drm/amdgpu/ci: disable mclk switching for high refresh rates (v2)
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 static atomic_t netstamp_needed_deferred;
1680 static atomic_t netstamp_wanted;
1681 static void netstamp_clear(struct work_struct *work)
1682 {
1683         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1684         int wanted;
1685
1686         wanted = atomic_add_return(deferred, &netstamp_wanted);
1687         if (wanted > 0)
1688                 static_key_enable(&netstamp_needed);
1689         else
1690                 static_key_disable(&netstamp_needed);
1691 }
1692 static DECLARE_WORK(netstamp_work, netstamp_clear);
1693 #endif
1694
1695 void net_enable_timestamp(void)
1696 {
1697 #ifdef HAVE_JUMP_LABEL
1698         int wanted;
1699
1700         while (1) {
1701                 wanted = atomic_read(&netstamp_wanted);
1702                 if (wanted <= 0)
1703                         break;
1704                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1705                         return;
1706         }
1707         atomic_inc(&netstamp_needed_deferred);
1708         schedule_work(&netstamp_work);
1709 #else
1710         static_key_slow_inc(&netstamp_needed);
1711 #endif
1712 }
1713 EXPORT_SYMBOL(net_enable_timestamp);
1714
1715 void net_disable_timestamp(void)
1716 {
1717 #ifdef HAVE_JUMP_LABEL
1718         int wanted;
1719
1720         while (1) {
1721                 wanted = atomic_read(&netstamp_wanted);
1722                 if (wanted <= 1)
1723                         break;
1724                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1725                         return;
1726         }
1727         atomic_dec(&netstamp_needed_deferred);
1728         schedule_work(&netstamp_work);
1729 #else
1730         static_key_slow_dec(&netstamp_needed);
1731 #endif
1732 }
1733 EXPORT_SYMBOL(net_disable_timestamp);
1734
1735 static inline void net_timestamp_set(struct sk_buff *skb)
1736 {
1737         skb->tstamp.tv64 = 0;
1738         if (static_key_false(&netstamp_needed))
1739                 __net_timestamp(skb);
1740 }
1741
1742 #define net_timestamp_check(COND, SKB)                  \
1743         if (static_key_false(&netstamp_needed)) {               \
1744                 if ((COND) && !(SKB)->tstamp.tv64)      \
1745                         __net_timestamp(SKB);           \
1746         }                                               \
1747
1748 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1749 {
1750         unsigned int len;
1751
1752         if (!(dev->flags & IFF_UP))
1753                 return false;
1754
1755         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1756         if (skb->len <= len)
1757                 return true;
1758
1759         /* if TSO is enabled, we don't care about the length as the packet
1760          * could be forwarded without being segmented before
1761          */
1762         if (skb_is_gso(skb))
1763                 return true;
1764
1765         return false;
1766 }
1767 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1768
1769 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1770 {
1771         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1772             unlikely(!is_skb_forwardable(dev, skb))) {
1773                 atomic_long_inc(&dev->rx_dropped);
1774                 kfree_skb(skb);
1775                 return NET_RX_DROP;
1776         }
1777
1778         skb_scrub_packet(skb, true);
1779         skb->priority = 0;
1780         skb->protocol = eth_type_trans(skb, dev);
1781         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1782
1783         return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1786
1787 /**
1788  * dev_forward_skb - loopback an skb to another netif
1789  *
1790  * @dev: destination network device
1791  * @skb: buffer to forward
1792  *
1793  * return values:
1794  *      NET_RX_SUCCESS  (no congestion)
1795  *      NET_RX_DROP     (packet was dropped, but freed)
1796  *
1797  * dev_forward_skb can be used for injecting an skb from the
1798  * start_xmit function of one device into the receive queue
1799  * of another device.
1800  *
1801  * The receiving device may be in another namespace, so
1802  * we have to clear all information in the skb that could
1803  * impact namespace isolation.
1804  */
1805 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1806 {
1807         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1808 }
1809 EXPORT_SYMBOL_GPL(dev_forward_skb);
1810
1811 static inline int deliver_skb(struct sk_buff *skb,
1812                               struct packet_type *pt_prev,
1813                               struct net_device *orig_dev)
1814 {
1815         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1816                 return -ENOMEM;
1817         atomic_inc(&skb->users);
1818         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1819 }
1820
1821 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1822                                           struct packet_type **pt,
1823                                           struct net_device *orig_dev,
1824                                           __be16 type,
1825                                           struct list_head *ptype_list)
1826 {
1827         struct packet_type *ptype, *pt_prev = *pt;
1828
1829         list_for_each_entry_rcu(ptype, ptype_list, list) {
1830                 if (ptype->type != type)
1831                         continue;
1832                 if (pt_prev)
1833                         deliver_skb(skb, pt_prev, orig_dev);
1834                 pt_prev = ptype;
1835         }
1836         *pt = pt_prev;
1837 }
1838
1839 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1840 {
1841         if (!ptype->af_packet_priv || !skb->sk)
1842                 return false;
1843
1844         if (ptype->id_match)
1845                 return ptype->id_match(ptype, skb->sk);
1846         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1847                 return true;
1848
1849         return false;
1850 }
1851
1852 /*
1853  *      Support routine. Sends outgoing frames to any network
1854  *      taps currently in use.
1855  */
1856
1857 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1858 {
1859         struct packet_type *ptype;
1860         struct sk_buff *skb2 = NULL;
1861         struct packet_type *pt_prev = NULL;
1862         struct list_head *ptype_list = &ptype_all;
1863
1864         rcu_read_lock();
1865 again:
1866         list_for_each_entry_rcu(ptype, ptype_list, list) {
1867                 /* Never send packets back to the socket
1868                  * they originated from - MvS (miquels@drinkel.ow.org)
1869                  */
1870                 if (skb_loop_sk(ptype, skb))
1871                         continue;
1872
1873                 if (pt_prev) {
1874                         deliver_skb(skb2, pt_prev, skb->dev);
1875                         pt_prev = ptype;
1876                         continue;
1877                 }
1878
1879                 /* need to clone skb, done only once */
1880                 skb2 = skb_clone(skb, GFP_ATOMIC);
1881                 if (!skb2)
1882                         goto out_unlock;
1883
1884                 net_timestamp_set(skb2);
1885
1886                 /* skb->nh should be correctly
1887                  * set by sender, so that the second statement is
1888                  * just protection against buggy protocols.
1889                  */
1890                 skb_reset_mac_header(skb2);
1891
1892                 if (skb_network_header(skb2) < skb2->data ||
1893                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1894                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1895                                              ntohs(skb2->protocol),
1896                                              dev->name);
1897                         skb_reset_network_header(skb2);
1898                 }
1899
1900                 skb2->transport_header = skb2->network_header;
1901                 skb2->pkt_type = PACKET_OUTGOING;
1902                 pt_prev = ptype;
1903         }
1904
1905         if (ptype_list == &ptype_all) {
1906                 ptype_list = &dev->ptype_all;
1907                 goto again;
1908         }
1909 out_unlock:
1910         if (pt_prev)
1911                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1912         rcu_read_unlock();
1913 }
1914
1915 /**
1916  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1917  * @dev: Network device
1918  * @txq: number of queues available
1919  *
1920  * If real_num_tx_queues is changed the tc mappings may no longer be
1921  * valid. To resolve this verify the tc mapping remains valid and if
1922  * not NULL the mapping. With no priorities mapping to this
1923  * offset/count pair it will no longer be used. In the worst case TC0
1924  * is invalid nothing can be done so disable priority mappings. If is
1925  * expected that drivers will fix this mapping if they can before
1926  * calling netif_set_real_num_tx_queues.
1927  */
1928 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1929 {
1930         int i;
1931         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1932
1933         /* If TC0 is invalidated disable TC mapping */
1934         if (tc->offset + tc->count > txq) {
1935                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1936                 dev->num_tc = 0;
1937                 return;
1938         }
1939
1940         /* Invalidated prio to tc mappings set to TC0 */
1941         for (i = 1; i < TC_BITMASK + 1; i++) {
1942                 int q = netdev_get_prio_tc_map(dev, i);
1943
1944                 tc = &dev->tc_to_txq[q];
1945                 if (tc->offset + tc->count > txq) {
1946                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1947                                 i, q);
1948                         netdev_set_prio_tc_map(dev, i, 0);
1949                 }
1950         }
1951 }
1952
1953 #ifdef CONFIG_XPS
1954 static DEFINE_MUTEX(xps_map_mutex);
1955 #define xmap_dereference(P)             \
1956         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1957
1958 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1959                                         int cpu, u16 index)
1960 {
1961         struct xps_map *map = NULL;
1962         int pos;
1963
1964         if (dev_maps)
1965                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1966
1967         for (pos = 0; map && pos < map->len; pos++) {
1968                 if (map->queues[pos] == index) {
1969                         if (map->len > 1) {
1970                                 map->queues[pos] = map->queues[--map->len];
1971                         } else {
1972                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1973                                 kfree_rcu(map, rcu);
1974                                 map = NULL;
1975                         }
1976                         break;
1977                 }
1978         }
1979
1980         return map;
1981 }
1982
1983 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1984 {
1985         struct xps_dev_maps *dev_maps;
1986         int cpu, i;
1987         bool active = false;
1988
1989         mutex_lock(&xps_map_mutex);
1990         dev_maps = xmap_dereference(dev->xps_maps);
1991
1992         if (!dev_maps)
1993                 goto out_no_maps;
1994
1995         for_each_possible_cpu(cpu) {
1996                 for (i = index; i < dev->num_tx_queues; i++) {
1997                         if (!remove_xps_queue(dev_maps, cpu, i))
1998                                 break;
1999                 }
2000                 if (i == dev->num_tx_queues)
2001                         active = true;
2002         }
2003
2004         if (!active) {
2005                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2006                 kfree_rcu(dev_maps, rcu);
2007         }
2008
2009         for (i = index; i < dev->num_tx_queues; i++)
2010                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2011                                              NUMA_NO_NODE);
2012
2013 out_no_maps:
2014         mutex_unlock(&xps_map_mutex);
2015 }
2016
2017 static struct xps_map *expand_xps_map(struct xps_map *map,
2018                                       int cpu, u16 index)
2019 {
2020         struct xps_map *new_map;
2021         int alloc_len = XPS_MIN_MAP_ALLOC;
2022         int i, pos;
2023
2024         for (pos = 0; map && pos < map->len; pos++) {
2025                 if (map->queues[pos] != index)
2026                         continue;
2027                 return map;
2028         }
2029
2030         /* Need to add queue to this CPU's existing map */
2031         if (map) {
2032                 if (pos < map->alloc_len)
2033                         return map;
2034
2035                 alloc_len = map->alloc_len * 2;
2036         }
2037
2038         /* Need to allocate new map to store queue on this CPU's map */
2039         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2040                                cpu_to_node(cpu));
2041         if (!new_map)
2042                 return NULL;
2043
2044         for (i = 0; i < pos; i++)
2045                 new_map->queues[i] = map->queues[i];
2046         new_map->alloc_len = alloc_len;
2047         new_map->len = pos;
2048
2049         return new_map;
2050 }
2051
2052 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2053                         u16 index)
2054 {
2055         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2056         struct xps_map *map, *new_map;
2057         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2058         int cpu, numa_node_id = -2;
2059         bool active = false;
2060
2061         mutex_lock(&xps_map_mutex);
2062
2063         dev_maps = xmap_dereference(dev->xps_maps);
2064
2065         /* allocate memory for queue storage */
2066         for_each_online_cpu(cpu) {
2067                 if (!cpumask_test_cpu(cpu, mask))
2068                         continue;
2069
2070                 if (!new_dev_maps)
2071                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2072                 if (!new_dev_maps) {
2073                         mutex_unlock(&xps_map_mutex);
2074                         return -ENOMEM;
2075                 }
2076
2077                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2078                                  NULL;
2079
2080                 map = expand_xps_map(map, cpu, index);
2081                 if (!map)
2082                         goto error;
2083
2084                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2085         }
2086
2087         if (!new_dev_maps)
2088                 goto out_no_new_maps;
2089
2090         for_each_possible_cpu(cpu) {
2091                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2092                         /* add queue to CPU maps */
2093                         int pos = 0;
2094
2095                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2096                         while ((pos < map->len) && (map->queues[pos] != index))
2097                                 pos++;
2098
2099                         if (pos == map->len)
2100                                 map->queues[map->len++] = index;
2101 #ifdef CONFIG_NUMA
2102                         if (numa_node_id == -2)
2103                                 numa_node_id = cpu_to_node(cpu);
2104                         else if (numa_node_id != cpu_to_node(cpu))
2105                                 numa_node_id = -1;
2106 #endif
2107                 } else if (dev_maps) {
2108                         /* fill in the new device map from the old device map */
2109                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2110                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2111                 }
2112
2113         }
2114
2115         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2116
2117         /* Cleanup old maps */
2118         if (dev_maps) {
2119                 for_each_possible_cpu(cpu) {
2120                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2121                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2122                         if (map && map != new_map)
2123                                 kfree_rcu(map, rcu);
2124                 }
2125
2126                 kfree_rcu(dev_maps, rcu);
2127         }
2128
2129         dev_maps = new_dev_maps;
2130         active = true;
2131
2132 out_no_new_maps:
2133         /* update Tx queue numa node */
2134         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2135                                      (numa_node_id >= 0) ? numa_node_id :
2136                                      NUMA_NO_NODE);
2137
2138         if (!dev_maps)
2139                 goto out_no_maps;
2140
2141         /* removes queue from unused CPUs */
2142         for_each_possible_cpu(cpu) {
2143                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2144                         continue;
2145
2146                 if (remove_xps_queue(dev_maps, cpu, index))
2147                         active = true;
2148         }
2149
2150         /* free map if not active */
2151         if (!active) {
2152                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2153                 kfree_rcu(dev_maps, rcu);
2154         }
2155
2156 out_no_maps:
2157         mutex_unlock(&xps_map_mutex);
2158
2159         return 0;
2160 error:
2161         /* remove any maps that we added */
2162         for_each_possible_cpu(cpu) {
2163                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2164                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2165                                  NULL;
2166                 if (new_map && new_map != map)
2167                         kfree(new_map);
2168         }
2169
2170         mutex_unlock(&xps_map_mutex);
2171
2172         kfree(new_dev_maps);
2173         return -ENOMEM;
2174 }
2175 EXPORT_SYMBOL(netif_set_xps_queue);
2176
2177 #endif
2178 /*
2179  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2180  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2181  */
2182 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2183 {
2184         int rc;
2185
2186         if (txq < 1 || txq > dev->num_tx_queues)
2187                 return -EINVAL;
2188
2189         if (dev->reg_state == NETREG_REGISTERED ||
2190             dev->reg_state == NETREG_UNREGISTERING) {
2191                 ASSERT_RTNL();
2192
2193                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2194                                                   txq);
2195                 if (rc)
2196                         return rc;
2197
2198                 if (dev->num_tc)
2199                         netif_setup_tc(dev, txq);
2200
2201                 if (txq < dev->real_num_tx_queues) {
2202                         qdisc_reset_all_tx_gt(dev, txq);
2203 #ifdef CONFIG_XPS
2204                         netif_reset_xps_queues_gt(dev, txq);
2205 #endif
2206                 }
2207         }
2208
2209         dev->real_num_tx_queues = txq;
2210         return 0;
2211 }
2212 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2213
2214 #ifdef CONFIG_SYSFS
2215 /**
2216  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2217  *      @dev: Network device
2218  *      @rxq: Actual number of RX queues
2219  *
2220  *      This must be called either with the rtnl_lock held or before
2221  *      registration of the net device.  Returns 0 on success, or a
2222  *      negative error code.  If called before registration, it always
2223  *      succeeds.
2224  */
2225 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2226 {
2227         int rc;
2228
2229         if (rxq < 1 || rxq > dev->num_rx_queues)
2230                 return -EINVAL;
2231
2232         if (dev->reg_state == NETREG_REGISTERED) {
2233                 ASSERT_RTNL();
2234
2235                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2236                                                   rxq);
2237                 if (rc)
2238                         return rc;
2239         }
2240
2241         dev->real_num_rx_queues = rxq;
2242         return 0;
2243 }
2244 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2245 #endif
2246
2247 /**
2248  * netif_get_num_default_rss_queues - default number of RSS queues
2249  *
2250  * This routine should set an upper limit on the number of RSS queues
2251  * used by default by multiqueue devices.
