1490                 prepare_read_connect(con);
1491                 break;
1492
1493         case CEPH_MSGR_TAG_RESETSESSION:
1494                 /*
1495                  * If we connected with a large connect_seq but the peer
1496                  * has no record of a session with us (no connection, or
1497                  * connect_seq == 0), they will send RESETSESION to indicate
1498                  * that they must have reset their session, and may have
1499                  * dropped messages.
1500                  */
1501                 dout("process_connect got RESET peer seq %u\n",
1502                      le32_to_cpu(con->in_connect.connect_seq));
1503                 pr_err("%s%lld %s connection reset\n",
1504                        ENTITY_NAME(con->peer_name),
1505                        ceph_pr_addr(&con->peer_addr.in_addr));
1506                 reset_connection(con);
1507                 con_out_kvec_reset(con);
1508                 ret = prepare_write_connect(con);
1509                 if (ret < 0)
1510                         return ret;
1511                 prepare_read_connect(con);
1512
1513                 /* Tell ceph about it. */
1514                 mutex_unlock(&con->mutex);
1515                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1516                 if (con->ops->peer_reset)
1517                         con->ops->peer_reset(con);
1518                 mutex_lock(&con->mutex);
1519                 if (test_bit(CLOSED, &con->state) ||
1520                     test_bit(OPENING, &con->state))
1521                         return -EAGAIN;
1522                 break;
1523
1524         case CEPH_MSGR_TAG_RETRY_SESSION:
1525                 /*
1526                  * If we sent a smaller connect_seq than the peer has, try
1527                  * again with a larger value.
1528                  */
1529                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1530                      le32_to_cpu(con->out_connect.connect_seq),
1531                      le32_to_cpu(con->in_connect.connect_seq));
1532                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1533                 con_out_kvec_reset(con);
1534                 ret = prepare_write_connect(con);
1535                 if (ret < 0)
1536                         return ret;
1537                 prepare_read_connect(con);
1538                 break;
1539
1540         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1541                 /*
1542                  * If we sent a smaller global_seq than the peer has, try
1543                  * again with a larger value.
1544                  */
1545                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1546                      con->peer_global_seq,
1547                      le32_to_cpu(con->in_connect.global_seq));
1548                 get_global_seq(con->msgr,
1549                                le32_to_cpu(con->in_connect.global_seq));
1550                 con_out_kvec_reset(con);
1551                 ret = prepare_write_connect(con);
1552                 if (ret < 0)
1553                         return ret;
1554                 prepare_read_connect(con);
1555                 break;
1556
1557         case CEPH_MSGR_TAG_READY:
1558                 if (req_feat & ~server_feat) {
1559                         pr_err("%s%lld %s protocol feature mismatch,"
1560                                " my required %llx > server's %llx, need %llx\n",
1561                                ENTITY_NAME(con->peer_name),
1562                                ceph_pr_addr(&con->peer_addr.in_addr),
1563                                req_feat, server_feat, req_feat & ~server_feat);
1564                         con->error_msg = "missing required protocol features";
1565                         fail_protocol(con);
1566                         return -1;
1567                 }
1568                 clear_bit(CONNECTING, &con->state);
1569                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1570                 con->connect_seq++;
1571                 con->peer_features = server_feat;
1572                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1573                      con->peer_global_seq,
1574                      le32_to_cpu(con->in_reply.connect_seq),
1575                      con->connect_seq);
1576                 WARN_ON(con->connect_seq !=
1577                         le32_to_cpu(con->in_reply.connect_seq));
1578
1579                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1580                         set_bit(LOSSYTX, &con->flags);
1581
1582                 prepare_read_tag(con);
1583                 break;
1584
1585         case CEPH_MSGR_TAG_WAIT:
1586                 /*
1587                  * If there is a connection race (we are opening
1588                  * connections to each other), one of us may just have
1589                  * to WAIT.  This shouldn't happen if we are the
1590                  * client.
1591                  */
1592                 pr_err("process_connect got WAIT as client\n");
1593                 con->error_msg = "protocol error, got WAIT as client";
1594                 return -1;
1595
1596         default:
1597                 pr_err("connect protocol error, will retry\n");
1598                 con->error_msg = "protocol error, garbage tag during connect";
1599                 return -1;
1600         }
1601         return 0;
1602 }
1603
1604
1605 /*
1606  * read (part of) an ack
1607  */
1608 static int read_partial_ack(struct ceph_connection *con)
1609 {
1610         int size = sizeof (con->in_temp_ack);
1611         int end = size;
1612
1613         return read_partial(con, end, size, &con->in_temp_ack);
1614 }
1615
1616
1617 /*
1618  * We can finally discard anything that's been acked.
