net: introduce pre-change upper device notifier
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;       /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156                                          struct net_device *dev,
157                                          struct netdev_notifier_info *info);
158
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191         while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223         struct net *net = dev_net(dev);
224
225         ASSERT_RTNL();
226
227         write_lock_bh(&dev_base_lock);
228         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230         hlist_add_head_rcu(&dev->index_hlist,
231                            dev_index_hash(net, dev->ifindex));
232         write_unlock_bh(&dev_base_lock);
233
234         dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242         ASSERT_RTNL();
243
244         /* Unlink dev from the device chain */
245         write_lock_bh(&dev_base_lock);
246         list_del_rcu(&dev->dev_list);
247         hlist_del_rcu(&dev->name_hlist);
248         hlist_del_rcu(&dev->index_hlist);
249         write_unlock_bh(&dev_base_lock);
250
251         dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255  *      Our notifier list
256  */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261  *      Device drivers call our routines to queue packets here. We empty the
262  *      queue in the local softnet handler.
263  */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312         int i;
313
314         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315                 if (netdev_lock_type[i] == dev_type)
316                         return i;
317         /* the last key is used by default */
318         return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322                                                  unsigned short dev_type)
323 {
324         int i;
325
326         i = netdev_lock_pos(dev_type);
327         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328                                    netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333         int i;
334
335         i = netdev_lock_pos(dev->type);
336         lockdep_set_class_and_name(&dev->addr_list_lock,
337                                    &netdev_addr_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342                                                  unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352                 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357  *      Add a protocol ID to the list. Now that the input handler is
358  *      smarter we can dispense with all the messy stuff that used to be
359  *      here.
360  *
361  *      BEWARE!!! Protocol handlers, mangling input packets,
362  *      MUST BE last in hash buckets and checking protocol handlers
363  *      MUST start from promiscuous ptype_all chain in net_bh.
364  *      It is true now, do not change it.
365  *      Explanation follows: if protocol handler, mangling packet, will
366  *      be the first on list, it is not able to sense, that packet
367  *      is cloned and should be copied-on-write, so that it will
368  *      change it and subsequent readers will get broken packet.
369  *                                                      --ANK (980803)
370  */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374         if (pt->type == htons(ETH_P_ALL))
375                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376         else
377                 return pt->dev ? &pt->dev->ptype_specific :
378                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382  *      dev_add_pack - add packet handler
383  *      @pt: packet type declaration
384  *
385  *      Add a protocol handler to the networking stack. The passed &packet_type
386  *      is linked into kernel lists and may not be freed until it has been
387  *      removed from the kernel lists.
388  *
389  *      This call does not sleep therefore it can not
390  *      guarantee all CPU's that are in middle of receiving packets
391  *      will see the new packet type (until the next received packet).
392  */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396         struct list_head *head = ptype_head(pt);
397
398         spin_lock(&ptype_lock);
399         list_add_rcu(&pt->list, head);
400         spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405  *      __dev_remove_pack        - remove packet handler
406  *      @pt: packet type declaration
407  *
408  *      Remove a protocol handler that was previously added to the kernel
409  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *      from the kernel lists and can be freed or reused once this function
411  *      returns.
412  *
413  *      The packet type might still be in use by receivers
414  *      and must not be freed until after all the CPU's have gone
415  *      through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419         struct list_head *head = ptype_head(pt);
420         struct packet_type *pt1;
421
422         spin_lock(&ptype_lock);
423
424         list_for_each_entry(pt1, head, list) {
425                 if (pt == pt1) {
426                         list_del_rcu(&pt->list);
427                         goto out;
428                 }
429         }
430
431         pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433         spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438  *      dev_remove_pack  - remove packet handler
439  *      @pt: packet type declaration
440  *
441  *      Remove a protocol handler that was previously added to the kernel
442  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *      from the kernel lists and can be freed or reused once this function
444  *      returns.
445  *
446  *      This call sleeps to guarantee that no CPU is looking at the packet
447  *      type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451         __dev_remove_pack(pt);
452
453         synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459  *      dev_add_offload - register offload handlers
460  *      @po: protocol offload declaration
461  *
462  *      Add protocol offload handlers to the networking stack. The passed
463  *      &proto_offload is linked into kernel lists and may not be freed until
464  *      it has been removed from the kernel lists.
465  *
466  *      This call does not sleep therefore it can not
467  *      guarantee all CPU's that are in middle of receiving packets
468  *      will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472         struct packet_offload *elem;
473
474         spin_lock(&offload_lock);
475         list_for_each_entry(elem, &offload_base, list) {
476                 if (po->priority < elem->priority)
477                         break;
478         }
479         list_add_rcu(&po->list, elem->list.prev);
480         spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485  *      __dev_remove_offload     - remove offload handler
486  *      @po: packet offload declaration
487  *
488  *      Remove a protocol offload handler that was previously added to the
489  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *      is removed from the kernel lists and can be freed or reused once this
491  *      function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *      and must not be freed until after all the CPU's have gone
495  *      through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499         struct list_head *head = &offload_base;
500         struct packet_offload *po1;
501
502         spin_lock(&offload_lock);
503
504         list_for_each_entry(po1, head, list) {
505                 if (po == po1) {
506                         list_del_rcu(&po->list);
507                         goto out;
508                 }
509         }
510
511         pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513         spin_unlock(&offload_lock);
514 }
515
516 /**
517  *      dev_remove_offload       - remove packet offload handler
518  *      @po: packet offload declaration
519  *
520  *      Remove a packet offload handler that was previously added to the kernel
521  *      offload handlers by dev_add_offload(). The passed &offload_type is
522  *      removed from the kernel lists and can be freed or reused once this
523  *      function returns.
524  *
525  *      This call sleeps to guarantee that no CPU is looking at the packet
526  *      type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530         __dev_remove_offload(po);
531
532         synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538                       Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546  *      netdev_boot_setup_add   - add new setup entry
547  *      @name: name of the device
548  *      @map: configured settings for the device
549  *
550  *      Adds new setup entry to the dev_boot_setup list.  The function
551  *      returns 0 on error and 1 on success.  This is a generic routine to
552  *      all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556         struct netdev_boot_setup *s;
557         int i;
558
559         s = dev_boot_setup;
560         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562                         memset(s[i].name, 0, sizeof(s[i].name));
563                         strlcpy(s[i].name, name, IFNAMSIZ);
564                         memcpy(&s[i].map, map, sizeof(s[i].map));
565                         break;
566                 }
567         }
568
569         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573  *      netdev_boot_setup_check - check boot time settings
574  *      @dev: the netdevice
575  *
576  *      Check boot time settings for the device.
577  *      The found settings are set for the device to be used
578  *      later in the device probing.
579  *      Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583         struct netdev_boot_setup *s = dev_boot_setup;
584         int i;
585
586         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588                     !strcmp(dev->name, s[i].name)) {
589                         dev->irq        = s[i].map.irq;
590                         dev->base_addr  = s[i].map.base_addr;
591                         dev->mem_start  = s[i].map.mem_start;
592                         dev->mem_end    = s[i].map.mem_end;
593                         return 1;
594                 }
595         }
596         return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602  *      netdev_boot_base        - get address from boot time settings
603  *      @prefix: prefix for network device
604  *      @unit: id for network device
605  *
606  *      Check boot time settings for the base address of device.
607  *      The found settings are set for the device to be used
608  *      later in the device probing.
609  *      Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613         const struct netdev_boot_setup *s = dev_boot_setup;
614         char name[IFNAMSIZ];
615         int i;
616
617         sprintf(name, "%s%d", prefix, unit);
618
619         /*
620          * If device already registered then return base of 1
621          * to indicate not to probe for this interface
622          */
623         if (__dev_get_by_name(&init_net, name))
624                 return 1;
625
626         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627                 if (!strcmp(name, s[i].name))
628                         return s[i].map.base_addr;
629         return 0;
630 }
631
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637         int ints[5];
638         struct ifmap map;
639
640         str = get_options(str, ARRAY_SIZE(ints), ints);
641         if (!str || !*str)
642                 return 0;
643
644         /* Save settings */
645         memset(&map, 0, sizeof(map));
646         if (ints[0] > 0)
647                 map.irq = ints[1];
648         if (ints[0] > 1)
649                 map.base_addr = ints[2];
650         if (ints[0] > 2)
651                 map.mem_start = ints[3];
652         if (ints[0] > 3)
653                 map.mem_end = ints[4];
654
655         /* Add new entry to the list */
656         return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663                             Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668  *      dev_get_iflink  - get 'iflink' value of a interface
669  *      @dev: targeted interface
670  *
671  *      Indicates the ifindex the interface is linked to.
672  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678                 return dev->netdev_ops->ndo_get_iflink(dev);
679
680         return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685  *      __dev_get_by_name       - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name. Must be called under RTNL semaphore
690  *      or @dev_base_lock. If the name is found a pointer to the device
691  *      is returned. If the name is not found then %NULL is returned. The
692  *      reference counters are not incremented so the caller must be
693  *      careful with locks.
694  */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710  *      dev_get_by_name_rcu     - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name.
715  *      If the name is found a pointer to the device is returned.
716  *      If the name is not found then %NULL is returned.
717  *      The reference counters are not incremented so the caller must be
718  *      careful with locks. The caller must hold RCU lock.
719  */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724         struct hlist_head *head = dev_name_hash(net, name);
725
726         hlist_for_each_entry_rcu(dev, head, name_hlist)
727                 if (!strncmp(dev->name, name, IFNAMSIZ))
728                         return dev;
729
730         return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735  *      dev_get_by_name         - find a device by its name
736  *      @net: the applicable net namespace
737  *      @name: name to find
738  *
739  *      Find an interface by name. This can be called from any
740  *      context and does its own locking. The returned handle has
741  *      the usage count incremented and the caller must use dev_put() to
742  *      release it when it is no longer needed. %NULL is returned if no
743  *      matching device is found.
744  */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748         struct net_device *dev;
749
750         rcu_read_lock();
751         dev = dev_get_by_name_rcu(net, name);
752         if (dev)
753                 dev_hold(dev);
754         rcu_read_unlock();
755         return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760  *      __dev_get_by_index - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold either the RTNL semaphore
768  *      or @dev_base_lock.
769  */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773         struct net_device *dev;
774         struct hlist_head *head = dev_index_hash(net, ifindex);
775
776         hlist_for_each_entry(dev, head, index_hlist)
777                 if (dev->ifindex == ifindex)
778                         return dev;
779
780         return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785  *      dev_get_by_index_rcu - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns %NULL if the device
790  *      is not found or a pointer to the device. The device has not
791  *      had its reference counter increased so the caller must be careful
792  *      about locking. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798         struct hlist_head *head = dev_index_hash(net, ifindex);
799
800         hlist_for_each_entry_rcu(dev, head, index_hlist)
801                 if (dev->ifindex == ifindex)
802                         return dev;
803
804         return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810  *      dev_get_by_index - find a device by its ifindex
811  *      @net: the applicable net namespace
812  *      @ifindex: index of device
813  *
814  *      Search for an interface by index. Returns NULL if the device
815  *      is not found or a pointer to the device. The device returned has
816  *      had a reference added and the pointer is safe until the user calls
817  *      dev_put to indicate they have finished with it.
818  */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822         struct net_device *dev;
823
824         rcu_read_lock();
825         dev = dev_get_by_index_rcu(net, ifindex);
826         if (dev)
827                 dev_hold(dev);
828         rcu_read_unlock();
829         return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834  *      netdev_get_name - get a netdevice name, knowing its ifindex.
835  *      @net: network namespace
836  *      @name: a pointer to the buffer where the name will be stored.
837  *      @ifindex: the ifindex of the interface to get the name from.
838  *
839  *      The use of raw_seqcount_begin() and cond_resched() before
840  *      retrying is required as we want to give the writers a chance
841  *      to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845         struct net_device *dev;
846         unsigned int seq;
847
848 retry:
849         seq = raw_seqcount_begin(&devnet_rename_seq);
850         rcu_read_lock();
851         dev = dev_get_by_index_rcu(net, ifindex);
852         if (!dev) {
853                 rcu_read_unlock();
854                 return -ENODEV;
855         }
856
857         strcpy(name, dev->name);
858         rcu_read_unlock();
859         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860                 cond_resched();
861                 goto retry;
862         }
863
864         return 0;
865 }
866
867 /**
868  *      dev_getbyhwaddr_rcu - find a device by its hardware address
869  *      @net: the applicable net namespace
870  *      @type: media type of device
871  *      @ha: hardware address
872  *
873  *      Search for an interface by MAC address. Returns NULL if the device
874  *      is not found or a pointer to the device.
875  *      The caller must hold RCU or RTNL.
876  *      The returned device has not had its ref count increased
877  *      and the caller must therefore be careful about locking
878  *
879  */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882                                        const char *ha)
883 {
884         struct net_device *dev;
885
886         for_each_netdev_rcu(net, dev)
887                 if (dev->type == type &&
888                     !memcmp(dev->dev_addr, ha, dev->addr_len))
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897         struct net_device *dev;
898
899         ASSERT_RTNL();
900         for_each_netdev(net, dev)
901                 if (dev->type == type)
902                         return dev;
903
904         return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910         struct net_device *dev, *ret = NULL;
911
912         rcu_read_lock();
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type) {
915                         dev_hold(dev);
916                         ret = dev;
917                         break;
918                 }
919         rcu_read_unlock();
920         return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925  *      __dev_get_by_flags - find any device with given flags
926  *      @net: the applicable net namespace
927  *      @if_flags: IFF_* values
928  *      @mask: bitmask of bits in if_flags to check
929  *
930  *      Search for any interface with the given flags. Returns NULL if a device
931  *      is not found or a pointer to the device. Must be called inside
932  *      rtnl_lock(), and result refcount is unchanged.
933  */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936                                       unsigned short mask)
937 {
938         struct net_device *dev, *ret;
939
940         ASSERT_RTNL();
941
942         ret = NULL;
943         for_each_netdev(net, dev) {
944                 if (((dev->flags ^ if_flags) & mask) == 0) {
945                         ret = dev;
946                         break;
947                 }
948         }
949         return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954  *      dev_valid_name - check if name is okay for network device
955  *      @name: name string
956  *
957  *      Network device names need to be valid file names to
958  *      to allow sysfs to work.  We also disallow any kind of
959  *      whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963         if (*name == '\0')
964                 return false;
965         if (strlen(name) >= IFNAMSIZ)
966                 return false;
967         if (!strcmp(name, ".") || !strcmp(name, ".."))
968                 return false;
969
970         while (*name) {
971                 if (*name == '/' || *name == ':' || isspace(*name))
972                         return false;
973                 name++;
974         }
975         return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980  *      __dev_alloc_name - allocate a name for a device
981  *      @net: network namespace to allocate the device name in
982  *      @name: name format string
983  *      @buf:  scratch buffer and result name string
984  *
985  *      Passed a format string - eg "lt%d" it will try and find a suitable
986  *      id. It scans list of devices to build up a free map, then chooses
987  *      the first empty slot. The caller must hold the dev_base or rtnl lock
988  *      while allocating the name and adding the device in order to avoid
989  *      duplicates.
990  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *      Returns the number of the unit assigned or a negative errno code.
992  */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996         int i = 0;
997         const char *p;
998         const int max_netdevices = 8*PAGE_SIZE;
999         unsigned long *inuse;
1000         struct net_device *d;
1001
1002         p = strnchr(name, IFNAMSIZ-1, '%');
1003         if (p) {
1004                 /*
1005                  * Verify the string as this thing may have come from
1006                  * the user.  There must be either one "%d" and no other "%"
1007                  * characters.
1008                  */
1009                 if (p[1] != 'd' || strchr(p + 2, '%'))
1010                         return -EINVAL;
1011
1012                 /* Use one page as a bit array of possible slots */
1013                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014                 if (!inuse)
1015                         return -ENOMEM;
1016
1017                 for_each_netdev(net, d) {
1018                         if (!sscanf(d->name, name, &i))
1019                                 continue;
1020                         if (i < 0 || i >= max_netdevices)
1021                                 continue;
1022
1023                         /*  avoid cases where sscanf is not exact inverse of printf */
1024                         snprintf(buf, IFNAMSIZ, name, i);
1025                         if (!strncmp(buf, d->name, IFNAMSIZ))
1026                                 set_bit(i, inuse);
1027                 }
1028
1029                 i = find_first_zero_bit(inuse, max_netdevices);
1030                 free_page((unsigned long) inuse);
1031         }
1032
1033         if (buf != name)
1034                 snprintf(buf, IFNAMSIZ, name, i);
1035         if (!__dev_get_by_name(net, buf))
1036                 return i;
1037
1038         /* It is possible to run out of possible slots
1039          * when the name is long and there isn't enough space left
1040          * for the digits, or if all bits are used.
1041          */
1042         return -ENFILE;
1043 }
1044
1045 /**
1046  *      dev_alloc_name - allocate a name for a device
1047  *      @dev: device
1048  *      @name: name format string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061         char buf[IFNAMSIZ];
1062         struct net *net;
1063         int ret;
1064
1065         BUG_ON(!dev_net(dev));
1066         net = dev_net(dev);
1067         ret = __dev_alloc_name(net, name, buf);
1068         if (ret >= 0)
1069                 strlcpy(dev->name, buf, IFNAMSIZ);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075                              struct net_device *dev,
1076                              const char *name)
1077 {
1078         char buf[IFNAMSIZ];
1079         int ret;
1080
1081         ret = __dev_alloc_name(net, name, buf);
1082         if (ret >= 0)
1083                 strlcpy(dev->name, buf, IFNAMSIZ);
1084         return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088                               struct net_device *dev,
1089                               const char *name)
1090 {
1091         BUG_ON(!net);
1092
1093         if (!dev_valid_name(name))
1094                 return -EINVAL;
1095
1096         if (strchr(name, '%'))
1097                 return dev_alloc_name_ns(net, dev, name);
1098         else if (__dev_get_by_name(net, name))
1099                 return -EEXIST;
1100         else if (dev->name != name)
1101                 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103         return 0;
1104 }
1105
1106 /**
1107  *      dev_change_name - change name of a device
1108  *      @dev: device
1109  *      @newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *      Change name of a device, can pass format strings "eth%d".
1112  *      for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116         unsigned char old_assign_type;
1117         char oldname[IFNAMSIZ];
1118         int err = 0;
1119         int ret;
1120         struct net *net;
1121
1122         ASSERT_RTNL();
1123         BUG_ON(!dev_net(dev));
1124
1125         net = dev_net(dev);
1126         if (dev->flags & IFF_UP)
1127                 return -EBUSY;
1128
1129         write_seqcount_begin(&devnet_rename_seq);
1130
1131         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return 0;
1134         }
1135
1136         memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138         err = dev_get_valid_name(net, dev, newname);
1139         if (err < 0) {
1140                 write_seqcount_end(&devnet_rename_seq);
1141                 return err;
1142         }
1143
1144         if (oldname[0] && !strchr(oldname, '%'))
1145                 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147         old_assign_type = dev->name_assign_type;
1148         dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151         ret = device_rename(&dev->dev, dev->name);
1152         if (ret) {
1153                 memcpy(dev->name, oldname, IFNAMSIZ);
1154                 dev->name_assign_type = old_assign_type;
1155                 write_seqcount_end(&devnet_rename_seq);
1156                 return ret;
1157         }
1158
1159         write_seqcount_end(&devnet_rename_seq);
1160
1161         netdev_adjacent_rename_links(dev, oldname);
1162
1163         write_lock_bh(&dev_base_lock);
1164         hlist_del_rcu(&dev->name_hlist);
1165         write_unlock_bh(&dev_base_lock);
1166
1167         synchronize_rcu();
1168
1169         write_lock_bh(&dev_base_lock);
1170         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171         write_unlock_bh(&dev_base_lock);
1172
1173         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174         ret = notifier_to_errno(ret);
1175
1176         if (ret) {
1177                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178                 if (err >= 0) {
1179                         err = ret;
1180                         write_seqcount_begin(&devnet_rename_seq);
1181                         memcpy(dev->name, oldname, IFNAMSIZ);
1182                         memcpy(oldname, newname, IFNAMSIZ);
1183                         dev->name_assign_type = old_assign_type;
1184                         old_assign_type = NET_NAME_RENAMED;
1185                         goto rollback;
1186                 } else {
1187                         pr_err("%s: name change rollback failed: %d\n",
1188                                dev->name, ret);
1189                 }
1190         }
1191
1192         return err;
1193 }
1194
1195 /**
1196  *      dev_set_alias - change ifalias of a device
1197  *      @dev: device
1198  *      @alias: name up to IFALIASZ
1199  *      @len: limit of bytes to copy from info
1200  *
1201  *      Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205         char *new_ifalias;
1206
1207         ASSERT_RTNL();
1208
1209         if (len >= IFALIASZ)
1210                 return -EINVAL;
1211
1212         if (!len) {
1213                 kfree(dev->ifalias);
1214                 dev->ifalias = NULL;
1215                 return 0;
1216         }
1217
1218         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219         if (!new_ifalias)
1220                 return -ENOMEM;
1221         dev->ifalias = new_ifalias;
1222
1223         strlcpy(dev->ifalias, alias, len+1);
1224         return len;
1225 }
1226
1227
1228 /**
1229  *      netdev_features_change - device changes features
1230  *      @dev: device to cause notification
1231  *
1232  *      Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241  *      netdev_state_change - device changes state
1242  *      @dev: device to cause notification
1243  *
1244  *      Called to indicate a device has changed state. This function calls
1245  *      the notifier chains for netdev_chain and sends a NEWLINK message
1246  *      to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250         if (dev->flags & IFF_UP) {
1251                 struct netdev_notifier_change_info change_info;
1252
1253                 change_info.flags_changed = 0;
1254                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255                                               &change_info.info);
1256                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257         }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262  *      netdev_notify_peers - notify network peers about existence of @dev
1263  *      @dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273         rtnl_lock();
1274         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275         rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281         const struct net_device_ops *ops = dev->netdev_ops;
1282         int ret;
1283
1284         ASSERT_RTNL();
1285
1286         if (!netif_device_present(dev))
1287                 return -ENODEV;
1288
1289         /* Block netpoll from trying to do any rx path servicing.
1290          * If we don't do this there is a chance ndo_poll_controller
1291          * or ndo_poll may be running while we open the device
1292          */
1293         netpoll_poll_disable(dev);
1294
1295         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296         ret = notifier_to_errno(ret);
1297         if (ret)
1298                 return ret;
1299
1300         set_bit(__LINK_STATE_START, &dev->state);
1301
1302         if (ops->ndo_validate_addr)
1303                 ret = ops->ndo_validate_addr(dev);
1304
1305         if (!ret && ops->ndo_open)
1306                 ret = ops->ndo_open(dev);
1307
1308         netpoll_poll_enable(dev);
1309
1310         if (ret)
1311                 clear_bit(__LINK_STATE_START, &dev->state);
1312         else {
1313                 dev->flags |= IFF_UP;
1314                 dev_set_rx_mode(dev);
1315                 dev_activate(dev);
1316                 add_device_randomness(dev->dev_addr, dev->addr_len);
1317         }
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      dev_open        - prepare an interface for use.
1324  *      @dev:   device to open
1325  *
1326  *      Takes a device from down to up state. The device's private open
1327  *      function is invoked and then the multicast lists are loaded. Finally
1328  *      the device is moved into the up state and a %NETDEV_UP message is
1329  *      sent to the netdev notifier chain.
1330  *
1331  *      Calling this function on an active interface is a nop. On a failure
1332  *      a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336         int ret;
1337
1338         if (dev->flags & IFF_UP)
1339                 return 0;
1340
1341         ret = __dev_open(dev);
1342         if (ret < 0)
1343                 return ret;
1344
1345         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346         call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354         struct net_device *dev;
1355
1356         ASSERT_RTNL();
1357         might_sleep();
1358
1359         list_for_each_entry(dev, head, close_list) {
1360                 /* Temporarily disable netpoll until the interface is down */
1361                 netpoll_poll_disable(dev);
1362
1363                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365                 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368                  * can be even on different cpu. So just clear netif_running().
1369                  *
1370                  * dev->stop() will invoke napi_disable() on all of it's
1371                  * napi_struct instances on this device.
1372                  */
1373                 smp_mb__after_atomic(); /* Commit netif_running(). */
1374         }
1375
1376         dev_deactivate_many(head);
1377
1378         list_for_each_entry(dev, head, close_list) {
1379                 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381                 /*
1382                  *      Call the device specific close. This cannot fail.
1383                  *      Only if device is UP
1384                  *
1385                  *      We allow it to be called even after a DETACH hot-plug
1386                  *      event.