2252  */
2253 int netif_get_num_default_rss_queues(void)
2254 {
2255         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static inline void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features = 0;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2496 {
2497         __be16 type = skb->protocol;
2498
2499         /* Tunnel gso handlers can set protocol to ethernet. */
2500         if (type == htons(ETH_P_TEB)) {
2501                 struct ethhdr *eth;
2502
2503                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2504                         return 0;
2505
2506                 eth = (struct ethhdr *)skb_mac_header(skb);
2507                 type = eth->h_proto;
2508         }
2509
2510         return __vlan_get_protocol(skb, type, depth);
2511 }
2512
2513 /**
2514  *      skb_mac_gso_segment - mac layer segmentation handler.
2515  *      @skb: buffer to segment
2516  *      @features: features for the output path (see dev->features)
2517  */
2518 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2519                                     netdev_features_t features)
2520 {
2521         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2522         struct packet_offload *ptype;
2523         int vlan_depth = skb->mac_len;
2524         __be16 type = skb_network_protocol(skb, &vlan_depth);
2525
2526         if (unlikely(!type))
2527                 return ERR_PTR(-EINVAL);
2528
2529         __skb_pull(skb, vlan_depth);
2530
2531         rcu_read_lock();
2532         list_for_each_entry_rcu(ptype, &offload_base, list) {
2533                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2534                         segs = ptype->callbacks.gso_segment(skb, features);
2535                         break;
2536                 }
2537         }
2538         rcu_read_unlock();
2539
2540         __skb_push(skb, skb->data - skb_mac_header(skb));
2541
2542         return segs;
2543 }
2544 EXPORT_SYMBOL(skb_mac_gso_segment);
2545
2546
2547 /* openvswitch calls this on rx path, so we need a different check.
2548  */
2549 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2550 {
2551         if (tx_path)
2552                 return skb->ip_summed != CHECKSUM_PARTIAL;
2553         else
2554                 return skb->ip_summed == CHECKSUM_NONE;
2555 }
2556
2557 /**
2558  *      __skb_gso_segment - Perform segmentation on skb.
2559  *      @skb: buffer to segment
2560  *      @features: features for the output path (see dev->features)
2561  *      @tx_path: whether it is called in TX path
2562  *
2563  *      This function segments the given skb and returns a list of segments.
2564  *
2565  *      It may return NULL if the skb requires no segmentation.  This is
2566  *      only possible when GSO is used for verifying header integrity.
2567  *
2568  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2569  */
2570 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2571                                   netdev_features_t features, bool tx_path)
2572 {
2573         if (unlikely(skb_needs_check(skb, tx_path))) {
2574                 int err;
2575
2576                 skb_warn_bad_offload(skb);
2577
2578                 err = skb_cow_head(skb, 0);
2579                 if (err < 0)
2580                         return ERR_PTR(err);
2581         }
2582
2583         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2584                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2585
2586         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2587         SKB_GSO_CB(skb)->encap_level = 0;
2588
2589         skb_reset_mac_header(skb);
2590         skb_reset_mac_len(skb);
2591
2592         return skb_mac_gso_segment(skb, features);
2593 }
2594 EXPORT_SYMBOL(__skb_gso_segment);
2595
2596 /* Take action when hardware reception checksum errors are detected. */
2597 #ifdef CONFIG_BUG
2598 void netdev_rx_csum_fault(struct net_device *dev)
2599 {
2600         if (net_ratelimit()) {
2601                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2602                 dump_stack();
2603         }
2604 }
2605 EXPORT_SYMBOL(netdev_rx_csum_fault);
2606 #endif
2607
2608 /* Actually, we should eliminate this check as soon as we know, that:
2609  * 1. IOMMU is present and allows to map all the memory.
2610  * 2. No high memory really exists on this machine.
2611  */
2612
2613 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2614 {
2615 #ifdef CONFIG_HIGHMEM
2616         int i;
2617         if (!(dev->features & NETIF_F_HIGHDMA)) {
2618                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2619                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2620                         if (PageHighMem(skb_frag_page(frag)))
2621                                 return 1;
2622                 }
2623         }
2624
2625         if (PCI_DMA_BUS_IS_PHYS) {
2626                 struct device *pdev = dev->dev.parent;
2627
2628                 if (!pdev)
2629                         return 0;
2630                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2631                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2632                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2633                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2634                                 return 1;
2635                 }
2636         }
2637 #endif
2638         return 0;
2639 }
2640
2641 /* If MPLS offload request, verify we are testing hardware MPLS features
2642  * instead of standard features for the netdev.
2643  */
2644 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2645 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2646                                            netdev_features_t features,
2647                                            __be16 type)
2648 {
2649         if (eth_p_mpls(type))
2650                 features &= skb->dev->mpls_features;
2651
2652         return features;
2653 }
2654 #else
2655 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2656                                            netdev_features_t features,
2657                                            __be16 type)
2658 {
2659         return features;
2660 }
2661 #endif
2662
2663 static netdev_features_t harmonize_features(struct sk_buff *skb,
2664         netdev_features_t features)
2665 {
2666         int tmp;
2667         __be16 type;
2668
2669         type = skb_network_protocol(skb, &tmp);
2670         features = net_mpls_features(skb, features, type);
2671
2672         if (skb->ip_summed != CHECKSUM_NONE &&
2673             !can_checksum_protocol(features, type)) {
2674                 features &= ~NETIF_F_ALL_CSUM;
2675         }
2676         if (illegal_highdma(skb->dev, skb))
2677                 features &= ~NETIF_F_SG;
2678
2679         return features;
2680 }
2681
2682 netdev_features_t passthru_features_check(struct sk_buff *skb,
2683                                           struct net_device *dev,
2684                                           netdev_features_t features)
2685 {
2686         return features;
2687 }
2688 EXPORT_SYMBOL(passthru_features_check);
2689
2690 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2691                                              struct net_device *dev,
2692                                              netdev_features_t features)
2693 {
2694         return vlan_features_check(skb, features);
2695 }
2696
2697 netdev_features_t netif_skb_features(struct sk_buff *skb)
2698 {
2699         struct net_device *dev = skb->dev;
2700         netdev_features_t features = dev->features;
2701         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2702
2703         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2704                 features &= ~NETIF_F_GSO_MASK;
2705
2706         /* If encapsulation offload request, verify we are testing
2707          * hardware encapsulation features instead of standard
2708          * features for the netdev
2709          */
2710         if (skb->encapsulation)
2711                 features &= dev->hw_enc_features;
2712
2713         if (skb_vlan_tagged(skb))
2714                 features = netdev_intersect_features(features,
2715                                                      dev->vlan_features |
2716                                                      NETIF_F_HW_VLAN_CTAG_TX |
2717                                                      NETIF_F_HW_VLAN_STAG_TX);
2718
2719         if (dev->netdev_ops->ndo_features_check)
2720                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2721                                                                 features);
2722         else
2723                 features &= dflt_features_check(skb, dev, features);
2724
2725         return harmonize_features(skb, features);
2726 }
2727 EXPORT_SYMBOL(netif_skb_features);
2728
2729 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2730                     struct netdev_queue *txq, bool more)
2731 {
2732         unsigned int len;
2733         int rc;
2734
2735         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2736                 dev_queue_xmit_nit(skb, dev);
2737
2738         len = skb->len;
2739         trace_net_dev_start_xmit(skb, dev);
2740         rc = netdev_start_xmit(skb, dev, txq, more);
2741         trace_net_dev_xmit(skb, rc, dev, len);
2742
2743         return rc;
2744 }
2745
2746 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2747                                     struct netdev_queue *txq, int *ret)
2748 {
2749         struct sk_buff *skb = first;
2750         int rc = NETDEV_TX_OK;
2751
2752         while (skb) {
2753                 struct sk_buff *next = skb->next;
2754
2755                 skb->next = NULL;
2756                 rc = xmit_one(skb, dev, txq, next != NULL);
2757                 if (unlikely(!dev_xmit_complete(rc))) {
2758                         skb->next = next;
2759                         goto out;
2760                 }
2761
2762                 skb = next;
2763                 if (netif_xmit_stopped(txq) && skb) {
2764                         rc = NETDEV_TX_BUSY;
2765                         break;
2766                 }
2767         }
2768
2769 out:
2770         *ret = rc;
2771         return skb;
2772 }
2773
2774 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2775                                           netdev_features_t features)
2776 {
2777         if (skb_vlan_tag_present(skb) &&
2778             !vlan_hw_offload_capable(features, skb->vlan_proto))
2779                 skb = __vlan_hwaccel_push_inside(skb);
2780         return skb;
2781 }
2782
2783 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2784 {
2785         netdev_features_t features;
2786
2787         if (skb->next)
2788                 return skb;
2789
2790         features = netif_skb_features(skb);
2791         skb = validate_xmit_vlan(skb, features);
2792         if (unlikely(!skb))
2793                 goto out_null;
2794
2795         if (netif_needs_gso(skb, features)) {
2796                 struct sk_buff *segs;
2797
2798                 segs = skb_gso_segment(skb, features);
2799                 if (IS_ERR(segs)) {
2800                         goto out_kfree_skb;
2801                 } else if (segs) {
2802                         consume_skb(skb);
2803                         skb = segs;
2804                 }
2805         } else {
2806                 if (skb_needs_linearize(skb, features) &&
2807                     __skb_linearize(skb))
2808                         goto out_kfree_skb;
2809
2810                 /* If packet is not checksummed and device does not
2811                  * support checksumming for this protocol, complete
2812                  * checksumming here.
2813                  */
2814                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2815                         if (skb->encapsulation)
2816                                 skb_set_inner_transport_header(skb,
2817                                                                skb_checksum_start_offset(skb));
2818                         else
2819                                 skb_set_transport_header(skb,
2820                                                          skb_checksum_start_offset(skb));
2821                         if (!(features & NETIF_F_ALL_CSUM) &&
2822                             skb_checksum_help(skb))
2823                                 goto out_kfree_skb;
2824                 }
2825         }
2826
2827         return skb;
2828
2829 out_kfree_skb:
2830         kfree_skb(skb);
2831 out_null:
2832         return NULL;
2833 }
2834
2835 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2836 {
2837         struct sk_buff *next, *head = NULL, *tail;
2838
2839         for (; skb != NULL; skb = next) {
2840                 next = skb->next;
2841                 skb->next = NULL;
2842
2843                 /* in case skb wont be segmented, point to itself */
2844                 skb->prev = skb;
2845
2846                 skb = validate_xmit_skb(skb, dev);
2847                 if (!skb)
2848                         continue;
2849
2850                 if (!head)
2851                         head = skb;
2852                 else
2853                         tail->next = skb;
2854                 /* If skb was segmented, skb->prev points to
2855                  * the last segment. If not, it still contains skb.
2856                  */
2857                 tail = skb->prev;
2858         }
2859         return head;
2860 }
2861 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2862
2863 static void qdisc_pkt_len_init(struct sk_buff *skb)
2864 {
2865         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2866
2867         qdisc_skb_cb(skb)->pkt_len = skb->len;
2868
2869         /* To get more precise estimation of bytes sent on wire,
2870          * we add to pkt_len the headers size of all segments
2871          */
2872         if (shinfo->gso_size)  {
2873                 unsigned int hdr_len;
2874                 u16 gso_segs = shinfo->gso_segs;
2875
2876                 /* mac layer + network layer */
2877                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2878
2879                 /* + transport layer */
2880                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2881                         hdr_len += tcp_hdrlen(skb);
2882                 else
2883                         hdr_len += sizeof(struct udphdr);
2884
2885                 if (shinfo->gso_type & SKB_GSO_DODGY)
2886                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2887                                                 shinfo->gso_size);
2888
2889                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2890         }
2891 }
2892
2893 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2894                                  struct net_device *dev,
2895                                  struct netdev_queue *txq)
2896 {
2897         spinlock_t *root_lock = qdisc_lock(q);
2898         bool contended;
2899         int rc;
2900
2901         qdisc_pkt_len_init(skb);
2902         qdisc_calculate_pkt_len(skb, q);
2903         /*
2904          * Heuristic to force contended enqueues to serialize on a
2905          * separate lock before trying to get qdisc main lock.
2906          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2907          * often and dequeue packets faster.
2908          */
2909         contended = qdisc_is_running(q);
2910         if (unlikely(contended))
2911                 spin_lock(&q->busylock);
2912
2913         spin_lock(root_lock);
2914         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2915                 kfree_skb(skb);
2916                 rc = NET_XMIT_DROP;
2917         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2918                    qdisc_run_begin(q)) {
2919                 /*
2920                  * This is a work-conserving queue; there are no old skbs
2921                  * waiting to be sent out; and the qdisc is not running -
2922                  * xmit the skb directly.
2923                  */
2924
2925                 qdisc_bstats_update(q, skb);
2926
2927                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2928                         if (unlikely(contended)) {
2929                                 spin_unlock(&q->busylock);
2930                                 contended = false;
2931                         }
2932                         __qdisc_run(q);
2933                 } else
2934                         qdisc_run_end(q);
2935
2936                 rc = NET_XMIT_SUCCESS;
2937         } else {
2938                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2939                 if (qdisc_run_begin(q)) {
2940                         if (unlikely(contended)) {
2941                                 spin_unlock(&q->busylock);
2942                                 contended = false;
2943                         }
2944                         __qdisc_run(q);
2945                 }
2946         }
2947         spin_unlock(root_lock);
2948         if (unlikely(contended))
2949                 spin_unlock(&q->busylock);
2950         return rc;
2951 }
2952
2953 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2954 static void skb_update_prio(struct sk_buff *skb)
2955 {
2956         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2957
2958         if (!skb->priority && skb->sk && map) {
2959                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2960
2961                 if (prioidx < map->priomap_len)
2962                         skb->priority = map->priomap[prioidx];
2963         }
2964 }
2965 #else
2966 #define skb_update_prio(skb)
2967 #endif
2968
2969 DEFINE_PER_CPU(int, xmit_recursion);
2970 EXPORT_SYMBOL(xmit_recursion);
2971
2972 #define RECURSION_LIMIT 10
2973
2974 /**
2975  *      dev_loopback_xmit - loop back @skb
2976  *      @net: network namespace this loopback is happening in
2977  *      @sk:  sk needed to be a netfilter okfn
2978  *      @skb: buffer to transmit
2979  */
2980 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2981 {
2982         skb_reset_mac_header(skb);
2983         __skb_pull(skb, skb_network_offset(skb));
2984         skb->pkt_type = PACKET_LOOPBACK;
2985         skb->ip_summed = CHECKSUM_UNNECESSARY;
2986         WARN_ON(!skb_dst(skb));
2987         skb_dst_force(skb);
2988         netif_rx_ni(skb);
2989         return 0;
2990 }
2991 EXPORT_SYMBOL(dev_loopback_xmit);
2992
2993 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2994 {
2995 #ifdef CONFIG_XPS
2996         struct xps_dev_maps *dev_maps;
2997         struct xps_map *map;
2998         int queue_index = -1;
2999
3000         rcu_read_lock();
3001         dev_maps = rcu_dereference(dev->xps_maps);
3002         if (dev_maps) {
3003                 map = rcu_dereference(
3004                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3005                 if (map) {
3006                         if (map->len == 1)
3007                                 queue_index = map->queues[0];
3008                         else
3009                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3010                                                                            map->len)];
3011                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3012                                 queue_index = -1;
3013                 }
3014         }
3015         rcu_read_unlock();
3016
3017         return queue_index;
3018 #else
3019         return -1;
3020 #endif
3021 }
3022
3023 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3024 {
3025         struct sock *sk = skb->sk;
3026         int queue_index = sk_tx_queue_get(sk);
3027
3028         if (queue_index < 0 || skb->ooo_okay ||
3029             queue_index >= dev->real_num_tx_queues) {
3030                 int new_index = get_xps_queue(dev, skb);
3031                 if (new_index < 0)
3032                         new_index = skb_tx_hash(dev, skb);
3033
3034                 if (queue_index != new_index && sk &&
3035                     sk_fullsock(sk) &&
3036                     rcu_access_pointer(sk->sk_dst_cache))
3037                         sk_tx_queue_set(sk, new_index);
3038
3039                 queue_index = new_index;
3040         }
3041
3042         return queue_index;
3043 }
3044
3045 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3046                                     struct sk_buff *skb,
3047                                     void *accel_priv)
3048 {
3049         int queue_index = 0;
3050
3051 #ifdef CONFIG_XPS
3052         if (skb->sender_cpu == 0)
3053                 skb->sender_cpu = raw_smp_processor_id() + 1;
3054 #endif
3055
3056         if (dev->real_num_tx_queues != 1) {
3057                 const struct net_device_ops *ops = dev->netdev_ops;
3058                 if (ops->ndo_select_queue)
3059                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3060                                                             __netdev_pick_tx);
3061                 else
3062                         queue_index = __netdev_pick_tx(dev, skb);
3063
3064                 if (!accel_priv)
3065                         queue_index = netdev_cap_txqueue(dev, queue_index);
3066         }
3067
3068         skb_set_queue_mapping(skb, queue_index);
3069         return netdev_get_tx_queue(dev, queue_index);
3070 }
3071
3072 /**
3073  *      __dev_queue_xmit - transmit a buffer
3074  *      @skb: buffer to transmit
3075  *      @accel_priv: private data used for L2 forwarding offload
3076  *
3077  *      Queue a buffer for transmission to a network device. The caller must
3078  *      have set the device and priority and built the buffer before calling
3079  *      this function. The function can be called from an interrupt.