1619  */
1620 static void process_ack(struct ceph_connection *con)
1621 {
1622         struct ceph_msg *m;
1623         u64 ack = le64_to_cpu(con->in_temp_ack);
1624         u64 seq;
1625
1626         while (!list_empty(&con->out_sent)) {
1627                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1628                                      list_head);
1629                 seq = le64_to_cpu(m->hdr.seq);
1630                 if (seq > ack)
1631                         break;
1632                 dout("got ack for seq %llu type %d at %p\n", seq,
1633                      le16_to_cpu(m->hdr.type), m);
1634                 m->ack_stamp = jiffies;
1635                 ceph_msg_remove(m);
1636         }
1637         prepare_read_tag(con);
1638 }
1639
1640
1641
1642
1643 static int read_partial_message_section(struct ceph_connection *con,
1644                                         struct kvec *section,
1645                                         unsigned int sec_len, u32 *crc)
1646 {
1647         int ret, left;
1648
1649         BUG_ON(!section);
1650
1651         while (section->iov_len < sec_len) {
1652                 BUG_ON(section->iov_base == NULL);
1653                 left = sec_len - section->iov_len;
1654                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1655                                        section->iov_len, left);
1656                 if (ret <= 0)
1657                         return ret;
1658                 section->iov_len += ret;
1659         }
1660         if (section->iov_len == sec_len)
1661                 *crc = crc32c(0, section->iov_base, section->iov_len);
1662
1663         return 1;
1664 }
1665
1666 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1667                                 struct ceph_msg_header *hdr);
1668
1669
1670 static int read_partial_message_pages(struct ceph_connection *con,
1671                                       struct page **pages,
1672                                       unsigned int data_len, bool do_datacrc)
1673 {
1674         void *p;
1675         int ret;
1676         int left;
1677
1678         left = min((int)(data_len - con->in_msg_pos.data_pos),
1679                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1680         /* (page) data */
1681         BUG_ON(pages == NULL);
1682         p = kmap(pages[con->in_msg_pos.page]);
1683         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1684                                left);
1685         if (ret > 0 && do_datacrc)
1686                 con->in_data_crc =
1687                         crc32c(con->in_data_crc,
1688                                   p + con->in_msg_pos.page_pos, ret);
1689         kunmap(pages[con->in_msg_pos.page]);
1690         if (ret <= 0)
1691                 return ret;
1692         con->in_msg_pos.data_pos += ret;
1693         con->in_msg_pos.page_pos += ret;
1694         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1695                 con->in_msg_pos.page_pos = 0;
1696                 con->in_msg_pos.page++;
1697         }
1698
1699         return ret;
1700 }
1701
1702 #ifdef CONFIG_BLOCK
1703 static int read_partial_message_bio(struct ceph_connection *con,
1704                                     struct bio **bio_iter, int *bio_seg,
1705                                     unsigned int data_len, bool do_datacrc)
1706 {
1707         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1708         void *p;
1709         int ret, left;
1710
1711         if (IS_ERR(bv))
1712                 return PTR_ERR(bv);
1713
1714         left = min((int)(data_len - con->in_msg_pos.data_pos),
1715                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1716
1717         p = kmap(bv->bv_page) + bv->bv_offset;
1718
1719         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1720                                left);
1721         if (ret > 0 && do_datacrc)
1722                 con->in_data_crc =
1723                         crc32c(con->in_data_crc,
1724                                   p + con->in_msg_pos.page_pos, ret);
1725         kunmap(bv->bv_page);
1726         if (ret <= 0)
1727                 return ret;
1728         con->in_msg_pos.data_pos += ret;
1729         con->in_msg_pos.page_pos += ret;
1730         if (con->in_msg_pos.page_pos == bv->bv_len) {
1731                 con->in_msg_pos.page_pos = 0;
1732                 iter_bio_next(bio_iter, bio_seg);
1733         }
1734
1735         return ret;
1736 }
1737 #endif
1738
1739 /*
1740  * read (part of) a message.
1741  */
1742 static int read_partial_message(struct ceph_connection *con)
1743 {
1744         struct ceph_msg *m = con->in_msg;
1745         int size;
1746         int end;
1747         int ret;
1748         unsigned int front_len, middle_len, data_len;
1749         bool do_datacrc = !con->msgr->nocrc;
1750         u64 seq;
1751         u32 crc;
1752
1753         dout("read_partial_message con %p msg %p\n", con, m);
1754
1755         /* header */
1756         size = sizeof (con->in_hdr);
1757         end = size;
1758         ret = read_partial(con, end, size, &con->in_hdr);
1759         if (ret <= 0)
1760                 return ret;
1761
1762         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1763         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1764                 pr_err("read_partial_message bad hdr "
1765                        " crc %u != expected %u\n",
1766                        crc, con->in_hdr.crc);
1767                 return -EBADMSG;
1768         }
1769
1770         front_len = le32_to_cpu(con->in_hdr.front_len);
1771         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1772                 return -EIO;
1773         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1774         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1775                 return -EIO;
1776         data_len = le32_to_cpu(con->in_hdr.data_len);
1777         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1778                 return -EIO;
1779
1780         /* verify seq# */
1781         seq = le64_to_cpu(con->in_hdr.seq);
1782         if ((s64)seq - (s64)con->in_seq < 1) {
1783                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1784                         ENTITY_NAME(con->peer_name),
1785                         ceph_pr_addr(&con->peer_addr.in_addr),
1786                         seq, con->in_seq + 1);
1787                 con->in_base_pos = -front_len - middle_len - data_len -
1788                         sizeof(m->footer);