1387                  */
1388                 if (ops->ndo_stop)
1389                         ops->ndo_stop(dev);
1390
1391                 dev->flags &= ~IFF_UP;
1392                 netpoll_poll_enable(dev);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400         int retval;
1401         LIST_HEAD(single);
1402
1403         list_add(&dev->close_list, &single);
1404         retval = __dev_close_many(&single);
1405         list_del(&single);
1406
1407         return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412         struct net_device *dev, *tmp;
1413
1414         /* Remove the devices that don't need to be closed */
1415         list_for_each_entry_safe(dev, tmp, head, close_list)
1416                 if (!(dev->flags & IFF_UP))
1417                         list_del_init(&dev->close_list);
1418
1419         __dev_close_many(head);
1420
1421         list_for_each_entry_safe(dev, tmp, head, close_list) {
1422                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424                 if (unlink)
1425                         list_del_init(&dev->close_list);
1426         }
1427
1428         return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433  *      dev_close - shutdown an interface.
1434  *      @dev: device to shutdown
1435  *
1436  *      This function moves an active device into down state. A
1437  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *      chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443         if (dev->flags & IFF_UP) {
1444                 LIST_HEAD(single);
1445
1446                 list_add(&dev->close_list, &single);
1447                 dev_close_many(&single, true);
1448                 list_del(&single);
1449         }
1450         return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456  *      dev_disable_lro - disable Large Receive Offload on a device
1457  *      @dev: device
1458  *
1459  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *      called under RTNL.  This is needed if received packets may be
1461  *      forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465         struct net_device *lower_dev;
1466         struct list_head *iter;
1467
1468         dev->wanted_features &= ~NETIF_F_LRO;
1469         netdev_update_features(dev);
1470
1471         if (unlikely(dev->features & NETIF_F_LRO))
1472                 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474         netdev_for_each_lower_dev(dev, lower_dev, iter)
1475                 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480                                    struct net_device *dev)
1481 {
1482         struct netdev_notifier_info info;
1483
1484         netdev_notifier_info_init(&info, dev);
1485         return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491  *      register_netdevice_notifier - register a network notifier block
1492  *      @nb: notifier
1493  *
1494  *      Register a notifier to be called when network device events occur.
1495  *      The notifier passed is linked into the kernel structures and must
1496  *      not be reused until it has been unregistered. A negative errno code
1497  *      is returned on a failure.
1498  *
1499  *      When registered all registration and up events are replayed
1500  *      to the new notifier to allow device to have a race free
1501  *      view of the network device list.
1502  */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506         struct net_device *dev;
1507         struct net_device *last;
1508         struct net *net;
1509         int err;
1510
1511         rtnl_lock();
1512         err = raw_notifier_chain_register(&netdev_chain, nb);
1513         if (err)
1514                 goto unlock;
1515         if (dev_boot_phase)
1516                 goto unlock;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520                         err = notifier_to_errno(err);
1521                         if (err)
1522                                 goto rollback;
1523
1524                         if (!(dev->flags & IFF_UP))
1525                                 continue;
1526
1527                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1528                 }
1529         }
1530
1531 unlock:
1532         rtnl_unlock();
1533         return err;
1534
1535 rollback:
1536         last = dev;
1537         for_each_net(net) {
1538                 for_each_netdev(net, dev) {
1539                         if (dev == last)
1540                                 goto outroll;
1541
1542                         if (dev->flags & IFF_UP) {
1543                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544                                                         dev);
1545                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546                         }
1547                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548                 }
1549         }
1550
1551 outroll:
1552         raw_notifier_chain_unregister(&netdev_chain, nb);
1553         goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558  *      unregister_netdevice_notifier - unregister a network notifier block
1559  *      @nb: notifier
1560  *
1561  *      Unregister a notifier previously registered by
1562  *      register_netdevice_notifier(). The notifier is unlinked into the
1563  *      kernel structures and may then be reused. A negative errno code
1564  *      is returned on a failure.
1565  *
1566  *      After unregistering unregister and down device events are synthesized
1567  *      for all devices on the device list to the removed notifier to remove
1568  *      the need for special case cleanup code.
1569  */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573         struct net_device *dev;
1574         struct net *net;
1575         int err;
1576
1577         rtnl_lock();
1578         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579         if (err)
1580                 goto unlock;
1581
1582         for_each_net(net) {
1583                 for_each_netdev(net, dev) {
1584                         if (dev->flags & IFF_UP) {
1585                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586                                                         dev);
1587                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588                         }
1589                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590                 }
1591         }
1592 unlock:
1593         rtnl_unlock();
1594         return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599  *      call_netdevice_notifiers_info - call all network notifier blocks
1600  *      @val: value passed unmodified to notifier function
1601  *      @dev: net_device pointer passed unmodified to notifier function
1602  *      @info: notifier information data
1603  *
1604  *      Call all network notifier blocks.  Parameters and return value
1605  *      are as for raw_notifier_call_chain().
1606  */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609                                          struct net_device *dev,
1610                                          struct netdev_notifier_info *info)
1611 {
1612         ASSERT_RTNL();
1613         netdev_notifier_info_init(info, dev);
1614         return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618  *      call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *      Call all network notifier blocks.  Parameters and return value
1623  *      are as for raw_notifier_call_chain().
1624  */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628         struct netdev_notifier_info info;
1629
1630         return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639         static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645         static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664         if (deferred) {
1665                 while (--deferred)
1666                         static_key_slow_dec(&netstamp_needed);
1667                 return;
1668         }
1669 #endif
1670         static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677         if (in_interrupt()) {
1678                 atomic_inc(&netstamp_needed_deferred);
1679                 return;
1680         }
1681 #endif
1682         static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688         skb->tstamp.tv64 = 0;
1689         if (static_key_false(&netstamp_needed))
1690                 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB)                  \
1694         if (static_key_false(&netstamp_needed)) {               \
1695                 if ((COND) && !(SKB)->tstamp.tv64)      \
1696                         __net_timestamp(SKB);           \
1697         }                                               \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701         unsigned int len;
1702
1703         if (!(dev->flags & IFF_UP))
1704                 return false;
1705
1706         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707         if (skb->len <= len)
1708                 return true;
1709
1710         /* if TSO is enabled, we don't care about the length as the packet
1711          * could be forwarded without being segmented before
1712          */
1713         if (skb_is_gso(skb))
1714                 return true;
1715
1716         return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723             unlikely(!is_skb_forwardable(dev, skb))) {
1724                 atomic_long_inc(&dev->rx_dropped);
1725                 kfree_skb(skb);
1726                 return NET_RX_DROP;
1727         }
1728
1729         skb_scrub_packet(skb, true);
1730         skb->priority = 0;
1731         skb->protocol = eth_type_trans(skb, dev);
1732         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734         return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *      NET_RX_SUCCESS  (no congestion)
1746  *      NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763                               struct packet_type *pt_prev,
1764                               struct net_device *orig_dev)
1765 {
1766         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767                 return -ENOMEM;
1768         atomic_inc(&skb->users);
1769         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773                                           struct packet_type **pt,
1774                                           struct net_device *orig_dev,
1775                                           __be16 type,
1776                                           struct list_head *ptype_list)
1777 {
1778         struct packet_type *ptype, *pt_prev = *pt;
1779
1780         list_for_each_entry_rcu(ptype, ptype_list, list) {
1781                 if (ptype->type != type)
1782                         continue;
1783                 if (pt_prev)
1784                         deliver_skb(skb, pt_prev, orig_dev);
1785                 pt_prev = ptype;
1786         }
1787         *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792         if (!ptype->af_packet_priv || !skb->sk)
1793                 return false;
1794
1795         if (ptype->id_match)
1796                 return ptype->id_match(ptype, skb->sk);
1797         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798                 return true;
1799
1800         return false;
1801 }
1802
1803 /*
1804  *      Support routine. Sends outgoing frames to any network
1805  *      taps currently in use.
1806  */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810         struct packet_type *ptype;
1811         struct sk_buff *skb2 = NULL;
1812         struct packet_type *pt_prev = NULL;
1813         struct list_head *ptype_list = &ptype_all;
1814
1815         rcu_read_lock();
1816 again:
1817         list_for_each_entry_rcu(ptype, ptype_list, list) {
1818                 /* Never send packets back to the socket
1819                  * they originated from - MvS (miquels@drinkel.ow.org)
1820                  */
1821                 if (skb_loop_sk(ptype, skb))
1822                         continue;
1823
1824                 if (pt_prev) {
1825                         deliver_skb(skb2, pt_prev, skb->dev);
1826                         pt_prev = ptype;
1827                         continue;
1828                 }
1829
1830                 /* need to clone skb, done only once */
1831                 skb2 = skb_clone(skb, GFP_ATOMIC);
1832                 if (!skb2)
1833                         goto out_unlock;
1834
1835                 net_timestamp_set(skb2);
1836
1837                 /* skb->nh should be correctly
1838                  * set by sender, so that the second statement is
1839                  * just protection against buggy protocols.
1840                  */
1841                 skb_reset_mac_header(skb2);
1842
1843                 if (skb_network_header(skb2) < skb2->data ||
1844                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846                                              ntohs(skb2->protocol),
1847                                              dev->name);
1848                         skb_reset_network_header(skb2);
1849                 }
1850
1851                 skb2->transport_header = skb2->network_header;
1852                 skb2->pkt_type = PACKET_OUTGOING;
1853                 pt_prev = ptype;
1854         }
1855
1856         if (ptype_list == &ptype_all) {
1857                 ptype_list = &dev->ptype_all;
1858                 goto again;
1859         }
1860 out_unlock:
1861         if (pt_prev)
1862                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863         rcu_read_unlock();
1864 }
1865
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881         int i;
1882         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884         /* If TC0 is invalidated disable TC mapping */
1885         if (tc->offset + tc->count > txq) {
1886                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887                 dev->num_tc = 0;
1888                 return;
1889         }
1890
1891         /* Invalidated prio to tc mappings set to TC0 */
1892         for (i = 1; i < TC_BITMASK + 1; i++) {
1893                 int q = netdev_get_prio_tc_map(dev, i);
1894
1895                 tc = &dev->tc_to_txq[q];
1896                 if (tc->offset + tc->count > txq) {
1897                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898                                 i, q);
1899                         netdev_set_prio_tc_map(dev, i, 0);
1900                 }
1901         }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)             \
1907         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910                                         int cpu, u16 index)
1911 {
1912         struct xps_map *map = NULL;
1913         int pos;
1914
1915         if (dev_maps)
1916                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918         for (pos = 0; map && pos < map->len; pos++) {
1919                 if (map->queues[pos] == index) {
1920                         if (map->len > 1) {
1921                                 map->queues[pos] = map->queues[--map->len];
1922                         } else {
1923                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924                                 kfree_rcu(map, rcu);
1925                                 map = NULL;
1926                         }
1927                         break;
1928                 }
1929         }
1930
1931         return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936         struct xps_dev_maps *dev_maps;
1937         int cpu, i;
1938         bool active = false;
1939
1940         mutex_lock(&xps_map_mutex);
1941         dev_maps = xmap_dereference(dev->xps_maps);
1942
1943         if (!dev_maps)
1944                 goto out_no_maps;
1945
1946         for_each_possible_cpu(cpu) {
1947                 for (i = index; i < dev->num_tx_queues; i++) {
1948                         if (!remove_xps_queue(dev_maps, cpu, i))
1949                                 break;
1950                 }
1951                 if (i == dev->num_tx_queues)
1952                         active = true;
1953         }
1954
1955         if (!active) {
1956                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957                 kfree_rcu(dev_maps, rcu);
1958         }
1959
1960         for (i = index; i < dev->num_tx_queues; i++)
1961                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962                                              NUMA_NO_NODE);
1963
1964 out_no_maps:
1965         mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969                                       int cpu, u16 index)
1970 {
1971         struct xps_map *new_map;
1972         int alloc_len = XPS_MIN_MAP_ALLOC;
1973         int i, pos;
1974
1975         for (pos = 0; map && pos < map->len; pos++) {
1976                 if (map->queues[pos] != index)
1977                         continue;
1978                 return map;
1979         }
1980
1981         /* Need to add queue to this CPU's existing map */
1982         if (map) {
1983                 if (pos < map->alloc_len)
1984                         return map;
1985
1986                 alloc_len = map->alloc_len * 2;
1987         }
1988
1989         /* Need to allocate new map to store queue on this CPU's map */
1990         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991                                cpu_to_node(cpu));
1992         if (!new_map)
1993                 return NULL;
1994
1995         for (i = 0; i < pos; i++)
1996                 new_map->queues[i] = map->queues[i];
1997         new_map->alloc_len = alloc_len;
1998         new_map->len = pos;
1999
2000         return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004                         u16 index)
2005 {
2006         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007         struct xps_map *map, *new_map;
2008         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009         int cpu, numa_node_id = -2;
2010         bool active = false;
2011
2012         mutex_lock(&xps_map_mutex);
2013
2014         dev_maps = xmap_dereference(dev->xps_maps);
2015
2016         /* allocate memory for queue storage */
2017         for_each_online_cpu(cpu) {
2018                 if (!cpumask_test_cpu(cpu, mask))
2019                         continue;
2020
2021                 if (!new_dev_maps)
2022                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023                 if (!new_dev_maps) {
2024                         mutex_unlock(&xps_map_mutex);
2025                         return -ENOMEM;
2026                 }
2027
2028                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029                                  NULL;
2030
2031                 map = expand_xps_map(map, cpu, index);
2032                 if (!map)
2033                         goto error;
2034
2035                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036         }
2037
2038         if (!new_dev_maps)
2039                 goto out_no_new_maps;
2040
2041         for_each_possible_cpu(cpu) {
2042                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043                         /* add queue to CPU maps */
2044                         int pos = 0;
2045
2046                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047                         while ((pos < map->len) && (map->queues[pos] != index))
2048                                 pos++;
2049
2050                         if (pos == map->len)
2051                                 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053                         if (numa_node_id == -2)
2054                                 numa_node_id = cpu_to_node(cpu);
2055                         else if (numa_node_id != cpu_to_node(cpu))
2056                                 numa_node_id = -1;
2057 #endif
2058                 } else if (dev_maps) {
2059                         /* fill in the new device map from the old device map */
2060                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062                 }
2063
2064         }
2065
2066         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068         /* Cleanup old maps */
2069         if (dev_maps) {
2070                 for_each_possible_cpu(cpu) {
2071                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073                         if (map && map != new_map)
2074                                 kfree_rcu(map, rcu);
2075                 }
2076
2077                 kfree_rcu(dev_maps, rcu);
2078         }
2079
2080         dev_maps = new_dev_maps;
2081         active = true;
2082
2083 out_no_new_maps:
2084         /* update Tx queue numa node */
2085         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086                                      (numa_node_id >= 0) ? numa_node_id :
2087                                      NUMA_NO_NODE);
2088
2089         if (!dev_maps)
2090                 goto out_no_maps;
2091
2092         /* removes queue from unused CPUs */
2093         for_each_possible_cpu(cpu) {
2094                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095                         continue;
2096
2097                 if (remove_xps_queue(dev_maps, cpu, index))
2098                         active = true;
2099         }
2100
2101         /* free map if not active */
2102         if (!active) {
2103                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107 out_no_maps:
2108         mutex_unlock(&xps_map_mutex);
2109
2110         return 0;
2111 error:
2112         /* remove any maps that we added */
2113         for_each_possible_cpu(cpu) {
2114                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116                                  NULL;
2117                 if (new_map && new_map != map)
2118                         kfree(new_map);
2119         }
2120
2121         mutex_unlock(&xps_map_mutex);
2122
2123         kfree(new_dev_maps);
2124         return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135         int rc;
2136
2137         if (txq < 1 || txq > dev->num_tx_queues)
2138                 return -EINVAL;
2139
2140         if (dev->reg_state == NETREG_REGISTERED ||
2141             dev->reg_state == NETREG_UNREGISTERING) {
2142                 ASSERT_RTNL();
2143
2144                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145                                                   txq);
2146                 if (rc)
2147                         return rc;
2148
2149                 if (dev->num_tc)
2150                         netif_setup_tc(dev, txq);
2151
2152                 if (txq < dev->real_num_tx_queues) {
2153                         qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155                         netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157                 }
2158         }
2159
2160         dev->real_num_tx_queues = txq;
2161         return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *      @dev: Network device
2169  *      @rxq: Actual number of RX queues
2170  *
2171  *      This must be called either with the rtnl_lock held or before
2172  *      registration of the net device.  Returns 0 on success, or a
2173  *      negative error code.  If called before registration, it always
2174  *      succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178         int rc;
2179
2180         if (rxq < 1 || rxq > dev->num_rx_queues)
2181                 return -EINVAL;
2182
2183         if (dev->reg_state == NETREG_REGISTERED) {
2184                 ASSERT_RTNL();
2185
2186                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187                                                   rxq);
2188                 if (rc)
2189                         return rc;
2190         }
2191
2192         dev->real_num_rx_queues = rxq;
2193         return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212         struct softnet_data *sd;
2213         unsigned long flags;
2214
2215         local_irq_save(flags);
2216         sd = this_cpu_ptr(&softnet_data);
2217         q->next_sched = NULL;
2218         *sd->output_queue_tailp = q;
2219         sd->output_queue_tailp = &q->next_sched;
2220         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221         local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227                 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232         enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237         return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242         rcu_read_lock();
2243         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246                 __netif_schedule(q);
2247         }
2248         rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253  *      netif_wake_subqueue - allow sending packets on subqueue
2254  *      @dev: network device
2255  *      @queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264                 struct Qdisc *q;
2265
2266                 rcu_read_lock();
2267                 q = rcu_dereference(txq->qdisc);
2268                 __netif_schedule(q);
2269                 rcu_read_unlock();
2270         }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277                 struct Qdisc *q;
2278
2279                 rcu_read_lock();
2280                 q = rcu_dereference(dev_queue->qdisc);
2281                 __netif_schedule(q);
2282                 rcu_read_unlock();
2283         }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289         unsigned long flags;
2290
2291         if (likely(atomic_read(&skb->users) == 1)) {
2292                 smp_rmb();
2293                 atomic_set(&skb->users, 0);
2294         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295                 return;
2296         }
2297         get_kfree_skb_cb(skb)->reason = reason;
2298         local_irq_save(flags);
2299         skb->next = __this_cpu_read(softnet_data.completion_queue);
2300         __this_cpu_write(softnet_data.completion_queue, skb);
2301         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302         local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308         if (in_irq() || irqs_disabled())
2309                 __dev_kfree_skb_irq(skb, reason);
2310         else
2311                 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325             netif_running(dev)) {
2326                 netif_tx_stop_all_queues(dev);
2327         }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340             netif_running(dev)) {
2341                 netif_tx_wake_all_queues(dev);
2342                 __netdev_watchdog_up(dev);
2343         }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352                   unsigned int num_tx_queues)
2353 {
2354         u32 hash;
2355         u16 qoffset = 0;
2356         u16 qcount = num_tx_queues;
2357
2358         if (skb_rx_queue_recorded(skb)) {
2359                 hash = skb_get_rx_queue(skb);
2360                 while (unlikely(hash >= num_tx_queues))
2361                         hash -= num_tx_queues;
2362                 return hash;
2363         }
2364
2365         if (dev->num_tc) {
2366                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367                 qoffset = dev->tc_to_txq[tc].offset;
2368                 qcount = dev->tc_to_txq[tc].count;
2369         }
2370
2371         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377         static const netdev_features_t null_features = 0;
2378         struct net_device *dev = skb->dev;
2379         const char *driver = "";
2380
2381         if (!net_ratelimit())
2382                 return;
2383
2384         if (dev && dev->dev.parent)
2385                 driver = dev_driver_string(dev->dev.parent);
2386
2387         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388              "gso_type=%d ip_summed=%d\n",
2389              driver, dev ? &dev->features : &null_features,
2390              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392              skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401         __wsum csum;
2402         int ret = 0, offset;
2403
2404         if (skb->ip_summed == CHECKSUM_COMPLETE)
2405                 goto out_set_summed;
2406
2407         if (unlikely(skb_shinfo(skb)->gso_size)) {
2408                 skb_warn_bad_offload(skb);
2409                 return -EINVAL;
2410         }
2411
2412         /* Before computing a checksum, we should make sure no frag could
2413          * be modified by an external entity : checksum could be wrong.
2414          */
2415         if (skb_has_shared_frag(skb)) {
2416                 ret = __skb_linearize(skb);
2417                 if (ret)
2418                         goto out;
2419         }
2420
2421         offset = skb_checksum_start_offset(skb);
2422         BUG_ON(offset >= skb_headlen(skb));
2423         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425         offset += skb->csum_offset;
2426         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428         if (skb_cloned(skb) &&
2429             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431                 if (ret)
2432                         goto out;
2433         }
2434
2435         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437         skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439         return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445         __be16 type = skb->protocol;
2446
2447         /* Tunnel gso handlers can set protocol to ethernet. */
2448         if (type == htons(ETH_P_TEB)) {
2449                 struct ethhdr *eth;
2450
2451                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452                         return 0;
2453
2454                 eth = (struct ethhdr *)skb_mac_header(skb);
2455                 type = eth->h_proto;
2456         }
2457
2458         return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462  *      skb_mac_gso_segment - mac layer segmentation handler.
2463  *      @skb: buffer to segment
2464  *      @features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467                                     netdev_features_t features)
2468 {
2469         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470         struct packet_offload *ptype;
2471         int vlan_depth = skb->mac_len;
2472         __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474         if (unlikely(!type))
2475                 return ERR_PTR(-EINVAL);
2476
2477         __skb_pull(skb, vlan_depth);
2478
2479         rcu_read_lock();
2480         list_for_each_entry_rcu(ptype, &offload_base, list) {
2481                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482                         segs = ptype->callbacks.gso_segment(skb, features);
2483                         break;
2484                 }
2485         }
2486         rcu_read_unlock();
2487
2488         __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490         return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499         if (tx_path)
2500                 return skb->ip_summed != CHECKSUM_PARTIAL;
2501         else
2502                 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506  *      __skb_gso_segment - Perform segmentation on skb.
2507  *      @skb: buffer to segment
2508  *      @features: features for the output path (see dev->features)
2509  *      @tx_path: whether it is called in TX path
2510  *
2511  *      This function segments the given skb and returns a list of segments.
2512  *
2513  *      It may return NULL if the skb requires no segmentation.  This is
2514  *      only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517                                   netdev_features_t features, bool tx_path)
2518 {
2519         if (unlikely(skb_needs_check(skb, tx_path))) {
2520                 int err;
2521
2522                 skb_warn_bad_offload(skb);
2523
2524                 err = skb_cow_head(skb, 0);
2525                 if (err < 0)
2526                         return ERR_PTR(err);
2527         }
2528
2529         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530         SKB_GSO_CB(skb)->encap_level = 0;
2531
2532         skb_reset_mac_header(skb);
2533         skb_reset_mac_len(skb);
2534
2535         return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543         if (net_ratelimit()) {
2544                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545                 dump_stack();
2546         }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559         int i;
2560         if (!(dev->features & NETIF_F_HIGHDMA)) {
2561                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563                         if (PageHighMem(skb_frag_page(frag)))
2564                                 return 1;
2565                 }
2566         }
2567
2568         if (PCI_DMA_BUS_IS_PHYS) {
2569                 struct device *pdev = dev->dev.parent;
2570
2571                 if (!pdev)
2572                         return 0;
2573                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577                                 return 1;
2578                 }
2579         }
2580 #endif
2581         return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589                                            netdev_features_t features,
2590                                            __be16 type)
2591 {
2592         if (eth_p_mpls(type))
2593                 features &= skb->dev->mpls_features;
2594
2595         return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599                                            netdev_features_t features,
2600                                            __be16 type)
2601 {
2602         return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607         netdev_features_t features)
2608 {
2609         int tmp;
2610         __be16 type;
2611
2612         type = skb_network_protocol(skb, &tmp);
2613         features = net_mpls_features(skb, features, type);
2614
2615         if (skb->ip_summed != CHECKSUM_NONE &&
2616             !can_checksum_protocol(features, type)) {
2617                 features &= ~NETIF_F_ALL_CSUM;
2618         } else if (illegal_highdma(skb->dev, skb)) {
2619                 features &= ~NETIF_F_SG;
2620         }
2621
2622         return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626                                           struct net_device *dev,
2627                                           netdev_features_t features)
2628 {
2629         return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634                                              struct net_device *dev,
2635                                              netdev_features_t features)
2636 {
2637         return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642         struct net_device *dev = skb->dev;
2643         netdev_features_t features = dev->features;
2644         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647                 features &= ~NETIF_F_GSO_MASK;
2648
2649         /* If encapsulation offload request, verify we are testing
2650          * hardware encapsulation features instead of standard
2651          * features for the netdev
2652          */
2653         if (skb->encapsulation)
2654                 features &= dev->hw_enc_features;
2655
2656         if (skb_vlan_tagged(skb))
2657                 features = netdev_intersect_features(features,
2658                                                      dev->vlan_features |
2659                                                      NETIF_F_HW_VLAN_CTAG_TX |
2660                                                      NETIF_F_HW_VLAN_STAG_TX);
2661
2662         if (dev->netdev_ops->ndo_features_check)
2663                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664                                                                 features);
2665         else
2666                 features &= dflt_features_check(skb, dev, features);
2667
2668         return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673                     struct netdev_queue *txq, bool more)
2674 {
2675         unsigned int len;
2676         int rc;
2677
2678         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679                 dev_queue_xmit_nit(skb, dev);
2680
2681         len = skb->len;
2682         trace_net_dev_start_xmit(skb, dev);
2683         rc = netdev_start_xmit(skb, dev, txq, more);
2684         trace_net_dev_xmit(skb, rc, dev, len);
2685
2686         return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690                                     struct netdev_queue *txq, int *ret)
2691 {
2692         struct sk_buff *skb = first;
2693         int rc = NETDEV_TX_OK;
2694
2695         while (skb) {
2696                 struct sk_buff *next = skb->next;
2697
2698                 skb->next = NULL;
2699                 rc = xmit_one(skb, dev, txq, next != NULL);
2700                 if (unlikely(!dev_xmit_complete(rc))) {
2701                         skb->next = next;
2702                         goto out;
2703                 }
2704
2705                 skb = next;
2706                 if (netif_xmit_stopped(txq) && skb) {
2707                         rc = NETDEV_TX_BUSY;
2708                         break;
2709                 }
2710         }
2711
2712 out:
2713         *ret = rc;
2714         return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718                                           netdev_features_t features)
2719 {
2720         if (skb_vlan_tag_present(skb) &&
2721             !vlan_hw_offload_capable(features, skb->vlan_proto))
2722                 skb = __vlan_hwaccel_push_inside(skb);
2723         return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728         netdev_features_t features;
2729
2730         if (skb->next)
2731                 return skb;
2732
2733         features = netif_skb_features(skb);
2734         skb = validate_xmit_vlan(skb, features);
2735         if (unlikely(!skb))
2736                 goto out_null;
2737
2738         if (netif_needs_gso(skb, features)) {
2739                 struct sk_buff *segs;
2740
2741                 segs = skb_gso_segment(skb, features);
2742                 if (IS_ERR(segs)) {
2743                         goto out_kfree_skb;
2744                 } else if (segs) {
2745                         consume_skb(skb);
2746                         skb = segs;
2747                 }
2748         } else {
2749                 if (skb_needs_linearize(skb, features) &&
2750                     __skb_linearize(skb))
2751                         goto out_kfree_skb;
2752
2753                 /* If packet is not checksummed and device does not
2754                  * support checksumming for this protocol, complete
2755                  * checksumming here.