3080  *
3081  *      A negative errno code is returned on a failure. A success does not
3082  *      guarantee the frame will be transmitted as it may be dropped due
3083  *      to congestion or traffic shaping.
3084  *
3085  * -----------------------------------------------------------------------------------
3086  *      I notice this method can also return errors from the queue disciplines,
3087  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3088  *      be positive.
3089  *
3090  *      Regardless of the return value, the skb is consumed, so it is currently
3091  *      difficult to retry a send to this method.  (You can bump the ref count
3092  *      before sending to hold a reference for retry if you are careful.)
3093  *
3094  *      When calling this method, interrupts MUST be enabled.  This is because
3095  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3096  *          --BLG
3097  */
3098 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3099 {
3100         struct net_device *dev = skb->dev;
3101         struct netdev_queue *txq;
3102         struct Qdisc *q;
3103         int rc = -ENOMEM;
3104
3105         skb_reset_mac_header(skb);
3106
3107         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3108                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3109
3110         /* Disable soft irqs for various locks below. Also
3111          * stops preemption for RCU.
3112          */
3113         rcu_read_lock_bh();
3114
3115         skb_update_prio(skb);
3116
3117         /* If device/qdisc don't need skb->dst, release it right now while
3118          * its hot in this cpu cache.
3119          */
3120         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3121                 skb_dst_drop(skb);
3122         else
3123                 skb_dst_force(skb);
3124
3125 #ifdef CONFIG_NET_SWITCHDEV
3126         /* Don't forward if offload device already forwarded */
3127         if (skb->offload_fwd_mark &&
3128             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3129                 consume_skb(skb);
3130                 rc = NET_XMIT_SUCCESS;
3131                 goto out;
3132         }
3133 #endif
3134
3135         txq = netdev_pick_tx(dev, skb, accel_priv);
3136         q = rcu_dereference_bh(txq->qdisc);
3137
3138 #ifdef CONFIG_NET_CLS_ACT
3139         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3140 #endif
3141         trace_net_dev_queue(skb);
3142         if (q->enqueue) {
3143                 rc = __dev_xmit_skb(skb, q, dev, txq);
3144                 goto out;
3145         }
3146
3147         /* The device has no queue. Common case for software devices:
3148            loopback, all the sorts of tunnels...
3149
3150            Really, it is unlikely that netif_tx_lock protection is necessary
3151            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3152            counters.)
3153            However, it is possible, that they rely on protection
3154            made by us here.
3155
3156            Check this and shot the lock. It is not prone from deadlocks.
3157            Either shot noqueue qdisc, it is even simpler 8)
3158          */
3159         if (dev->flags & IFF_UP) {
3160                 int cpu = smp_processor_id(); /* ok because BHs are off */
3161
3162                 if (txq->xmit_lock_owner != cpu) {
3163
3164                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3165                                 goto recursion_alert;
3166
3167                         skb = validate_xmit_skb(skb, dev);
3168                         if (!skb)
3169                                 goto drop;
3170
3171                         HARD_TX_LOCK(dev, txq, cpu);
3172
3173                         if (!netif_xmit_stopped(txq)) {
3174                                 __this_cpu_inc(xmit_recursion);
3175                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3176                                 __this_cpu_dec(xmit_recursion);
3177                                 if (dev_xmit_complete(rc)) {
3178                                         HARD_TX_UNLOCK(dev, txq);
3179                                         goto out;
3180                                 }
3181                         }
3182                         HARD_TX_UNLOCK(dev, txq);
3183                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3184                                              dev->name);
3185                 } else {
3186                         /* Recursion is detected! It is possible,
3187                          * unfortunately
3188                          */
3189 recursion_alert:
3190                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3191                                              dev->name);
3192                 }
3193         }
3194
3195         rc = -ENETDOWN;
3196 drop:
3197         rcu_read_unlock_bh();
3198
3199         atomic_long_inc(&dev->tx_dropped);
3200         kfree_skb_list(skb);
3201         return rc;
3202 out:
3203         rcu_read_unlock_bh();
3204         return rc;
3205 }
3206
3207 int dev_queue_xmit(struct sk_buff *skb)
3208 {
3209         return __dev_queue_xmit(skb, NULL);
3210 }
3211 EXPORT_SYMBOL(dev_queue_xmit);
3212
3213 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3214 {
3215         return __dev_queue_xmit(skb, accel_priv);
3216 }
3217 EXPORT_SYMBOL(dev_queue_xmit_accel);
3218
3219
3220 /*=======================================================================
3221                         Receiver routines
3222   =======================================================================*/
3223
3224 int netdev_max_backlog __read_mostly = 1000;
3225 EXPORT_SYMBOL(netdev_max_backlog);
3226
3227 int netdev_tstamp_prequeue __read_mostly = 1;
3228 int netdev_budget __read_mostly = 300;
3229 int weight_p __read_mostly = 64;            /* old backlog weight */
3230
3231 /* Called with irq disabled */
3232 static inline void ____napi_schedule(struct softnet_data *sd,
3233                                      struct napi_struct *napi)
3234 {
3235         list_add_tail(&napi->poll_list, &sd->poll_list);
3236         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3237 }
3238
3239 #ifdef CONFIG_RPS
3240
3241 /* One global table that all flow-based protocols share. */
3242 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3243 EXPORT_SYMBOL(rps_sock_flow_table);
3244 u32 rps_cpu_mask __read_mostly;
3245 EXPORT_SYMBOL(rps_cpu_mask);
3246
3247 struct static_key rps_needed __read_mostly;
3248
3249 static struct rps_dev_flow *
3250 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3251             struct rps_dev_flow *rflow, u16 next_cpu)
3252 {
3253         if (next_cpu < nr_cpu_ids) {
3254 #ifdef CONFIG_RFS_ACCEL
3255                 struct netdev_rx_queue *rxqueue;
3256                 struct rps_dev_flow_table *flow_table;
3257                 struct rps_dev_flow *old_rflow;
3258                 u32 flow_id;
3259                 u16 rxq_index;
3260                 int rc;
3261
3262                 /* Should we steer this flow to a different hardware queue? */
3263                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3264                     !(dev->features & NETIF_F_NTUPLE))
3265                         goto out;
3266                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3267                 if (rxq_index == skb_get_rx_queue(skb))
3268                         goto out;
3269
3270                 rxqueue = dev->_rx + rxq_index;
3271                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3272                 if (!flow_table)
3273                         goto out;
3274                 flow_id = skb_get_hash(skb) & flow_table->mask;
3275                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3276                                                         rxq_index, flow_id);
3277                 if (rc < 0)
3278                         goto out;
3279                 old_rflow = rflow;
3280                 rflow = &flow_table->flows[flow_id];
3281                 rflow->filter = rc;
3282                 if (old_rflow->filter == rflow->filter)
3283                         old_rflow->filter = RPS_NO_FILTER;
3284         out:
3285 #endif
3286                 rflow->last_qtail =
3287                         per_cpu(softnet_data, next_cpu).input_queue_head;
3288         }
3289
3290         rflow->cpu = next_cpu;
3291         return rflow;
3292 }
3293
3294 /*
3295  * get_rps_cpu is called from netif_receive_skb and returns the target
3296  * CPU from the RPS map of the receiving queue for a given skb.
3297  * rcu_read_lock must be held on entry.
3298  */
3299 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3300                        struct rps_dev_flow **rflowp)
3301 {
3302         const struct rps_sock_flow_table *sock_flow_table;
3303         struct netdev_rx_queue *rxqueue = dev->_rx;
3304         struct rps_dev_flow_table *flow_table;
3305         struct rps_map *map;
3306         int cpu = -1;
3307         u32 tcpu;
3308         u32 hash;
3309
3310         if (skb_rx_queue_recorded(skb)) {
3311                 u16 index = skb_get_rx_queue(skb);
3312
3313                 if (unlikely(index >= dev->real_num_rx_queues)) {
3314                         WARN_ONCE(dev->real_num_rx_queues > 1,
3315                                   "%s received packet on queue %u, but number "
3316                                   "of RX queues is %u\n",
3317                                   dev->name, index, dev->real_num_rx_queues);
3318                         goto done;
3319                 }
3320                 rxqueue += index;
3321         }
3322
3323         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3324
3325         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3326         map = rcu_dereference(rxqueue->rps_map);
3327         if (!flow_table && !map)
3328                 goto done;
3329
3330         skb_reset_network_header(skb);
3331         hash = skb_get_hash(skb);
3332         if (!hash)
3333                 goto done;
3334
3335         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3336         if (flow_table && sock_flow_table) {
3337                 struct rps_dev_flow *rflow;
3338                 u32 next_cpu;
3339                 u32 ident;
3340
3341                 /* First check into global flow table if there is a match */
3342                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3343                 if ((ident ^ hash) & ~rps_cpu_mask)
3344                         goto try_rps;
3345
3346                 next_cpu = ident & rps_cpu_mask;
3347
3348                 /* OK, now we know there is a match,
3349                  * we can look at the local (per receive queue) flow table
3350                  */
3351                 rflow = &flow_table->flows[hash & flow_table->mask];
3352                 tcpu = rflow->cpu;
3353
3354                 /*
3355                  * If the desired CPU (where last recvmsg was done) is
3356                  * different from current CPU (one in the rx-queue flow
3357                  * table entry), switch if one of the following holds:
3358                  *   - Current CPU is unset (>= nr_cpu_ids).
3359                  *   - Current CPU is offline.
3360                  *   - The current CPU's queue tail has advanced beyond the
3361                  *     last packet that was enqueued using this table entry.
3362                  *     This guarantees that all previous packets for the flow
3363                  *     have been dequeued, thus preserving in order delivery.
3364                  */
3365                 if (unlikely(tcpu != next_cpu) &&
3366                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3367                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3368                       rflow->last_qtail)) >= 0)) {
3369                         tcpu = next_cpu;
3370                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3371                 }
3372
3373                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3374                         *rflowp = rflow;
3375                         cpu = tcpu;
3376                         goto done;
3377                 }
3378         }
3379
3380 try_rps:
3381
3382         if (map) {
3383                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3384                 if (cpu_online(tcpu)) {
3385                         cpu = tcpu;
3386                         goto done;
3387                 }
3388         }
3389
3390 done:
3391         return cpu;
3392 }
3393
3394 #ifdef CONFIG_RFS_ACCEL
3395
3396 /**
3397  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3398  * @dev: Device on which the filter was set
3399  * @rxq_index: RX queue index
3400  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3401  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3402  *
3403  * Drivers that implement ndo_rx_flow_steer() should periodically call
3404  * this function for each installed filter and remove the filters for
3405  * which it returns %true.
3406  */
3407 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3408                          u32 flow_id, u16 filter_id)
3409 {
3410         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3411         struct rps_dev_flow_table *flow_table;
3412         struct rps_dev_flow *rflow;
3413         bool expire = true;
3414         unsigned int cpu;
3415
3416         rcu_read_lock();
3417         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3418         if (flow_table && flow_id <= flow_table->mask) {
3419                 rflow = &flow_table->flows[flow_id];
3420                 cpu = ACCESS_ONCE(rflow->cpu);
3421                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3422                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3423                            rflow->last_qtail) <
3424                      (int)(10 * flow_table->mask)))
3425                         expire = false;
3426         }
3427         rcu_read_unlock();
3428         return expire;
3429 }
3430 EXPORT_SYMBOL(rps_may_expire_flow);
3431
3432 #endif /* CONFIG_RFS_ACCEL */
3433
3434 /* Called from hardirq (IPI) context */
3435 static void rps_trigger_softirq(void *data)
3436 {
3437         struct softnet_data *sd = data;
3438
3439         ____napi_schedule(sd, &sd->backlog);
3440         sd->received_rps++;
3441 }
3442
3443 #endif /* CONFIG_RPS */
3444
3445 /*
3446  * Check if this softnet_data structure is another cpu one
3447  * If yes, queue it to our IPI list and return 1
3448  * If no, return 0
3449  */
3450 static int rps_ipi_queued(struct softnet_data *sd)
3451 {
3452 #ifdef CONFIG_RPS
3453         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3454
3455         if (sd != mysd) {
3456                 sd->rps_ipi_next = mysd->rps_ipi_list;
3457                 mysd->rps_ipi_list = sd;
3458
3459                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3460                 return 1;
3461         }
3462 #endif /* CONFIG_RPS */
3463         return 0;
3464 }
3465
3466 #ifdef CONFIG_NET_FLOW_LIMIT
3467 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3468 #endif
3469
3470 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3471 {
3472 #ifdef CONFIG_NET_FLOW_LIMIT
3473         struct sd_flow_limit *fl;
3474         struct softnet_data *sd;
3475         unsigned int old_flow, new_flow;
3476
3477         if (qlen < (netdev_max_backlog >> 1))
3478                 return false;
3479
3480         sd = this_cpu_ptr(&softnet_data);
3481
3482         rcu_read_lock();
3483         fl = rcu_dereference(sd->flow_limit);
3484         if (fl) {
3485                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3486                 old_flow = fl->history[fl->history_head];
3487                 fl->history[fl->history_head] = new_flow;
3488
3489                 fl->history_head++;
3490                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3491
3492                 if (likely(fl->buckets[old_flow]))
3493                         fl->buckets[old_flow]--;
3494
3495                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3496                         fl->count++;
3497                         rcu_read_unlock();
3498                         return true;
3499                 }
3500         }
3501         rcu_read_unlock();
3502 #endif
3503         return false;
3504 }
3505
3506 /*
3507  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3508  * queue (may be a remote CPU queue).
3509  */
3510 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3511                               unsigned int *qtail)
3512 {
3513         struct softnet_data *sd;
3514         unsigned long flags;
3515         unsigned int qlen;
3516
3517         sd = &per_cpu(softnet_data, cpu);
3518
3519         local_irq_save(flags);
3520
3521         rps_lock(sd);
3522         if (!netif_running(skb->dev))
3523                 goto drop;
3524         qlen = skb_queue_len(&sd->input_pkt_queue);
3525         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3526                 if (qlen) {
3527 enqueue:
3528                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3529                         input_queue_tail_incr_save(sd, qtail);
3530                         rps_unlock(sd);
3531                         local_irq_restore(flags);
3532                         return NET_RX_SUCCESS;
3533                 }
3534
3535                 /* Schedule NAPI for backlog device
3536                  * We can use non atomic operation since we own the queue lock
3537                  */
3538                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3539                         if (!rps_ipi_queued(sd))
3540                                 ____napi_schedule(sd, &sd->backlog);
3541                 }
3542                 goto enqueue;
3543         }
3544
3545 drop:
3546         sd->dropped++;
3547         rps_unlock(sd);
3548
3549         local_irq_restore(flags);
3550
3551         atomic_long_inc(&skb->dev->rx_dropped);
3552         kfree_skb(skb);
3553         return NET_RX_DROP;
3554 }
3555
3556 static int netif_rx_internal(struct sk_buff *skb)
3557 {
3558         int ret;
3559
3560         net_timestamp_check(netdev_tstamp_prequeue, skb);
3561
3562         trace_netif_rx(skb);
3563 #ifdef CONFIG_RPS
3564         if (static_key_false(&rps_needed)) {
3565                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3566                 int cpu;
3567
3568                 preempt_disable();
3569                 rcu_read_lock();
3570
3571                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3572                 if (cpu < 0)
3573                         cpu = smp_processor_id();
3574
3575                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3576
3577                 rcu_read_unlock();
3578                 preempt_enable();
3579         } else
3580 #endif
3581         {
3582                 unsigned int qtail;
3583                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3584                 put_cpu();
3585         }
3586         return ret;
3587 }
3588
3589 /**
3590  *      netif_rx        -       post buffer to the network code
3591  *      @skb: buffer to post
3592  *
3593  *      This function receives a packet from a device driver and queues it for
3594  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3595  *      may be dropped during processing for congestion control or by the
3596  *      protocol layers.