1789                 con->in_tag = CEPH_MSGR_TAG_READY;
1790                 return 0;
1791         } else if ((s64)seq - (s64)con->in_seq > 1) {
1792                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1793                        seq, con->in_seq + 1);
1794                 con->error_msg = "bad message sequence # for incoming message";
1795                 return -EBADMSG;
1796         }
1797
1798         /* allocate message? */
1799         if (!con->in_msg) {
1800                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1801                      con->in_hdr.front_len, con->in_hdr.data_len);
1802                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1803                         /* skip this message */
1804                         dout("alloc_msg said skip message\n");
1805                         BUG_ON(con->in_msg);
1806                         con->in_base_pos = -front_len - middle_len - data_len -
1807                                 sizeof(m->footer);
1808                         con->in_tag = CEPH_MSGR_TAG_READY;
1809                         con->in_seq++;
1810                         return 0;
1811                 }
1812                 if (!con->in_msg) {
1813                         con->error_msg =
1814                                 "error allocating memory for incoming message";
1815                         return -ENOMEM;
1816                 }
1817
1818                 BUG_ON(con->in_msg->con != con);
1819                 m = con->in_msg;
1820                 m->front.iov_len = 0;    /* haven't read it yet */
1821                 if (m->middle)
1822                         m->middle->vec.iov_len = 0;
1823
1824                 con->in_msg_pos.page = 0;
1825                 if (m->pages)
1826                         con->in_msg_pos.page_pos = m->page_alignment;
1827                 else
1828                         con->in_msg_pos.page_pos = 0;
1829                 con->in_msg_pos.data_pos = 0;
1830         }
1831
1832         /* front */
1833         ret = read_partial_message_section(con, &m->front, front_len,
1834                                            &con->in_front_crc);
1835         if (ret <= 0)
1836                 return ret;
1837
1838         /* middle */
1839         if (m->middle) {
1840                 ret = read_partial_message_section(con, &m->middle->vec,
1841                                                    middle_len,
1842                                                    &con->in_middle_crc);
1843                 if (ret <= 0)
1844                         return ret;
1845         }
1846 #ifdef CONFIG_BLOCK
1847         if (m->bio && !m->bio_iter)
1848                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1849 #endif
1850
1851         /* (page) data */
1852         while (con->in_msg_pos.data_pos < data_len) {
1853                 if (m->pages) {
1854                         ret = read_partial_message_pages(con, m->pages,
1855                                                  data_len, do_datacrc);
1856                         if (ret <= 0)
1857                                 return ret;
1858 #ifdef CONFIG_BLOCK
1859                 } else if (m->bio) {
1860
1861                         ret = read_partial_message_bio(con,
1862                                                  &m->bio_iter, &m->bio_seg,
1863                                                  data_len, do_datacrc);
1864                         if (ret <= 0)
1865                                 return ret;
1866 #endif
1867                 } else {
1868                         BUG_ON(1);
1869                 }
1870         }
1871
1872         /* footer */
1873         size = sizeof (m->footer);
1874         end += size;
1875         ret = read_partial(con, end, size, &m->footer);
1876         if (ret <= 0)
1877                 return ret;
1878
1879         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1880              m, front_len, m->footer.front_crc, middle_len,
1881              m->footer.middle_crc, data_len, m->footer.data_crc);
1882
1883         /* crc ok? */
1884         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1885                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1886                        m, con->in_front_crc, m->footer.front_crc);
1887                 return -EBADMSG;
1888         }
1889         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1890                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1891                        m, con->in_middle_crc, m->footer.middle_crc);
1892                 return -EBADMSG;
1893         }
1894         if (do_datacrc &&
1895             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1896             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1897                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1898                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1899                 return -EBADMSG;
1900         }
1901
1902         return 1; /* done! */
1903 }
1904
1905 /*
1906  * Process message.  This happens in the worker thread.  The callback should
1907  * be careful not to do anything that waits on other incoming messages or it
1908  * may deadlock.
1909  */
1910 static void process_message(struct ceph_connection *con)
1911 {
1912         struct ceph_msg *msg;
1913
1914         BUG_ON(con->in_msg->con != con);
1915         con->in_msg->con = NULL;
1916         msg = con->in_msg;
1917         con->in_msg = NULL;
1918         con->ops->put(con);
1919
1920         /* if first message, set peer_name */
1921         if (con->peer_name.type == 0)
1922                 con->peer_name = msg->hdr.src;
1923
1924         con->in_seq++;
1925         mutex_unlock(&con->mutex);
1926
1927         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1928              msg, le64_to_cpu(msg->hdr.seq),
1929              ENTITY_NAME(msg->hdr.src),
1930              le16_to_cpu(msg->hdr.type),
1931              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1932              le32_to_cpu(msg->hdr.front_len),
1933              le32_to_cpu(msg->hdr.data_len),
1934              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1935         con->ops->dispatch(con, msg);
1936
1937         mutex_lock(&con->mutex);
1938         prepare_read_tag(con);
1939 }
1940
1941
1942 /*
1943  * Write something to the socket.  Called in a worker thread when the
1944  * socket appears to be writeable and we have something ready to send.