2756                  */
2757                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758                         if (skb->encapsulation)
2759                                 skb_set_inner_transport_header(skb,
2760                                                                skb_checksum_start_offset(skb));
2761                         else
2762                                 skb_set_transport_header(skb,
2763                                                          skb_checksum_start_offset(skb));
2764                         if (!(features & NETIF_F_ALL_CSUM) &&
2765                             skb_checksum_help(skb))
2766                                 goto out_kfree_skb;
2767                 }
2768         }
2769
2770         return skb;
2771
2772 out_kfree_skb:
2773         kfree_skb(skb);
2774 out_null:
2775         return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780         struct sk_buff *next, *head = NULL, *tail;
2781
2782         for (; skb != NULL; skb = next) {
2783                 next = skb->next;
2784                 skb->next = NULL;
2785
2786                 /* in case skb wont be segmented, point to itself */
2787                 skb->prev = skb;
2788
2789                 skb = validate_xmit_skb(skb, dev);
2790                 if (!skb)
2791                         continue;
2792
2793                 if (!head)
2794                         head = skb;
2795                 else
2796                         tail->next = skb;
2797                 /* If skb was segmented, skb->prev points to
2798                  * the last segment. If not, it still contains skb.
2799                  */
2800                 tail = skb->prev;
2801         }
2802         return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809         qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811         /* To get more precise estimation of bytes sent on wire,
2812          * we add to pkt_len the headers size of all segments
2813          */
2814         if (shinfo->gso_size)  {
2815                 unsigned int hdr_len;
2816                 u16 gso_segs = shinfo->gso_segs;
2817
2818                 /* mac layer + network layer */
2819                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821                 /* + transport layer */
2822                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823                         hdr_len += tcp_hdrlen(skb);
2824                 else
2825                         hdr_len += sizeof(struct udphdr);
2826
2827                 if (shinfo->gso_type & SKB_GSO_DODGY)
2828                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829                                                 shinfo->gso_size);
2830
2831                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832         }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836                                  struct net_device *dev,
2837                                  struct netdev_queue *txq)
2838 {
2839         spinlock_t *root_lock = qdisc_lock(q);
2840         bool contended;
2841         int rc;
2842
2843         qdisc_pkt_len_init(skb);
2844         qdisc_calculate_pkt_len(skb, q);
2845         /*
2846          * Heuristic to force contended enqueues to serialize on a
2847          * separate lock before trying to get qdisc main lock.
2848          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849          * often and dequeue packets faster.
2850          */
2851         contended = qdisc_is_running(q);
2852         if (unlikely(contended))
2853                 spin_lock(&q->busylock);
2854
2855         spin_lock(root_lock);
2856         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857                 kfree_skb(skb);
2858                 rc = NET_XMIT_DROP;
2859         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860                    qdisc_run_begin(q)) {
2861                 /*
2862                  * This is a work-conserving queue; there are no old skbs
2863                  * waiting to be sent out; and the qdisc is not running -
2864                  * xmit the skb directly.
2865                  */
2866
2867                 qdisc_bstats_update(q, skb);
2868
2869                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870                         if (unlikely(contended)) {
2871                                 spin_unlock(&q->busylock);
2872                                 contended = false;
2873                         }
2874                         __qdisc_run(q);
2875                 } else
2876                         qdisc_run_end(q);
2877
2878                 rc = NET_XMIT_SUCCESS;
2879         } else {
2880                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881                 if (qdisc_run_begin(q)) {
2882                         if (unlikely(contended)) {
2883                                 spin_unlock(&q->busylock);
2884                                 contended = false;
2885                         }
2886                         __qdisc_run(q);
2887                 }
2888         }
2889         spin_unlock(root_lock);
2890         if (unlikely(contended))
2891                 spin_unlock(&q->busylock);
2892         return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900         if (!skb->priority && skb->sk && map) {
2901                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903                 if (prioidx < map->priomap_len)
2904                         skb->priority = map->priomap[prioidx];
2905         }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917  *      dev_loopback_xmit - loop back @skb
2918  *      @net: network namespace this loopback is happening in
2919  *      @sk:  sk needed to be a netfilter okfn
2920  *      @skb: buffer to transmit
2921  */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924         skb_reset_mac_header(skb);
2925         __skb_pull(skb, skb_network_offset(skb));
2926         skb->pkt_type = PACKET_LOOPBACK;
2927         skb->ip_summed = CHECKSUM_UNNECESSARY;
2928         WARN_ON(!skb_dst(skb));
2929         skb_dst_force(skb);
2930         netif_rx_ni(skb);
2931         return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938         struct xps_dev_maps *dev_maps;
2939         struct xps_map *map;
2940         int queue_index = -1;
2941
2942         rcu_read_lock();
2943         dev_maps = rcu_dereference(dev->xps_maps);
2944         if (dev_maps) {
2945                 map = rcu_dereference(
2946                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2947                 if (map) {
2948                         if (map->len == 1)
2949                                 queue_index = map->queues[0];
2950                         else
2951                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952                                                                            map->len)];
2953                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2954                                 queue_index = -1;
2955                 }
2956         }
2957         rcu_read_unlock();
2958
2959         return queue_index;
2960 #else
2961         return -1;
2962 #endif
2963 }
2964
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967         struct sock *sk = skb->sk;
2968         int queue_index = sk_tx_queue_get(sk);
2969
2970         if (queue_index < 0 || skb->ooo_okay ||
2971             queue_index >= dev->real_num_tx_queues) {
2972                 int new_index = get_xps_queue(dev, skb);
2973                 if (new_index < 0)
2974                         new_index = skb_tx_hash(dev, skb);
2975
2976                 if (queue_index != new_index && sk &&
2977                     sk_fullsock(sk) &&
2978                     rcu_access_pointer(sk->sk_dst_cache))
2979                         sk_tx_queue_set(sk, new_index);
2980
2981                 queue_index = new_index;
2982         }
2983
2984         return queue_index;
2985 }
2986
2987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2988                                     struct sk_buff *skb,
2989                                     void *accel_priv)
2990 {
2991         int queue_index = 0;
2992
2993 #ifdef CONFIG_XPS
2994         if (skb->sender_cpu == 0)
2995                 skb->sender_cpu = raw_smp_processor_id() + 1;
2996 #endif
2997
2998         if (dev->real_num_tx_queues != 1) {
2999                 const struct net_device_ops *ops = dev->netdev_ops;
3000                 if (ops->ndo_select_queue)
3001                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3002                                                             __netdev_pick_tx);
3003                 else
3004                         queue_index = __netdev_pick_tx(dev, skb);
3005
3006                 if (!accel_priv)
3007                         queue_index = netdev_cap_txqueue(dev, queue_index);
3008         }
3009
3010         skb_set_queue_mapping(skb, queue_index);
3011         return netdev_get_tx_queue(dev, queue_index);
3012 }
3013
3014 /**
3015  *      __dev_queue_xmit - transmit a buffer
3016  *      @skb: buffer to transmit
3017  *      @accel_priv: private data used for L2 forwarding offload
3018  *
3019  *      Queue a buffer for transmission to a network device. The caller must
3020  *      have set the device and priority and built the buffer before calling
3021  *      this function. The function can be called from an interrupt.
3022  *
3023  *      A negative errno code is returned on a failure. A success does not
3024  *      guarantee the frame will be transmitted as it may be dropped due
3025  *      to congestion or traffic shaping.
3026  *
3027  * -----------------------------------------------------------------------------------
3028  *      I notice this method can also return errors from the queue disciplines,
3029  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3030  *      be positive.
3031  *
3032  *      Regardless of the return value, the skb is consumed, so it is currently
3033  *      difficult to retry a send to this method.  (You can bump the ref count
3034  *      before sending to hold a reference for retry if you are careful.)
3035  *
3036  *      When calling this method, interrupts MUST be enabled.  This is because
3037  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3038  *          --BLG
3039  */
3040 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3041 {
3042         struct net_device *dev = skb->dev;
3043         struct netdev_queue *txq;
3044         struct Qdisc *q;
3045         int rc = -ENOMEM;
3046
3047         skb_reset_mac_header(skb);
3048
3049         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3050                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3051
3052         /* Disable soft irqs for various locks below. Also
3053          * stops preemption for RCU.
3054          */
3055         rcu_read_lock_bh();
3056
3057         skb_update_prio(skb);
3058
3059         /* If device/qdisc don't need skb->dst, release it right now while
3060          * its hot in this cpu cache.
3061          */
3062         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3063                 skb_dst_drop(skb);
3064         else
3065                 skb_dst_force(skb);
3066
3067 #ifdef CONFIG_NET_SWITCHDEV
3068         /* Don't forward if offload device already forwarded */
3069         if (skb->offload_fwd_mark &&
3070             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3071                 consume_skb(skb);
3072                 rc = NET_XMIT_SUCCESS;
3073                 goto out;
3074         }
3075 #endif
3076
3077         txq = netdev_pick_tx(dev, skb, accel_priv);
3078         q = rcu_dereference_bh(txq->qdisc);
3079
3080 #ifdef CONFIG_NET_CLS_ACT
3081         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3082 #endif
3083         trace_net_dev_queue(skb);
3084         if (q->enqueue) {
3085                 rc = __dev_xmit_skb(skb, q, dev, txq);
3086                 goto out;
3087         }
3088
3089         /* The device has no queue. Common case for software devices:
3090            loopback, all the sorts of tunnels...
3091
3092            Really, it is unlikely that netif_tx_lock protection is necessary
3093            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3094            counters.)
3095            However, it is possible, that they rely on protection
3096            made by us here.
3097
3098            Check this and shot the lock. It is not prone from deadlocks.
3099            Either shot noqueue qdisc, it is even simpler 8)
3100          */
3101         if (dev->flags & IFF_UP) {
3102                 int cpu = smp_processor_id(); /* ok because BHs are off */
3103
3104                 if (txq->xmit_lock_owner != cpu) {
3105
3106                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3107                                 goto recursion_alert;
3108
3109                         skb = validate_xmit_skb(skb, dev);
3110                         if (!skb)
3111                                 goto drop;
3112
3113                         HARD_TX_LOCK(dev, txq, cpu);
3114
3115                         if (!netif_xmit_stopped(txq)) {
3116                                 __this_cpu_inc(xmit_recursion);
3117                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3118                                 __this_cpu_dec(xmit_recursion);
3119                                 if (dev_xmit_complete(rc)) {
3120                                         HARD_TX_UNLOCK(dev, txq);
3121                                         goto out;
3122                                 }
3123                         }
3124                         HARD_TX_UNLOCK(dev, txq);
3125                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3126                                              dev->name);
3127                 } else {
3128                         /* Recursion is detected! It is possible,
3129                          * unfortunately
3130                          */
3131 recursion_alert:
3132                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3133                                              dev->name);
3134                 }
3135         }
3136
3137         rc = -ENETDOWN;
3138 drop:
3139         rcu_read_unlock_bh();
3140
3141         atomic_long_inc(&dev->tx_dropped);
3142         kfree_skb_list(skb);
3143         return rc;
3144 out:
3145         rcu_read_unlock_bh();
3146         return rc;
3147 }
3148
3149 int dev_queue_xmit(struct sk_buff *skb)
3150 {
3151         return __dev_queue_xmit(skb, NULL);
3152 }
3153 EXPORT_SYMBOL(dev_queue_xmit);
3154
3155 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3156 {
3157         return __dev_queue_xmit(skb, accel_priv);
3158 }
3159 EXPORT_SYMBOL(dev_queue_xmit_accel);
3160
3161
3162 /*=======================================================================
3163                         Receiver routines
3164   =======================================================================*/
3165
3166 int netdev_max_backlog __read_mostly = 1000;
3167 EXPORT_SYMBOL(netdev_max_backlog);
3168
3169 int netdev_tstamp_prequeue __read_mostly = 1;
3170 int netdev_budget __read_mostly = 300;
3171 int weight_p __read_mostly = 64;            /* old backlog weight */
3172
3173 /* Called with irq disabled */
3174 static inline void ____napi_schedule(struct softnet_data *sd,
3175                                      struct napi_struct *napi)
3176 {
3177         list_add_tail(&napi->poll_list, &sd->poll_list);
3178         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3179 }
3180
3181 #ifdef CONFIG_RPS
3182
3183 /* One global table that all flow-based protocols share. */
3184 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3185 EXPORT_SYMBOL(rps_sock_flow_table);
3186 u32 rps_cpu_mask __read_mostly;
3187 EXPORT_SYMBOL(rps_cpu_mask);
3188
3189 struct static_key rps_needed __read_mostly;
3190
3191 static struct rps_dev_flow *
3192 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3193             struct rps_dev_flow *rflow, u16 next_cpu)
3194 {
3195         if (next_cpu < nr_cpu_ids) {
3196 #ifdef CONFIG_RFS_ACCEL
3197                 struct netdev_rx_queue *rxqueue;
3198                 struct rps_dev_flow_table *flow_table;
3199                 struct rps_dev_flow *old_rflow;
3200                 u32 flow_id;
3201                 u16 rxq_index;
3202                 int rc;
3203
3204                 /* Should we steer this flow to a different hardware queue? */
3205                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3206                     !(dev->features & NETIF_F_NTUPLE))
3207                         goto out;
3208                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3209                 if (rxq_index == skb_get_rx_queue(skb))
3210                         goto out;
3211
3212                 rxqueue = dev->_rx + rxq_index;
3213                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3214                 if (!flow_table)
3215                         goto out;
3216                 flow_id = skb_get_hash(skb) & flow_table->mask;
3217                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3218                                                         rxq_index, flow_id);
3219                 if (rc < 0)
3220                         goto out;
3221                 old_rflow = rflow;
3222                 rflow = &flow_table->flows[flow_id];
3223                 rflow->filter = rc;
3224                 if (old_rflow->filter == rflow->filter)
3225                         old_rflow->filter = RPS_NO_FILTER;
3226         out:
3227 #endif
3228                 rflow->last_qtail =
3229                         per_cpu(softnet_data, next_cpu).input_queue_head;
3230         }
3231
3232         rflow->cpu = next_cpu;
3233         return rflow;
3234 }
3235
3236 /*
3237  * get_rps_cpu is called from netif_receive_skb and returns the target
3238  * CPU from the RPS map of the receiving queue for a given skb.
3239  * rcu_read_lock must be held on entry.
3240  */
3241 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3242                        struct rps_dev_flow **rflowp)
3243 {
3244         const struct rps_sock_flow_table *sock_flow_table;
3245         struct netdev_rx_queue *rxqueue = dev->_rx;
3246         struct rps_dev_flow_table *flow_table;
3247         struct rps_map *map;
3248         int cpu = -1;
3249         u32 tcpu;
3250         u32 hash;
3251
3252         if (skb_rx_queue_recorded(skb)) {
3253                 u16 index = skb_get_rx_queue(skb);
3254
3255                 if (unlikely(index >= dev->real_num_rx_queues)) {
3256                         WARN_ONCE(dev->real_num_rx_queues > 1,
3257                                   "%s received packet on queue %u, but number "
3258                                   "of RX queues is %u\n",
3259                                   dev->name, index, dev->real_num_rx_queues);
3260                         goto done;
3261                 }
3262                 rxqueue += index;
3263         }
3264
3265         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3266
3267         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3268         map = rcu_dereference(rxqueue->rps_map);
3269         if (!flow_table && !map)
3270                 goto done;
3271
3272         skb_reset_network_header(skb);
3273         hash = skb_get_hash(skb);
3274         if (!hash)
3275                 goto done;
3276
3277         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3278         if (flow_table && sock_flow_table) {
3279                 struct rps_dev_flow *rflow;
3280                 u32 next_cpu;
3281                 u32 ident;
3282
3283                 /* First check into global flow table if there is a match */
3284                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3285                 if ((ident ^ hash) & ~rps_cpu_mask)
3286                         goto try_rps;
3287
3288                 next_cpu = ident & rps_cpu_mask;
3289
3290                 /* OK, now we know there is a match,
3291                  * we can look at the local (per receive queue) flow table
3292                  */
3293                 rflow = &flow_table->flows[hash & flow_table->mask];
3294                 tcpu = rflow->cpu;
3295
3296                 /*
3297                  * If the desired CPU (where last recvmsg was done) is
3298                  * different from current CPU (one in the rx-queue flow
3299                  * table entry), switch if one of the following holds:
3300                  *   - Current CPU is unset (>= nr_cpu_ids).
3301                  *   - Current CPU is offline.
3302                  *   - The current CPU's queue tail has advanced beyond the
3303                  *     last packet that was enqueued using this table entry.
3304                  *     This guarantees that all previous packets for the flow
3305                  *     have been dequeued, thus preserving in order delivery.
3306                  */
3307                 if (unlikely(tcpu != next_cpu) &&
3308                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3309                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3310                       rflow->last_qtail)) >= 0)) {
3311                         tcpu = next_cpu;
3312                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3313                 }
3314
3315                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3316                         *rflowp = rflow;
3317                         cpu = tcpu;
3318                         goto done;
3319                 }
3320         }
3321
3322 try_rps:
3323
3324         if (map) {
3325                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3326                 if (cpu_online(tcpu)) {
3327                         cpu = tcpu;
3328                         goto done;
3329                 }
3330         }
3331
3332 done:
3333         return cpu;
3334 }
3335
3336 #ifdef CONFIG_RFS_ACCEL
3337
3338 /**
3339  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3340  * @dev: Device on which the filter was set
3341  * @rxq_index: RX queue index
3342  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3343  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3344  *
3345  * Drivers that implement ndo_rx_flow_steer() should periodically call
3346  * this function for each installed filter and remove the filters for
3347  * which it returns %true.
3348  */
3349 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3350                          u32 flow_id, u16 filter_id)
3351 {
3352         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3353         struct rps_dev_flow_table *flow_table;
3354         struct rps_dev_flow *rflow;
3355         bool expire = true;
3356         unsigned int cpu;
3357
3358         rcu_read_lock();
3359         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3360         if (flow_table && flow_id <= flow_table->mask) {
3361                 rflow = &flow_table->flows[flow_id];
3362                 cpu = ACCESS_ONCE(rflow->cpu);
3363                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3364                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3365                            rflow->last_qtail) <
3366                      (int)(10 * flow_table->mask)))
3367                         expire = false;
3368         }
3369         rcu_read_unlock();
3370         return expire;
3371 }
3372 EXPORT_SYMBOL(rps_may_expire_flow);
3373
3374 #endif /* CONFIG_RFS_ACCEL */
3375
3376 /* Called from hardirq (IPI) context */
3377 static void rps_trigger_softirq(void *data)
3378 {
3379         struct softnet_data *sd = data;
3380
3381         ____napi_schedule(sd, &sd->backlog);
3382         sd->received_rps++;
3383 }
3384
3385 #endif /* CONFIG_RPS */
3386
3387 /*
3388  * Check if this softnet_data structure is another cpu one
3389  * If yes, queue it to our IPI list and return 1
3390  * If no, return 0
3391  */
3392 static int rps_ipi_queued(struct softnet_data *sd)
3393 {
3394 #ifdef CONFIG_RPS
3395         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3396
3397         if (sd != mysd) {
3398                 sd->rps_ipi_next = mysd->rps_ipi_list;
3399                 mysd->rps_ipi_list = sd;
3400
3401                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3402                 return 1;
3403         }
3404 #endif /* CONFIG_RPS */
3405         return 0;
3406 }
3407
3408 #ifdef CONFIG_NET_FLOW_LIMIT
3409 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3410 #endif
3411
3412 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3413 {
3414 #ifdef CONFIG_NET_FLOW_LIMIT
3415         struct sd_flow_limit *fl;
3416         struct softnet_data *sd;
3417         unsigned int old_flow, new_flow;
3418
3419         if (qlen < (netdev_max_backlog >> 1))
3420                 return false;
3421
3422         sd = this_cpu_ptr(&softnet_data);
3423
3424         rcu_read_lock();
3425         fl = rcu_dereference(sd->flow_limit);
3426         if (fl) {
3427                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3428                 old_flow = fl->history[fl->history_head];
3429                 fl->history[fl->history_head] = new_flow;
3430
3431                 fl->history_head++;
3432                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3433
3434                 if (likely(fl->buckets[old_flow]))
3435                         fl->buckets[old_flow]--;
3436
3437                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3438                         fl->count++;
3439                         rcu_read_unlock();
3440                         return true;
3441                 }
3442         }
3443         rcu_read_unlock();
3444 #endif
3445         return false;
3446 }
3447
3448 /*
3449  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3450  * queue (may be a remote CPU queue).
3451  */
3452 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3453                               unsigned int *qtail)
3454 {
3455         struct softnet_data *sd;
3456         unsigned long flags;
3457         unsigned int qlen;
3458
3459         sd = &per_cpu(softnet_data, cpu);
3460
3461         local_irq_save(flags);
3462
3463         rps_lock(sd);
3464         if (!netif_running(skb->dev))
3465                 goto drop;
3466         qlen = skb_queue_len(&sd->input_pkt_queue);
3467         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3468                 if (qlen) {
3469 enqueue:
3470                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3471                         input_queue_tail_incr_save(sd, qtail);
3472                         rps_unlock(sd);
3473                         local_irq_restore(flags);
3474                         return NET_RX_SUCCESS;
3475                 }
3476
3477                 /* Schedule NAPI for backlog device
3478                  * We can use non atomic operation since we own the queue lock
3479                  */
3480                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3481                         if (!rps_ipi_queued(sd))
3482                                 ____napi_schedule(sd, &sd->backlog);
3483                 }
3484                 goto enqueue;
3485         }
3486
3487 drop:
3488         sd->dropped++;
3489         rps_unlock(sd);
3490
3491         local_irq_restore(flags);
3492
3493         atomic_long_inc(&skb->dev->rx_dropped);
3494         kfree_skb(skb);
3495         return NET_RX_DROP;
3496 }
3497
3498 static int netif_rx_internal(struct sk_buff *skb)
3499 {
3500         int ret;
3501
3502         net_timestamp_check(netdev_tstamp_prequeue, skb);
3503
3504         trace_netif_rx(skb);
3505 #ifdef CONFIG_RPS
3506         if (static_key_false(&rps_needed)) {
3507                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3508                 int cpu;
3509
3510                 preempt_disable();
3511                 rcu_read_lock();
3512
3513                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3514                 if (cpu < 0)
3515                         cpu = smp_processor_id();
3516
3517                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3518
3519                 rcu_read_unlock();
3520                 preempt_enable();
3521         } else
3522 #endif
3523         {
3524                 unsigned int qtail;
3525                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3526                 put_cpu();
3527         }
3528         return ret;
3529 }
3530
3531 /**
3532  *      netif_rx        -       post buffer to the network code
3533  *      @skb: buffer to post
3534  *
3535  *      This function receives a packet from a device driver and queues it for
3536  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3537  *      may be dropped during processing for congestion control or by the
3538  *      protocol layers.