3597  *
3598  *      return values:
3599  *      NET_RX_SUCCESS  (no congestion)
3600  *      NET_RX_DROP     (packet was dropped)
3601  *
3602  */
3603
3604 int netif_rx(struct sk_buff *skb)
3605 {
3606         trace_netif_rx_entry(skb);
3607
3608         return netif_rx_internal(skb);
3609 }
3610 EXPORT_SYMBOL(netif_rx);
3611
3612 int netif_rx_ni(struct sk_buff *skb)
3613 {
3614         int err;
3615
3616         trace_netif_rx_ni_entry(skb);
3617
3618         preempt_disable();
3619         err = netif_rx_internal(skb);
3620         if (local_softirq_pending())
3621                 do_softirq();
3622         preempt_enable();
3623
3624         return err;
3625 }
3626 EXPORT_SYMBOL(netif_rx_ni);
3627
3628 static void net_tx_action(struct softirq_action *h)
3629 {
3630         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3631
3632         if (sd->completion_queue) {
3633                 struct sk_buff *clist;
3634
3635                 local_irq_disable();
3636                 clist = sd->completion_queue;
3637                 sd->completion_queue = NULL;
3638                 local_irq_enable();
3639
3640                 while (clist) {
3641                         struct sk_buff *skb = clist;
3642                         clist = clist->next;
3643
3644                         WARN_ON(atomic_read(&skb->users));
3645                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3646                                 trace_consume_skb(skb);
3647                         else
3648                                 trace_kfree_skb(skb, net_tx_action);
3649                         __kfree_skb(skb);
3650                 }
3651         }
3652
3653         if (sd->output_queue) {
3654                 struct Qdisc *head;
3655
3656                 local_irq_disable();
3657                 head = sd->output_queue;
3658                 sd->output_queue = NULL;
3659                 sd->output_queue_tailp = &sd->output_queue;
3660                 local_irq_enable();
3661
3662                 while (head) {
3663                         struct Qdisc *q = head;
3664                         spinlock_t *root_lock;
3665
3666                         head = head->next_sched;
3667
3668                         root_lock = qdisc_lock(q);
3669                         if (spin_trylock(root_lock)) {
3670                                 smp_mb__before_atomic();
3671                                 clear_bit(__QDISC_STATE_SCHED,
3672                                           &q->state);
3673                                 qdisc_run(q);
3674                                 spin_unlock(root_lock);
3675                         } else {
3676                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3677                                               &q->state)) {
3678                                         __netif_reschedule(q);
3679                                 } else {
3680                                         smp_mb__before_atomic();
3681                                         clear_bit(__QDISC_STATE_SCHED,
3682                                                   &q->state);
3683                                 }
3684                         }
3685                 }
3686         }
3687 }
3688
3689 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3690     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3691 /* This hook is defined here for ATM LANE */
3692 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3693                              unsigned char *addr) __read_mostly;
3694 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3695 #endif
3696
3697 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3698                                          struct packet_type **pt_prev,
3699                                          int *ret, struct net_device *orig_dev)
3700 {
3701 #ifdef CONFIG_NET_CLS_ACT
3702         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3703         struct tcf_result cl_res;
3704
3705         /* If there's at least one ingress present somewhere (so
3706          * we get here via enabled static key), remaining devices
3707          * that are not configured with an ingress qdisc will bail
3708          * out here.
3709          */
3710         if (!cl)
3711                 return skb;
3712         if (*pt_prev) {
3713                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3714                 *pt_prev = NULL;
3715         }
3716
3717         qdisc_skb_cb(skb)->pkt_len = skb->len;
3718         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3719         qdisc_bstats_cpu_update(cl->q, skb);
3720
3721         switch (tc_classify(skb, cl, &cl_res, false)) {
3722         case TC_ACT_OK:
3723         case TC_ACT_RECLASSIFY:
3724                 skb->tc_index = TC_H_MIN(cl_res.classid);
3725                 break;
3726         case TC_ACT_SHOT:
3727                 qdisc_qstats_cpu_drop(cl->q);
3728         case TC_ACT_STOLEN:
3729         case TC_ACT_QUEUED:
3730                 kfree_skb(skb);
3731                 return NULL;
3732         case TC_ACT_REDIRECT:
3733                 /* skb_mac_header check was done by cls/act_bpf, so
3734                  * we can safely push the L2 header back before
3735                  * redirecting to another netdev
3736                  */
3737                 __skb_push(skb, skb->mac_len);
3738                 skb_do_redirect(skb);
3739                 return NULL;
3740         default:
3741                 break;
3742         }
3743 #endif /* CONFIG_NET_CLS_ACT */
3744         return skb;
3745 }
3746
3747 /**
3748  *      netdev_is_rx_handler_busy - check if receive handler is registered
3749  *      @dev: device to check
3750  *
3751  *      Check if a receive handler is already registered for a given device.
3752  *      Return true if there one.
3753  *
3754  *      The caller must hold the rtnl_mutex.
3755  */
3756 bool netdev_is_rx_handler_busy(struct net_device *dev)
3757 {
3758         ASSERT_RTNL();
3759         return dev && rtnl_dereference(dev->rx_handler);
3760 }
3761 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3762
3763 /**
3764  *      netdev_rx_handler_register - register receive handler
3765  *      @dev: device to register a handler for
3766  *      @rx_handler: receive handler to register
3767  *      @rx_handler_data: data pointer that is used by rx handler
3768  *
3769  *      Register a receive handler for a device. This handler will then be
3770  *      called from __netif_receive_skb. A negative errno code is returned
3771  *      on a failure.
3772  *
3773  *      The caller must hold the rtnl_mutex.
3774  *
3775  *      For a general description of rx_handler, see enum rx_handler_result.
3776  */
3777 int netdev_rx_handler_register(struct net_device *dev,
3778                                rx_handler_func_t *rx_handler,
3779                                void *rx_handler_data)
3780 {
3781         ASSERT_RTNL();
3782
3783         if (dev->rx_handler)
3784                 return -EBUSY;
3785
3786         /* Note: rx_handler_data must be set before rx_handler */
3787         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3788         rcu_assign_pointer(dev->rx_handler, rx_handler);
3789
3790         return 0;
3791 }
3792 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3793
3794 /**
3795  *      netdev_rx_handler_unregister - unregister receive handler
3796  *      @dev: device to unregister a handler from
3797  *
3798  *      Unregister a receive handler from a device.
3799  *
3800  *      The caller must hold the rtnl_mutex.
3801  */
3802 void netdev_rx_handler_unregister(struct net_device *dev)
3803 {
3804
3805         ASSERT_RTNL();
3806         RCU_INIT_POINTER(dev->rx_handler, NULL);
3807         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3808          * section has a guarantee to see a non NULL rx_handler_data
3809          * as well.
3810          */
3811         synchronize_net();
3812         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3813 }
3814 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3815
3816 /*
3817  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3818  * the special handling of PFMEMALLOC skbs.
3819  */
3820 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3821 {
3822         switch (skb->protocol) {
3823         case htons(ETH_P_ARP):
3824         case htons(ETH_P_IP):
3825         case htons(ETH_P_IPV6):
3826         case htons(ETH_P_8021Q):
3827         case htons(ETH_P_8021AD):
3828                 return true;
3829         default:
3830                 return false;
3831         }
3832 }
3833
3834 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3835                              int *ret, struct net_device *orig_dev)
3836 {
3837 #ifdef CONFIG_NETFILTER_INGRESS
3838         if (nf_hook_ingress_active(skb)) {
3839                 if (*pt_prev) {
3840                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3841                         *pt_prev = NULL;
3842                 }
3843
3844                 return nf_hook_ingress(skb);
3845         }
3846 #endif /* CONFIG_NETFILTER_INGRESS */
3847         return 0;
3848 }
3849
3850 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3851 {
3852         struct packet_type *ptype, *pt_prev;
3853         rx_handler_func_t *rx_handler;
3854         struct net_device *orig_dev;
3855         bool deliver_exact = false;
3856         int ret = NET_RX_DROP;
3857         __be16 type;
3858
3859         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3860
3861         trace_netif_receive_skb(skb);
3862
3863         orig_dev = skb->dev;
3864
3865         skb_reset_network_header(skb);
3866         if (!skb_transport_header_was_set(skb))
3867                 skb_reset_transport_header(skb);
3868         skb_reset_mac_len(skb);
3869
3870         pt_prev = NULL;
3871
3872 another_round:
3873         skb->skb_iif = skb->dev->ifindex;
3874
3875         __this_cpu_inc(softnet_data.processed);
3876
3877         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3878             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3879                 skb = skb_vlan_untag(skb);
3880                 if (unlikely(!skb))
3881                         goto out;
3882         }
3883
3884 #ifdef CONFIG_NET_CLS_ACT
3885         if (skb->tc_verd & TC_NCLS) {
3886                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3887                 goto ncls;
3888         }
3889 #endif
3890
3891         if (pfmemalloc)
3892                 goto skip_taps;
3893
3894         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3895                 if (pt_prev)
3896                         ret = deliver_skb(skb, pt_prev, orig_dev);
3897                 pt_prev = ptype;
3898         }
3899
3900         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3901                 if (pt_prev)
3902                         ret = deliver_skb(skb, pt_prev, orig_dev);
3903                 pt_prev = ptype;
3904         }
3905
3906 skip_taps:
3907 #ifdef CONFIG_NET_INGRESS
3908         if (static_key_false(&ingress_needed)) {
3909                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3910                 if (!skb)
3911                         goto out;
3912
3913                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3914                         goto out;
3915         }
3916 #endif
3917 #ifdef CONFIG_NET_CLS_ACT
3918         skb->tc_verd = 0;
3919 ncls:
3920 #endif
3921         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3922                 goto drop;
3923
3924         if (skb_vlan_tag_present(skb)) {
3925                 if (pt_prev) {
3926                         ret = deliver_skb(skb, pt_prev, orig_dev);
3927                         pt_prev = NULL;
3928                 }
3929                 if (vlan_do_receive(&skb))
3930                         goto another_round;
3931                 else if (unlikely(!skb))
3932                         goto out;
3933         }
3934
3935         rx_handler = rcu_dereference(skb->dev->rx_handler);
3936         if (rx_handler) {
3937                 if (pt_prev) {
3938                         ret = deliver_skb(skb, pt_prev, orig_dev);
3939                         pt_prev = NULL;
3940                 }
3941                 switch (rx_handler(&skb)) {
3942                 case RX_HANDLER_CONSUMED:
3943                         ret = NET_RX_SUCCESS;
3944                         goto out;
3945                 case RX_HANDLER_ANOTHER:
3946                         goto another_round;
3947                 case RX_HANDLER_EXACT:
3948                         deliver_exact = true;
3949                 case RX_HANDLER_PASS:
3950                         break;
3951                 default:
3952                         BUG();
3953                 }
3954         }
3955
3956         if (unlikely(skb_vlan_tag_present(skb))) {
3957                 if (skb_vlan_tag_get_id(skb))
3958                         skb->pkt_type = PACKET_OTHERHOST;
3959                 /* Note: we might in the future use prio bits
3960                  * and set skb->priority like in vlan_do_receive()
3961                  * For the time being, just ignore Priority Code Point
3962                  */
3963                 skb->vlan_tci = 0;
3964         }
3965
3966         type = skb->protocol;
3967
3968         /* deliver only exact match when indicated */
3969         if (likely(!deliver_exact)) {
3970                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3971                                        &ptype_base[ntohs(type) &
3972                                                    PTYPE_HASH_MASK]);
3973         }
3974
3975         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3976                                &orig_dev->ptype_specific);
3977
3978         if (unlikely(skb->dev != orig_dev)) {
3979                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3980                                        &skb->dev->ptype_specific);
3981         }
3982
3983         if (pt_prev) {
3984                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3985                         goto drop;
3986                 else
3987                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3988         } else {
3989 drop:
3990                 atomic_long_inc(&skb->dev->rx_dropped);
3991                 kfree_skb(skb);
3992                 /* Jamal, now you will not able to escape explaining
3993                  * me how you were going to use this. :-)
3994                  */
3995                 ret = NET_RX_DROP;
3996         }
3997
3998 out:
3999         return ret;
4000 }
4001
4002 static int __netif_receive_skb(struct sk_buff *skb)
4003 {
4004         int ret;
4005
4006         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4007                 unsigned long pflags = current->flags;
4008
4009                 /*
4010                  * PFMEMALLOC skbs are special, they should
4011                  * - be delivered to SOCK_MEMALLOC sockets only
4012                  * - stay away from userspace
4013                  * - have bounded memory usage
4014                  *
4015                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4016                  * context down to all allocation sites.
4017                  */
4018                 current->flags |= PF_MEMALLOC;
4019                 ret = __netif_receive_skb_core(skb, true);
4020                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4021         } else
4022                 ret = __netif_receive_skb_core(skb, false);
4023
4024         return ret;
4025 }
4026
4027 static int netif_receive_skb_internal(struct sk_buff *skb)
4028 {
4029         int ret;
4030
4031         net_timestamp_check(netdev_tstamp_prequeue, skb);
4032
4033         if (skb_defer_rx_timestamp(skb))
4034                 return NET_RX_SUCCESS;
4035
4036         rcu_read_lock();
4037
4038 #ifdef CONFIG_RPS
4039         if (static_key_false(&rps_needed)) {
4040                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4041                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4042
4043                 if (cpu >= 0) {
4044                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4045                         rcu_read_unlock();
4046                         return ret;
4047                 }
4048         }
4049 #endif
4050         ret = __netif_receive_skb(skb);
4051         rcu_read_unlock();
4052         return ret;
4053 }
4054
4055 /**
4056  *      netif_receive_skb - process receive buffer from network
4057  *      @skb: buffer to process
4058  *
4059  *      netif_receive_skb() is the main receive data processing function.
4060  *      It always succeeds. The buffer may be dropped during processing
4061  *      for congestion control or by the protocol layers.
4062  *
4063  *      This function may only be called from softirq context and interrupts
4064  *      should be enabled.
4065  *
4066  *      Return values (usually ignored):
4067  *      NET_RX_SUCCESS: no congestion
4068  *      NET_RX_DROP: packet was dropped
4069  */
4070 int netif_receive_skb(struct sk_buff *skb)
4071 {
4072         trace_netif_receive_skb_entry(skb);
4073
4074         return netif_receive_skb_internal(skb);
4075 }
4076 EXPORT_SYMBOL(netif_receive_skb);
4077
4078 /* Network device is going away, flush any packets still pending
4079  * Called with irqs disabled.
4080  */
4081 static void flush_backlog(void *arg)
4082 {
4083         struct net_device *dev = arg;
4084         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4085         struct sk_buff *skb, *tmp;
4086
4087         rps_lock(sd);
4088         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4089                 if (skb->dev == dev) {
4090                         __skb_unlink(skb, &sd->input_pkt_queue);
4091                         kfree_skb(skb);
4092                         input_queue_head_incr(sd);
4093                 }
4094         }
4095         rps_unlock(sd);
4096
4097         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4098                 if (skb->dev == dev) {
4099                         __skb_unlink(skb, &sd->process_queue);
4100                         kfree_skb(skb);
4101                         input_queue_head_incr(sd);
4102                 }
4103         }
4104 }
4105
4106 static int napi_gro_complete(struct sk_buff *skb)
4107 {
4108         struct packet_offload *ptype;
4109         __be16 type = skb->protocol;
4110         struct list_head *head = &offload_base;
4111         int err = -ENOENT;
4112
4113         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4114
4115         if (NAPI_GRO_CB(skb)->count == 1) {
4116                 skb_shinfo(skb)->gso_size = 0;
4117                 goto out;
4118         }
4119
4120         rcu_read_lock();
4121         list_for_each_entry_rcu(ptype, head, list) {
4122                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4123                         continue;
4124
4125                 err = ptype->callbacks.gro_complete(skb, 0);
4126                 break;
4127         }
4128         rcu_read_unlock();
4129
4130         if (err) {
4131                 WARN_ON(&ptype->list == head);
4132                 kfree_skb(skb);
4133                 return NET_RX_SUCCESS;
4134         }
4135
4136 out:
4137         return netif_receive_skb_internal(skb);
4138 }
4139
4140 /* napi->gro_list contains packets ordered by age.