1945  */
1946 static int try_write(struct ceph_connection *con)
1947 {
1948         int ret = 1;
1949
1950         dout("try_write start %p state %lu\n", con, con->state);
1951
1952 more:
1953         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1954
1955         /* open the socket first? */
1956         if (con->sock == NULL) {
1957                 clear_bit(NEGOTIATING, &con->state);
1958                 set_bit(CONNECTING, &con->state);
1959
1960                 con_out_kvec_reset(con);
1961                 prepare_write_banner(con);
1962                 ret = prepare_write_connect(con);
1963                 if (ret < 0)
1964                         goto out;
1965                 prepare_read_banner(con);
1966
1967                 BUG_ON(con->in_msg);
1968                 con->in_tag = CEPH_MSGR_TAG_READY;
1969                 dout("try_write initiating connect on %p new state %lu\n",
1970                      con, con->state);
1971                 ret = ceph_tcp_connect(con);
1972                 if (ret < 0) {
1973                         con->error_msg = "connect error";
1974                         goto out;
1975                 }
1976         }
1977
1978 more_kvec:
1979         /* kvec data queued? */
1980         if (con->out_skip) {
1981                 ret = write_partial_skip(con);
1982                 if (ret <= 0)
1983                         goto out;
1984         }
1985         if (con->out_kvec_left) {
1986                 ret = write_partial_kvec(con);
1987                 if (ret <= 0)
1988                         goto out;
1989         }
1990
1991         /* msg pages? */
1992         if (con->out_msg) {
1993                 if (con->out_msg_done) {
1994                         ceph_msg_put(con->out_msg);
1995                         con->out_msg = NULL;   /* we're done with this one */
1996                         goto do_next;
1997                 }
1998
1999                 ret = write_partial_msg_pages(con);
2000                 if (ret == 1)
2001                         goto more_kvec;  /* we need to send the footer, too! */
2002                 if (ret == 0)
2003                         goto out;
2004                 if (ret < 0) {
2005                         dout("try_write write_partial_msg_pages err %d\n",
2006                              ret);
2007                         goto out;
2008                 }
2009         }
2010
2011 do_next:
2012         if (!test_bit(CONNECTING, &con->state)) {
2013                 /* is anything else pending? */
2014                 if (!list_empty(&con->out_queue)) {
2015                         prepare_write_message(con);
2016                         goto more;
2017                 }
2018                 if (con->in_seq > con->in_seq_acked) {
2019                         prepare_write_ack(con);
2020                         goto more;
2021                 }
2022                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2023                         prepare_write_keepalive(con);
2024                         goto more;
2025                 }
2026         }
2027
2028         /* Nothing to do! */
2029         clear_bit(WRITE_PENDING, &con->flags);
2030         dout("try_write nothing else to write.\n");
2031         ret = 0;
2032 out:
2033         dout("try_write done on %p ret %d\n", con, ret);
2034         return ret;
2035 }
2036
2037
2038
2039 /*
2040  * Read what we can from the socket.
2041  */
2042 static int try_read(struct ceph_connection *con)
2043 {
2044         int ret = -1;
2045
2046         if (!con->sock)
2047                 return 0;
2048
2049         if (test_bit(STANDBY, &con->state))
2050                 return 0;
2051
2052         dout("try_read start on %p\n", con);
2053
2054 more:
2055         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2056              con->in_base_pos);
2057
2058         /*
2059          * process_connect and process_message drop and re-take
2060          * con->mutex.  make sure we handle a racing close or reopen.
2061          */
2062         if (test_bit(CLOSED, &con->state) ||
2063             test_bit(OPENING, &con->state)) {
2064                 ret = -EAGAIN;
2065                 goto out;
2066         }
2067
2068         if (test_bit(CONNECTING, &con->state)) {
2069                 if (!test_bit(NEGOTIATING, &con->state)) {
2070                         dout("try_read connecting\n");
2071                         ret = read_partial_banner(con);
2072                         if (ret <= 0)
2073                                 goto out;
2074                         ret = process_banner(con);
2075                         if (ret < 0)
2076                                 goto out;
2077                 }
2078                 ret = read_partial_connect(con);
2079                 if (ret <= 0)
2080                         goto out;
2081                 ret = process_connect(con);
2082                 if (ret < 0)
2083                         goto out;
2084                 goto more;
2085         }
2086
2087         if (con->in_base_pos < 0) {
2088                 /*
2089                  * skipping + discarding content.
2090                  *
2091                  * FIXME: there must be a better way to do this!
2092                  */
2093                 static char buf[SKIP_BUF_SIZE];
2094                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2095
2096                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2097                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2098                 if (ret <= 0)
2099                         goto out;
2100                 con->in_base_pos += ret;
2101                 if (con->in_base_pos)
2102                         goto more;
2103         }
2104         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2105                 /*
2106                  * what's next?