3539  *
3540  *      return values:
3541  *      NET_RX_SUCCESS  (no congestion)
3542  *      NET_RX_DROP     (packet was dropped)
3543  *
3544  */
3545
3546 int netif_rx(struct sk_buff *skb)
3547 {
3548         trace_netif_rx_entry(skb);
3549
3550         return netif_rx_internal(skb);
3551 }
3552 EXPORT_SYMBOL(netif_rx);
3553
3554 int netif_rx_ni(struct sk_buff *skb)
3555 {
3556         int err;
3557
3558         trace_netif_rx_ni_entry(skb);
3559
3560         preempt_disable();
3561         err = netif_rx_internal(skb);
3562         if (local_softirq_pending())
3563                 do_softirq();
3564         preempt_enable();
3565
3566         return err;
3567 }
3568 EXPORT_SYMBOL(netif_rx_ni);
3569
3570 static void net_tx_action(struct softirq_action *h)
3571 {
3572         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3573
3574         if (sd->completion_queue) {
3575                 struct sk_buff *clist;
3576
3577                 local_irq_disable();
3578                 clist = sd->completion_queue;
3579                 sd->completion_queue = NULL;
3580                 local_irq_enable();
3581
3582                 while (clist) {
3583                         struct sk_buff *skb = clist;
3584                         clist = clist->next;
3585
3586                         WARN_ON(atomic_read(&skb->users));
3587                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3588                                 trace_consume_skb(skb);
3589                         else
3590                                 trace_kfree_skb(skb, net_tx_action);
3591                         __kfree_skb(skb);
3592                 }
3593         }
3594
3595         if (sd->output_queue) {
3596                 struct Qdisc *head;
3597
3598                 local_irq_disable();
3599                 head = sd->output_queue;
3600                 sd->output_queue = NULL;
3601                 sd->output_queue_tailp = &sd->output_queue;
3602                 local_irq_enable();
3603
3604                 while (head) {
3605                         struct Qdisc *q = head;
3606                         spinlock_t *root_lock;
3607
3608                         head = head->next_sched;
3609
3610                         root_lock = qdisc_lock(q);
3611                         if (spin_trylock(root_lock)) {
3612                                 smp_mb__before_atomic();
3613                                 clear_bit(__QDISC_STATE_SCHED,
3614                                           &q->state);
3615                                 qdisc_run(q);
3616                                 spin_unlock(root_lock);
3617                         } else {
3618                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3619                                               &q->state)) {
3620                                         __netif_reschedule(q);
3621                                 } else {
3622                                         smp_mb__before_atomic();
3623                                         clear_bit(__QDISC_STATE_SCHED,
3624                                                   &q->state);
3625                                 }
3626                         }
3627                 }
3628         }
3629 }
3630
3631 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3632     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3633 /* This hook is defined here for ATM LANE */
3634 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3635                              unsigned char *addr) __read_mostly;
3636 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3637 #endif
3638
3639 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3640                                          struct packet_type **pt_prev,
3641                                          int *ret, struct net_device *orig_dev)
3642 {
3643 #ifdef CONFIG_NET_CLS_ACT
3644         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3645         struct tcf_result cl_res;
3646
3647         /* If there's at least one ingress present somewhere (so
3648          * we get here via enabled static key), remaining devices
3649          * that are not configured with an ingress qdisc will bail
3650          * out here.
3651          */
3652         if (!cl)
3653                 return skb;
3654         if (*pt_prev) {
3655                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3656                 *pt_prev = NULL;
3657         }
3658
3659         qdisc_skb_cb(skb)->pkt_len = skb->len;
3660         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3661         qdisc_bstats_cpu_update(cl->q, skb);
3662
3663         switch (tc_classify(skb, cl, &cl_res, false)) {
3664         case TC_ACT_OK:
3665         case TC_ACT_RECLASSIFY:
3666                 skb->tc_index = TC_H_MIN(cl_res.classid);
3667                 break;
3668         case TC_ACT_SHOT:
3669                 qdisc_qstats_cpu_drop(cl->q);
3670         case TC_ACT_STOLEN:
3671         case TC_ACT_QUEUED:
3672                 kfree_skb(skb);
3673                 return NULL;
3674         case TC_ACT_REDIRECT:
3675                 /* skb_mac_header check was done by cls/act_bpf, so
3676                  * we can safely push the L2 header back before
3677                  * redirecting to another netdev
3678                  */
3679                 __skb_push(skb, skb->mac_len);
3680                 skb_do_redirect(skb);
3681                 return NULL;
3682         default:
3683                 break;
3684         }
3685 #endif /* CONFIG_NET_CLS_ACT */
3686         return skb;
3687 }
3688
3689 /**
3690  *      netdev_rx_handler_register - register receive handler
3691  *      @dev: device to register a handler for
3692  *      @rx_handler: receive handler to register
3693  *      @rx_handler_data: data pointer that is used by rx handler
3694  *
3695  *      Register a receive handler for a device. This handler will then be
3696  *      called from __netif_receive_skb. A negative errno code is returned
3697  *      on a failure.
3698  *
3699  *      The caller must hold the rtnl_mutex.
3700  *
3701  *      For a general description of rx_handler, see enum rx_handler_result.
3702  */
3703 int netdev_rx_handler_register(struct net_device *dev,
3704                                rx_handler_func_t *rx_handler,
3705                                void *rx_handler_data)
3706 {
3707         ASSERT_RTNL();
3708
3709         if (dev->rx_handler)
3710                 return -EBUSY;
3711
3712         /* Note: rx_handler_data must be set before rx_handler */
3713         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3714         rcu_assign_pointer(dev->rx_handler, rx_handler);
3715
3716         return 0;
3717 }
3718 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3719
3720 /**
3721  *      netdev_rx_handler_unregister - unregister receive handler
3722  *      @dev: device to unregister a handler from
3723  *
3724  *      Unregister a receive handler from a device.
3725  *
3726  *      The caller must hold the rtnl_mutex.
3727  */
3728 void netdev_rx_handler_unregister(struct net_device *dev)
3729 {
3730
3731         ASSERT_RTNL();
3732         RCU_INIT_POINTER(dev->rx_handler, NULL);
3733         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3734          * section has a guarantee to see a non NULL rx_handler_data
3735          * as well.
3736          */
3737         synchronize_net();
3738         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3739 }
3740 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3741
3742 /*
3743  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3744  * the special handling of PFMEMALLOC skbs.
3745  */
3746 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3747 {
3748         switch (skb->protocol) {
3749         case htons(ETH_P_ARP):
3750         case htons(ETH_P_IP):
3751         case htons(ETH_P_IPV6):
3752         case htons(ETH_P_8021Q):
3753         case htons(ETH_P_8021AD):
3754                 return true;
3755         default:
3756                 return false;
3757         }
3758 }
3759
3760 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3761                              int *ret, struct net_device *orig_dev)
3762 {
3763 #ifdef CONFIG_NETFILTER_INGRESS
3764         if (nf_hook_ingress_active(skb)) {
3765                 if (*pt_prev) {
3766                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3767                         *pt_prev = NULL;
3768                 }
3769
3770                 return nf_hook_ingress(skb);
3771         }
3772 #endif /* CONFIG_NETFILTER_INGRESS */
3773         return 0;
3774 }
3775
3776 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3777 {
3778         struct packet_type *ptype, *pt_prev;
3779         rx_handler_func_t *rx_handler;
3780         struct net_device *orig_dev;
3781         bool deliver_exact = false;
3782         int ret = NET_RX_DROP;
3783         __be16 type;
3784
3785         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3786
3787         trace_netif_receive_skb(skb);
3788
3789         orig_dev = skb->dev;
3790
3791         skb_reset_network_header(skb);
3792         if (!skb_transport_header_was_set(skb))
3793                 skb_reset_transport_header(skb);
3794         skb_reset_mac_len(skb);
3795
3796         pt_prev = NULL;
3797
3798 another_round:
3799         skb->skb_iif = skb->dev->ifindex;
3800
3801         __this_cpu_inc(softnet_data.processed);
3802
3803         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3804             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3805                 skb = skb_vlan_untag(skb);
3806                 if (unlikely(!skb))
3807                         goto out;
3808         }
3809
3810 #ifdef CONFIG_NET_CLS_ACT
3811         if (skb->tc_verd & TC_NCLS) {
3812                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3813                 goto ncls;
3814         }
3815 #endif
3816
3817         if (pfmemalloc)
3818                 goto skip_taps;
3819
3820         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3821                 if (pt_prev)
3822                         ret = deliver_skb(skb, pt_prev, orig_dev);
3823                 pt_prev = ptype;
3824         }
3825
3826         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3827                 if (pt_prev)
3828                         ret = deliver_skb(skb, pt_prev, orig_dev);
3829                 pt_prev = ptype;
3830         }
3831
3832 skip_taps:
3833 #ifdef CONFIG_NET_INGRESS
3834         if (static_key_false(&ingress_needed)) {
3835                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3836                 if (!skb)
3837                         goto out;
3838
3839                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3840                         goto out;
3841         }
3842 #endif
3843 #ifdef CONFIG_NET_CLS_ACT
3844         skb->tc_verd = 0;
3845 ncls:
3846 #endif
3847         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3848                 goto drop;
3849
3850         if (skb_vlan_tag_present(skb)) {
3851                 if (pt_prev) {
3852                         ret = deliver_skb(skb, pt_prev, orig_dev);
3853                         pt_prev = NULL;
3854                 }
3855                 if (vlan_do_receive(&skb))
3856                         goto another_round;
3857                 else if (unlikely(!skb))
3858                         goto out;
3859         }
3860
3861         rx_handler = rcu_dereference(skb->dev->rx_handler);
3862         if (rx_handler) {
3863                 if (pt_prev) {
3864                         ret = deliver_skb(skb, pt_prev, orig_dev);
3865                         pt_prev = NULL;
3866                 }
3867                 switch (rx_handler(&skb)) {
3868                 case RX_HANDLER_CONSUMED:
3869                         ret = NET_RX_SUCCESS;
3870                         goto out;
3871                 case RX_HANDLER_ANOTHER:
3872                         goto another_round;
3873                 case RX_HANDLER_EXACT:
3874                         deliver_exact = true;
3875                 case RX_HANDLER_PASS:
3876                         break;
3877                 default:
3878                         BUG();
3879                 }
3880         }
3881
3882         if (unlikely(skb_vlan_tag_present(skb))) {
3883                 if (skb_vlan_tag_get_id(skb))
3884                         skb->pkt_type = PACKET_OTHERHOST;
3885                 /* Note: we might in the future use prio bits
3886                  * and set skb->priority like in vlan_do_receive()
3887                  * For the time being, just ignore Priority Code Point
3888                  */
3889                 skb->vlan_tci = 0;
3890         }
3891
3892         type = skb->protocol;
3893
3894         /* deliver only exact match when indicated */
3895         if (likely(!deliver_exact)) {
3896                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3897                                        &ptype_base[ntohs(type) &
3898                                                    PTYPE_HASH_MASK]);
3899         }
3900
3901         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3902                                &orig_dev->ptype_specific);
3903
3904         if (unlikely(skb->dev != orig_dev)) {
3905                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3906                                        &skb->dev->ptype_specific);
3907         }
3908
3909         if (pt_prev) {
3910                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3911                         goto drop;
3912                 else
3913                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3914         } else {
3915 drop:
3916                 atomic_long_inc(&skb->dev->rx_dropped);
3917                 kfree_skb(skb);
3918                 /* Jamal, now you will not able to escape explaining
3919                  * me how you were going to use this. :-)
3920                  */
3921                 ret = NET_RX_DROP;
3922         }
3923
3924 out:
3925         return ret;
3926 }
3927
3928 static int __netif_receive_skb(struct sk_buff *skb)
3929 {
3930         int ret;
3931
3932         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3933                 unsigned long pflags = current->flags;
3934
3935                 /*
3936                  * PFMEMALLOC skbs are special, they should
3937                  * - be delivered to SOCK_MEMALLOC sockets only
3938                  * - stay away from userspace
3939                  * - have bounded memory usage
3940                  *
3941                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3942                  * context down to all allocation sites.
3943                  */
3944                 current->flags |= PF_MEMALLOC;
3945                 ret = __netif_receive_skb_core(skb, true);
3946                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3947         } else
3948                 ret = __netif_receive_skb_core(skb, false);
3949
3950         return ret;
3951 }
3952
3953 static int netif_receive_skb_internal(struct sk_buff *skb)
3954 {
3955         int ret;
3956
3957         net_timestamp_check(netdev_tstamp_prequeue, skb);
3958
3959         if (skb_defer_rx_timestamp(skb))
3960                 return NET_RX_SUCCESS;
3961
3962         rcu_read_lock();
3963
3964 #ifdef CONFIG_RPS
3965         if (static_key_false(&rps_needed)) {
3966                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3967                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3968
3969                 if (cpu >= 0) {
3970                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3971                         rcu_read_unlock();
3972                         return ret;
3973                 }
3974         }
3975 #endif
3976         ret = __netif_receive_skb(skb);
3977         rcu_read_unlock();
3978         return ret;
3979 }
3980
3981 /**
3982  *      netif_receive_skb - process receive buffer from network
3983  *      @skb: buffer to process
3984  *
3985  *      netif_receive_skb() is the main receive data processing function.
3986  *      It always succeeds. The buffer may be dropped during processing
3987  *      for congestion control or by the protocol layers.
3988  *
3989  *      This function may only be called from softirq context and interrupts
3990  *      should be enabled.
3991  *
3992  *      Return values (usually ignored):
3993  *      NET_RX_SUCCESS: no congestion
3994  *      NET_RX_DROP: packet was dropped
3995  */
3996 int netif_receive_skb(struct sk_buff *skb)
3997 {
3998         trace_netif_receive_skb_entry(skb);
3999
4000         return netif_receive_skb_internal(skb);
4001 }
4002 EXPORT_SYMBOL(netif_receive_skb);
4003
4004 /* Network device is going away, flush any packets still pending
4005  * Called with irqs disabled.
4006  */
4007 static void flush_backlog(void *arg)
4008 {
4009         struct net_device *dev = arg;
4010         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4011         struct sk_buff *skb, *tmp;
4012
4013         rps_lock(sd);
4014         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4015                 if (skb->dev == dev) {
4016                         __skb_unlink(skb, &sd->input_pkt_queue);
4017                         kfree_skb(skb);
4018                         input_queue_head_incr(sd);
4019                 }
4020         }
4021         rps_unlock(sd);
4022
4023         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4024                 if (skb->dev == dev) {
4025                         __skb_unlink(skb, &sd->process_queue);
4026                         kfree_skb(skb);
4027                         input_queue_head_incr(sd);
4028                 }
4029         }
4030 }
4031
4032 static int napi_gro_complete(struct sk_buff *skb)
4033 {
4034         struct packet_offload *ptype;
4035         __be16 type = skb->protocol;
4036         struct list_head *head = &offload_base;
4037         int err = -ENOENT;
4038
4039         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4040
4041         if (NAPI_GRO_CB(skb)->count == 1) {
4042                 skb_shinfo(skb)->gso_size = 0;
4043                 goto out;
4044         }
4045
4046         rcu_read_lock();
4047         list_for_each_entry_rcu(ptype, head, list) {
4048                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4049                         continue;
4050
4051                 err = ptype->callbacks.gro_complete(skb, 0);
4052                 break;
4053         }
4054         rcu_read_unlock();
4055
4056         if (err) {
4057                 WARN_ON(&ptype->list == head);
4058                 kfree_skb(skb);
4059                 return NET_RX_SUCCESS;
4060         }
4061
4062 out:
4063         return netif_receive_skb_internal(skb);
4064 }
4065
4066 /* napi->gro_list contains packets ordered by age.
4067  * youngest packets at the head of it.
4068  * Complete skbs in reverse order to reduce latencies.
4069  */
4070 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4071 {
4072         struct sk_buff *skb, *prev = NULL;
4073
4074         /* scan list and build reverse chain */
4075         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4076                 skb->prev = prev;
4077                 prev = skb;
4078         }
4079
4080         for (skb = prev; skb; skb = prev) {
4081                 skb->next = NULL;
4082
4083                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4084                         return;
4085
4086                 prev = skb->prev;
4087                 napi_gro_complete(skb);
4088                 napi->gro_count--;
4089         }
4090
4091         napi->gro_list = NULL;
4092 }
4093 EXPORT_SYMBOL(napi_gro_flush);
4094
4095 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4096 {
4097         struct sk_buff *p;
4098         unsigned int maclen = skb->dev->hard_header_len;
4099         u32 hash = skb_get_hash_raw(skb);
4100
4101         for (p = napi->gro_list; p; p = p->next) {
4102                 unsigned long diffs;
4103
4104                 NAPI_GRO_CB(p)->flush = 0;
4105
4106                 if (hash != skb_get_hash_raw(p)) {
4107                         NAPI_GRO_CB(p)->same_flow = 0;
4108                         continue;
4109                 }
4110
4111                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4112                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4113                 if (maclen == ETH_HLEN)
4114                         diffs |= compare_ether_header(skb_mac_header(p),
4115                                                       skb_mac_header(skb));
4116                 else if (!diffs)
4117                         diffs = memcmp(skb_mac_header(p),
4118                                        skb_mac_header(skb),
4119                                        maclen);
4120                 NAPI_GRO_CB(p)->same_flow = !diffs;
4121         }
4122 }
4123
4124 static void skb_gro_reset_offset(struct sk_buff *skb)
4125 {
4126         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4127         const skb_frag_t *frag0 = &pinfo->frags[0];
4128
4129         NAPI_GRO_CB(skb)->data_offset = 0;
4130         NAPI_GRO_CB(skb)->frag0 = NULL;
4131         NAPI_GRO_CB(skb)->frag0_len = 0;
4132
4133         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4134             pinfo->nr_frags &&
4135             !PageHighMem(skb_frag_page(frag0))) {
4136                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4137                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4138         }
4139 }
4140
4141 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4142 {
4143         struct skb_shared_info *pinfo = skb_shinfo(skb);
4144
4145         BUG_ON(skb->end - skb->tail < grow);
4146
4147         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4148
4149         skb->data_len -= grow;
4150         skb->tail += grow;
4151
4152         pinfo->frags[0].page_offset += grow;
4153         skb_frag_size_sub(&pinfo->frags[0], grow);
4154
4155         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4156                 skb_frag_unref(skb, 0);
4157                 memmove(pinfo->frags, pinfo->frags + 1,
4158                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4159         }
4160 }
4161
4162 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163 {
4164         struct sk_buff **pp = NULL;
4165         struct packet_offload *ptype;
4166         __be16 type = skb->protocol;
4167         struct list_head *head = &offload_base;
4168         int same_flow;
4169         enum gro_result ret;
4170         int grow;
4171
4172         if (!(skb->dev->features & NETIF_F_GRO))
4173                 goto normal;
4174
4175         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4176                 goto normal;
4177
4178         gro_list_prepare(napi, skb);
4179
4180         rcu_read_lock();
4181         list_for_each_entry_rcu(ptype, head, list) {
4182                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4183                         continue;
4184
4185                 skb_set_network_header(skb, skb_gro_offset(skb));
4186                 skb_reset_mac_len(skb);
4187                 NAPI_GRO_CB(skb)->same_flow = 0;
4188                 NAPI_GRO_CB(skb)->flush = 0;
4189                 NAPI_GRO_CB(skb)->free = 0;
4190                 NAPI_GRO_CB(skb)->udp_mark = 0;
4191                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4192
4193                 /* Setup for GRO checksum validation */
4194                 switch (skb->ip_summed) {
4195                 case CHECKSUM_COMPLETE:
4196                         NAPI_GRO_CB(skb)->csum = skb->csum;
4197                         NAPI_GRO_CB(skb)->csum_valid = 1;
4198                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4199                         break;
4200                 case CHECKSUM_UNNECESSARY:
4201                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4202                         NAPI_GRO_CB(skb)->csum_valid = 0;
4203                         break;
4204                 default:
4205                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4206                         NAPI_GRO_CB(skb)->csum_valid = 0;
4207                 }
4208
4209                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4210                 break;
4211         }
4212         rcu_read_unlock();
4213
4214         if (&ptype->list == head)
4215                 goto normal;
4216
4217         same_flow = NAPI_GRO_CB(skb)->same_flow;
4218         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4219
4220         if (pp) {
4221                 struct sk_buff *nskb = *pp;
4222
4223                 *pp = nskb->next;
4224                 nskb->next = NULL;
4225                 napi_gro_complete(nskb);
4226                 napi->gro_count--;
4227         }
4228
4229         if (same_flow)
4230                 goto ok;
4231
4232         if (NAPI_GRO_CB(skb)->flush)
4233                 goto normal;
4234
4235         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4236                 struct sk_buff *nskb = napi->gro_list;
4237
4238                 /* locate the end of the list to select the 'oldest' flow */
4239                 while (nskb->next) {
4240                         pp = &nskb->next;
4241                         nskb = *pp;
4242                 }
4243                 *pp = NULL;
4244                 nskb->next = NULL;
4245                 napi_gro_complete(nskb);
4246         } else {
4247                 napi->gro_count++;
4248         }
4249         NAPI_GRO_CB(skb)->count = 1;
4250         NAPI_GRO_CB(skb)->age = jiffies;
4251         NAPI_GRO_CB(skb)->last = skb;
4252         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4253         skb->next = napi->gro_list;
4254         napi->gro_list = skb;
4255         ret = GRO_HELD;
4256
4257 pull:
4258         grow = skb_gro_offset(skb) - skb_headlen(skb);
4259         if (grow > 0)
4260                 gro_pull_from_frag0(skb, grow);
4261 ok:
4262         return ret;
4263
4264 normal:
4265         ret = GRO_NORMAL;
4266         goto pull;
4267 }
4268
4269 struct packet_offload *gro_find_receive_by_type(__be16 type)
4270 {
4271         struct list_head *offload_head = &offload_base;
4272         struct packet_offload *ptype;
4273
4274         list_for_each_entry_rcu(ptype, offload_head, list) {
4275                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4276                         continue;
4277                 return ptype;
4278         }
4279         return NULL;
4280 }
4281 EXPORT_SYMBOL(gro_find_receive_by_type);
4282
4283 struct packet_offload *gro_find_complete_by_type(__be16 type)
4284 {
4285         struct list_head *offload_head = &offload_base;
4286         struct packet_offload *ptype;
4287
4288         list_for_each_entry_rcu(ptype, offload_head, list) {
4289                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4290                         continue;
4291                 return ptype;
4292         }
4293         return NULL;
4294 }
4295 EXPORT_SYMBOL(gro_find_complete_by_type);
4296
4297 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4298 {
4299         switch (ret) {
4300         case GRO_NORMAL:
4301                 if (netif_receive_skb_internal(skb))
4302                         ret = GRO_DROP;
4303                 break;
4304
4305         case GRO_DROP:
4306                 kfree_skb(skb);
4307                 break;
4308
4309         case GRO_MERGED_FREE:
4310                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4311                         kmem_cache_free(skbuff_head_cache, skb);
4312                 else
4313                         __kfree_skb(skb);
4314                 break;
4315
4316         case GRO_HELD:
4317         case GRO_MERGED:
4318                 break;
4319         }
4320
4321         return ret;
4322 }
4323
4324 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4325 {
4326         trace_napi_gro_receive_entry(skb);
4327
4328         skb_gro_reset_offset(skb);
4329
4330         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4331 }
4332 EXPORT_SYMBOL(napi_gro_receive);
4333
4334 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4335 {
4336         if (unlikely(skb->pfmemalloc)) {
4337                 consume_skb(skb);
4338                 return;
4339         }
4340         __skb_pull(skb, skb_headlen(skb));
4341         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4342         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4343         skb->vlan_tci = 0;
4344         skb->dev = napi->dev;
4345         skb->skb_iif = 0;
4346         skb->encapsulation = 0;
4347         skb_shinfo(skb)->gso_type = 0;
4348         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4349
4350         napi->skb = skb;
4351 }
4352
4353 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4354 {
4355         struct sk_buff *skb = napi->skb;
4356
4357         if (!skb) {
4358                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4359                 napi->skb = skb;
4360         }
4361         return skb;
4362 }
4363 EXPORT_SYMBOL(napi_get_frags);
4364
4365 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4366                                       struct sk_buff *skb,
4367                                       gro_result_t ret)
4368 {
4369         switch (ret) {
4370         case GRO_NORMAL:
4371         case GRO_HELD:
4372                 __skb_push(skb, ETH_HLEN);
4373                 skb->protocol = eth_type_trans(skb, skb->dev);
4374                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4375                         ret = GRO_DROP;
4376                 break;
4377
4378         case GRO_DROP:
4379         case GRO_MERGED_FREE:
4380                 napi_reuse_skb(napi, skb);
4381                 break;
4382
4383         case GRO_MERGED:
4384                 break;
4385         }
4386
4387         return ret;
4388 }
4389
4390 /* Upper GRO stack assumes network header starts at gro_offset=0
4391  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4392  * We copy ethernet header into skb->data to have a common layout.