4141  * youngest packets at the head of it.
4142  * Complete skbs in reverse order to reduce latencies.
4143  */
4144 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4145 {
4146         struct sk_buff *skb, *prev = NULL;
4147
4148         /* scan list and build reverse chain */
4149         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4150                 skb->prev = prev;
4151                 prev = skb;
4152         }
4153
4154         for (skb = prev; skb; skb = prev) {
4155                 skb->next = NULL;
4156
4157                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4158                         return;
4159
4160                 prev = skb->prev;
4161                 napi_gro_complete(skb);
4162                 napi->gro_count--;
4163         }
4164
4165         napi->gro_list = NULL;
4166 }
4167 EXPORT_SYMBOL(napi_gro_flush);
4168
4169 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4170 {
4171         struct sk_buff *p;
4172         unsigned int maclen = skb->dev->hard_header_len;
4173         u32 hash = skb_get_hash_raw(skb);
4174
4175         for (p = napi->gro_list; p; p = p->next) {
4176                 unsigned long diffs;
4177
4178                 NAPI_GRO_CB(p)->flush = 0;
4179
4180                 if (hash != skb_get_hash_raw(p)) {
4181                         NAPI_GRO_CB(p)->same_flow = 0;
4182                         continue;
4183                 }
4184
4185                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4186                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4187                 diffs |= skb_metadata_dst_cmp(p, skb);
4188                 if (maclen == ETH_HLEN)
4189                         diffs |= compare_ether_header(skb_mac_header(p),
4190                                                       skb_mac_header(skb));
4191                 else if (!diffs)
4192                         diffs = memcmp(skb_mac_header(p),
4193                                        skb_mac_header(skb),
4194                                        maclen);
4195                 NAPI_GRO_CB(p)->same_flow = !diffs;
4196         }
4197 }
4198
4199 static void skb_gro_reset_offset(struct sk_buff *skb)
4200 {
4201         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4202         const skb_frag_t *frag0 = &pinfo->frags[0];
4203
4204         NAPI_GRO_CB(skb)->data_offset = 0;
4205         NAPI_GRO_CB(skb)->frag0 = NULL;
4206         NAPI_GRO_CB(skb)->frag0_len = 0;
4207
4208         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4209             pinfo->nr_frags &&
4210             !PageHighMem(skb_frag_page(frag0))) {
4211                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4212                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4213                                                     skb_frag_size(frag0),
4214                                                     skb->end - skb->tail);
4215         }
4216 }
4217
4218 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4219 {
4220         struct skb_shared_info *pinfo = skb_shinfo(skb);
4221
4222         BUG_ON(skb->end - skb->tail < grow);
4223
4224         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4225
4226         skb->data_len -= grow;
4227         skb->tail += grow;
4228
4229         pinfo->frags[0].page_offset += grow;
4230         skb_frag_size_sub(&pinfo->frags[0], grow);
4231
4232         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4233                 skb_frag_unref(skb, 0);
4234                 memmove(pinfo->frags, pinfo->frags + 1,
4235                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4236         }
4237 }
4238
4239 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4240 {
4241         struct sk_buff **pp = NULL;
4242         struct packet_offload *ptype;
4243         __be16 type = skb->protocol;
4244         struct list_head *head = &offload_base;
4245         int same_flow;
4246         enum gro_result ret;
4247         int grow;
4248
4249         if (!(skb->dev->features & NETIF_F_GRO))
4250                 goto normal;
4251
4252         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4253                 goto normal;
4254
4255         gro_list_prepare(napi, skb);
4256
4257         rcu_read_lock();
4258         list_for_each_entry_rcu(ptype, head, list) {
4259                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4260                         continue;
4261
4262                 skb_set_network_header(skb, skb_gro_offset(skb));
4263                 skb_reset_mac_len(skb);
4264                 NAPI_GRO_CB(skb)->same_flow = 0;
4265                 NAPI_GRO_CB(skb)->flush = 0;
4266                 NAPI_GRO_CB(skb)->free = 0;
4267                 NAPI_GRO_CB(skb)->encap_mark = 0;
4268                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4269                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4270
4271                 /* Setup for GRO checksum validation */
4272                 switch (skb->ip_summed) {
4273                 case CHECKSUM_COMPLETE:
4274                         NAPI_GRO_CB(skb)->csum = skb->csum;
4275                         NAPI_GRO_CB(skb)->csum_valid = 1;
4276                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4277                         break;
4278                 case CHECKSUM_UNNECESSARY:
4279                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4280                         NAPI_GRO_CB(skb)->csum_valid = 0;
4281                         break;
4282                 default:
4283                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4284                         NAPI_GRO_CB(skb)->csum_valid = 0;
4285                 }
4286
4287                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4288                 break;
4289         }
4290         rcu_read_unlock();
4291
4292         if (&ptype->list == head)
4293                 goto normal;
4294
4295         same_flow = NAPI_GRO_CB(skb)->same_flow;
4296         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4297
4298         if (pp) {
4299                 struct sk_buff *nskb = *pp;
4300
4301                 *pp = nskb->next;
4302                 nskb->next = NULL;
4303                 napi_gro_complete(nskb);
4304                 napi->gro_count--;
4305         }
4306
4307         if (same_flow)
4308                 goto ok;
4309
4310         if (NAPI_GRO_CB(skb)->flush)
4311                 goto normal;
4312
4313         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4314                 struct sk_buff *nskb = napi->gro_list;
4315
4316                 /* locate the end of the list to select the 'oldest' flow */
4317                 while (nskb->next) {
4318                         pp = &nskb->next;
4319                         nskb = *pp;
4320                 }
4321                 *pp = NULL;
4322                 nskb->next = NULL;
4323                 napi_gro_complete(nskb);
4324         } else {
4325                 napi->gro_count++;
4326         }
4327         NAPI_GRO_CB(skb)->count = 1;
4328         NAPI_GRO_CB(skb)->age = jiffies;
4329         NAPI_GRO_CB(skb)->last = skb;
4330         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4331         skb->next = napi->gro_list;
4332         napi->gro_list = skb;
4333         ret = GRO_HELD;
4334
4335 pull:
4336         grow = skb_gro_offset(skb) - skb_headlen(skb);
4337         if (grow > 0)
4338                 gro_pull_from_frag0(skb, grow);
4339 ok:
4340         return ret;
4341
4342 normal:
4343         ret = GRO_NORMAL;
4344         goto pull;
4345 }
4346
4347 struct packet_offload *gro_find_receive_by_type(__be16 type)
4348 {
4349         struct list_head *offload_head = &offload_base;
4350         struct packet_offload *ptype;
4351
4352         list_for_each_entry_rcu(ptype, offload_head, list) {
4353                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4354                         continue;
4355                 return ptype;
4356         }
4357         return NULL;
4358 }
4359 EXPORT_SYMBOL(gro_find_receive_by_type);
4360
4361 struct packet_offload *gro_find_complete_by_type(__be16 type)
4362 {
4363         struct list_head *offload_head = &offload_base;
4364         struct packet_offload *ptype;
4365
4366         list_for_each_entry_rcu(ptype, offload_head, list) {
4367                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4368                         continue;
4369                 return ptype;
4370         }
4371         return NULL;
4372 }
4373 EXPORT_SYMBOL(gro_find_complete_by_type);
4374
4375 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4376 {
4377         switch (ret) {
4378         case GRO_NORMAL:
4379                 if (netif_receive_skb_internal(skb))
4380                         ret = GRO_DROP;
4381                 break;
4382
4383         case GRO_DROP:
4384                 kfree_skb(skb);
4385                 break;
4386
4387         case GRO_MERGED_FREE:
4388                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4389                         skb_dst_drop(skb);
4390                         kmem_cache_free(skbuff_head_cache, skb);
4391                 } else {
4392                         __kfree_skb(skb);
4393                 }
4394                 break;
4395
4396         case GRO_HELD:
4397         case GRO_MERGED:
4398                 break;
4399         }
4400
4401         return ret;
4402 }
4403
4404 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4405 {
4406         trace_napi_gro_receive_entry(skb);
4407
4408         skb_gro_reset_offset(skb);
4409
4410         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4411 }
4412 EXPORT_SYMBOL(napi_gro_receive);
4413
4414 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4415 {
4416         if (unlikely(skb->pfmemalloc)) {
4417                 consume_skb(skb);
4418                 return;
4419         }
4420         __skb_pull(skb, skb_headlen(skb));
4421         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4422         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4423         skb->vlan_tci = 0;
4424         skb->dev = napi->dev;
4425         skb->skb_iif = 0;
4426         skb->encapsulation = 0;
4427         skb_shinfo(skb)->gso_type = 0;
4428         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4429
4430         napi->skb = skb;
4431 }
4432
4433 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4434 {
4435         struct sk_buff *skb = napi->skb;
4436
4437         if (!skb) {
4438                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4439                 napi->skb = skb;
4440         }
4441         return skb;
4442 }
4443 EXPORT_SYMBOL(napi_get_frags);
4444
4445 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4446                                       struct sk_buff *skb,
4447                                       gro_result_t ret)
4448 {
4449         switch (ret) {
4450         case GRO_NORMAL:
4451         case GRO_HELD:
4452                 __skb_push(skb, ETH_HLEN);
4453                 skb->protocol = eth_type_trans(skb, skb->dev);
4454                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4455                         ret = GRO_DROP;
4456                 break;
4457
4458         case GRO_DROP:
4459         case GRO_MERGED_FREE:
4460                 napi_reuse_skb(napi, skb);
4461                 break;
4462
4463         case GRO_MERGED:
4464                 break;
4465         }
4466
4467         return ret;
4468 }
4469
4470 /* Upper GRO stack assumes network header starts at gro_offset=0
4471  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4472  * We copy ethernet header into skb->data to have a common layout.
4473  */
4474 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4475 {
4476         struct sk_buff *skb = napi->skb;
4477         const struct ethhdr *eth;
4478         unsigned int hlen = sizeof(*eth);
4479
4480         napi->skb = NULL;
4481
4482         skb_reset_mac_header(skb);
4483         skb_gro_reset_offset(skb);
4484
4485         eth = skb_gro_header_fast(skb, 0);
4486         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4487                 eth = skb_gro_header_slow(skb, hlen, 0);
4488                 if (unlikely(!eth)) {
4489                         napi_reuse_skb(napi, skb);
4490                         return NULL;
4491                 }
4492         } else {
4493                 gro_pull_from_frag0(skb, hlen);
4494                 NAPI_GRO_CB(skb)->frag0 += hlen;
4495                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4496         }
4497         __skb_pull(skb, hlen);
4498
4499         /*
4500          * This works because the only protocols we care about don't require
4501          * special handling.
4502          * We'll fix it up properly in napi_frags_finish()
4503          */
4504         skb->protocol = eth->h_proto;
4505
4506         return skb;
4507 }
4508
4509 gro_result_t napi_gro_frags(struct napi_struct *napi)
4510 {
4511         struct sk_buff *skb = napi_frags_skb(napi);
4512
4513         if (!skb)
4514                 return GRO_DROP;
4515
4516         trace_napi_gro_frags_entry(skb);
4517
4518         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4519 }
4520 EXPORT_SYMBOL(napi_gro_frags);
4521
4522 /* Compute the checksum from gro_offset and return the folded value
4523  * after adding in any pseudo checksum.
4524  */
4525 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4526 {
4527         __wsum wsum;
4528         __sum16 sum;
4529
4530         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4531
4532         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4533         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4534         if (likely(!sum)) {
4535                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4536                     !skb->csum_complete_sw)
4537                         netdev_rx_csum_fault(skb->dev);
4538         }
4539
4540         NAPI_GRO_CB(skb)->csum = wsum;
4541         NAPI_GRO_CB(skb)->csum_valid = 1;
4542
4543         return sum;
4544 }
4545 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4546
4547 /*
4548  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4549  * Note: called with local irq disabled, but exits with local irq enabled.
4550  */
4551 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4552 {
4553 #ifdef CONFIG_RPS
4554         struct softnet_data *remsd = sd->rps_ipi_list;
4555
4556         if (remsd) {
4557                 sd->rps_ipi_list = NULL;
4558
4559                 local_irq_enable();
4560
4561                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4562                 while (remsd) {
4563                         struct softnet_data *next = remsd->rps_ipi_next;
4564
4565                         if (cpu_online(remsd->cpu))
4566                                 smp_call_function_single_async(remsd->cpu,
4567                                                            &remsd->csd);
4568                         remsd = next;
4569                 }
4570         } else
4571 #endif
4572                 local_irq_enable();
4573 }
4574
4575 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4576 {
4577 #ifdef CONFIG_RPS
4578         return sd->rps_ipi_list != NULL;
4579 #else
4580         return false;
4581 #endif
4582 }
4583
4584 static int process_backlog(struct napi_struct *napi, int quota)
4585 {
4586         int work = 0;
4587         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4588
4589         /* Check if we have pending ipi, its better to send them now,
4590          * not waiting net_rx_action() end.
4591          */
4592         if (sd_has_rps_ipi_waiting(sd)) {
4593                 local_irq_disable();
4594                 net_rps_action_and_irq_enable(sd);
4595         }
4596
4597         napi->weight = weight_p;
4598         local_irq_disable();
4599         while (1) {
4600                 struct sk_buff *skb;
4601
4602                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4603                         rcu_read_lock();
4604                         local_irq_enable();
4605                         __netif_receive_skb(skb);
4606                         rcu_read_unlock();
4607                         local_irq_disable();
4608                         input_queue_head_incr(sd);
4609                         if (++work >= quota) {
4610                                 local_irq_enable();
4611                                 return work;
4612                         }
4613                 }
4614
4615                 rps_lock(sd);
4616                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4617                         /*
4618                          * Inline a custom version of __napi_complete().
4619                          * only current cpu owns and manipulates this napi,
4620                          * and NAPI_STATE_SCHED is the only possible flag set
4621                          * on backlog.
4622                          * We can use a plain write instead of clear_bit(),
4623                          * and we dont need an smp_mb() memory barrier.
4624                          */
4625                         napi->state = 0;
4626                         rps_unlock(sd);
4627
4628                         break;
4629                 }
4630
4631                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4632                                            &sd->process_queue);
4633                 rps_unlock(sd);
4634         }
4635         local_irq_enable();
4636
4637         return work;
4638 }
4639
4640 /**
4641  * __napi_schedule - schedule for receive
4642  * @n: entry to schedule
4643  *
4644  * The entry's receive function will be scheduled to run.