2107                  */
2108                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2109                 if (ret <= 0)
2110                         goto out;
2111                 dout("try_read got tag %d\n", (int)con->in_tag);
2112                 switch (con->in_tag) {
2113                 case CEPH_MSGR_TAG_MSG:
2114                         prepare_read_message(con);
2115                         break;
2116                 case CEPH_MSGR_TAG_ACK:
2117                         prepare_read_ack(con);
2118                         break;
2119                 case CEPH_MSGR_TAG_CLOSE:
2120                         set_bit(CLOSED, &con->state);   /* fixme */
2121                         goto out;
2122                 default:
2123                         goto bad_tag;
2124                 }
2125         }
2126         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2127                 ret = read_partial_message(con);
2128                 if (ret <= 0) {
2129                         switch (ret) {
2130                         case -EBADMSG:
2131                                 con->error_msg = "bad crc";
2132                                 ret = -EIO;
2133                                 break;
2134                         case -EIO:
2135                                 con->error_msg = "io error";
2136                                 break;
2137                         }
2138                         goto out;
2139                 }
2140                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2141                         goto more;
2142                 process_message(con);
2143                 goto more;
2144         }
2145         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2146                 ret = read_partial_ack(con);
2147                 if (ret <= 0)
2148                         goto out;
2149                 process_ack(con);
2150                 goto more;
2151         }
2152
2153 out:
2154         dout("try_read done on %p ret %d\n", con, ret);
2155         return ret;
2156
2157 bad_tag:
2158         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2159         con->error_msg = "protocol error, garbage tag";
2160         ret = -1;
2161         goto out;
2162 }
2163
2164
2165 /*
2166  * Atomically queue work on a connection.  Bump @con reference to
2167  * avoid races with connection teardown.
2168  */
2169 static void queue_con(struct ceph_connection *con)
2170 {
2171         if (!con->ops->get(con)) {
2172                 dout("queue_con %p ref count 0\n", con);
2173                 return;
2174         }
2175
2176         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2177                 dout("queue_con %p - already queued\n", con);
2178                 con->ops->put(con);
2179         } else {
2180                 dout("queue_con %p\n", con);
2181         }
2182 }
2183
2184 /*
2185  * Do some work on a connection.  Drop a connection ref when we're done.
2186  */
2187 static void con_work(struct work_struct *work)
2188 {
2189         struct ceph_connection *con = container_of(work, struct ceph_connection,
2190                                                    work.work);
2191         int ret;
2192
2193         mutex_lock(&con->mutex);
2194 restart:
2195         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2196                 dout("con_work %p backing off\n", con);
2197                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2198                                        round_jiffies_relative(con->delay))) {
2199                         dout("con_work %p backoff %lu\n", con, con->delay);
2200                         mutex_unlock(&con->mutex);
2201                         return;
2202                 } else {
2203                         con->ops->put(con);
2204                         dout("con_work %p FAILED to back off %lu\n", con,
2205                              con->delay);
2206                 }
2207         }
2208
2209         if (test_bit(STANDBY, &con->state)) {
2210                 dout("con_work %p STANDBY\n", con);
2211                 goto done;
2212         }
2213         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2214                 dout("con_work CLOSED\n");
2215                 con_close_socket(con);
2216                 goto done;
2217         }
2218         if (test_and_clear_bit(OPENING, &con->state)) {
2219                 /* reopen w/ new peer */
2220                 dout("con_work OPENING\n");
2221                 con_close_socket(con);
2222         }
2223
2224         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2225                 goto fault;
2226
2227         ret = try_read(con);
2228         if (ret == -EAGAIN)
2229                 goto restart;
2230         if (ret < 0)
2231                 goto fault;
2232
2233         ret = try_write(con);
2234         if (ret == -EAGAIN)
2235                 goto restart;
2236         if (ret < 0)
2237                 goto fault;
2238
2239 done:
2240         mutex_unlock(&con->mutex);
2241 done_unlocked:
2242         con->ops->put(con);
2243         return;
2244
2245 fault:
2246         mutex_unlock(&con->mutex);
2247         ceph_fault(con);     /* error/fault path */
2248         goto done_unlocked;
2249 }
2250
2251
2252 /*
2253  * Generic error/fault handler.  A retry mechanism is used with
2254  * exponential backoff
2255  */
2256 static void ceph_fault(struct ceph_connection *con)
2257 {
2258         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2259                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2260         dout("fault %p state %lu to peer %s\n",
2261              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2262
2263         if (test_bit(LOSSYTX, &con->flags)) {
2264                 dout("fault on LOSSYTX channel\n");
2265                 goto out;
2266         }
2267
2268         mutex_lock(&con->mutex);
2269         if (test_bit(CLOSED, &con->state))
2270                 goto out_unlock;
2271
2272         con_close_socket(con);
2273
2274         if (con->in_msg) {
2275                 BUG_ON(con->in_msg->con != con);
2276                 con->in_msg->con = NULL;
2277                 ceph_msg_put(con->in_msg);
2278                 con->in_msg = NULL;
2279                 con->ops->put(con);
2280         }
2281
2282         /* Requeue anything that hasn't been acked */
2283         list_splice_init(&con->out_sent, &con->out_queue);
2284
2285         /* If there are no messages queued or keepalive pending, place
2286          * the connection in a STANDBY state */
2287         if (list_empty(&con->out_queue) &&
2288             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2289                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2290                 clear_bit(WRITE_PENDING, &con->flags);
2291                 set_bit(STANDBY, &con->state);
2292         } else {
2293                 /* retry after a delay. */
2294                 if (con->delay == 0)
2295                         con->delay = BASE_DELAY_INTERVAL;
2296                 else if (con->delay < MAX_DELAY_INTERVAL)
2297                         con->delay *= 2;
2298                 con->ops->get(con);
2299                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2300                                        round_jiffies_relative(con->delay))) {
2301                         dout("fault queued %p delay %lu\n", con, con->delay);
2302                 } else {
2303                         con->ops->put(con);
2304                         dout("fault failed to queue %p delay %lu, backoff\n",
2305                              con, con->delay);
2306                         /*
2307                          * In many cases we see a socket state change
2308                          * while con_work is running and end up
2309                          * queuing (non-delayed) work, such that we
2310                          * can't backoff with a delay.  Set a flag so
2311                          * that when con_work restarts we schedule the
2312                          * delay then.