4393  */
4394 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4395 {
4396         struct sk_buff *skb = napi->skb;
4397         const struct ethhdr *eth;
4398         unsigned int hlen = sizeof(*eth);
4399
4400         napi->skb = NULL;
4401
4402         skb_reset_mac_header(skb);
4403         skb_gro_reset_offset(skb);
4404
4405         eth = skb_gro_header_fast(skb, 0);
4406         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4407                 eth = skb_gro_header_slow(skb, hlen, 0);
4408                 if (unlikely(!eth)) {
4409                         napi_reuse_skb(napi, skb);
4410                         return NULL;
4411                 }
4412         } else {
4413                 gro_pull_from_frag0(skb, hlen);
4414                 NAPI_GRO_CB(skb)->frag0 += hlen;
4415                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4416         }
4417         __skb_pull(skb, hlen);
4418
4419         /*
4420          * This works because the only protocols we care about don't require
4421          * special handling.
4422          * We'll fix it up properly in napi_frags_finish()
4423          */
4424         skb->protocol = eth->h_proto;
4425
4426         return skb;
4427 }
4428
4429 gro_result_t napi_gro_frags(struct napi_struct *napi)
4430 {
4431         struct sk_buff *skb = napi_frags_skb(napi);
4432
4433         if (!skb)
4434                 return GRO_DROP;
4435
4436         trace_napi_gro_frags_entry(skb);
4437
4438         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4439 }
4440 EXPORT_SYMBOL(napi_gro_frags);
4441
4442 /* Compute the checksum from gro_offset and return the folded value
4443  * after adding in any pseudo checksum.
4444  */
4445 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4446 {
4447         __wsum wsum;
4448         __sum16 sum;
4449
4450         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4451
4452         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4453         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4454         if (likely(!sum)) {
4455                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4456                     !skb->csum_complete_sw)
4457                         netdev_rx_csum_fault(skb->dev);
4458         }
4459
4460         NAPI_GRO_CB(skb)->csum = wsum;
4461         NAPI_GRO_CB(skb)->csum_valid = 1;
4462
4463         return sum;
4464 }
4465 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4466
4467 /*
4468  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4469  * Note: called with local irq disabled, but exits with local irq enabled.
4470  */
4471 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4472 {
4473 #ifdef CONFIG_RPS
4474         struct softnet_data *remsd = sd->rps_ipi_list;
4475
4476         if (remsd) {
4477                 sd->rps_ipi_list = NULL;
4478
4479                 local_irq_enable();
4480
4481                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4482                 while (remsd) {
4483                         struct softnet_data *next = remsd->rps_ipi_next;
4484
4485                         if (cpu_online(remsd->cpu))
4486                                 smp_call_function_single_async(remsd->cpu,
4487                                                            &remsd->csd);
4488                         remsd = next;
4489                 }
4490         } else
4491 #endif
4492                 local_irq_enable();
4493 }
4494
4495 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4496 {
4497 #ifdef CONFIG_RPS
4498         return sd->rps_ipi_list != NULL;
4499 #else
4500         return false;
4501 #endif
4502 }
4503
4504 static int process_backlog(struct napi_struct *napi, int quota)
4505 {
4506         int work = 0;
4507         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4508
4509         /* Check if we have pending ipi, its better to send them now,
4510          * not waiting net_rx_action() end.
4511          */
4512         if (sd_has_rps_ipi_waiting(sd)) {
4513                 local_irq_disable();
4514                 net_rps_action_and_irq_enable(sd);
4515         }
4516
4517         napi->weight = weight_p;
4518         local_irq_disable();
4519         while (1) {
4520                 struct sk_buff *skb;
4521
4522                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4523                         rcu_read_lock();
4524                         local_irq_enable();
4525                         __netif_receive_skb(skb);
4526                         rcu_read_unlock();
4527                         local_irq_disable();
4528                         input_queue_head_incr(sd);
4529                         if (++work >= quota) {
4530                                 local_irq_enable();
4531                                 return work;
4532                         }
4533                 }
4534
4535                 rps_lock(sd);
4536                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4537                         /*
4538                          * Inline a custom version of __napi_complete().
4539                          * only current cpu owns and manipulates this napi,
4540                          * and NAPI_STATE_SCHED is the only possible flag set
4541                          * on backlog.
4542                          * We can use a plain write instead of clear_bit(),
4543                          * and we dont need an smp_mb() memory barrier.
4544                          */
4545                         napi->state = 0;
4546                         rps_unlock(sd);
4547
4548                         break;
4549                 }
4550
4551                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4552                                            &sd->process_queue);
4553                 rps_unlock(sd);
4554         }
4555         local_irq_enable();
4556
4557         return work;
4558 }
4559
4560 /**
4561  * __napi_schedule - schedule for receive
4562  * @n: entry to schedule
4563  *
4564  * The entry's receive function will be scheduled to run.
4565  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4566  */
4567 void __napi_schedule(struct napi_struct *n)
4568 {
4569         unsigned long flags;
4570
4571         local_irq_save(flags);
4572         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4573         local_irq_restore(flags);
4574 }
4575 EXPORT_SYMBOL(__napi_schedule);
4576
4577 /**
4578  * __napi_schedule_irqoff - schedule for receive
4579  * @n: entry to schedule
4580  *
4581  * Variant of __napi_schedule() assuming hard irqs are masked
4582  */
4583 void __napi_schedule_irqoff(struct napi_struct *n)
4584 {
4585         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4586 }
4587 EXPORT_SYMBOL(__napi_schedule_irqoff);
4588
4589 void __napi_complete(struct napi_struct *n)
4590 {
4591         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4592
4593         list_del_init(&n->poll_list);
4594         smp_mb__before_atomic();
4595         clear_bit(NAPI_STATE_SCHED, &n->state);
4596 }
4597 EXPORT_SYMBOL(__napi_complete);
4598
4599 void napi_complete_done(struct napi_struct *n, int work_done)
4600 {
4601         unsigned long flags;
4602
4603         /*
4604          * don't let napi dequeue from the cpu poll list
4605          * just in case its running on a different cpu
4606          */
4607         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4608                 return;
4609
4610         if (n->gro_list) {
4611                 unsigned long timeout = 0;
4612
4613                 if (work_done)
4614                         timeout = n->dev->gro_flush_timeout;
4615
4616                 if (timeout)
4617                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4618                                       HRTIMER_MODE_REL_PINNED);
4619                 else
4620                         napi_gro_flush(n, false);
4621         }
4622         if (likely(list_empty(&n->poll_list))) {
4623                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4624         } else {
4625                 /* If n->poll_list is not empty, we need to mask irqs */
4626                 local_irq_save(flags);
4627                 __napi_complete(n);
4628                 local_irq_restore(flags);
4629         }
4630 }
4631 EXPORT_SYMBOL(napi_complete_done);
4632
4633 /* must be called under rcu_read_lock(), as we dont take a reference */
4634 struct napi_struct *napi_by_id(unsigned int napi_id)
4635 {
4636         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4637         struct napi_struct *napi;
4638
4639         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4640                 if (napi->napi_id == napi_id)
4641                         return napi;
4642
4643         return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(napi_by_id);
4646
4647 void napi_hash_add(struct napi_struct *napi)
4648 {
4649         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4650
4651                 spin_lock(&napi_hash_lock);
4652
4653                 /* 0 is not a valid id, we also skip an id that is taken
4654                  * we expect both events to be extremely rare
4655                  */
4656                 napi->napi_id = 0;
4657                 while (!napi->napi_id) {
4658                         napi->napi_id = ++napi_gen_id;
4659                         if (napi_by_id(napi->napi_id))
4660                                 napi->napi_id = 0;
4661                 }
4662
4663                 hlist_add_head_rcu(&napi->napi_hash_node,
4664                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4665
4666                 spin_unlock(&napi_hash_lock);
4667         }
4668 }
4669 EXPORT_SYMBOL_GPL(napi_hash_add);
4670
4671 /* Warning : caller is responsible to make sure rcu grace period
4672  * is respected before freeing memory containing @napi
4673  */
4674 void napi_hash_del(struct napi_struct *napi)
4675 {
4676         spin_lock(&napi_hash_lock);
4677
4678         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4679                 hlist_del_rcu(&napi->napi_hash_node);
4680
4681         spin_unlock(&napi_hash_lock);
4682 }
4683 EXPORT_SYMBOL_GPL(napi_hash_del);
4684
4685 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4686 {
4687         struct napi_struct *napi;
4688
4689         napi = container_of(timer, struct napi_struct, timer);
4690         if (napi->gro_list)
4691                 napi_schedule(napi);
4692
4693         return HRTIMER_NORESTART;
4694 }
4695
4696 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4697                     int (*poll)(struct napi_struct *, int), int weight)
4698 {
4699         INIT_LIST_HEAD(&napi->poll_list);
4700         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4701         napi->timer.function = napi_watchdog;
4702         napi->gro_count = 0;
4703         napi->gro_list = NULL;
4704         napi->skb = NULL;
4705         napi->poll = poll;
4706         if (weight > NAPI_POLL_WEIGHT)
4707                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4708                             weight, dev->name);
4709         napi->weight = weight;
4710         list_add(&napi->dev_list, &dev->napi_list);
4711         napi->dev = dev;
4712 #ifdef CONFIG_NETPOLL
4713         spin_lock_init(&napi->poll_lock);
4714         napi->poll_owner = -1;
4715 #endif
4716         set_bit(NAPI_STATE_SCHED, &napi->state);
4717 }
4718 EXPORT_SYMBOL(netif_napi_add);
4719
4720 void napi_disable(struct napi_struct *n)
4721 {
4722         might_sleep();
4723         set_bit(NAPI_STATE_DISABLE, &n->state);
4724
4725         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4726                 msleep(1);
4727         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4728                 msleep(1);
4729
4730         hrtimer_cancel(&n->timer);
4731
4732         clear_bit(NAPI_STATE_DISABLE, &n->state);
4733 }
4734 EXPORT_SYMBOL(napi_disable);
4735
4736 void netif_napi_del(struct napi_struct *napi)
4737 {
4738         list_del_init(&napi->dev_list);
4739         napi_free_frags(napi);
4740
4741         kfree_skb_list(napi->gro_list);
4742         napi->gro_list = NULL;
4743         napi->gro_count = 0;
4744 }
4745 EXPORT_SYMBOL(netif_napi_del);
4746
4747 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4748 {
4749         void *have;
4750         int work, weight;
4751
4752         list_del_init(&n->poll_list);
4753
4754         have = netpoll_poll_lock(n);
4755
4756         weight = n->weight;
4757
4758         /* This NAPI_STATE_SCHED test is for avoiding a race
4759          * with netpoll's poll_napi().  Only the entity which
4760          * obtains the lock and sees NAPI_STATE_SCHED set will
4761          * actually make the ->poll() call.  Therefore we avoid
4762          * accidentally calling ->poll() when NAPI is not scheduled.
4763          */
4764         work = 0;
4765         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4766                 work = n->poll(n, weight);
4767                 trace_napi_poll(n);
4768         }
4769
4770         WARN_ON_ONCE(work > weight);
4771
4772         if (likely(work < weight))
4773                 goto out_unlock;
4774
4775         /* Drivers must not modify the NAPI state if they
4776          * consume the entire weight.  In such cases this code
4777          * still "owns" the NAPI instance and therefore can
4778          * move the instance around on the list at-will.
4779          */
4780         if (unlikely(napi_disable_pending(n))) {
4781                 napi_complete(n);
4782                 goto out_unlock;
4783         }
4784
4785         if (n->gro_list) {
4786                 /* flush too old packets
4787                  * If HZ < 1000, flush all packets.
4788                  */
4789                 napi_gro_flush(n, HZ >= 1000);
4790         }
4791
4792         /* Some drivers may have called napi_schedule
4793          * prior to exhausting their budget.
4794          */
4795         if (unlikely(!list_empty(&n->poll_list))) {
4796                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4797                              n->dev ? n->dev->name : "backlog");
4798                 goto out_unlock;
4799         }
4800
4801         list_add_tail(&n->poll_list, repoll);
4802
4803 out_unlock:
4804         netpoll_poll_unlock(have);
4805
4806         return work;
4807 }
4808
4809 static void net_rx_action(struct softirq_action *h)
4810 {
4811         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4812         unsigned long time_limit = jiffies + 2;
4813         int budget = netdev_budget;
4814         LIST_HEAD(list);
4815         LIST_HEAD(repoll);
4816
4817         local_irq_disable();
4818         list_splice_init(&sd->poll_list, &list);
4819         local_irq_enable();
4820
4821         for (;;) {
4822                 struct napi_struct *n;
4823
4824                 if (list_empty(&list)) {
4825                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4826                                 return;
4827                         break;
4828                 }
4829
4830                 n = list_first_entry(&list, struct napi_struct, poll_list);
4831                 budget -= napi_poll(n, &repoll);
4832
4833                 /* If softirq window is exhausted then punt.
4834                  * Allow this to run for 2 jiffies since which will allow
4835                  * an average latency of 1.5/HZ.
4836                  */
4837                 if (unlikely(budget <= 0 ||
4838                              time_after_eq(jiffies, time_limit))) {
4839                         sd->time_squeeze++;
4840                         break;
4841                 }
4842         }
4843
4844         local_irq_disable();
4845
4846         list_splice_tail_init(&sd->poll_list, &list);
4847         list_splice_tail(&repoll, &list);
4848         list_splice(&list, &sd->poll_list);
4849         if (!list_empty(&sd->poll_list))
4850                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4851
4852         net_rps_action_and_irq_enable(sd);
4853 }
4854
4855 struct netdev_adjacent {
4856         struct net_device *dev;
4857
4858         /* upper master flag, there can only be one master device per list */
4859         bool master;
4860
4861         /* counter for the number of times this device was added to us */
4862         u16 ref_nr;
4863
4864         /* private field for the users */
4865         void *private;
4866
4867         struct list_head list;
4868         struct rcu_head rcu;
4869 };
4870
4871 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4872                                                  struct list_head *adj_list)
4873 {
4874         struct netdev_adjacent *adj;
4875
4876         list_for_each_entry(adj, adj_list, list) {
4877                 if (adj->dev == adj_dev)
4878                         return adj;
4879         }
4880         return NULL;
4881 }
4882
4883 /**
4884  * netdev_has_upper_dev - Check if device is linked to an upper device
4885  * @dev: device
4886  * @upper_dev: upper device to check
4887  *
4888  * Find out if a device is linked to specified upper device and return true
4889  * in case it is. Note that this checks only immediate upper device,
4890  * not through a complete stack of devices. The caller must hold the RTNL lock.
4891  */
4892 bool netdev_has_upper_dev(struct net_device *dev,
4893                           struct net_device *upper_dev)
4894 {
4895         ASSERT_RTNL();
4896
4897         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4898 }
4899 EXPORT_SYMBOL(netdev_has_upper_dev);
4900
4901 /**
4902  * netdev_has_any_upper_dev - Check if device is linked to some device
4903  * @dev: device
4904  *
4905  * Find out if a device is linked to an upper device and return true in case
4906  * it is. The caller must hold the RTNL lock.
4907  */
4908 static bool netdev_has_any_upper_dev(struct net_device *dev)
4909 {
4910         ASSERT_RTNL();
4911
4912         return !list_empty(&dev->all_adj_list.upper);
4913 }
4914
4915 /**
4916  * netdev_master_upper_dev_get - Get master upper device
4917  * @dev: device
4918  *
4919  * Find a master upper device and return pointer to it or NULL in case
4920  * it's not there. The caller must hold the RTNL lock.
4921  */
4922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4923 {
4924         struct netdev_adjacent *upper;
4925
4926         ASSERT_RTNL();
4927
4928         if (list_empty(&dev->adj_list.upper))
4929                 return NULL;
4930
4931         upper = list_first_entry(&dev->adj_list.upper,
4932                                  struct netdev_adjacent, list);
4933         if (likely(upper->master))
4934                 return upper->dev;
4935         return NULL;
4936 }
4937 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4938
4939 void *netdev_adjacent_get_private(struct list_head *adj_list)
4940 {
4941         struct netdev_adjacent *adj;
4942
4943         adj = list_entry(adj_list, struct netdev_adjacent, list);
4944
4945         return adj->private;
4946 }
4947 EXPORT_SYMBOL(netdev_adjacent_get_private);
4948
4949 /**
4950  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4951  * @dev: device
4952  * @iter: list_head ** of the current position
4953  *
4954  * Gets the next device from the dev's upper list, starting from iter
4955  * position. The caller must hold RCU read lock.
4956  */
4957 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4958                                                  struct list_head **iter)
4959 {
4960         struct netdev_adjacent *upper;
4961
4962         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4963
4964         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4965
4966         if (&upper->list == &dev->adj_list.upper)
4967                 return NULL;
4968
4969         *iter = &upper->list;
4970
4971         return upper->dev;
4972 }
4973 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4974
4975 /**
4976  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4977  * @dev: device
4978  * @iter: list_head ** of the current position
4979  *
4980  * Gets the next device from the dev's upper list, starting from iter
4981  * position. The caller must hold RCU read lock.
4982  */
4983 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4984                                                      struct list_head **iter)
4985 {
4986         struct netdev_adjacent *upper;
4987
4988         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4989
4990         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4991
4992         if (&upper->list == &dev->all_adj_list.upper)
4993                 return NULL;
4994
4995         *iter = &upper->list;
4996
4997         return upper->dev;
4998 }
4999 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5000
5001 /**
5002  * netdev_lower_get_next_private - Get the next ->private from the
5003  *                                 lower neighbour list
5004  * @dev: device
5005  * @iter: list_head ** of the current position
5006  *
5007  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5008  * list, starting from iter position. The caller must hold either hold the
5009  * RTNL lock or its own locking that guarantees that the neighbour lower
5010  * list will remain unchanged.
5011  */
5012 void *netdev_lower_get_next_private(struct net_device *dev,
5013                                     struct list_head **iter)
5014 {
5015         struct netdev_adjacent *lower;
5016
5017         lower = list_entry(*iter, struct netdev_adjacent, list);
5018
5019         if (&lower->list == &dev->adj_list.lower)
5020                 return NULL;
5021
5022         *iter = lower->list.next;
5023
5024         return lower->private;
5025 }
5026 EXPORT_SYMBOL(netdev_lower_get_next_private);
5027
5028 /**
5029  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5030  *                                     lower neighbour list, RCU
5031  *                                     variant
5032  * @dev: device
5033  * @iter: list_head ** of the current position
5034  *
5035  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5036  * list, starting from iter position. The caller must hold RCU read lock.
5037  */
5038 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5039                                         struct list_head **iter)
5040 {
5041         struct netdev_adjacent *lower;
5042
5043         WARN_ON_ONCE(!rcu_read_lock_held());
5044
5045         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5046
5047         if (&lower->list == &dev->adj_list.lower)
5048                 return NULL;
5049
5050         *iter = &lower->list;
5051
5052         return lower->private;
5053 }
5054 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5055
5056 /**
5057  * netdev_lower_get_next - Get the next device from the lower neighbour
5058  *                         list
5059  * @dev: device
5060  * @iter: list_head ** of the current position
5061  *
5062  * Gets the next netdev_adjacent from the dev's lower neighbour
5063  * list, starting from iter position. The caller must hold RTNL lock or
5064  * its own locking that guarantees that the neighbour lower
5065  * list will remain unchanged.
5066  */
5067 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5068 {
5069         struct netdev_adjacent *lower;
5070
5071         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5072
5073         if (&lower->list == &dev->adj_list.lower)
5074                 return NULL;
5075
5076         *iter = &lower->list;
5077
5078         return lower->dev;
5079 }
5080 EXPORT_SYMBOL(netdev_lower_get_next);
5081
5082 /**
5083  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5084  *                                     lower neighbour list, RCU
5085  *                                     variant
5086  * @dev: device
5087  *
5088  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5089  * list. The caller must hold RCU read lock.
5090  */
5091 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5092 {
5093         struct netdev_adjacent *lower;
5094
5095         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5096                         struct netdev_adjacent, list);
5097         if (lower)
5098                 return lower->private;
5099         return NULL;
5100 }
5101 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5102
5103 /**
5104  * netdev_master_upper_dev_get_rcu - Get master upper device
5105  * @dev: device
5106  *
5107  * Find a master upper device and return pointer to it or NULL in case
5108  * it's not there. The caller must hold the RCU read lock.
5109  */
5110 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5111 {
5112         struct netdev_adjacent *upper;
5113
5114         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5115                                        struct netdev_adjacent, list);
5116         if (upper && likely(upper->master))
5117                 return upper->dev;
5118         return NULL;
5119 }
5120 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5121
5122 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5123                               struct net_device *adj_dev,
5124                               struct list_head *dev_list)
5125 {
5126         char linkname[IFNAMSIZ+7];
5127         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5128                 "upper_%s" : "lower_%s", adj_dev->name);
5129         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5130                                  linkname);
5131 }
5132 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5133                                char *name,
5134                                struct list_head *dev_list)
5135 {
5136         char linkname[IFNAMSIZ+7];
5137         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5138                 "upper_%s" : "lower_%s", name);
5139         sysfs_remove_link(&(dev->dev.kobj), linkname);
5140 }
5141
5142 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5143                                                  struct net_device *adj_dev,
5144                                                  struct list_head *dev_list)
5145 {
5146         return (dev_list == &dev->adj_list.upper ||
5147                 dev_list == &dev->adj_list.lower) &&
5148                 net_eq(dev_net(dev), dev_net(adj_dev));
5149 }
5150
5151 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5152                                         struct net_device *adj_dev,
5153                                         struct list_head *dev_list,
5154                                         void *private, bool master)
5155 {
5156         struct netdev_adjacent *adj;
5157         int ret;
5158
5159         adj = __netdev_find_adj(adj_dev, dev_list);
5160
5161         if (adj) {
5162                 adj->ref_nr++;
5163                 return 0;
5164         }
5165
5166         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5167         if (!adj)
5168                 return -ENOMEM;
5169
5170         adj->dev = adj_dev;
5171         adj->master = master;
5172         adj->ref_nr = 1;
5173         adj->private = private;
5174         dev_hold(adj_dev);
5175
5176         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5177                  adj_dev->name, dev->name, adj_dev->name);
5178
5179         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5180                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5181                 if (ret)
5182                         goto free_adj;
5183         }
5184
5185         /* Ensure that master link is always the first item in list. */
5186         if (master) {
5187                 ret = sysfs_create_link(&(dev->dev.kobj),
5188                                         &(adj_dev->dev.kobj), "master");
5189                 if (ret)
5190                         goto remove_symlinks;
5191
5192                 list_add_rcu(&adj->list, dev_list);
5193         } else {
5194                 list_add_tail_rcu(&adj->list, dev_list);
5195         }
5196
5197         return 0;
5198
5199 remove_symlinks:
5200         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5201                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5202 free_adj:
5203         kfree(adj);
5204         dev_put(adj_dev);
5205
5206         return ret;
5207 }
5208
5209 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5210                                          struct net_device *adj_dev,
5211                                          struct list_head *dev_list)
5212 {
5213         struct netdev_adjacent *adj;
5214
5215         adj = __netdev_find_adj(adj_dev, dev_list);
5216
5217         if (!adj) {
5218                 pr_err("tried to remove device %s from %s\n",
5219                        dev->name, adj_dev->name);
5220                 BUG();
5221         }
5222
5223         if (adj->ref_nr > 1) {
5224                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5225                          adj->ref_nr-1);
5226                 adj->ref_nr--;
5227                 return;
5228         }
5229
5230         if (adj->master)
5231                 sysfs_remove_link(&(dev->dev.kobj), "master");
5232
5233         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5234                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5235
5236         list_del_rcu(&adj->list);
5237         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5238                  adj_dev->name, dev->name, adj_dev->name);
5239         dev_put(adj_dev);
5240         kfree_rcu(adj, rcu);
5241 }
5242
5243 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5244                                             struct net_device *upper_dev,
5245                                             struct list_head *up_list,
5246                                             struct list_head *down_list,
5247                                             void *private, bool master)
5248 {
5249         int ret;
5250
5251         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5252                                            master);
5253         if (ret)
5254                 return ret;
5255
5256         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5257                                            false);
5258         if (ret) {
5259                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5260                 return ret;
5261         }
5262
5263         return 0;
5264 }
5265
5266 static int __netdev_adjacent_dev_link(struct net_device *dev,
5267                                       struct net_device *upper_dev)
5268 {
5269         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5270                                                 &dev->all_adj_list.upper,
5271                                                 &upper_dev->all_adj_list.lower,
5272                                                 NULL, false);
5273 }
5274
5275 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5276                                                struct net_device *upper_dev,
5277                                                struct list_head *up_list,
5278                                                struct list_head *down_list)
5279 {
5280         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5281         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5282 }
5283
5284 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5285                                          struct net_device *upper_dev)
5286 {
5287         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5288                                            &dev->all_adj_list.upper,
5289                                            &upper_dev->all_adj_list.lower);
5290 }
5291
5292 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5293                                                 struct net_device *upper_dev,
5294                                                 void *private, bool master)
5295 {
5296         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5297
5298         if (ret)
5299                 return ret;
5300
5301         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5302                                                &dev->adj_list.upper,
5303                                                &upper_dev->adj_list.lower,
5304                                                private, master);
5305         if (ret) {
5306                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5307                 return ret;
5308         }
5309
5310         return 0;
5311 }
5312
5313 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5314                                                    struct net_device *upper_dev)
5315 {
5316         __netdev_adjacent_dev_unlink(dev, upper_dev);
5317         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318                                            &dev->adj_list.upper,
5319                                            &upper_dev->adj_list.lower);
5320 }
5321
5322 static int __netdev_upper_dev_link(struct net_device *dev,
5323                                    struct net_device *upper_dev, bool master,
5324                                    void *private)
5325 {
5326         struct netdev_notifier_changeupper_info changeupper_info;
5327         struct netdev_adjacent *i, *j, *to_i, *to_j;
5328         int ret = 0;
5329
5330         ASSERT_RTNL();
5331
5332         if (dev == upper_dev)
5333                 return -EBUSY;
5334
5335         /* To prevent loops, check if dev is not upper device to upper_dev. */
5336         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5337                 return -EBUSY;
5338
5339         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5340                 return -EEXIST;
5341
5342         if (master && netdev_master_upper_dev_get(dev))
5343                 return -EBUSY;
5344
5345         changeupper_info.upper_dev = upper_dev;
5346         changeupper_info.master = master;
5347         changeupper_info.linking = true;
5348
5349         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5350                                             &changeupper_info.info);
5351         ret = notifier_to_errno(ret);
5352         if (ret)
5353                 return ret;
5354
5355         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5356                                                    master);
5357         if (ret)
5358                 return ret;
5359
5360         /* Now that we linked these devs, make all the upper_dev's
5361          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5362          * versa, and don't forget the devices itself. All of these
5363          * links are non-neighbours.