4645  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4646  */
4647 void __napi_schedule(struct napi_struct *n)
4648 {
4649         unsigned long flags;
4650
4651         local_irq_save(flags);
4652         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4653         local_irq_restore(flags);
4654 }
4655 EXPORT_SYMBOL(__napi_schedule);
4656
4657 /**
4658  * __napi_schedule_irqoff - schedule for receive
4659  * @n: entry to schedule
4660  *
4661  * Variant of __napi_schedule() assuming hard irqs are masked
4662  */
4663 void __napi_schedule_irqoff(struct napi_struct *n)
4664 {
4665         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4666 }
4667 EXPORT_SYMBOL(__napi_schedule_irqoff);
4668
4669 void __napi_complete(struct napi_struct *n)
4670 {
4671         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4672
4673         list_del_init(&n->poll_list);
4674         smp_mb__before_atomic();
4675         clear_bit(NAPI_STATE_SCHED, &n->state);
4676 }
4677 EXPORT_SYMBOL(__napi_complete);
4678
4679 void napi_complete_done(struct napi_struct *n, int work_done)
4680 {
4681         unsigned long flags;
4682
4683         /*
4684          * don't let napi dequeue from the cpu poll list
4685          * just in case its running on a different cpu
4686          */
4687         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4688                 return;
4689
4690         if (n->gro_list) {
4691                 unsigned long timeout = 0;
4692
4693                 if (work_done)
4694                         timeout = n->dev->gro_flush_timeout;
4695
4696                 if (timeout)
4697                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4698                                       HRTIMER_MODE_REL_PINNED);
4699                 else
4700                         napi_gro_flush(n, false);
4701         }
4702         if (likely(list_empty(&n->poll_list))) {
4703                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4704         } else {
4705                 /* If n->poll_list is not empty, we need to mask irqs */
4706                 local_irq_save(flags);
4707                 __napi_complete(n);
4708                 local_irq_restore(flags);
4709         }
4710 }
4711 EXPORT_SYMBOL(napi_complete_done);
4712
4713 /* must be called under rcu_read_lock(), as we dont take a reference */
4714 struct napi_struct *napi_by_id(unsigned int napi_id)
4715 {
4716         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4717         struct napi_struct *napi;
4718
4719         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4720                 if (napi->napi_id == napi_id)
4721                         return napi;
4722
4723         return NULL;
4724 }
4725 EXPORT_SYMBOL_GPL(napi_by_id);
4726
4727 void napi_hash_add(struct napi_struct *napi)
4728 {
4729         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4730
4731                 spin_lock(&napi_hash_lock);
4732
4733                 /* 0 is not a valid id, we also skip an id that is taken
4734                  * we expect both events to be extremely rare
4735                  */
4736                 napi->napi_id = 0;
4737                 while (!napi->napi_id) {
4738                         napi->napi_id = ++napi_gen_id;
4739                         if (napi_by_id(napi->napi_id))
4740                                 napi->napi_id = 0;
4741                 }
4742
4743                 hlist_add_head_rcu(&napi->napi_hash_node,
4744                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4745
4746                 spin_unlock(&napi_hash_lock);
4747         }
4748 }
4749 EXPORT_SYMBOL_GPL(napi_hash_add);
4750
4751 /* Warning : caller is responsible to make sure rcu grace period
4752  * is respected before freeing memory containing @napi
4753  */
4754 void napi_hash_del(struct napi_struct *napi)
4755 {
4756         spin_lock(&napi_hash_lock);
4757
4758         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4759                 hlist_del_rcu(&napi->napi_hash_node);
4760
4761         spin_unlock(&napi_hash_lock);
4762 }
4763 EXPORT_SYMBOL_GPL(napi_hash_del);
4764
4765 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4766 {
4767         struct napi_struct *napi;
4768
4769         napi = container_of(timer, struct napi_struct, timer);
4770         if (napi->gro_list)
4771                 napi_schedule(napi);
4772
4773         return HRTIMER_NORESTART;
4774 }
4775
4776 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4777                     int (*poll)(struct napi_struct *, int), int weight)
4778 {
4779         INIT_LIST_HEAD(&napi->poll_list);
4780         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4781         napi->timer.function = napi_watchdog;
4782         napi->gro_count = 0;
4783         napi->gro_list = NULL;
4784         napi->skb = NULL;
4785         napi->poll = poll;
4786         if (weight > NAPI_POLL_WEIGHT)
4787                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4788                             weight, dev->name);
4789         napi->weight = weight;
4790         list_add(&napi->dev_list, &dev->napi_list);
4791         napi->dev = dev;
4792 #ifdef CONFIG_NETPOLL
4793         spin_lock_init(&napi->poll_lock);
4794         napi->poll_owner = -1;
4795 #endif
4796         set_bit(NAPI_STATE_SCHED, &napi->state);
4797 }
4798 EXPORT_SYMBOL(netif_napi_add);
4799
4800 void napi_disable(struct napi_struct *n)
4801 {
4802         might_sleep();
4803         set_bit(NAPI_STATE_DISABLE, &n->state);
4804
4805         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4806                 msleep(1);
4807         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4808                 msleep(1);
4809
4810         hrtimer_cancel(&n->timer);
4811
4812         clear_bit(NAPI_STATE_DISABLE, &n->state);
4813 }
4814 EXPORT_SYMBOL(napi_disable);
4815
4816 void netif_napi_del(struct napi_struct *napi)
4817 {
4818         list_del_init(&napi->dev_list);
4819         napi_free_frags(napi);
4820
4821         kfree_skb_list(napi->gro_list);
4822         napi->gro_list = NULL;
4823         napi->gro_count = 0;
4824 }
4825 EXPORT_SYMBOL(netif_napi_del);
4826
4827 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4828 {
4829         void *have;
4830         int work, weight;
4831
4832         list_del_init(&n->poll_list);
4833
4834         have = netpoll_poll_lock(n);
4835
4836         weight = n->weight;
4837
4838         /* This NAPI_STATE_SCHED test is for avoiding a race
4839          * with netpoll's poll_napi().  Only the entity which
4840          * obtains the lock and sees NAPI_STATE_SCHED set will
4841          * actually make the ->poll() call.  Therefore we avoid
4842          * accidentally calling ->poll() when NAPI is not scheduled.
4843          */
4844         work = 0;
4845         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4846                 work = n->poll(n, weight);
4847                 trace_napi_poll(n);
4848         }
4849
4850         WARN_ON_ONCE(work > weight);
4851
4852         if (likely(work < weight))
4853                 goto out_unlock;
4854
4855         /* Drivers must not modify the NAPI state if they
4856          * consume the entire weight.  In such cases this code
4857          * still "owns" the NAPI instance and therefore can
4858          * move the instance around on the list at-will.
4859          */
4860         if (unlikely(napi_disable_pending(n))) {
4861                 napi_complete(n);
4862                 goto out_unlock;
4863         }
4864
4865         if (n->gro_list) {
4866                 /* flush too old packets
4867                  * If HZ < 1000, flush all packets.
4868                  */
4869                 napi_gro_flush(n, HZ >= 1000);
4870         }
4871
4872         /* Some drivers may have called napi_schedule
4873          * prior to exhausting their budget.
4874          */
4875         if (unlikely(!list_empty(&n->poll_list))) {
4876                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4877                              n->dev ? n->dev->name : "backlog");
4878                 goto out_unlock;
4879         }
4880
4881         list_add_tail(&n->poll_list, repoll);
4882
4883 out_unlock:
4884         netpoll_poll_unlock(have);
4885
4886         return work;
4887 }
4888
4889 static void net_rx_action(struct softirq_action *h)
4890 {
4891         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4892         unsigned long time_limit = jiffies + 2;
4893         int budget = netdev_budget;
4894         LIST_HEAD(list);
4895         LIST_HEAD(repoll);
4896
4897         local_irq_disable();
4898         list_splice_init(&sd->poll_list, &list);
4899         local_irq_enable();
4900
4901         for (;;) {
4902                 struct napi_struct *n;
4903
4904                 if (list_empty(&list)) {
4905                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4906                                 return;
4907                         break;
4908                 }
4909
4910                 n = list_first_entry(&list, struct napi_struct, poll_list);
4911                 budget -= napi_poll(n, &repoll);
4912
4913                 /* If softirq window is exhausted then punt.
4914                  * Allow this to run for 2 jiffies since which will allow
4915                  * an average latency of 1.5/HZ.
4916                  */
4917                 if (unlikely(budget <= 0 ||
4918                              time_after_eq(jiffies, time_limit))) {
4919                         sd->time_squeeze++;
4920                         break;
4921                 }
4922         }
4923
4924         local_irq_disable();
4925
4926         list_splice_tail_init(&sd->poll_list, &list);
4927         list_splice_tail(&repoll, &list);
4928         list_splice(&list, &sd->poll_list);
4929         if (!list_empty(&sd->poll_list))
4930                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4931
4932         net_rps_action_and_irq_enable(sd);
4933 }
4934
4935 struct netdev_adjacent {
4936         struct net_device *dev;
4937
4938         /* upper master flag, there can only be one master device per list */
4939         bool master;
4940
4941         /* counter for the number of times this device was added to us */
4942         u16 ref_nr;
4943
4944         /* private field for the users */
4945         void *private;
4946
4947         struct list_head list;
4948         struct rcu_head rcu;
4949 };
4950
4951 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4952                                                  struct list_head *adj_list)
4953 {
4954         struct netdev_adjacent *adj;
4955
4956         list_for_each_entry(adj, adj_list, list) {
4957                 if (adj->dev == adj_dev)
4958                         return adj;
4959         }
4960         return NULL;
4961 }
4962
4963 /**
4964  * netdev_has_upper_dev - Check if device is linked to an upper device
4965  * @dev: device
4966  * @upper_dev: upper device to check
4967  *
4968  * Find out if a device is linked to specified upper device and return true
4969  * in case it is. Note that this checks only immediate upper device,
4970  * not through a complete stack of devices. The caller must hold the RTNL lock.
4971  */
4972 bool netdev_has_upper_dev(struct net_device *dev,
4973                           struct net_device *upper_dev)
4974 {
4975         ASSERT_RTNL();
4976
4977         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4978 }
4979 EXPORT_SYMBOL(netdev_has_upper_dev);
4980
4981 /**
4982  * netdev_has_any_upper_dev - Check if device is linked to some device
4983  * @dev: device
4984  *
4985  * Find out if a device is linked to an upper device and return true in case
4986  * it is. The caller must hold the RTNL lock.
4987  */
4988 static bool netdev_has_any_upper_dev(struct net_device *dev)
4989 {
4990         ASSERT_RTNL();
4991
4992         return !list_empty(&dev->all_adj_list.upper);
4993 }
4994
4995 /**
4996  * netdev_master_upper_dev_get - Get master upper device
4997  * @dev: device
4998  *
4999  * Find a master upper device and return pointer to it or NULL in case
5000  * it's not there. The caller must hold the RTNL lock.
5001  */
5002 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5003 {
5004         struct netdev_adjacent *upper;
5005
5006         ASSERT_RTNL();
5007
5008         if (list_empty(&dev->adj_list.upper))
5009                 return NULL;
5010
5011         upper = list_first_entry(&dev->adj_list.upper,
5012                                  struct netdev_adjacent, list);
5013         if (likely(upper->master))
5014                 return upper->dev;
5015         return NULL;
5016 }
5017 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5018
5019 void *netdev_adjacent_get_private(struct list_head *adj_list)
5020 {
5021         struct netdev_adjacent *adj;
5022
5023         adj = list_entry(adj_list, struct netdev_adjacent, list);
5024
5025         return adj->private;
5026 }
5027 EXPORT_SYMBOL(netdev_adjacent_get_private);
5028
5029 /**
5030  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5031  * @dev: device
5032  * @iter: list_head ** of the current position
5033  *
5034  * Gets the next device from the dev's upper list, starting from iter
5035  * position. The caller must hold RCU read lock.
5036  */
5037 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5038                                                  struct list_head **iter)
5039 {
5040         struct netdev_adjacent *upper;
5041
5042         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5043
5044         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5045
5046         if (&upper->list == &dev->adj_list.upper)
5047                 return NULL;
5048
5049         *iter = &upper->list;
5050
5051         return upper->dev;
5052 }
5053 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5054
5055 /**
5056  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5057  * @dev: device
5058  * @iter: list_head ** of the current position
5059  *
5060  * Gets the next device from the dev's upper list, starting from iter
5061  * position. The caller must hold RCU read lock.
5062  */
5063 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5064                                                      struct list_head **iter)
5065 {
5066         struct netdev_adjacent *upper;
5067
5068         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5069
5070         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5071
5072         if (&upper->list == &dev->all_adj_list.upper)
5073                 return NULL;
5074
5075         *iter = &upper->list;
5076
5077         return upper->dev;
5078 }
5079 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5080
5081 /**
5082  * netdev_lower_get_next_private - Get the next ->private from the
5083  *                                 lower neighbour list
5084  * @dev: device
5085  * @iter: list_head ** of the current position
5086  *
5087  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5088  * list, starting from iter position. The caller must hold either hold the
5089  * RTNL lock or its own locking that guarantees that the neighbour lower
5090  * list will remain unchanged.
5091  */
5092 void *netdev_lower_get_next_private(struct net_device *dev,
5093                                     struct list_head **iter)
5094 {
5095         struct netdev_adjacent *lower;
5096
5097         lower = list_entry(*iter, struct netdev_adjacent, list);
5098
5099         if (&lower->list == &dev->adj_list.lower)
5100                 return NULL;
5101
5102         *iter = lower->list.next;
5103
5104         return lower->private;
5105 }
5106 EXPORT_SYMBOL(netdev_lower_get_next_private);
5107
5108 /**
5109  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5110  *                                     lower neighbour list, RCU
5111  *                                     variant
5112  * @dev: device
5113  * @iter: list_head ** of the current position
5114  *
5115  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5116  * list, starting from iter position. The caller must hold RCU read lock.
5117  */
5118 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5119                                         struct list_head **iter)
5120 {
5121         struct netdev_adjacent *lower;
5122
5123         WARN_ON_ONCE(!rcu_read_lock_held());
5124
5125         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5126
5127         if (&lower->list == &dev->adj_list.lower)
5128                 return NULL;
5129
5130         *iter = &lower->list;
5131
5132         return lower->private;
5133 }
5134 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5135
5136 /**
5137  * netdev_lower_get_next - Get the next device from the lower neighbour
5138  *                         list
5139  * @dev: device
5140  * @iter: list_head ** of the current position
5141  *
5142  * Gets the next netdev_adjacent from the dev's lower neighbour
5143  * list, starting from iter position. The caller must hold RTNL lock or
5144  * its own locking that guarantees that the neighbour lower
5145  * list will remain unchanged.
5146  */
5147 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5148 {
5149         struct netdev_adjacent *lower;
5150
5151         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5152
5153         if (&lower->list == &dev->adj_list.lower)
5154                 return NULL;
5155
5156         *iter = &lower->list;
5157
5158         return lower->dev;
5159 }
5160 EXPORT_SYMBOL(netdev_lower_get_next);
5161
5162 /**
5163  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5164  *                                     lower neighbour list, RCU
5165  *                                     variant
5166  * @dev: device
5167  *
5168  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5169  * list. The caller must hold RCU read lock.
5170  */
5171 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5172 {
5173         struct netdev_adjacent *lower;
5174
5175         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5176                         struct netdev_adjacent, list);
5177         if (lower)
5178                 return lower->private;
5179         return NULL;
5180 }
5181 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5182
5183 /**
5184  * netdev_master_upper_dev_get_rcu - Get master upper device
5185  * @dev: device
5186  *
5187  * Find a master upper device and return pointer to it or NULL in case
5188  * it's not there. The caller must hold the RCU read lock.