2313                          */
2314                         set_bit(BACKOFF, &con->flags);
2315                 }
2316         }
2317
2318 out_unlock:
2319         mutex_unlock(&con->mutex);
2320 out:
2321         /*
2322          * in case we faulted due to authentication, invalidate our
2323          * current tickets so that we can get new ones.
2324          */
2325         if (con->auth_retry && con->ops->invalidate_authorizer) {
2326                 dout("calling invalidate_authorizer()\n");
2327                 con->ops->invalidate_authorizer(con);
2328         }
2329
2330         if (con->ops->fault)
2331                 con->ops->fault(con);
2332 }
2333
2334
2335
2336 /*
2337  * initialize a new messenger instance
2338  */
2339 void ceph_messenger_init(struct ceph_messenger *msgr,
2340                         struct ceph_entity_addr *myaddr,
2341                         u32 supported_features,
2342                         u32 required_features,
2343                         bool nocrc)
2344 {
2345         msgr->supported_features = supported_features;
2346         msgr->required_features = required_features;
2347
2348         spin_lock_init(&msgr->global_seq_lock);
2349
2350         if (myaddr)
2351                 msgr->inst.addr = *myaddr;
2352
2353         /* select a random nonce */
2354         msgr->inst.addr.type = 0;
2355         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2356         encode_my_addr(msgr);
2357         msgr->nocrc = nocrc;
2358
2359         dout("%s %p\n", __func__, msgr);
2360 }
2361 EXPORT_SYMBOL(ceph_messenger_init);
2362
2363 static void clear_standby(struct ceph_connection *con)
2364 {
2365         /* come back from STANDBY? */
2366         if (test_and_clear_bit(STANDBY, &con->state)) {
2367                 mutex_lock(&con->mutex);
2368                 dout("clear_standby %p and ++connect_seq\n", con);
2369                 con->connect_seq++;
2370                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2371                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2372                 mutex_unlock(&con->mutex);
2373         }
2374 }
2375
2376 /*
2377  * Queue up an outgoing message on the given connection.
2378  */
2379 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2380 {
2381         if (test_bit(CLOSED, &con->state)) {
2382                 dout("con_send %p closed, dropping %p\n", con, msg);
2383                 ceph_msg_put(msg);
2384                 return;
2385         }
2386
2387         /* set src+dst */
2388         msg->hdr.src = con->msgr->inst.name;
2389
2390         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2391
2392         msg->needs_out_seq = true;
2393
2394         /* queue */
2395         mutex_lock(&con->mutex);
2396
2397         BUG_ON(msg->con != NULL);
2398         msg->con = con->ops->get(con);
2399         BUG_ON(msg->con == NULL);
2400
2401         BUG_ON(!list_empty(&msg->list_head));
2402         list_add_tail(&msg->list_head, &con->out_queue);
2403         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2404              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2405              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2406              le32_to_cpu(msg->hdr.front_len),
2407              le32_to_cpu(msg->hdr.middle_len),
2408              le32_to_cpu(msg->hdr.data_len));
2409         mutex_unlock(&con->mutex);
2410
2411         /* if there wasn't anything waiting to send before, queue
2412          * new work */
2413         clear_standby(con);
2414         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2415                 queue_con(con);
2416 }
2417 EXPORT_SYMBOL(ceph_con_send);
2418
2419 /*
2420  * Revoke a message that was previously queued for send
2421  */
2422 void ceph_msg_revoke(struct ceph_msg *msg)
2423 {
2424         struct ceph_connection *con = msg->con;
2425
2426         if (!con)
2427                 return;         /* Message not in our possession */
2428
2429         mutex_lock(&con->mutex);
2430         if (!list_empty(&msg->list_head)) {
2431                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2432                 list_del_init(&msg->list_head);
2433                 BUG_ON(msg->con == NULL);
2434                 msg->con->ops->put(msg->con);
2435                 msg->con = NULL;
2436                 msg->hdr.seq = 0;
2437
2438                 ceph_msg_put(msg);
2439         }
2440         if (con->out_msg == msg) {
2441                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2442                 con->out_msg = NULL;
2443                 if (con->out_kvec_is_msg) {
2444                         con->out_skip = con->out_kvec_bytes;
2445                         con->out_kvec_is_msg = false;
2446                 }
2447                 msg->hdr.seq = 0;
2448
2449                 ceph_msg_put(msg);
2450         }
2451         mutex_unlock(&con->mutex);
2452 }
2453
2454 /*
2455  * Revoke a message that we may be reading data into
2456  */
2457 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2458 {
2459         struct ceph_connection *con;