5364          */
5365         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5366                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5367                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5368                                  i->dev->name, j->dev->name);
5369                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5370                         if (ret)
5371                                 goto rollback_mesh;
5372                 }
5373         }
5374
5375         /* add dev to every upper_dev's upper device */
5376         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5377                 pr_debug("linking %s's upper device %s with %s\n",
5378                          upper_dev->name, i->dev->name, dev->name);
5379                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5380                 if (ret)
5381                         goto rollback_upper_mesh;
5382         }
5383
5384         /* add upper_dev to every dev's lower device */
5385         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5386                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5387                          i->dev->name, upper_dev->name);
5388                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5389                 if (ret)
5390                         goto rollback_lower_mesh;
5391         }
5392
5393         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5394                                       &changeupper_info.info);
5395         return 0;
5396
5397 rollback_lower_mesh:
5398         to_i = i;
5399         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5400                 if (i == to_i)
5401                         break;
5402                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5403         }
5404
5405         i = NULL;
5406
5407 rollback_upper_mesh:
5408         to_i = i;
5409         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5410                 if (i == to_i)
5411                         break;
5412                 __netdev_adjacent_dev_unlink(dev, i->dev);
5413         }
5414
5415         i = j = NULL;
5416
5417 rollback_mesh:
5418         to_i = i;
5419         to_j = j;
5420         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5421                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5422                         if (i == to_i && j == to_j)
5423                                 break;
5424                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5425                 }
5426                 if (i == to_i)
5427                         break;
5428         }
5429
5430         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5431
5432         return ret;
5433 }
5434
5435 /**
5436  * netdev_upper_dev_link - Add a link to the upper device
5437  * @dev: device
5438  * @upper_dev: new upper device
5439  *
5440  * Adds a link to device which is upper to this one. The caller must hold
5441  * the RTNL lock. On a failure a negative errno code is returned.
5442  * On success the reference counts are adjusted and the function
5443  * returns zero.
5444  */
5445 int netdev_upper_dev_link(struct net_device *dev,
5446                           struct net_device *upper_dev)
5447 {
5448         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5449 }
5450 EXPORT_SYMBOL(netdev_upper_dev_link);
5451
5452 /**
5453  * netdev_master_upper_dev_link - Add a master link to the upper device
5454  * @dev: device
5455  * @upper_dev: new upper device
5456  *
5457  * Adds a link to device which is upper to this one. In this case, only
5458  * one master upper device can be linked, although other non-master devices
5459  * might be linked as well. The caller must hold the RTNL lock.
5460  * On a failure a negative errno code is returned. On success the reference
5461  * counts are adjusted and the function returns zero.
5462  */
5463 int netdev_master_upper_dev_link(struct net_device *dev,
5464                                  struct net_device *upper_dev)
5465 {
5466         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5467 }
5468 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5469
5470 int netdev_master_upper_dev_link_private(struct net_device *dev,
5471                                          struct net_device *upper_dev,
5472                                          void *private)
5473 {
5474         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5475 }
5476 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5477
5478 /**
5479  * netdev_upper_dev_unlink - Removes a link to upper device
5480  * @dev: device
5481  * @upper_dev: new upper device
5482  *
5483  * Removes a link to device which is upper to this one. The caller must hold
5484  * the RTNL lock.
5485  */
5486 void netdev_upper_dev_unlink(struct net_device *dev,
5487                              struct net_device *upper_dev)
5488 {
5489         struct netdev_notifier_changeupper_info changeupper_info;
5490         struct netdev_adjacent *i, *j;
5491         ASSERT_RTNL();
5492
5493         changeupper_info.upper_dev = upper_dev;
5494         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5495         changeupper_info.linking = false;
5496
5497         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5498                                       &changeupper_info.info);
5499
5500         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5501
5502         /* Here is the tricky part. We must remove all dev's lower
5503          * devices from all upper_dev's upper devices and vice
5504          * versa, to maintain the graph relationship.
5505          */
5506         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5507                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5508                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5509
5510         /* remove also the devices itself from lower/upper device
5511          * list
5512          */
5513         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5514                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5515
5516         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5517                 __netdev_adjacent_dev_unlink(dev, i->dev);
5518
5519         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5520                                       &changeupper_info.info);
5521 }
5522 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5523
5524 /**
5525  * netdev_bonding_info_change - Dispatch event about slave change
5526  * @dev: device
5527  * @bonding_info: info to dispatch
5528  *
5529  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5530  * The caller must hold the RTNL lock.
5531  */
5532 void netdev_bonding_info_change(struct net_device *dev,
5533                                 struct netdev_bonding_info *bonding_info)
5534 {
5535         struct netdev_notifier_bonding_info     info;
5536
5537         memcpy(&info.bonding_info, bonding_info,
5538                sizeof(struct netdev_bonding_info));
5539         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5540                                       &info.info);
5541 }
5542 EXPORT_SYMBOL(netdev_bonding_info_change);
5543
5544 static void netdev_adjacent_add_links(struct net_device *dev)
5545 {
5546         struct netdev_adjacent *iter;
5547
5548         struct net *net = dev_net(dev);
5549
5550         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5551                 if (!net_eq(net,dev_net(iter->dev)))
5552                         continue;
5553                 netdev_adjacent_sysfs_add(iter->dev, dev,
5554                                           &iter->dev->adj_list.lower);
5555                 netdev_adjacent_sysfs_add(dev, iter->dev,
5556                                           &dev->adj_list.upper);
5557         }
5558
5559         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5560                 if (!net_eq(net,dev_net(iter->dev)))
5561                         continue;
5562                 netdev_adjacent_sysfs_add(iter->dev, dev,
5563                                           &iter->dev->adj_list.upper);
5564                 netdev_adjacent_sysfs_add(dev, iter->dev,
5565                                           &dev->adj_list.lower);
5566         }
5567 }
5568
5569 static void netdev_adjacent_del_links(struct net_device *dev)
5570 {
5571         struct netdev_adjacent *iter;
5572
5573         struct net *net = dev_net(dev);
5574
5575         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5576                 if (!net_eq(net,dev_net(iter->dev)))
5577                         continue;
5578                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5579                                           &iter->dev->adj_list.lower);
5580                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5581                                           &dev->adj_list.upper);
5582         }
5583
5584         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5585                 if (!net_eq(net,dev_net(iter->dev)))
5586                         continue;
5587                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5588                                           &iter->dev->adj_list.upper);
5589                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5590                                           &dev->adj_list.lower);
5591         }
5592 }
5593
5594 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5595 {
5596         struct netdev_adjacent *iter;
5597
5598         struct net *net = dev_net(dev);
5599
5600         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5601                 if (!net_eq(net,dev_net(iter->dev)))
5602                         continue;
5603                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5604                                           &iter->dev->adj_list.lower);
5605                 netdev_adjacent_sysfs_add(iter->dev, dev,
5606                                           &iter->dev->adj_list.lower);
5607         }
5608
5609         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5610                 if (!net_eq(net,dev_net(iter->dev)))
5611                         continue;
5612                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5613                                           &iter->dev->adj_list.upper);
5614                 netdev_adjacent_sysfs_add(iter->dev, dev,
5615                                           &iter->dev->adj_list.upper);
5616         }
5617 }
5618
5619 void *netdev_lower_dev_get_private(struct net_device *dev,
5620                                    struct net_device *lower_dev)
5621 {
5622         struct netdev_adjacent *lower;
5623
5624         if (!lower_dev)
5625                 return NULL;
5626         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5627         if (!lower)
5628                 return NULL;
5629
5630         return lower->private;
5631 }
5632 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5633
5634
5635 int dev_get_nest_level(struct net_device *dev,
5636                        bool (*type_check)(struct net_device *dev))
5637 {
5638         struct net_device *lower = NULL;
5639         struct list_head *iter;
5640         int max_nest = -1;
5641         int nest;
5642
5643         ASSERT_RTNL();
5644
5645         netdev_for_each_lower_dev(dev, lower, iter) {
5646                 nest = dev_get_nest_level(lower, type_check);
5647                 if (max_nest < nest)
5648                         max_nest = nest;
5649         }
5650
5651         if (type_check(dev))
5652                 max_nest++;
5653
5654         return max_nest;
5655 }
5656 EXPORT_SYMBOL(dev_get_nest_level);
5657
5658 static void dev_change_rx_flags(struct net_device *dev, int flags)
5659 {
5660         const struct net_device_ops *ops = dev->netdev_ops;
5661
5662         if (ops->ndo_change_rx_flags)
5663                 ops->ndo_change_rx_flags(dev, flags);
5664 }
5665
5666 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5667 {
5668         unsigned int old_flags = dev->flags;
5669         kuid_t uid;
5670         kgid_t gid;
5671
5672         ASSERT_RTNL();
5673
5674         dev->flags |= IFF_PROMISC;
5675         dev->promiscuity += inc;
5676         if (dev->promiscuity == 0) {
5677                 /*
5678                  * Avoid overflow.
5679                  * If inc causes overflow, untouch promisc and return error.
5680                  */
5681                 if (inc < 0)
5682                         dev->flags &= ~IFF_PROMISC;
5683                 else {
5684                         dev->promiscuity -= inc;
5685                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5686                                 dev->name);
5687                         return -EOVERFLOW;
5688                 }
5689         }
5690         if (dev->flags != old_flags) {
5691                 pr_info("device %s %s promiscuous mode\n",
5692                         dev->name,
5693                         dev->flags & IFF_PROMISC ? "entered" : "left");
5694                 if (audit_enabled) {
5695                         current_uid_gid(&uid, &gid);
5696                         audit_log(current->audit_context, GFP_ATOMIC,
5697                                 AUDIT_ANOM_PROMISCUOUS,
5698                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5699                                 dev->name, (dev->flags & IFF_PROMISC),
5700                                 (old_flags & IFF_PROMISC),
5701                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5702                                 from_kuid(&init_user_ns, uid),
5703                                 from_kgid(&init_user_ns, gid),
5704                                 audit_get_sessionid(current));
5705                 }
5706
5707                 dev_change_rx_flags(dev, IFF_PROMISC);
5708         }
5709         if (notify)
5710                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5711         return 0;
5712 }
5713
5714 /**
5715  *      dev_set_promiscuity     - update promiscuity count on a device
5716  *      @dev: device
5717  *      @inc: modifier
5718  *
5719  *      Add or remove promiscuity from a device. While the count in the device
5720  *      remains above zero the interface remains promiscuous. Once it hits zero
5721  *      the device reverts back to normal filtering operation. A negative inc
5722  *      value is used to drop promiscuity on the device.
5723  *      Return 0 if successful or a negative errno code on error.
5724  */
5725 int dev_set_promiscuity(struct net_device *dev, int inc)
5726 {
5727         unsigned int old_flags = dev->flags;
5728         int err;
5729
5730         err = __dev_set_promiscuity(dev, inc, true);
5731         if (err < 0)
5732                 return err;
5733         if (dev->flags != old_flags)
5734                 dev_set_rx_mode(dev);
5735         return err;
5736 }
5737 EXPORT_SYMBOL(dev_set_promiscuity);
5738
5739 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5740 {
5741         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5742
5743         ASSERT_RTNL();
5744
5745         dev->flags |= IFF_ALLMULTI;
5746         dev->allmulti += inc;
5747         if (dev->allmulti == 0) {
5748                 /*
5749                  * Avoid overflow.
5750                  * If inc causes overflow, untouch allmulti and return error.
5751                  */
5752                 if (inc < 0)
5753                         dev->flags &= ~IFF_ALLMULTI;
5754                 else {
5755                         dev->allmulti -= inc;
5756                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5757                                 dev->name);
5758                         return -EOVERFLOW;
5759                 }
5760         }
5761         if (dev->flags ^ old_flags) {
5762                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5763                 dev_set_rx_mode(dev);
5764                 if (notify)
5765                         __dev_notify_flags(dev, old_flags,
5766                                            dev->gflags ^ old_gflags);
5767         }
5768         return 0;
5769 }
5770
5771 /**
5772  *      dev_set_allmulti        - update allmulti count on a device
5773  *      @dev: device
5774  *      @inc: modifier
5775  *
5776  *      Add or remove reception of all multicast frames to a device. While the
5777  *      count in the device remains above zero the interface remains listening
5778  *      to all interfaces. Once it hits zero the device reverts back to normal
5779  *      filtering operation. A negative @inc value is used to drop the counter
5780  *      when releasing a resource needing all multicasts.
5781  *      Return 0 if successful or a negative errno code on error.
5782  */
5783
5784 int dev_set_allmulti(struct net_device *dev, int inc)
5785 {
5786         return __dev_set_allmulti(dev, inc, true);
5787 }
5788 EXPORT_SYMBOL(dev_set_allmulti);
5789
5790 /*
5791  *      Upload unicast and multicast address lists to device and
5792  *      configure RX filtering. When the device doesn't support unicast
5793  *      filtering it is put in promiscuous mode while unicast addresses
5794  *      are present.
5795  */
5796 void __dev_set_rx_mode(struct net_device *dev)
5797 {
5798         const struct net_device_ops *ops = dev->netdev_ops;
5799
5800         /* dev_open will call this function so the list will stay sane. */
5801         if (!(dev->flags&IFF_UP))
5802                 return;
5803
5804         if (!netif_device_present(dev))
5805                 return;
5806
5807         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5808                 /* Unicast addresses changes may only happen under the rtnl,
5809                  * therefore calling __dev_set_promiscuity here is safe.
5810                  */
5811                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5812                         __dev_set_promiscuity(dev, 1, false);
5813                         dev->uc_promisc = true;
5814                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5815                         __dev_set_promiscuity(dev, -1, false);
5816                         dev->uc_promisc = false;
5817                 }
5818         }
5819
5820         if (ops->ndo_set_rx_mode)
5821                 ops->ndo_set_rx_mode(dev);
5822 }
5823
5824 void dev_set_rx_mode(struct net_device *dev)
5825 {
5826         netif_addr_lock_bh(dev);
5827         __dev_set_rx_mode(dev);
5828         netif_addr_unlock_bh(dev);
5829 }
5830
5831 /**
5832  *      dev_get_flags - get flags reported to userspace
5833  *      @dev: device
5834  *
5835  *      Get the combination of flag bits exported through APIs to userspace.
5836  */
5837 unsigned int dev_get_flags(const struct net_device *dev)
5838 {
5839         unsigned int flags;
5840
5841         flags = (dev->flags & ~(IFF_PROMISC |
5842                                 IFF_ALLMULTI |
5843                                 IFF_RUNNING |
5844                                 IFF_LOWER_UP |
5845                                 IFF_DORMANT)) |
5846                 (dev->gflags & (IFF_PROMISC |
5847                                 IFF_ALLMULTI));
5848
5849         if (netif_running(dev)) {
5850                 if (netif_oper_up(dev))
5851                         flags |= IFF_RUNNING;
5852                 if (netif_carrier_ok(dev))
5853                         flags |= IFF_LOWER_UP;
5854                 if (netif_dormant(dev))
5855                         flags |= IFF_DORMANT;
5856         }
5857
5858         return flags;
5859 }
5860 EXPORT_SYMBOL(dev_get_flags);
5861
5862 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5863 {
5864         unsigned int old_flags = dev->flags;
5865         int ret;
5866
5867         ASSERT_RTNL();
5868
5869         /*
5870          *      Set the flags on our device.
5871          */
5872
5873         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5874                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5875                                IFF_AUTOMEDIA)) |
5876                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5877                                     IFF_ALLMULTI));
5878
5879         /*
5880          *      Load in the correct multicast list now the flags have changed.
5881          */
5882
5883         if ((old_flags ^ flags) & IFF_MULTICAST)
5884                 dev_change_rx_flags(dev, IFF_MULTICAST);
5885
5886         dev_set_rx_mode(dev);
5887
5888         /*
5889          *      Have we downed the interface. We handle IFF_UP ourselves
5890          *      according to user attempts to set it, rather than blindly
5891          *      setting it.
5892          */
5893
5894         ret = 0;
5895         if ((old_flags ^ flags) & IFF_UP)
5896                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5897
5898         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5899                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5900                 unsigned int old_flags = dev->flags;
5901
5902                 dev->gflags ^= IFF_PROMISC;
5903
5904                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5905                         if (dev->flags != old_flags)
5906                                 dev_set_rx_mode(dev);
5907         }
5908
5909         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5910            is important. Some (broken) drivers set IFF_PROMISC, when
5911            IFF_ALLMULTI is requested not asking us and not reporting.
5912          */
5913         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5914                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5915
5916                 dev->gflags ^= IFF_ALLMULTI;
5917                 __dev_set_allmulti(dev, inc, false);
5918         }
5919
5920         return ret;
5921 }
5922
5923 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5924                         unsigned int gchanges)
5925 {
5926         unsigned int changes = dev->flags ^ old_flags;
5927
5928         if (gchanges)
5929                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5930
5931         if (changes & IFF_UP) {
5932                 if (dev->flags & IFF_UP)
5933                         call_netdevice_notifiers(NETDEV_UP, dev);
5934                 else
5935                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5936         }
5937
5938         if (dev->flags & IFF_UP &&
5939             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5940                 struct netdev_notifier_change_info change_info;
5941
5942                 change_info.flags_changed = changes;
5943                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5944                                               &change_info.info);
5945         }
5946 }
5947
5948 /**
5949  *      dev_change_flags - change device settings
5950  *      @dev: device
5951  *      @flags: device state flags
5952  *
5953  *      Change settings on device based state flags. The flags are
5954  *      in the userspace exported format.
5955  */
5956 int dev_change_flags(struct net_device *dev, unsigned int flags)
5957 {
5958         int ret;
5959         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5960
5961         ret = __dev_change_flags(dev, flags);
5962         if (ret < 0)
5963                 return ret;
5964
5965         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5966         __dev_notify_flags(dev, old_flags, changes);
5967         return ret;
5968 }
5969 EXPORT_SYMBOL(dev_change_flags);
5970
5971 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5972 {
5973         const struct net_device_ops *ops = dev->netdev_ops;
5974
5975         if (ops->ndo_change_mtu)
5976                 return ops->ndo_change_mtu(dev, new_mtu);
5977
5978         dev->mtu = new_mtu;
5979         return 0;
5980 }
5981
5982 /**
5983  *      dev_set_mtu - Change maximum transfer unit
5984  *      @dev: device
5985  *      @new_mtu: new transfer unit
5986  *
5987  *      Change the maximum transfer size of the network device.
5988  */
5989 int dev_set_mtu(struct net_device *dev, int new_mtu)
5990 {
5991         int err, orig_mtu;
5992
5993         if (new_mtu == dev->mtu)
5994                 return 0;
5995
5996         /*      MTU must be positive.    */
5997         if (new_mtu < 0)
5998                 return -EINVAL;
5999
6000         if (!netif_device_present(dev))
6001                 return -ENODEV;
6002
6003         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6004         err = notifier_to_errno(err);
6005         if (err)
6006                 return err;
6007
6008         orig_mtu = dev->mtu;
6009         err = __dev_set_mtu(dev, new_mtu);
6010
6011         if (!err) {
6012                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6013                 err = notifier_to_errno(err);
6014                 if (err) {
6015                         /* setting mtu back and notifying everyone again,
6016                          * so that they have a chance to revert changes.
6017                          */
6018                         __dev_set_mtu(dev, orig_mtu);
6019                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6020                 }
6021         }
6022         return err;
6023 }
6024 EXPORT_SYMBOL(dev_set_mtu);
6025
6026 /**
6027  *      dev_set_group - Change group this device belongs to
6028  *      @dev: device
6029  *      @new_group: group this device should belong to
6030  */
6031 void dev_set_group(struct net_device *dev, int new_group)
6032 {
6033         dev->group = new_group;
6034 }
6035 EXPORT_SYMBOL(dev_set_group);
6036
6037 /**
6038  *      dev_set_mac_address - Change Media Access Control Address
6039  *      @dev: device
6040  *      @sa: new address
6041  *
6042  *      Change the hardware (MAC) address of the device
6043  */
6044 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6045 {
6046         const struct net_device_ops *ops = dev->netdev_ops;
6047         int err;
6048
6049         if (!ops->ndo_set_mac_address)
6050                 return -EOPNOTSUPP;
6051         if (sa->sa_family != dev->type)
6052                 return -EINVAL;
6053         if (!netif_device_present(dev))
6054                 return -ENODEV;
6055         err = ops->ndo_set_mac_address(dev, sa);
6056         if (err)
6057                 return err;
6058         dev->addr_assign_type = NET_ADDR_SET;
6059         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6060         add_device_randomness(dev->dev_addr, dev->addr_len);
6061         return 0;
6062 }
6063 EXPORT_SYMBOL(dev_set_mac_address);
6064
6065 /**
6066  *      dev_change_carrier - Change device carrier
6067  *      @dev: device
6068  *      @new_carrier: new value
6069  *
6070  *      Change device carrier
6071  */
6072 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6073 {
6074         const struct net_device_ops *ops = dev->netdev_ops;
6075
6076         if (!ops->ndo_change_carrier)
6077                 return -EOPNOTSUPP;
6078         if (!netif_device_present(dev))
6079                 return -ENODEV;
6080         return ops->ndo_change_carrier(dev, new_carrier);
6081 }
6082 EXPORT_SYMBOL(dev_change_carrier);
6083
6084 /**
6085  *      dev_get_phys_port_id - Get device physical port ID
6086  *      @dev: device
6087  *      @ppid: port ID
6088  *
6089  *      Get device physical port ID
6090  */
6091 int dev_get_phys_port_id(struct net_device *dev,
6092                          struct netdev_phys_item_id *ppid)
6093 {
6094         const struct net_device_ops *ops = dev->netdev_ops;
6095
6096         if (!ops->ndo_get_phys_port_id)
6097                 return -EOPNOTSUPP;
6098         return ops->ndo_get_phys_port_id(dev, ppid);
6099 }
6100 EXPORT_SYMBOL(dev_get_phys_port_id);
6101
6102 /**
6103  *      dev_get_phys_port_name - Get device physical port name
6104  *      @dev: device
6105  *      @name: port name
6106  *
6107  *      Get device physical port name
6108  */
6109 int dev_get_phys_port_name(struct net_device *dev,
6110                            char *name, size_t len)
6111 {
6112         const struct net_device_ops *ops = dev->netdev_ops;
6113
6114         if (!ops->ndo_get_phys_port_name)
6115                 return -EOPNOTSUPP;
6116         return ops->ndo_get_phys_port_name(dev, name, len);
6117 }
6118 EXPORT_SYMBOL(dev_get_phys_port_name);
6119
6120 /**
6121  *      dev_change_proto_down - update protocol port state information
6122  *      @dev: device
6123  *      @proto_down: new value
6124  *
6125  *      This info can be used by switch drivers to set the phys state of the
6126  *      port.