5189  */
5190 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5191 {
5192         struct netdev_adjacent *upper;
5193
5194         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5195                                        struct netdev_adjacent, list);
5196         if (upper && likely(upper->master))
5197                 return upper->dev;
5198         return NULL;
5199 }
5200 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5201
5202 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5203                               struct net_device *adj_dev,
5204                               struct list_head *dev_list)
5205 {
5206         char linkname[IFNAMSIZ+7];
5207         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5208                 "upper_%s" : "lower_%s", adj_dev->name);
5209         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5210                                  linkname);
5211 }
5212 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5213                                char *name,
5214                                struct list_head *dev_list)
5215 {
5216         char linkname[IFNAMSIZ+7];
5217         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5218                 "upper_%s" : "lower_%s", name);
5219         sysfs_remove_link(&(dev->dev.kobj), linkname);
5220 }
5221
5222 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5223                                                  struct net_device *adj_dev,
5224                                                  struct list_head *dev_list)
5225 {
5226         return (dev_list == &dev->adj_list.upper ||
5227                 dev_list == &dev->adj_list.lower) &&
5228                 net_eq(dev_net(dev), dev_net(adj_dev));
5229 }
5230
5231 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5232                                         struct net_device *adj_dev,
5233                                         u16 ref_nr,
5234                                         struct list_head *dev_list,
5235                                         void *private, bool master)
5236 {
5237         struct netdev_adjacent *adj;
5238         int ret;
5239
5240         adj = __netdev_find_adj(adj_dev, dev_list);
5241
5242         if (adj) {
5243                 adj->ref_nr += ref_nr;
5244                 return 0;
5245         }
5246
5247         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5248         if (!adj)
5249                 return -ENOMEM;
5250
5251         adj->dev = adj_dev;
5252         adj->master = master;
5253         adj->ref_nr = ref_nr;
5254         adj->private = private;
5255         dev_hold(adj_dev);
5256
5257         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5258                  adj_dev->name, dev->name, adj_dev->name);
5259
5260         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5261                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5262                 if (ret)
5263                         goto free_adj;
5264         }
5265
5266         /* Ensure that master link is always the first item in list. */
5267         if (master) {
5268                 ret = sysfs_create_link(&(dev->dev.kobj),
5269                                         &(adj_dev->dev.kobj), "master");
5270                 if (ret)
5271                         goto remove_symlinks;
5272
5273                 list_add_rcu(&adj->list, dev_list);
5274         } else {
5275                 list_add_tail_rcu(&adj->list, dev_list);
5276         }
5277
5278         return 0;
5279
5280 remove_symlinks:
5281         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5282                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5283 free_adj:
5284         kfree(adj);
5285         dev_put(adj_dev);
5286
5287         return ret;
5288 }
5289
5290 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5291                                          struct net_device *adj_dev,
5292                                          u16 ref_nr,
5293                                          struct list_head *dev_list)
5294 {
5295         struct netdev_adjacent *adj;
5296
5297         adj = __netdev_find_adj(adj_dev, dev_list);
5298
5299         if (!adj) {
5300                 pr_err("tried to remove device %s from %s\n",
5301                        dev->name, adj_dev->name);
5302                 BUG();
5303         }
5304
5305         if (adj->ref_nr > ref_nr) {
5306                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5307                          ref_nr, adj->ref_nr-ref_nr);
5308                 adj->ref_nr -= ref_nr;
5309                 return;
5310         }
5311
5312         if (adj->master)
5313                 sysfs_remove_link(&(dev->dev.kobj), "master");
5314
5315         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5316                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5317
5318         list_del_rcu(&adj->list);
5319         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5320                  adj_dev->name, dev->name, adj_dev->name);
5321         dev_put(adj_dev);
5322         kfree_rcu(adj, rcu);
5323 }
5324
5325 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5326                                             struct net_device *upper_dev,
5327                                             u16 ref_nr,
5328                                             struct list_head *up_list,
5329                                             struct list_head *down_list,
5330                                             void *private, bool master)
5331 {
5332         int ret;
5333
5334         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5335                                            private, master);
5336         if (ret)
5337                 return ret;
5338
5339         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5340                                            private, false);
5341         if (ret) {
5342                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5343                 return ret;
5344         }
5345
5346         return 0;
5347 }
5348
5349 static int __netdev_adjacent_dev_link(struct net_device *dev,
5350                                       struct net_device *upper_dev,
5351                                       u16 ref_nr)
5352 {
5353         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5354                                                 &dev->all_adj_list.upper,
5355                                                 &upper_dev->all_adj_list.lower,
5356                                                 NULL, false);
5357 }
5358
5359 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5360                                                struct net_device *upper_dev,
5361                                                u16 ref_nr,
5362                                                struct list_head *up_list,
5363                                                struct list_head *down_list)
5364 {
5365         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5366         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5367 }
5368
5369 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5370                                          struct net_device *upper_dev,
5371                                          u16 ref_nr)
5372 {
5373         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5374                                            &dev->all_adj_list.upper,
5375                                            &upper_dev->all_adj_list.lower);
5376 }
5377
5378 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5379                                                 struct net_device *upper_dev,
5380                                                 void *private, bool master)
5381 {
5382         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5383
5384         if (ret)
5385                 return ret;
5386
5387         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5388                                                &dev->adj_list.upper,
5389                                                &upper_dev->adj_list.lower,
5390                                                private, master);
5391         if (ret) {
5392                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5393                 return ret;
5394         }
5395
5396         return 0;
5397 }
5398
5399 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5400                                                    struct net_device *upper_dev)
5401 {
5402         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5403         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5404                                            &dev->adj_list.upper,
5405                                            &upper_dev->adj_list.lower);
5406 }
5407
5408 static int __netdev_upper_dev_link(struct net_device *dev,
5409                                    struct net_device *upper_dev, bool master,
5410                                    void *private)
5411 {
5412         struct netdev_notifier_changeupper_info changeupper_info;
5413         struct netdev_adjacent *i, *j, *to_i, *to_j;
5414         int ret = 0;
5415
5416         ASSERT_RTNL();
5417
5418         if (dev == upper_dev)
5419                 return -EBUSY;
5420
5421         /* To prevent loops, check if dev is not upper device to upper_dev. */
5422         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5423                 return -EBUSY;
5424
5425         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5426                 return -EEXIST;
5427
5428         if (master && netdev_master_upper_dev_get(dev))
5429                 return -EBUSY;
5430
5431         changeupper_info.upper_dev = upper_dev;
5432         changeupper_info.master = master;
5433         changeupper_info.linking = true;
5434
5435         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5436                                             &changeupper_info.info);
5437         ret = notifier_to_errno(ret);
5438         if (ret)
5439                 return ret;
5440
5441         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5442                                                    master);
5443         if (ret)
5444                 return ret;
5445
5446         /* Now that we linked these devs, make all the upper_dev's
5447          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5448          * versa, and don't forget the devices itself. All of these
5449          * links are non-neighbours.
5450          */
5451         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5452                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5453                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5454                                  i->dev->name, j->dev->name);
5455                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5456                         if (ret)
5457                                 goto rollback_mesh;
5458                 }
5459         }
5460
5461         /* add dev to every upper_dev's upper device */
5462         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5463                 pr_debug("linking %s's upper device %s with %s\n",
5464                          upper_dev->name, i->dev->name, dev->name);
5465                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5466                 if (ret)
5467                         goto rollback_upper_mesh;
5468         }
5469
5470         /* add upper_dev to every dev's lower device */
5471         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5472                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5473                          i->dev->name, upper_dev->name);
5474                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5475                 if (ret)
5476                         goto rollback_lower_mesh;
5477         }
5478
5479         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5480                                       &changeupper_info.info);
5481         return 0;
5482
5483 rollback_lower_mesh:
5484         to_i = i;
5485         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5486                 if (i == to_i)
5487                         break;
5488                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5489         }
5490
5491         i = NULL;
5492
5493 rollback_upper_mesh:
5494         to_i = i;
5495         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5496                 if (i == to_i)
5497                         break;
5498                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5499         }
5500
5501         i = j = NULL;
5502
5503 rollback_mesh:
5504         to_i = i;
5505         to_j = j;
5506         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5507                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5508                         if (i == to_i && j == to_j)
5509                                 break;
5510                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5511                 }
5512                 if (i == to_i)
5513                         break;
5514         }
5515
5516         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5517
5518         return ret;
5519 }
5520
5521 /**
5522  * netdev_upper_dev_link - Add a link to the upper device
5523  * @dev: device
5524  * @upper_dev: new upper device
5525  *
5526  * Adds a link to device which is upper to this one. The caller must hold
5527  * the RTNL lock. On a failure a negative errno code is returned.
5528  * On success the reference counts are adjusted and the function
5529  * returns zero.
5530  */
5531 int netdev_upper_dev_link(struct net_device *dev,
5532                           struct net_device *upper_dev)
5533 {
5534         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5535 }
5536 EXPORT_SYMBOL(netdev_upper_dev_link);
5537
5538 /**
5539  * netdev_master_upper_dev_link - Add a master link to the upper device
5540  * @dev: device
5541  * @upper_dev: new upper device
5542  *
5543  * Adds a link to device which is upper to this one. In this case, only
5544  * one master upper device can be linked, although other non-master devices
5545  * might be linked as well. The caller must hold the RTNL lock.
5546  * On a failure a negative errno code is returned. On success the reference
5547  * counts are adjusted and the function returns zero.
5548  */
5549 int netdev_master_upper_dev_link(struct net_device *dev,
5550                                  struct net_device *upper_dev)
5551 {
5552         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5553 }
5554 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5555
5556 int netdev_master_upper_dev_link_private(struct net_device *dev,
5557                                          struct net_device *upper_dev,
5558                                          void *private)
5559 {
5560         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5561 }
5562 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5563
5564 /**
5565  * netdev_upper_dev_unlink - Removes a link to upper device
5566  * @dev: device
5567  * @upper_dev: new upper device
5568  *
5569  * Removes a link to device which is upper to this one. The caller must hold
5570  * the RTNL lock.
5571  */
5572 void netdev_upper_dev_unlink(struct net_device *dev,
5573                              struct net_device *upper_dev)
5574 {
5575         struct netdev_notifier_changeupper_info changeupper_info;
5576         struct netdev_adjacent *i, *j;
5577         ASSERT_RTNL();
5578
5579         changeupper_info.upper_dev = upper_dev;
5580         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5581         changeupper_info.linking = false;
5582
5583         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5584                                       &changeupper_info.info);
5585
5586         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5587
5588         /* Here is the tricky part. We must remove all dev's lower
5589          * devices from all upper_dev's upper devices and vice
5590          * versa, to maintain the graph relationship.
5591          */
5592         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5593                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5594                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5595
5596         /* remove also the devices itself from lower/upper device
5597          * list
5598          */
5599         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5600                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5601
5602         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5603                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5604
5605         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5606                                       &changeupper_info.info);
5607 }
5608 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5609
5610 /**
5611  * netdev_bonding_info_change - Dispatch event about slave change
5612  * @dev: device
5613  * @bonding_info: info to dispatch
5614  *
5615  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5616  * The caller must hold the RTNL lock.
5617  */
5618 void netdev_bonding_info_change(struct net_device *dev,
5619                                 struct netdev_bonding_info *bonding_info)
5620 {
5621         struct netdev_notifier_bonding_info     info;
5622
5623         memcpy(&info.bonding_info, bonding_info,
5624                sizeof(struct netdev_bonding_info));
5625         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5626                                       &info.info);
5627 }
5628 EXPORT_SYMBOL(netdev_bonding_info_change);
5629
5630 static void netdev_adjacent_add_links(struct net_device *dev)
5631 {
5632         struct netdev_adjacent *iter;
5633
5634         struct net *net = dev_net(dev);
5635
5636         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5637                 if (!net_eq(net,dev_net(iter->dev)))
5638                         continue;
5639                 netdev_adjacent_sysfs_add(iter->dev, dev,
5640                                           &iter->dev->adj_list.lower);
5641                 netdev_adjacent_sysfs_add(dev, iter->dev,
5642                                           &dev->adj_list.upper);
5643         }
5644
5645         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5646                 if (!net_eq(net,dev_net(iter->dev)))
5647                         continue;
5648                 netdev_adjacent_sysfs_add(iter->dev, dev,
5649                                           &iter->dev->adj_list.upper);
5650                 netdev_adjacent_sysfs_add(dev, iter->dev,
5651                                           &dev->adj_list.lower);
5652         }
5653 }
5654
5655 static void netdev_adjacent_del_links(struct net_device *dev)
5656 {
5657         struct netdev_adjacent *iter;
5658
5659         struct net *net = dev_net(dev);
5660
5661         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5662                 if (!net_eq(net,dev_net(iter->dev)))
5663                         continue;
5664                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5665                                           &iter->dev->adj_list.lower);
5666                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5667                                           &dev->adj_list.upper);
5668         }
5669
5670         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5671                 if (!net_eq(net,dev_net(iter->dev)))
5672                         continue;
5673                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5674                                           &iter->dev->adj_list.upper);
5675                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5676                                           &dev->adj_list.lower);
5677         }
5678 }
5679
5680 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5681 {
5682         struct netdev_adjacent *iter;
5683
5684         struct net *net = dev_net(dev);
5685
5686         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5687                 if (!net_eq(net,dev_net(iter->dev)))
5688                         continue;
5689                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5690                                           &iter->dev->adj_list.lower);
5691                 netdev_adjacent_sysfs_add(iter->dev, dev,
5692                                           &iter->dev->adj_list.lower);
5693         }
5694
5695         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5696                 if (!net_eq(net,dev_net(iter->dev)))
5697                         continue;
5698                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5699                                           &iter->dev->adj_list.upper);
5700                 netdev_adjacent_sysfs_add(iter->dev, dev,
5701                                           &iter->dev->adj_list.upper);
5702         }
5703 }
5704
5705 void *netdev_lower_dev_get_private(struct net_device *dev,
5706                                    struct net_device *lower_dev)
5707 {
5708         struct netdev_adjacent *lower;
5709
5710         if (!lower_dev)
5711                 return NULL;
5712         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5713         if (!lower)
5714                 return NULL;
5715
5716         return lower->private;
5717 }
5718 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5719
5720
5721 int dev_get_nest_level(struct net_device *dev,
5722                        bool (*type_check)(struct net_device *dev))
5723 {
5724         struct net_device *lower = NULL;
5725         struct list_head *iter;
5726         int max_nest = -1;
5727         int nest;
5728
5729         ASSERT_RTNL();
5730
5731         netdev_for_each_lower_dev(dev, lower, iter) {
5732                 nest = dev_get_nest_level(lower, type_check);
5733                 if (max_nest < nest)
5734                         max_nest = nest;
5735         }
5736
5737         if (type_check(dev))
5738                 max_nest++;
5739
5740         return max_nest;
5741 }
5742 EXPORT_SYMBOL(dev_get_nest_level);
5743
5744 static void dev_change_rx_flags(struct net_device *dev, int flags)
5745 {
5746         const struct net_device_ops *ops = dev->netdev_ops;
5747
5748         if (ops->ndo_change_rx_flags)
5749                 ops->ndo_change_rx_flags(dev, flags);
5750 }
5751
5752 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5753 {
5754         unsigned int old_flags = dev->flags;
5755         kuid_t uid;
5756         kgid_t gid;
5757
5758         ASSERT_RTNL();
5759
5760         dev->flags |= IFF_PROMISC;
5761         dev->promiscuity += inc;
5762         if (dev->promiscuity == 0) {
5763                 /*
5764                  * Avoid overflow.
5765                  * If inc causes overflow, untouch promisc and return error.
5766                  */
5767                 if (inc < 0)
5768                         dev->flags &= ~IFF_PROMISC;
5769                 else {
5770                         dev->promiscuity -= inc;
5771                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5772                                 dev->name);
5773                         return -EOVERFLOW;
5774                 }
5775         }
5776         if (dev->flags != old_flags) {
5777                 pr_info("device %s %s promiscuous mode\n",
5778                         dev->name,
5779                         dev->flags & IFF_PROMISC ? "entered" : "left");
5780                 if (audit_enabled) {
5781                         current_uid_gid(&uid, &gid);
5782                         audit_log(current->audit_context, GFP_ATOMIC,
5783                                 AUDIT_ANOM_PROMISCUOUS,
5784                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5785                                 dev->name, (dev->flags & IFF_PROMISC),
5786                                 (old_flags & IFF_PROMISC),
5787                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5788                                 from_kuid(&init_user_ns, uid),
5789                                 from_kgid(&init_user_ns, gid),
5790                                 audit_get_sessionid(current));
5791                 }
5792
5793                 dev_change_rx_flags(dev, IFF_PROMISC);
5794         }
5795         if (notify)
5796                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5797         return 0;
5798 }
5799
5800 /**
5801  *      dev_set_promiscuity     - update promiscuity count on a device
5802  *      @dev: device
5803  *      @inc: modifier
5804  *
5805  *      Add or remove promiscuity from a device. While the count in the device
5806  *      remains above zero the interface remains promiscuous. Once it hits zero
5807  *      the device reverts back to normal filtering operation. A negative inc
5808  *      value is used to drop promiscuity on the device.
5809  *      Return 0 if successful or a negative errno code on error.
5810  */
5811 int dev_set_promiscuity(struct net_device *dev, int inc)
5812 {
5813         unsigned int old_flags = dev->flags;
5814         int err;
5815
5816         err = __dev_set_promiscuity(dev, inc, true);
5817         if (err < 0)
5818                 return err;
5819         if (dev->flags != old_flags)
5820                 dev_set_rx_mode(dev);
5821         return err;
5822 }
5823 EXPORT_SYMBOL(dev_set_promiscuity);
5824
5825 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5826 {
5827         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5828
5829         ASSERT_RTNL();
5830
5831         dev->flags |= IFF_ALLMULTI;
5832         dev->allmulti += inc;
5833         if (dev->allmulti == 0) {
5834                 /*
5835                  * Avoid overflow.
5836                  * If inc causes overflow, untouch allmulti and return error.