2460
2461         BUG_ON(msg == NULL);
2462         if (!msg->con) {
2463                 dout("%s msg %p null con\n", __func__, msg);
2464
2465                 return;         /* Message not in our possession */
2466         }
2467
2468         con = msg->con;
2469         mutex_lock(&con->mutex);
2470         if (con->in_msg == msg) {
2471                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2472                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2473                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2474
2475                 /* skip rest of message */
2476                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2477                 con->in_base_pos = con->in_base_pos -
2478                                 sizeof(struct ceph_msg_header) -
2479                                 front_len -
2480                                 middle_len -
2481                                 data_len -
2482                                 sizeof(struct ceph_msg_footer);
2483                 ceph_msg_put(con->in_msg);
2484                 con->in_msg = NULL;
2485                 con->in_tag = CEPH_MSGR_TAG_READY;
2486                 con->in_seq++;
2487         } else {
2488                 dout("%s %p in_msg %p msg %p no-op\n",
2489                      __func__, con, con->in_msg, msg);
2490         }
2491         mutex_unlock(&con->mutex);
2492 }
2493
2494 /*
2495  * Queue a keepalive byte to ensure the tcp connection is alive.
2496  */
2497 void ceph_con_keepalive(struct ceph_connection *con)
2498 {
2499         dout("con_keepalive %p\n", con);
2500         clear_standby(con);
2501         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2502             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2503                 queue_con(con);
2504 }
2505 EXPORT_SYMBOL(ceph_con_keepalive);
2506
2507
2508 /*
2509  * construct a new message with given type, size
2510  * the new msg has a ref count of 1.
2511  */
2512 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2513                               bool can_fail)
2514 {
2515         struct ceph_msg *m;
2516
2517         m = kmalloc(sizeof(*m), flags);
2518         if (m == NULL)
2519                 goto out;
2520         kref_init(&m->kref);
2521
2522         m->con = NULL;
2523         INIT_LIST_HEAD(&m->list_head);
2524
2525         m->hdr.tid = 0;
2526         m->hdr.type = cpu_to_le16(type);
2527         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2528         m->hdr.version = 0;
2529         m->hdr.front_len = cpu_to_le32(front_len);
2530         m->hdr.middle_len = 0;
2531         m->hdr.data_len = 0;
2532         m->hdr.data_off = 0;
2533         m->hdr.reserved = 0;
2534         m->footer.front_crc = 0;
2535         m->footer.middle_crc = 0;
2536         m->footer.data_crc = 0;
2537         m->footer.flags = 0;
2538         m->front_max = front_len;
2539         m->front_is_vmalloc = false;
2540         m->more_to_follow = false;
2541         m->ack_stamp = 0;
2542         m->pool = NULL;
2543
2544         /* middle */
2545         m->middle = NULL;
2546
2547         /* data */
2548         m->nr_pages = 0;
2549         m->page_alignment = 0;
2550         m->pages = NULL;
2551         m->pagelist = NULL;
2552         m->bio = NULL;
2553         m->bio_iter = NULL;
2554         m->bio_seg = 0;
2555         m->trail = NULL;
2556
2557         /* front */
2558         if (front_len) {
2559                 if (front_len > PAGE_CACHE_SIZE) {
2560                         m->front.iov_base = __vmalloc(front_len, flags,
2561                                                       PAGE_KERNEL);
2562                         m->front_is_vmalloc = true;
2563                 } else {
2564                         m->front.iov_base = kmalloc(front_len, flags);
2565                 }
2566                 if (m->front.iov_base == NULL) {
2567                         dout("ceph_msg_new can't allocate %d bytes\n",
2568                              front_len);
2569                         goto out2;
2570                 }
2571         } else {
2572                 m->front.iov_base = NULL;
2573         }
2574         m->front.iov_len = front_len;
2575
2576         dout("ceph_msg_new %p front %d\n", m, front_len);
2577         return m;
2578
2579 out2:
2580         ceph_msg_put(m);
2581 out:
2582         if (!can_fail) {
2583                 pr_err("msg_new can't create type %d front %d\n", type,
2584                        front_len);
2585                 WARN_ON(1);
2586         } else {
2587                 dout("msg_new can't create type %d front %d\n", type,
2588                      front_len);
2589         }
2590         return NULL;
2591 }
2592 EXPORT_SYMBOL(ceph_msg_new);
2593
2594 /*
2595  * Allocate "middle" portion of a message, if it is needed and wasn't
2596  * allocated by alloc_msg.  This allows us to read a small fixed-size
2597  * per-type header in the front and then gracefully fail (i.e.,
2598  * propagate the error to the caller based on info in the front) when
2599  * the middle is too large.