6127  */
6128 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6129 {
6130         const struct net_device_ops *ops = dev->netdev_ops;
6131
6132         if (!ops->ndo_change_proto_down)
6133                 return -EOPNOTSUPP;
6134         if (!netif_device_present(dev))
6135                 return -ENODEV;
6136         return ops->ndo_change_proto_down(dev, proto_down);
6137 }
6138 EXPORT_SYMBOL(dev_change_proto_down);
6139
6140 /**
6141  *      dev_new_index   -       allocate an ifindex
6142  *      @net: the applicable net namespace
6143  *
6144  *      Returns a suitable unique value for a new device interface
6145  *      number.  The caller must hold the rtnl semaphore or the
6146  *      dev_base_lock to be sure it remains unique.
6147  */
6148 static int dev_new_index(struct net *net)
6149 {
6150         int ifindex = net->ifindex;
6151         for (;;) {
6152                 if (++ifindex <= 0)
6153                         ifindex = 1;
6154                 if (!__dev_get_by_index(net, ifindex))
6155                         return net->ifindex = ifindex;
6156         }
6157 }
6158
6159 /* Delayed registration/unregisteration */
6160 static LIST_HEAD(net_todo_list);
6161 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6162
6163 static void net_set_todo(struct net_device *dev)
6164 {
6165         list_add_tail(&dev->todo_list, &net_todo_list);
6166         dev_net(dev)->dev_unreg_count++;
6167 }
6168
6169 static void rollback_registered_many(struct list_head *head)
6170 {
6171         struct net_device *dev, *tmp;
6172         LIST_HEAD(close_head);
6173
6174         BUG_ON(dev_boot_phase);
6175         ASSERT_RTNL();
6176
6177         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6178                 /* Some devices call without registering
6179                  * for initialization unwind. Remove those
6180                  * devices and proceed with the remaining.
6181                  */
6182                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6183                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6184                                  dev->name, dev);
6185
6186                         WARN_ON(1);
6187                         list_del(&dev->unreg_list);
6188                         continue;
6189                 }
6190                 dev->dismantle = true;
6191                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6192         }
6193
6194         /* If device is running, close it first. */
6195         list_for_each_entry(dev, head, unreg_list)
6196                 list_add_tail(&dev->close_list, &close_head);
6197         dev_close_many(&close_head, true);
6198
6199         list_for_each_entry(dev, head, unreg_list) {
6200                 /* And unlink it from device chain. */
6201                 unlist_netdevice(dev);
6202
6203                 dev->reg_state = NETREG_UNREGISTERING;
6204                 on_each_cpu(flush_backlog, dev, 1);
6205         }
6206
6207         synchronize_net();
6208
6209         list_for_each_entry(dev, head, unreg_list) {
6210                 struct sk_buff *skb = NULL;
6211
6212                 /* Shutdown queueing discipline. */
6213                 dev_shutdown(dev);
6214
6215
6216                 /* Notify protocols, that we are about to destroy
6217                    this device. They should clean all the things.
6218                 */
6219                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6220
6221                 if (!dev->rtnl_link_ops ||
6222                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6223                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6224                                                      GFP_KERNEL);
6225
6226                 /*
6227                  *      Flush the unicast and multicast chains
6228                  */
6229                 dev_uc_flush(dev);
6230                 dev_mc_flush(dev);
6231
6232                 if (dev->netdev_ops->ndo_uninit)
6233                         dev->netdev_ops->ndo_uninit(dev);
6234
6235                 if (skb)
6236                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6237
6238                 /* Notifier chain MUST detach us all upper devices. */
6239                 WARN_ON(netdev_has_any_upper_dev(dev));
6240
6241                 /* Remove entries from kobject tree */
6242                 netdev_unregister_kobject(dev);
6243 #ifdef CONFIG_XPS
6244                 /* Remove XPS queueing entries */
6245                 netif_reset_xps_queues_gt(dev, 0);
6246 #endif
6247         }
6248
6249         synchronize_net();
6250
6251         list_for_each_entry(dev, head, unreg_list)
6252                 dev_put(dev);
6253 }
6254
6255 static void rollback_registered(struct net_device *dev)
6256 {
6257         LIST_HEAD(single);
6258
6259         list_add(&dev->unreg_list, &single);
6260         rollback_registered_many(&single);
6261         list_del(&single);
6262 }
6263
6264 static netdev_features_t netdev_fix_features(struct net_device *dev,
6265         netdev_features_t features)
6266 {
6267         /* Fix illegal checksum combinations */
6268         if ((features & NETIF_F_HW_CSUM) &&
6269             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6270                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6271                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6272         }
6273
6274         /* TSO requires that SG is present as well. */
6275         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6276                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6277                 features &= ~NETIF_F_ALL_TSO;
6278         }
6279
6280         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6281                                         !(features & NETIF_F_IP_CSUM)) {
6282                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6283                 features &= ~NETIF_F_TSO;
6284                 features &= ~NETIF_F_TSO_ECN;
6285         }
6286
6287         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6288                                          !(features & NETIF_F_IPV6_CSUM)) {
6289                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6290                 features &= ~NETIF_F_TSO6;
6291         }
6292
6293         /* TSO ECN requires that TSO is present as well. */
6294         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6295                 features &= ~NETIF_F_TSO_ECN;
6296
6297         /* Software GSO depends on SG. */
6298         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6299                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6300                 features &= ~NETIF_F_GSO;
6301         }
6302
6303         /* UFO needs SG and checksumming */
6304         if (features & NETIF_F_UFO) {
6305                 /* maybe split UFO into V4 and V6? */
6306                 if (!((features & NETIF_F_GEN_CSUM) ||
6307                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6308                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6309                         netdev_dbg(dev,
6310                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6311                         features &= ~NETIF_F_UFO;
6312                 }
6313
6314                 if (!(features & NETIF_F_SG)) {
6315                         netdev_dbg(dev,
6316                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6317                         features &= ~NETIF_F_UFO;
6318                 }
6319         }
6320
6321 #ifdef CONFIG_NET_RX_BUSY_POLL
6322         if (dev->netdev_ops->ndo_busy_poll)
6323                 features |= NETIF_F_BUSY_POLL;
6324         else
6325 #endif
6326                 features &= ~NETIF_F_BUSY_POLL;
6327
6328         return features;
6329 }
6330
6331 int __netdev_update_features(struct net_device *dev)
6332 {
6333         netdev_features_t features;
6334         int err = 0;
6335
6336         ASSERT_RTNL();
6337
6338         features = netdev_get_wanted_features(dev);
6339
6340         if (dev->netdev_ops->ndo_fix_features)
6341                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6342
6343         /* driver might be less strict about feature dependencies */
6344         features = netdev_fix_features(dev, features);
6345
6346         if (dev->features == features)
6347                 return 0;
6348
6349         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6350                 &dev->features, &features);
6351
6352         if (dev->netdev_ops->ndo_set_features)
6353                 err = dev->netdev_ops->ndo_set_features(dev, features);
6354
6355         if (unlikely(err < 0)) {
6356                 netdev_err(dev,
6357                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6358                         err, &features, &dev->features);
6359                 return -1;
6360         }
6361
6362         if (!err)
6363                 dev->features = features;
6364
6365         return 1;
6366 }
6367
6368 /**
6369  *      netdev_update_features - recalculate device features
6370  *      @dev: the device to check
6371  *
6372  *      Recalculate dev->features set and send notifications if it
6373  *      has changed. Should be called after driver or hardware dependent
6374  *      conditions might have changed that influence the features.
6375  */
6376 void netdev_update_features(struct net_device *dev)
6377 {
6378         if (__netdev_update_features(dev))
6379                 netdev_features_change(dev);
6380 }
6381 EXPORT_SYMBOL(netdev_update_features);
6382
6383 /**
6384  *      netdev_change_features - recalculate device features
6385  *      @dev: the device to check
6386  *
6387  *      Recalculate dev->features set and send notifications even
6388  *      if they have not changed. Should be called instead of
6389  *      netdev_update_features() if also dev->vlan_features might
6390  *      have changed to allow the changes to be propagated to stacked
6391  *      VLAN devices.
6392  */
6393 void netdev_change_features(struct net_device *dev)
6394 {
6395         __netdev_update_features(dev);
6396         netdev_features_change(dev);
6397 }
6398 EXPORT_SYMBOL(netdev_change_features);
6399
6400 /**
6401  *      netif_stacked_transfer_operstate -      transfer operstate
6402  *      @rootdev: the root or lower level device to transfer state from
6403  *      @dev: the device to transfer operstate to
6404  *
6405  *      Transfer operational state from root to device. This is normally
6406  *      called when a stacking relationship exists between the root
6407  *      device and the device(a leaf device).
6408  */
6409 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6410                                         struct net_device *dev)
6411 {
6412         if (rootdev->operstate == IF_OPER_DORMANT)
6413                 netif_dormant_on(dev);
6414         else
6415                 netif_dormant_off(dev);
6416
6417         if (netif_carrier_ok(rootdev)) {
6418                 if (!netif_carrier_ok(dev))
6419                         netif_carrier_on(dev);
6420         } else {
6421                 if (netif_carrier_ok(dev))
6422                         netif_carrier_off(dev);
6423         }
6424 }
6425 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6426
6427 #ifdef CONFIG_SYSFS
6428 static int netif_alloc_rx_queues(struct net_device *dev)
6429 {
6430         unsigned int i, count = dev->num_rx_queues;
6431         struct netdev_rx_queue *rx;
6432         size_t sz = count * sizeof(*rx);
6433
6434         BUG_ON(count < 1);
6435
6436         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6437         if (!rx) {
6438                 rx = vzalloc(sz);
6439                 if (!rx)
6440                         return -ENOMEM;
6441         }
6442         dev->_rx = rx;
6443
6444         for (i = 0; i < count; i++)
6445                 rx[i].dev = dev;
6446         return 0;
6447 }
6448 #endif
6449
6450 static void netdev_init_one_queue(struct net_device *dev,
6451                                   struct netdev_queue *queue, void *_unused)
6452 {
6453         /* Initialize queue lock */
6454         spin_lock_init(&queue->_xmit_lock);
6455         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6456         queue->xmit_lock_owner = -1;
6457         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6458         queue->dev = dev;
6459 #ifdef CONFIG_BQL
6460         dql_init(&queue->dql, HZ);
6461 #endif
6462 }
6463
6464 static void netif_free_tx_queues(struct net_device *dev)
6465 {
6466         kvfree(dev->_tx);
6467 }
6468
6469 static int netif_alloc_netdev_queues(struct net_device *dev)
6470 {
6471         unsigned int count = dev->num_tx_queues;
6472         struct netdev_queue *tx;
6473         size_t sz = count * sizeof(*tx);
6474
6475         if (count < 1 || count > 0xffff)
6476                 return -EINVAL;
6477
6478         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6479         if (!tx) {
6480                 tx = vzalloc(sz);
6481                 if (!tx)
6482                         return -ENOMEM;
6483         }
6484         dev->_tx = tx;
6485
6486         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6487         spin_lock_init(&dev->tx_global_lock);
6488
6489         return 0;
6490 }
6491
6492 void netif_tx_stop_all_queues(struct net_device *dev)
6493 {
6494         unsigned int i;
6495
6496         for (i = 0; i < dev->num_tx_queues; i++) {
6497                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6498                 netif_tx_stop_queue(txq);
6499         }
6500 }
6501 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6502
6503 /**
6504  *      register_netdevice      - register a network device
6505  *      @dev: device to register
6506  *
6507  *      Take a completed network device structure and add it to the kernel
6508  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6509  *      chain. 0 is returned on success. A negative errno code is returned
6510  *      on a failure to set up the device, or if the name is a duplicate.
6511  *
6512  *      Callers must hold the rtnl semaphore. You may want
6513  *      register_netdev() instead of this.
6514  *
6515  *      BUGS:
6516  *      The locking appears insufficient to guarantee two parallel registers
6517  *      will not get the same name.
6518  */
6519
6520 int register_netdevice(struct net_device *dev)
6521 {
6522         int ret;
6523         struct net *net = dev_net(dev);
6524
6525         BUG_ON(dev_boot_phase);
6526         ASSERT_RTNL();
6527
6528         might_sleep();
6529
6530         /* When net_device's are persistent, this will be fatal. */
6531         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6532         BUG_ON(!net);
6533
6534         spin_lock_init(&dev->addr_list_lock);
6535         netdev_set_addr_lockdep_class(dev);
6536
6537         ret = dev_get_valid_name(net, dev, dev->name);
6538         if (ret < 0)
6539                 goto out;
6540
6541         /* Init, if this function is available */
6542         if (dev->netdev_ops->ndo_init) {
6543                 ret = dev->netdev_ops->ndo_init(dev);
6544                 if (ret) {
6545                         if (ret > 0)
6546                                 ret = -EIO;
6547                         goto out;
6548                 }
6549         }
6550
6551         if (((dev->hw_features | dev->features) &
6552              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6553             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6554              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6555                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6556                 ret = -EINVAL;
6557                 goto err_uninit;
6558         }
6559
6560         ret = -EBUSY;
6561         if (!dev->ifindex)
6562                 dev->ifindex = dev_new_index(net);
6563         else if (__dev_get_by_index(net, dev->ifindex))
6564                 goto err_uninit;
6565
6566         /* Transfer changeable features to wanted_features and enable
6567          * software offloads (GSO and GRO).
6568          */
6569         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6570         dev->features |= NETIF_F_SOFT_FEATURES;
6571         dev->wanted_features = dev->features & dev->hw_features;
6572
6573         if (!(dev->flags & IFF_LOOPBACK)) {
6574                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6575         }
6576
6577         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6578          */
6579         dev->vlan_features |= NETIF_F_HIGHDMA;
6580
6581         /* Make NETIF_F_SG inheritable to tunnel devices.
6582          */
6583         dev->hw_enc_features |= NETIF_F_SG;
6584
6585         /* Make NETIF_F_SG inheritable to MPLS.
6586          */
6587         dev->mpls_features |= NETIF_F_SG;
6588
6589         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6590         ret = notifier_to_errno(ret);
6591         if (ret)
6592                 goto err_uninit;
6593
6594         ret = netdev_register_kobject(dev);
6595         if (ret)
6596                 goto err_uninit;
6597         dev->reg_state = NETREG_REGISTERED;
6598
6599         __netdev_update_features(dev);
6600
6601         /*
6602          *      Default initial state at registry is that the
6603          *      device is present.
6604          */
6605
6606         set_bit(__LINK_STATE_PRESENT, &dev->state);
6607
6608         linkwatch_init_dev(dev);
6609
6610         dev_init_scheduler(dev);
6611         dev_hold(dev);
6612         list_netdevice(dev);
6613         add_device_randomness(dev->dev_addr, dev->addr_len);
6614
6615         /* If the device has permanent device address, driver should
6616          * set dev_addr and also addr_assign_type should be set to
6617          * NET_ADDR_PERM (default value).
6618          */
6619         if (dev->addr_assign_type == NET_ADDR_PERM)
6620                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6621
6622         /* Notify protocols, that a new device appeared. */
6623         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6624         ret = notifier_to_errno(ret);
6625         if (ret) {
6626                 rollback_registered(dev);
6627                 dev->reg_state = NETREG_UNREGISTERED;
6628         }
6629         /*
6630          *      Prevent userspace races by waiting until the network
6631          *      device is fully setup before sending notifications.
6632          */
6633         if (!dev->rtnl_link_ops ||
6634             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6635                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6636
6637 out:
6638         return ret;
6639
6640 err_uninit:
6641         if (dev->netdev_ops->ndo_uninit)
6642                 dev->netdev_ops->ndo_uninit(dev);
6643         goto out;
6644 }
6645 EXPORT_SYMBOL(register_netdevice);
6646
6647 /**
6648  *      init_dummy_netdev       - init a dummy network device for NAPI
6649  *      @dev: device to init
6650  *
6651  *      This takes a network device structure and initialize the minimum
6652  *      amount of fields so it can be used to schedule NAPI polls without
6653  *      registering a full blown interface. This is to be used by drivers
6654  *      that need to tie several hardware interfaces to a single NAPI
6655  *      poll scheduler due to HW limitations.
6656  */
6657 int init_dummy_netdev(struct net_device *dev)
6658 {
6659         /* Clear everything. Note we don't initialize spinlocks
6660          * are they aren't supposed to be taken by any of the
6661          * NAPI code and this dummy netdev is supposed to be
6662          * only ever used for NAPI polls
6663          */
6664         memset(dev, 0, sizeof(struct net_device));
6665
6666         /* make sure we BUG if trying to hit standard
6667          * register/unregister code path
6668          */
6669         dev->reg_state = NETREG_DUMMY;
6670
6671         /* NAPI wants this */
6672         INIT_LIST_HEAD(&dev->napi_list);
6673
6674         /* a dummy interface is started by default */
6675         set_bit(__LINK_STATE_PRESENT, &dev->state);
6676         set_bit(__LINK_STATE_START, &dev->state);
6677
6678         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6679          * because users of this 'device' dont need to change
6680          * its refcount.
6681          */
6682
6683         return 0;
6684 }
6685 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6686
6687
6688 /**
6689  *      register_netdev - register a network device
6690  *      @dev: device to register
6691  *
6692  *      Take a completed network device structure and add it to the kernel
6693  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6694  *      chain. 0 is returned on success. A negative errno code is returned
6695  *      on a failure to set up the device, or if the name is a duplicate.
6696  *
6697  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6698  *      and expands the device name if you passed a format string to
6699  *      alloc_netdev.
6700  */
6701 int register_netdev(struct net_device *dev)
6702 {
6703         int err;
6704
6705         rtnl_lock();
6706         err = register_netdevice(dev);
6707         rtnl_unlock();
6708         return err;
6709 }
6710 EXPORT_SYMBOL(register_netdev);
6711
6712 int netdev_refcnt_read(const struct net_device *dev)
6713 {
6714         int i, refcnt = 0;
6715
6716         for_each_possible_cpu(i)
6717                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6718         return refcnt;
6719 }
6720 EXPORT_SYMBOL(netdev_refcnt_read);
6721
6722 /**
6723  * netdev_wait_allrefs - wait until all references are gone.
6724  * @dev: target net_device
6725  *
6726  * This is called when unregistering network devices.
6727  *
6728  * Any protocol or device that holds a reference should register
6729  * for netdevice notification, and cleanup and put back the
6730  * reference if they receive an UNREGISTER event.
6731  * We can get stuck here if buggy protocols don't correctly
6732  * call dev_put.
6733  */
6734 static void netdev_wait_allrefs(struct net_device *dev)
6735 {
6736         unsigned long rebroadcast_time, warning_time;
6737         int refcnt;
6738
6739         linkwatch_forget_dev(dev);
6740
6741         rebroadcast_time = warning_time = jiffies;
6742         refcnt = netdev_refcnt_read(dev);
6743
6744         while (refcnt != 0) {
6745                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6746                         rtnl_lock();
6747
6748                         /* Rebroadcast unregister notification */
6749                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6750
6751                         __rtnl_unlock();
6752                         rcu_barrier();
6753                         rtnl_lock();
6754
6755                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6756                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6757                                      &dev->state)) {
6758                                 /* We must not have linkwatch events
6759                                  * pending on unregister. If this
6760                                  * happens, we simply run the queue
6761                                  * unscheduled, resulting in a noop
6762                                  * for this device.
6763                                  */
6764                                 linkwatch_run_queue();
6765                         }
6766
6767                         __rtnl_unlock();
6768
6769                         rebroadcast_time = jiffies;
6770                 }
6771
6772                 msleep(250);
6773
6774                 refcnt = netdev_refcnt_read(dev);
6775
6776                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6777                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6778                                  dev->name, refcnt);
6779                         warning_time = jiffies;
6780                 }
6781         }
6782 }
6783
6784 /* The sequence is:
6785  *
6786  *      rtnl_lock();
6787  *      ...
6788  *      register_netdevice(x1);
6789  *      register_netdevice(x2);
6790  *      ...
6791  *      unregister_netdevice(y1);
6792  *      unregister_netdevice(y2);
6793  *      ...
6794  *      rtnl_unlock();
6795  *      free_netdev(y1);
6796  *      free_netdev(y2);
6797  *
6798  * We are invoked by rtnl_unlock().
6799  * This allows us to deal with problems:
6800  * 1) We can delete sysfs objects which invoke hotplug
6801  *    without deadlocking with linkwatch via keventd.
6802  * 2) Since we run with the RTNL semaphore not held, we can sleep
6803  *    safely in order to wait for the netdev refcnt to drop to zero.
6804  *
6805  * We must not return until all unregister events added during
6806  * the interval the lock was held have been completed.
6807  */
6808 void netdev_run_todo(void)
6809 {
6810         struct list_head list;
6811
6812         /* Snapshot list, allow later requests */
6813         list_replace_init(&net_todo_list, &list);
6814
6815         __rtnl_unlock();
6816
6817
6818         /* Wait for rcu callbacks to finish before next phase */
6819         if (!list_empty(&list))
6820                 rcu_barrier();
6821
6822         while (!list_empty(&list)) {
6823                 struct net_device *dev
6824                         = list_first_entry(&list, struct net_device, todo_list);
6825                 list_del(&dev->todo_list);
6826
6827                 rtnl_lock();
6828                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6829                 __rtnl_unlock();
6830
6831                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6832                         pr_err("network todo '%s' but state %d\n",
6833                                dev->name, dev->reg_state);
6834                         dump_stack();
6835                         continue;
6836                 }
6837
6838                 dev->reg_state = NETREG_UNREGISTERED;
6839
6840                 netdev_wait_allrefs(dev);
6841
6842                 /* paranoia */
6843                 BUG_ON(netdev_refcnt_read(dev));
6844                 BUG_ON(!list_empty(&dev->ptype_all));
6845                 BUG_ON(!list_empty(&dev->ptype_specific));
6846                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6847                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6848                 WARN_ON(dev->dn_ptr);
6849
6850                 if (dev->destructor)
6851                         dev->destructor(dev);
6852
6853                 /* Report a network device has been unregistered */
6854                 rtnl_lock();
6855                 dev_net(dev)->dev_unreg_count--;
6856                 __rtnl_unlock();
6857                 wake_up(&netdev_unregistering_wq);
6858
6859                 /* Free network device */
6860                 kobject_put(&dev->dev.kobj);
6861         }
6862 }
6863
6864 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6865  * fields in the same order, with only the type differing.
6866  */
6867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6868                              const struct net_device_stats *netdev_stats)
6869 {
6870 #if BITS_PER_LONG == 64
6871         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6872         memcpy(stats64, netdev_stats, sizeof(*stats64));
6873 #else
6874         size_t i, n = sizeof(*stats64) / sizeof(u64);
6875         const unsigned long *src = (const unsigned long *)netdev_stats;
6876         u64 *dst = (u64 *)stats64;
6877
6878         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6879                      sizeof(*stats64) / sizeof(u64));
6880         for (i = 0; i < n; i++)
6881                 dst[i] = src[i];
6882 #endif
6883 }
6884 EXPORT_SYMBOL(netdev_stats_to_stats64);
6885
6886 /**
6887  *      dev_get_stats   - get network device statistics
6888  *      @dev: device to get statistics from
6889  *      @storage: place to store stats
6890  *
6891  *      Get network statistics from device. Return @storage.
6892  *      The device driver may provide its own method by setting
6893  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6894  *      otherwise the internal statistics structure is used.