2600  */
2601 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2602 {
2603         int type = le16_to_cpu(msg->hdr.type);
2604         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2605
2606         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2607              ceph_msg_type_name(type), middle_len);
2608         BUG_ON(!middle_len);
2609         BUG_ON(msg->middle);
2610
2611         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2612         if (!msg->middle)
2613                 return -ENOMEM;
2614         return 0;
2615 }
2616
2617 /*
2618  * Allocate a message for receiving an incoming message on a
2619  * connection, and save the result in con->in_msg.  Uses the
2620  * connection's private alloc_msg op if available.
2621  *
2622  * Returns true if the message should be skipped, false otherwise.
2623  * If true is returned (skip message), con->in_msg will be NULL.
2624  * If false is returned, con->in_msg will contain a pointer to the
2625  * newly-allocated message, or NULL in case of memory exhaustion.
2626  */
2627 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2628                                 struct ceph_msg_header *hdr)
2629 {
2630         int type = le16_to_cpu(hdr->type);
2631         int front_len = le32_to_cpu(hdr->front_len);
2632         int middle_len = le32_to_cpu(hdr->middle_len);
2633         int ret;
2634
2635         BUG_ON(con->in_msg != NULL);
2636
2637         if (con->ops->alloc_msg) {
2638                 int skip = 0;
2639
2640                 mutex_unlock(&con->mutex);
2641                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2642                 mutex_lock(&con->mutex);
2643                 if (con->in_msg) {
2644                         con->in_msg->con = con->ops->get(con);
2645                         BUG_ON(con->in_msg->con == NULL);
2646                 }
2647                 if (skip)
2648                         con->in_msg = NULL;
2649
2650                 if (!con->in_msg)
2651                         return skip != 0;
2652         }
2653         if (!con->in_msg) {
2654                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2655                 if (!con->in_msg) {
2656                         pr_err("unable to allocate msg type %d len %d\n",
2657                                type, front_len);
2658                         return false;
2659                 }
2660                 con->in_msg->con = con->ops->get(con);
2661                 BUG_ON(con->in_msg->con == NULL);
2662                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2663         }
2664         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2665
2666         if (middle_len && !con->in_msg->middle) {
2667                 ret = ceph_alloc_middle(con, con->in_msg);
2668                 if (ret < 0) {
2669                         ceph_msg_put(con->in_msg);
2670                         con->in_msg = NULL;
2671                 }
2672         }
2673
2674         return false;
2675 }
2676
2677
2678 /*
2679  * Free a generically kmalloc'd message.
2680  */
2681 void ceph_msg_kfree(struct ceph_msg *m)
2682 {
2683         dout("msg_kfree %p\n", m);
2684         if (m->front_is_vmalloc)
2685                 vfree(m->front.iov_base);
2686         else
2687                 kfree(m->front.iov_base);
2688         kfree(m);
2689 }
2690
2691 /*
2692  * Drop a msg ref.  Destroy as needed.
2693  */
2694 void ceph_msg_last_put(struct kref *kref)
2695 {
2696         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2697
2698         dout("ceph_msg_put last one on %p\n", m);
2699         WARN_ON(!list_empty(&m->list_head));
2700
2701         /* drop middle, data, if any */
2702         if (m->middle) {
2703                 ceph_buffer_put(m->middle);
2704                 m->middle = NULL;
2705         }
2706         m->nr_pages = 0;
2707         m->pages = NULL;
2708
2709         if (m->pagelist) {
2710                 ceph_pagelist_release(m->pagelist);
2711                 kfree(m->pagelist);
2712                 m->pagelist = NULL;
2713         }
2714
2715         m->trail = NULL;
2716
2717         if (m->pool)
2718                 ceph_msgpool_put(m->pool, m);
2719         else
2720                 ceph_msg_kfree(m);
2721 }
2722 EXPORT_SYMBOL(ceph_msg_last_put);
2723
2724 void ceph_msg_dump(struct ceph_msg *msg)
2725 {
2726         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2727                  msg->front_max, msg->nr_pages);
2728         print_hex_dump(KERN_DEBUG, "header: ",
2729                        DUMP_PREFIX_OFFSET, 16, 1,
2730                        &msg->hdr, sizeof(msg->hdr), true);
2731         print_hex_dump(KERN_DEBUG, " front: ",
2732                        DUMP_PREFIX_OFFSET, 16, 1,
2733                        msg->front.iov_base, msg->front.iov_len, true);
2734         if (msg->middle)
2735                 print_hex_dump(KERN_DEBUG, "middle: ",
2736                                DUMP_PREFIX_OFFSET, 16, 1,
2737                                msg->middle->vec.iov_base,
2738                                msg->middle->vec.iov_len, true);
2739         print_hex_dump(KERN_DEBUG, "footer: ",
2740                        DUMP_PREFIX_OFFSET, 16, 1,
2741                        &msg->footer, sizeof(msg->footer), true);
2742 }
2743 EXPORT_SYMBOL(ceph_msg_dump);