6895  */
6896 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6897                                         struct rtnl_link_stats64 *storage)
6898 {
6899         const struct net_device_ops *ops = dev->netdev_ops;
6900
6901         if (ops->ndo_get_stats64) {
6902                 memset(storage, 0, sizeof(*storage));
6903                 ops->ndo_get_stats64(dev, storage);
6904         } else if (ops->ndo_get_stats) {
6905                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6906         } else {
6907                 netdev_stats_to_stats64(storage, &dev->stats);
6908         }
6909         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6910         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6911         return storage;
6912 }
6913 EXPORT_SYMBOL(dev_get_stats);
6914
6915 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6916 {
6917         struct netdev_queue *queue = dev_ingress_queue(dev);
6918
6919 #ifdef CONFIG_NET_CLS_ACT
6920         if (queue)
6921                 return queue;
6922         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6923         if (!queue)
6924                 return NULL;
6925         netdev_init_one_queue(dev, queue, NULL);
6926         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6927         queue->qdisc_sleeping = &noop_qdisc;
6928         rcu_assign_pointer(dev->ingress_queue, queue);
6929 #endif
6930         return queue;
6931 }
6932
6933 static const struct ethtool_ops default_ethtool_ops;
6934
6935 void netdev_set_default_ethtool_ops(struct net_device *dev,
6936                                     const struct ethtool_ops *ops)
6937 {
6938         if (dev->ethtool_ops == &default_ethtool_ops)
6939                 dev->ethtool_ops = ops;
6940 }
6941 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6942
6943 void netdev_freemem(struct net_device *dev)
6944 {
6945         char *addr = (char *)dev - dev->padded;
6946
6947         kvfree(addr);
6948 }
6949
6950 /**
6951  *      alloc_netdev_mqs - allocate network device
6952  *      @sizeof_priv:           size of private data to allocate space for
6953  *      @name:                  device name format string
6954  *      @name_assign_type:      origin of device name
6955  *      @setup:                 callback to initialize device
6956  *      @txqs:                  the number of TX subqueues to allocate
6957  *      @rxqs:                  the number of RX subqueues to allocate
6958  *
6959  *      Allocates a struct net_device with private data area for driver use
6960  *      and performs basic initialization.  Also allocates subqueue structs
6961  *      for each queue on the device.
6962  */
6963 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6964                 unsigned char name_assign_type,
6965                 void (*setup)(struct net_device *),
6966                 unsigned int txqs, unsigned int rxqs)
6967 {
6968         struct net_device *dev;
6969         size_t alloc_size;
6970         struct net_device *p;
6971
6972         BUG_ON(strlen(name) >= sizeof(dev->name));
6973
6974         if (txqs < 1) {
6975                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6976                 return NULL;
6977         }
6978
6979 #ifdef CONFIG_SYSFS
6980         if (rxqs < 1) {
6981                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6982                 return NULL;
6983         }
6984 #endif
6985
6986         alloc_size = sizeof(struct net_device);
6987         if (sizeof_priv) {
6988                 /* ensure 32-byte alignment of private area */
6989                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6990                 alloc_size += sizeof_priv;
6991         }
6992         /* ensure 32-byte alignment of whole construct */
6993         alloc_size += NETDEV_ALIGN - 1;
6994
6995         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6996         if (!p)
6997                 p = vzalloc(alloc_size);
6998         if (!p)
6999                 return NULL;
7000
7001         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7002         dev->padded = (char *)dev - (char *)p;
7003
7004         dev->pcpu_refcnt = alloc_percpu(int);
7005         if (!dev->pcpu_refcnt)
7006                 goto free_dev;
7007
7008         if (dev_addr_init(dev))
7009                 goto free_pcpu;
7010
7011         dev_mc_init(dev);
7012         dev_uc_init(dev);
7013
7014         dev_net_set(dev, &init_net);
7015
7016         dev->gso_max_size = GSO_MAX_SIZE;
7017         dev->gso_max_segs = GSO_MAX_SEGS;
7018         dev->gso_min_segs = 0;
7019
7020         INIT_LIST_HEAD(&dev->napi_list);
7021         INIT_LIST_HEAD(&dev->unreg_list);
7022         INIT_LIST_HEAD(&dev->close_list);
7023         INIT_LIST_HEAD(&dev->link_watch_list);
7024         INIT_LIST_HEAD(&dev->adj_list.upper);
7025         INIT_LIST_HEAD(&dev->adj_list.lower);
7026         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7027         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7028         INIT_LIST_HEAD(&dev->ptype_all);
7029         INIT_LIST_HEAD(&dev->ptype_specific);
7030         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7031         setup(dev);
7032
7033         if (!dev->tx_queue_len)
7034                 dev->priv_flags |= IFF_NO_QUEUE;
7035
7036         dev->num_tx_queues = txqs;
7037         dev->real_num_tx_queues = txqs;
7038         if (netif_alloc_netdev_queues(dev))
7039                 goto free_all;
7040
7041 #ifdef CONFIG_SYSFS
7042         dev->num_rx_queues = rxqs;
7043         dev->real_num_rx_queues = rxqs;
7044         if (netif_alloc_rx_queues(dev))
7045                 goto free_all;
7046 #endif
7047
7048         strcpy(dev->name, name);
7049         dev->name_assign_type = name_assign_type;
7050         dev->group = INIT_NETDEV_GROUP;
7051         if (!dev->ethtool_ops)
7052                 dev->ethtool_ops = &default_ethtool_ops;
7053
7054         nf_hook_ingress_init(dev);
7055
7056         return dev;
7057
7058 free_all:
7059         free_netdev(dev);
7060         return NULL;
7061
7062 free_pcpu:
7063         free_percpu(dev->pcpu_refcnt);
7064 free_dev:
7065         netdev_freemem(dev);
7066         return NULL;
7067 }
7068 EXPORT_SYMBOL(alloc_netdev_mqs);
7069
7070 /**
7071  *      free_netdev - free network device
7072  *      @dev: device
7073  *
7074  *      This function does the last stage of destroying an allocated device
7075  *      interface. The reference to the device object is released.
7076  *      If this is the last reference then it will be freed.
7077  */
7078 void free_netdev(struct net_device *dev)
7079 {
7080         struct napi_struct *p, *n;
7081
7082         netif_free_tx_queues(dev);
7083 #ifdef CONFIG_SYSFS
7084         kvfree(dev->_rx);
7085 #endif
7086
7087         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7088
7089         /* Flush device addresses */
7090         dev_addr_flush(dev);
7091
7092         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7093                 netif_napi_del(p);
7094
7095         free_percpu(dev->pcpu_refcnt);
7096         dev->pcpu_refcnt = NULL;
7097
7098         /*  Compatibility with error handling in drivers */
7099         if (dev->reg_state == NETREG_UNINITIALIZED) {
7100                 netdev_freemem(dev);
7101                 return;
7102         }
7103
7104         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7105         dev->reg_state = NETREG_RELEASED;
7106
7107         /* will free via device release */
7108         put_device(&dev->dev);
7109 }
7110 EXPORT_SYMBOL(free_netdev);
7111
7112 /**
7113  *      synchronize_net -  Synchronize with packet receive processing
7114  *
7115  *      Wait for packets currently being received to be done.
7116  *      Does not block later packets from starting.
7117  */
7118 void synchronize_net(void)
7119 {
7120         might_sleep();
7121         if (rtnl_is_locked())
7122                 synchronize_rcu_expedited();
7123         else
7124                 synchronize_rcu();
7125 }
7126 EXPORT_SYMBOL(synchronize_net);
7127
7128 /**
7129  *      unregister_netdevice_queue - remove device from the kernel
7130  *      @dev: device
7131  *      @head: list
7132  *
7133  *      This function shuts down a device interface and removes it
7134  *      from the kernel tables.
7135  *      If head not NULL, device is queued to be unregistered later.
7136  *
7137  *      Callers must hold the rtnl semaphore.  You may want
7138  *      unregister_netdev() instead of this.
7139  */
7140
7141 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7142 {
7143         ASSERT_RTNL();
7144
7145         if (head) {
7146                 list_move_tail(&dev->unreg_list, head);
7147         } else {
7148                 rollback_registered(dev);
7149                 /* Finish processing unregister after unlock */
7150                 net_set_todo(dev);
7151         }
7152 }
7153 EXPORT_SYMBOL(unregister_netdevice_queue);
7154
7155 /**
7156  *      unregister_netdevice_many - unregister many devices
7157  *      @head: list of devices
7158  *
7159  *  Note: As most callers use a stack allocated list_head,
7160  *  we force a list_del() to make sure stack wont be corrupted later.
7161  */
7162 void unregister_netdevice_many(struct list_head *head)
7163 {
7164         struct net_device *dev;
7165
7166         if (!list_empty(head)) {
7167                 rollback_registered_many(head);
7168                 list_for_each_entry(dev, head, unreg_list)
7169                         net_set_todo(dev);
7170                 list_del(head);
7171         }
7172 }
7173 EXPORT_SYMBOL(unregister_netdevice_many);
7174
7175 /**
7176  *      unregister_netdev - remove device from the kernel
7177  *      @dev: device
7178  *
7179  *      This function shuts down a device interface and removes it
7180  *      from the kernel tables.
7181  *
7182  *      This is just a wrapper for unregister_netdevice that takes
7183  *      the rtnl semaphore.  In general you want to use this and not
7184  *      unregister_netdevice.
7185  */
7186 void unregister_netdev(struct net_device *dev)
7187 {
7188         rtnl_lock();
7189         unregister_netdevice(dev);
7190         rtnl_unlock();
7191 }
7192 EXPORT_SYMBOL(unregister_netdev);
7193
7194 /**
7195  *      dev_change_net_namespace - move device to different nethost namespace
7196  *      @dev: device
7197  *      @net: network namespace
7198  *      @pat: If not NULL name pattern to try if the current device name
7199  *            is already taken in the destination network namespace.
7200  *
7201  *      This function shuts down a device interface and moves it
7202  *      to a new network namespace. On success 0 is returned, on
7203  *      a failure a netagive errno code is returned.
7204  *
7205  *      Callers must hold the rtnl semaphore.
7206  */
7207
7208 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7209 {
7210         int err;
7211
7212         ASSERT_RTNL();
7213
7214         /* Don't allow namespace local devices to be moved. */
7215         err = -EINVAL;
7216         if (dev->features & NETIF_F_NETNS_LOCAL)
7217                 goto out;
7218
7219         /* Ensure the device has been registrered */
7220         if (dev->reg_state != NETREG_REGISTERED)
7221                 goto out;
7222
7223         /* Get out if there is nothing todo */
7224         err = 0;
7225         if (net_eq(dev_net(dev), net))
7226                 goto out;
7227
7228         /* Pick the destination device name, and ensure
7229          * we can use it in the destination network namespace.
7230          */
7231         err = -EEXIST;
7232         if (__dev_get_by_name(net, dev->name)) {
7233                 /* We get here if we can't use the current device name */
7234                 if (!pat)
7235                         goto out;
7236                 if (dev_get_valid_name(net, dev, pat) < 0)
7237                         goto out;
7238         }
7239
7240         /*
7241          * And now a mini version of register_netdevice unregister_netdevice.
7242          */
7243
7244         /* If device is running close it first. */
7245         dev_close(dev);
7246
7247         /* And unlink it from device chain */
7248         err = -ENODEV;
7249         unlist_netdevice(dev);
7250
7251         synchronize_net();
7252
7253         /* Shutdown queueing discipline. */
7254         dev_shutdown(dev);
7255
7256         /* Notify protocols, that we are about to destroy
7257            this device. They should clean all the things.
7258
7259            Note that dev->reg_state stays at NETREG_REGISTERED.
7260            This is wanted because this way 8021q and macvlan know
7261            the device is just moving and can keep their slaves up.
7262         */
7263         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7264         rcu_barrier();
7265         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7266         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7267
7268         /*
7269          *      Flush the unicast and multicast chains
7270          */
7271         dev_uc_flush(dev);
7272         dev_mc_flush(dev);
7273
7274         /* Send a netdev-removed uevent to the old namespace */
7275         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7276         netdev_adjacent_del_links(dev);
7277
7278         /* Actually switch the network namespace */
7279         dev_net_set(dev, net);
7280
7281         /* If there is an ifindex conflict assign a new one */
7282         if (__dev_get_by_index(net, dev->ifindex))
7283                 dev->ifindex = dev_new_index(net);
7284
7285         /* Send a netdev-add uevent to the new namespace */
7286         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7287         netdev_adjacent_add_links(dev);
7288
7289         /* Fixup kobjects */
7290         err = device_rename(&dev->dev, dev->name);
7291         WARN_ON(err);
7292
7293         /* Add the device back in the hashes */
7294         list_netdevice(dev);
7295
7296         /* Notify protocols, that a new device appeared. */
7297         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7298
7299         /*
7300          *      Prevent userspace races by waiting until the network
7301          *      device is fully setup before sending notifications.
7302          */
7303         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7304
7305         synchronize_net();
7306         err = 0;
7307 out:
7308         return err;
7309 }
7310 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7311
7312 static int dev_cpu_callback(struct notifier_block *nfb,
7313                             unsigned long action,
7314                             void *ocpu)
7315 {
7316         struct sk_buff **list_skb;
7317         struct sk_buff *skb;
7318         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7319         struct softnet_data *sd, *oldsd;
7320
7321         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7322                 return NOTIFY_OK;
7323
7324         local_irq_disable();
7325         cpu = smp_processor_id();
7326         sd = &per_cpu(softnet_data, cpu);
7327         oldsd = &per_cpu(softnet_data, oldcpu);
7328
7329         /* Find end of our completion_queue. */
7330         list_skb = &sd->completion_queue;
7331         while (*list_skb)
7332                 list_skb = &(*list_skb)->next;
7333         /* Append completion queue from offline CPU. */
7334         *list_skb = oldsd->completion_queue;
7335         oldsd->completion_queue = NULL;
7336
7337         /* Append output queue from offline CPU. */
7338         if (oldsd->output_queue) {
7339                 *sd->output_queue_tailp = oldsd->output_queue;
7340                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7341                 oldsd->output_queue = NULL;
7342                 oldsd->output_queue_tailp = &oldsd->output_queue;
7343         }
7344         /* Append NAPI poll list from offline CPU, with one exception :
7345          * process_backlog() must be called by cpu owning percpu backlog.
7346          * We properly handle process_queue & input_pkt_queue later.
7347          */
7348         while (!list_empty(&oldsd->poll_list)) {
7349                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7350                                                             struct napi_struct,
7351                                                             poll_list);
7352
7353                 list_del_init(&napi->poll_list);
7354                 if (napi->poll == process_backlog)
7355                         napi->state = 0;
7356                 else
7357                         ____napi_schedule(sd, napi);
7358         }
7359
7360         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7361         local_irq_enable();
7362
7363         /* Process offline CPU's input_pkt_queue */
7364         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7365                 netif_rx_ni(skb);
7366                 input_queue_head_incr(oldsd);
7367         }
7368         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7369                 netif_rx_ni(skb);
7370                 input_queue_head_incr(oldsd);
7371         }
7372
7373         return NOTIFY_OK;
7374 }
7375
7376
7377 /**
7378  *      netdev_increment_features - increment feature set by one
7379  *      @all: current feature set
7380  *      @one: new feature set
7381  *      @mask: mask feature set
7382  *
7383  *      Computes a new feature set after adding a device with feature set
7384  *      @one to the master device with current feature set @all.  Will not
7385  *      enable anything that is off in @mask. Returns the new feature set.
7386  */
7387 netdev_features_t netdev_increment_features(netdev_features_t all,
7388         netdev_features_t one, netdev_features_t mask)
7389 {
7390         if (mask & NETIF_F_GEN_CSUM)
7391                 mask |= NETIF_F_ALL_CSUM;
7392         mask |= NETIF_F_VLAN_CHALLENGED;
7393
7394         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7395         all &= one | ~NETIF_F_ALL_FOR_ALL;
7396
7397         /* If one device supports hw checksumming, set for all. */
7398         if (all & NETIF_F_GEN_CSUM)
7399                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7400
7401         return all;
7402 }
7403 EXPORT_SYMBOL(netdev_increment_features);
7404
7405 static struct hlist_head * __net_init netdev_create_hash(void)
7406 {
7407         int i;
7408         struct hlist_head *hash;
7409
7410         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7411         if (hash != NULL)
7412                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7413                         INIT_HLIST_HEAD(&hash[i]);
7414
7415         return hash;
7416 }
7417
7418 /* Initialize per network namespace state */
7419 static int __net_init netdev_init(struct net *net)
7420 {
7421         if (net != &init_net)
7422                 INIT_LIST_HEAD(&net->dev_base_head);
7423
7424         net->dev_name_head = netdev_create_hash();
7425         if (net->dev_name_head == NULL)
7426                 goto err_name;
7427
7428         net->dev_index_head = netdev_create_hash();
7429         if (net->dev_index_head == NULL)
7430                 goto err_idx;
7431
7432         return 0;
7433
7434 err_idx:
7435         kfree(net->dev_name_head);
7436 err_name:
7437         return -ENOMEM;
7438 }
7439
7440 /**
7441  *      netdev_drivername - network driver for the device
7442  *      @dev: network device
7443  *
7444  *      Determine network driver for device.
7445  */
7446 const char *netdev_drivername(const struct net_device *dev)
7447 {
7448         const struct device_driver *driver;
7449         const struct device *parent;
7450         const char *empty = "";
7451
7452         parent = dev->dev.parent;
7453         if (!parent)
7454                 return empty;
7455
7456         driver = parent->driver;
7457         if (driver && driver->name)
7458                 return driver->name;
7459         return empty;
7460 }
7461
7462 static void __netdev_printk(const char *level, const struct net_device *dev,
7463                             struct va_format *vaf)
7464 {
7465         if (dev && dev->dev.parent) {
7466                 dev_printk_emit(level[1] - '0',
7467                                 dev->dev.parent,
7468                                 "%s %s %s%s: %pV",
7469                                 dev_driver_string(dev->dev.parent),
7470                                 dev_name(dev->dev.parent),
7471                                 netdev_name(dev), netdev_reg_state(dev),
7472                                 vaf);
7473         } else if (dev) {
7474                 printk("%s%s%s: %pV",
7475                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7476         } else {
7477                 printk("%s(NULL net_device): %pV", level, vaf);
7478         }
7479 }
7480
7481 void netdev_printk(const char *level, const struct net_device *dev,
7482                    const char *format, ...)
7483 {
7484         struct va_format vaf;
7485         va_list args;
7486
7487         va_start(args, format);
7488
7489         vaf.fmt = format;
7490         vaf.va = &args;
7491
7492         __netdev_printk(level, dev, &vaf);
7493
7494         va_end(args);
7495 }
7496 EXPORT_SYMBOL(netdev_printk);
7497
7498 #define define_netdev_printk_level(func, level)                 \
7499 void func(const struct net_device *dev, const char *fmt, ...)   \
7500 {                                                               \
7501         struct va_format vaf;                                   \
7502         va_list args;                                           \
7503                                                                 \
7504         va_start(args, fmt);                                    \
7505                                                                 \
7506         vaf.fmt = fmt;                                          \
7507         vaf.va = &args;                                         \
7508                                                                 \
7509         __netdev_printk(level, dev, &vaf);                      \
7510                                                                 \
7511         va_end(args);                                           \
7512 }                                                               \
7513 EXPORT_SYMBOL(func);
7514
7515 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7516 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7517 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7518 define_netdev_printk_level(netdev_err, KERN_ERR);
7519 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7520 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7521 define_netdev_printk_level(netdev_info, KERN_INFO);
7522
7523 static void __net_exit netdev_exit(struct net *net)
7524 {
7525         kfree(net->dev_name_head);
7526         kfree(net->dev_index_head);
7527 }
7528
7529 static struct pernet_operations __net_initdata netdev_net_ops = {
7530         .init = netdev_init,
7531         .exit = netdev_exit,
7532 };
7533
7534 static void __net_exit default_device_exit(struct net *net)
7535 {
7536         struct net_device *dev, *aux;
7537         /*
7538          * Push all migratable network devices back to the
7539          * initial network namespace
7540          */
7541         rtnl_lock();
7542         for_each_netdev_safe(net, dev, aux) {
7543                 int err;
7544                 char fb_name[IFNAMSIZ];
7545
7546                 /* Ignore unmoveable devices (i.e. loopback) */
7547                 if (dev->features & NETIF_F_NETNS_LOCAL)
7548                         continue;
7549
7550                 /* Leave virtual devices for the generic cleanup */
7551                 if (dev->rtnl_link_ops)
7552                         continue;
7553
7554                 /* Push remaining network devices to init_net */
7555                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7556                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7557                 if (err) {
7558                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7559                                  __func__, dev->name, err);
7560                         BUG();
7561                 }
7562         }
7563         rtnl_unlock();
7564 }
7565
7566 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7567 {
7568         /* Return with the rtnl_lock held when there are no network
7569          * devices unregistering in any network namespace in net_list.
7570          */
7571         struct net *net;
7572         bool unregistering;
7573         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7574
7575         add_wait_queue(&netdev_unregistering_wq, &wait);
7576         for (;;) {
7577                 unregistering = false;
7578                 rtnl_lock();
7579                 list_for_each_entry(net, net_list, exit_list) {
7580                         if (net->dev_unreg_count > 0) {
7581                                 unregistering = true;
7582                                 break;
7583                         }
7584                 }
7585                 if (!unregistering)
7586                         break;
7587                 __rtnl_unlock();
7588
7589                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7590         }
7591         remove_wait_queue(&netdev_unregistering_wq, &wait);
7592 }
7593
7594 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7595 {
7596         /* At exit all network devices most be removed from a network
7597          * namespace.  Do this in the reverse order of registration.
7598          * Do this across as many network namespaces as possible to
7599          * improve batching efficiency.
7600          */
7601         struct net_device *dev;
7602         struct net *net;
7603         LIST_HEAD(dev_kill_list);
7604
7605         /* To prevent network device cleanup code from dereferencing
7606          * loopback devices or network devices that have been freed
7607          * wait here for all pending unregistrations to complete,
7608          * before unregistring the loopback device and allowing the
7609          * network namespace be freed.
7610          *
7611          * The netdev todo list containing all network devices
7612          * unregistrations that happen in default_device_exit_batch
7613          * will run in the rtnl_unlock() at the end of
7614          * default_device_exit_batch.
7615          */
7616         rtnl_lock_unregistering(net_list);
7617         list_for_each_entry(net, net_list, exit_list) {
7618                 for_each_netdev_reverse(net, dev) {
7619                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7620                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7621                         else
7622                                 unregister_netdevice_queue(dev, &dev_kill_list);
7623                 }
7624         }
7625         unregister_netdevice_many(&dev_kill_list);
7626         rtnl_unlock();
7627 }
7628
7629 static struct pernet_operations __net_initdata default_device_ops = {
7630         .exit = default_device_exit,
7631         .exit_batch = default_device_exit_batch,
7632 };
7633
7634 /*
7635  *      Initialize the DEV module. At boot time this walks the device list and
7636  *      unhooks any devices that fail to initialise (normally hardware not
7637  *      present) and leaves us with a valid list of present and active devices.
7638  *
7639  */
7640
7641 /*
7642  *       This is called single threaded during boot, so no need
7643  *       to take the rtnl semaphore.
7644  */
7645 static int __init net_dev_init(void)
7646 {
7647         int i, rc = -ENOMEM;
7648
7649         BUG_ON(!dev_boot_phase);
7650
7651         if (dev_proc_init())
7652                 goto out;
7653
7654         if (netdev_kobject_init())
7655                 goto out;
7656
7657         INIT_LIST_HEAD(&ptype_all);
7658         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7659                 INIT_LIST_HEAD(&ptype_base[i]);
7660
7661         INIT_LIST_HEAD(&offload_base);
7662
7663         if (register_pernet_subsys(&netdev_net_ops))
7664                 goto out;
7665
7666         /*
7667          *      Initialise the packet receive queues.
7668          */
7669
7670         for_each_possible_cpu(i) {
7671                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7672
7673                 skb_queue_head_init(&sd->input_pkt_queue);
7674                 skb_queue_head_init(&sd->process_queue);
7675                 INIT_LIST_HEAD(&sd->poll_list);
7676                 sd->output_queue_tailp = &sd->output_queue;
7677 #ifdef CONFIG_RPS
7678                 sd->csd.func = rps_trigger_softirq;
7679                 sd->csd.info = sd;
7680                 sd->cpu = i;
7681 #endif
7682
7683                 sd->backlog.poll = process_backlog;
7684                 sd->backlog.weight = weight_p;
7685         }
7686
7687         dev_boot_phase = 0;
7688
7689         /* The loopback device is special if any other network devices
7690          * is present in a network namespace the loopback device must
7691          * be present. Since we now dynamically allocate and free the
7692          * loopback device ensure this invariant is maintained by
7693          * keeping the loopback device as the first device on the
7694          * list of network devices.  Ensuring the loopback devices
7695          * is the first device that appears and the last network device
7696          * that disappears.
7697          */
7698         if (register_pernet_device(&loopback_net_ops))
7699                 goto out;
7700
7701         if (register_pernet_device(&default_device_ops))
7702                 goto out;
7703
7704         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7705         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7706
7707         hotcpu_notifier(dev_cpu_callback, 0);
7708         dst_subsys_init();
7709         rc = 0;
7710 out:
7711         return rc;
7712 }
7713
7714 subsys_initcall(net_dev_init);