5837                  */
5838                 if (inc < 0)
5839                         dev->flags &= ~IFF_ALLMULTI;
5840                 else {
5841                         dev->allmulti -= inc;
5842                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5843                                 dev->name);
5844                         return -EOVERFLOW;
5845                 }
5846         }
5847         if (dev->flags ^ old_flags) {
5848                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5849                 dev_set_rx_mode(dev);
5850                 if (notify)
5851                         __dev_notify_flags(dev, old_flags,
5852                                            dev->gflags ^ old_gflags);
5853         }
5854         return 0;
5855 }
5856
5857 /**
5858  *      dev_set_allmulti        - update allmulti count on a device
5859  *      @dev: device
5860  *      @inc: modifier
5861  *
5862  *      Add or remove reception of all multicast frames to a device. While the
5863  *      count in the device remains above zero the interface remains listening
5864  *      to all interfaces. Once it hits zero the device reverts back to normal
5865  *      filtering operation. A negative @inc value is used to drop the counter
5866  *      when releasing a resource needing all multicasts.
5867  *      Return 0 if successful or a negative errno code on error.
5868  */
5869
5870 int dev_set_allmulti(struct net_device *dev, int inc)
5871 {
5872         return __dev_set_allmulti(dev, inc, true);
5873 }
5874 EXPORT_SYMBOL(dev_set_allmulti);
5875
5876 /*
5877  *      Upload unicast and multicast address lists to device and
5878  *      configure RX filtering. When the device doesn't support unicast
5879  *      filtering it is put in promiscuous mode while unicast addresses
5880  *      are present.
5881  */
5882 void __dev_set_rx_mode(struct net_device *dev)
5883 {
5884         const struct net_device_ops *ops = dev->netdev_ops;
5885
5886         /* dev_open will call this function so the list will stay sane. */
5887         if (!(dev->flags&IFF_UP))
5888                 return;
5889
5890         if (!netif_device_present(dev))
5891                 return;
5892
5893         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5894                 /* Unicast addresses changes may only happen under the rtnl,
5895                  * therefore calling __dev_set_promiscuity here is safe.
5896                  */
5897                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5898                         __dev_set_promiscuity(dev, 1, false);
5899                         dev->uc_promisc = true;
5900                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5901                         __dev_set_promiscuity(dev, -1, false);
5902                         dev->uc_promisc = false;
5903                 }
5904         }
5905
5906         if (ops->ndo_set_rx_mode)
5907                 ops->ndo_set_rx_mode(dev);
5908 }
5909
5910 void dev_set_rx_mode(struct net_device *dev)
5911 {
5912         netif_addr_lock_bh(dev);
5913         __dev_set_rx_mode(dev);
5914         netif_addr_unlock_bh(dev);
5915 }
5916
5917 /**
5918  *      dev_get_flags - get flags reported to userspace
5919  *      @dev: device
5920  *
5921  *      Get the combination of flag bits exported through APIs to userspace.
5922  */
5923 unsigned int dev_get_flags(const struct net_device *dev)
5924 {
5925         unsigned int flags;
5926
5927         flags = (dev->flags & ~(IFF_PROMISC |
5928                                 IFF_ALLMULTI |
5929                                 IFF_RUNNING |
5930                                 IFF_LOWER_UP |
5931                                 IFF_DORMANT)) |
5932                 (dev->gflags & (IFF_PROMISC |
5933                                 IFF_ALLMULTI));
5934
5935         if (netif_running(dev)) {
5936                 if (netif_oper_up(dev))
5937                         flags |= IFF_RUNNING;
5938                 if (netif_carrier_ok(dev))
5939                         flags |= IFF_LOWER_UP;
5940                 if (netif_dormant(dev))
5941                         flags |= IFF_DORMANT;
5942         }
5943
5944         return flags;
5945 }
5946 EXPORT_SYMBOL(dev_get_flags);
5947
5948 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5949 {
5950         unsigned int old_flags = dev->flags;
5951         int ret;
5952
5953         ASSERT_RTNL();
5954
5955         /*
5956          *      Set the flags on our device.
5957          */
5958
5959         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5960                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5961                                IFF_AUTOMEDIA)) |
5962                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5963                                     IFF_ALLMULTI));
5964
5965         /*
5966          *      Load in the correct multicast list now the flags have changed.
5967          */
5968
5969         if ((old_flags ^ flags) & IFF_MULTICAST)
5970                 dev_change_rx_flags(dev, IFF_MULTICAST);
5971
5972         dev_set_rx_mode(dev);
5973
5974         /*
5975          *      Have we downed the interface. We handle IFF_UP ourselves
5976          *      according to user attempts to set it, rather than blindly
5977          *      setting it.
5978          */
5979
5980         ret = 0;
5981         if ((old_flags ^ flags) & IFF_UP)
5982                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5983
5984         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5985                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5986                 unsigned int old_flags = dev->flags;
5987
5988                 dev->gflags ^= IFF_PROMISC;
5989
5990                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5991                         if (dev->flags != old_flags)
5992                                 dev_set_rx_mode(dev);
5993         }
5994
5995         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5996            is important. Some (broken) drivers set IFF_PROMISC, when
5997            IFF_ALLMULTI is requested not asking us and not reporting.
5998          */
5999         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6000                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6001
6002                 dev->gflags ^= IFF_ALLMULTI;
6003                 __dev_set_allmulti(dev, inc, false);
6004         }
6005
6006         return ret;
6007 }
6008
6009 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6010                         unsigned int gchanges)
6011 {
6012         unsigned int changes = dev->flags ^ old_flags;
6013
6014         if (gchanges)
6015                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6016
6017         if (changes & IFF_UP) {
6018                 if (dev->flags & IFF_UP)
6019                         call_netdevice_notifiers(NETDEV_UP, dev);
6020                 else
6021                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6022         }
6023
6024         if (dev->flags & IFF_UP &&
6025             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6026                 struct netdev_notifier_change_info change_info;
6027
6028                 change_info.flags_changed = changes;
6029                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6030                                               &change_info.info);
6031         }
6032 }
6033
6034 /**
6035  *      dev_change_flags - change device settings
6036  *      @dev: device
6037  *      @flags: device state flags
6038  *
6039  *      Change settings on device based state flags. The flags are
6040  *      in the userspace exported format.
6041  */
6042 int dev_change_flags(struct net_device *dev, unsigned int flags)
6043 {
6044         int ret;
6045         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6046
6047         ret = __dev_change_flags(dev, flags);
6048         if (ret < 0)
6049                 return ret;
6050
6051         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6052         __dev_notify_flags(dev, old_flags, changes);
6053         return ret;
6054 }
6055 EXPORT_SYMBOL(dev_change_flags);
6056
6057 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6058 {
6059         const struct net_device_ops *ops = dev->netdev_ops;
6060
6061         if (ops->ndo_change_mtu)
6062                 return ops->ndo_change_mtu(dev, new_mtu);
6063
6064         dev->mtu = new_mtu;
6065         return 0;
6066 }
6067
6068 /**
6069  *      dev_set_mtu - Change maximum transfer unit
6070  *      @dev: device
6071  *      @new_mtu: new transfer unit
6072  *
6073  *      Change the maximum transfer size of the network device.
6074  */
6075 int dev_set_mtu(struct net_device *dev, int new_mtu)
6076 {
6077         int err, orig_mtu;
6078
6079         if (new_mtu == dev->mtu)
6080                 return 0;
6081
6082         /*      MTU must be positive.    */
6083         if (new_mtu < 0)
6084                 return -EINVAL;
6085
6086         if (!netif_device_present(dev))
6087                 return -ENODEV;
6088
6089         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6090         err = notifier_to_errno(err);
6091         if (err)
6092                 return err;
6093
6094         orig_mtu = dev->mtu;
6095         err = __dev_set_mtu(dev, new_mtu);
6096
6097         if (!err) {
6098                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6099                 err = notifier_to_errno(err);
6100                 if (err) {
6101                         /* setting mtu back and notifying everyone again,
6102                          * so that they have a chance to revert changes.
6103                          */
6104                         __dev_set_mtu(dev, orig_mtu);
6105                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6106                 }
6107         }
6108         return err;
6109 }
6110 EXPORT_SYMBOL(dev_set_mtu);
6111
6112 /**
6113  *      dev_set_group - Change group this device belongs to
6114  *      @dev: device
6115  *      @new_group: group this device should belong to
6116  */
6117 void dev_set_group(struct net_device *dev, int new_group)
6118 {
6119         dev->group = new_group;
6120 }
6121 EXPORT_SYMBOL(dev_set_group);
6122
6123 /**
6124  *      dev_set_mac_address - Change Media Access Control Address
6125  *      @dev: device
6126  *      @sa: new address
6127  *
6128  *      Change the hardware (MAC) address of the device
6129  */
6130 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6131 {
6132         const struct net_device_ops *ops = dev->netdev_ops;
6133         int err;
6134
6135         if (!ops->ndo_set_mac_address)
6136                 return -EOPNOTSUPP;
6137         if (sa->sa_family != dev->type)
6138                 return -EINVAL;
6139         if (!netif_device_present(dev))
6140                 return -ENODEV;
6141         err = ops->ndo_set_mac_address(dev, sa);
6142         if (err)
6143                 return err;
6144         dev->addr_assign_type = NET_ADDR_SET;
6145         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6146         add_device_randomness(dev->dev_addr, dev->addr_len);
6147         return 0;
6148 }
6149 EXPORT_SYMBOL(dev_set_mac_address);
6150
6151 /**
6152  *      dev_change_carrier - Change device carrier
6153  *      @dev: device
6154  *      @new_carrier: new value
6155  *
6156  *      Change device carrier
6157  */
6158 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6159 {
6160         const struct net_device_ops *ops = dev->netdev_ops;
6161
6162         if (!ops->ndo_change_carrier)
6163                 return -EOPNOTSUPP;
6164         if (!netif_device_present(dev))
6165                 return -ENODEV;
6166         return ops->ndo_change_carrier(dev, new_carrier);
6167 }
6168 EXPORT_SYMBOL(dev_change_carrier);
6169
6170 /**
6171  *      dev_get_phys_port_id - Get device physical port ID
6172  *      @dev: device
6173  *      @ppid: port ID
6174  *
6175  *      Get device physical port ID
6176  */
6177 int dev_get_phys_port_id(struct net_device *dev,
6178                          struct netdev_phys_item_id *ppid)
6179 {
6180         const struct net_device_ops *ops = dev->netdev_ops;
6181
6182         if (!ops->ndo_get_phys_port_id)
6183                 return -EOPNOTSUPP;
6184         return ops->ndo_get_phys_port_id(dev, ppid);
6185 }
6186 EXPORT_SYMBOL(dev_get_phys_port_id);
6187
6188 /**
6189  *      dev_get_phys_port_name - Get device physical port name
6190  *      @dev: device
6191  *      @name: port name
6192  *
6193  *      Get device physical port name
6194  */
6195 int dev_get_phys_port_name(struct net_device *dev,
6196                            char *name, size_t len)
6197 {
6198         const struct net_device_ops *ops = dev->netdev_ops;
6199
6200         if (!ops->ndo_get_phys_port_name)
6201                 return -EOPNOTSUPP;
6202         return ops->ndo_get_phys_port_name(dev, name, len);
6203 }
6204 EXPORT_SYMBOL(dev_get_phys_port_name);
6205
6206 /**
6207  *      dev_change_proto_down - update protocol port state information
6208  *      @dev: device
6209  *      @proto_down: new value
6210  *
6211  *      This info can be used by switch drivers to set the phys state of the
6212  *      port.
6213  */
6214 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6215 {
6216         const struct net_device_ops *ops = dev->netdev_ops;
6217
6218         if (!ops->ndo_change_proto_down)
6219                 return -EOPNOTSUPP;
6220         if (!netif_device_present(dev))
6221                 return -ENODEV;
6222         return ops->ndo_change_proto_down(dev, proto_down);
6223 }
6224 EXPORT_SYMBOL(dev_change_proto_down);
6225
6226 /**
6227  *      dev_new_index   -       allocate an ifindex
6228  *      @net: the applicable net namespace
6229  *
6230  *      Returns a suitable unique value for a new device interface
6231  *      number.  The caller must hold the rtnl semaphore or the
6232  *      dev_base_lock to be sure it remains unique.
6233  */
6234 static int dev_new_index(struct net *net)
6235 {
6236         int ifindex = net->ifindex;
6237         for (;;) {
6238                 if (++ifindex <= 0)
6239                         ifindex = 1;
6240                 if (!__dev_get_by_index(net, ifindex))
6241                         return net->ifindex = ifindex;
6242         }
6243 }
6244
6245 /* Delayed registration/unregisteration */
6246 static LIST_HEAD(net_todo_list);
6247 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6248
6249 static void net_set_todo(struct net_device *dev)
6250 {
6251         list_add_tail(&dev->todo_list, &net_todo_list);
6252         dev_net(dev)->dev_unreg_count++;
6253 }
6254
6255 static void rollback_registered_many(struct list_head *head)
6256 {
6257         struct net_device *dev, *tmp;
6258         LIST_HEAD(close_head);
6259
6260         BUG_ON(dev_boot_phase);
6261         ASSERT_RTNL();
6262
6263         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6264                 /* Some devices call without registering
6265                  * for initialization unwind. Remove those
6266                  * devices and proceed with the remaining.
6267                  */
6268                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6269                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6270                                  dev->name, dev);
6271
6272                         WARN_ON(1);
6273                         list_del(&dev->unreg_list);
6274                         continue;
6275                 }
6276                 dev->dismantle = true;
6277                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6278         }
6279
6280         /* If device is running, close it first. */
6281         list_for_each_entry(dev, head, unreg_list)
6282                 list_add_tail(&dev->close_list, &close_head);
6283         dev_close_many(&close_head, true);
6284
6285         list_for_each_entry(dev, head, unreg_list) {
6286                 /* And unlink it from device chain. */
6287                 unlist_netdevice(dev);
6288
6289                 dev->reg_state = NETREG_UNREGISTERING;
6290                 on_each_cpu(flush_backlog, dev, 1);
6291         }
6292
6293         synchronize_net();
6294
6295         list_for_each_entry(dev, head, unreg_list) {
6296                 struct sk_buff *skb = NULL;
6297
6298                 /* Shutdown queueing discipline. */
6299                 dev_shutdown(dev);
6300
6301
6302                 /* Notify protocols, that we are about to destroy
6303                    this device. They should clean all the things.
6304                 */
6305                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6306
6307                 if (!dev->rtnl_link_ops ||
6308                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6309                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6310                                                      GFP_KERNEL);
6311
6312                 /*
6313                  *      Flush the unicast and multicast chains
6314                  */
6315                 dev_uc_flush(dev);
6316                 dev_mc_flush(dev);
6317
6318                 if (dev->netdev_ops->ndo_uninit)
6319                         dev->netdev_ops->ndo_uninit(dev);
6320
6321                 if (skb)
6322                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6323
6324                 /* Notifier chain MUST detach us all upper devices. */
6325                 WARN_ON(netdev_has_any_upper_dev(dev));
6326
6327                 /* Remove entries from kobject tree */
6328                 netdev_unregister_kobject(dev);
6329 #ifdef CONFIG_XPS
6330                 /* Remove XPS queueing entries */
6331                 netif_reset_xps_queues_gt(dev, 0);
6332 #endif
6333         }
6334
6335         synchronize_net();
6336
6337         list_for_each_entry(dev, head, unreg_list)
6338                 dev_put(dev);
6339 }
6340
6341 static void rollback_registered(struct net_device *dev)
6342 {
6343         LIST_HEAD(single);
6344
6345         list_add(&dev->unreg_list, &single);
6346         rollback_registered_many(&single);
6347         list_del(&single);
6348 }
6349
6350 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6351         struct net_device *upper, netdev_features_t features)
6352 {
6353         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6354         netdev_features_t feature;
6355         int feature_bit;
6356
6357         for_each_netdev_feature(&upper_disables, feature_bit) {
6358                 feature = __NETIF_F_BIT(feature_bit);
6359                 if (!(upper->wanted_features & feature)
6360                     && (features & feature)) {
6361                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6362                                    &feature, upper->name);
6363                         features &= ~feature;
6364                 }
6365         }
6366
6367         return features;
6368 }
6369
6370 static void netdev_sync_lower_features(struct net_device *upper,
6371         struct net_device *lower, netdev_features_t features)
6372 {
6373         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6374         netdev_features_t feature;
6375         int feature_bit;
6376
6377         for_each_netdev_feature(&upper_disables, feature_bit) {
6378                 feature = __NETIF_F_BIT(feature_bit);
6379                 if (!(features & feature) && (lower->features & feature)) {
6380                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6381                                    &feature, lower->name);
6382                         lower->wanted_features &= ~feature;
6383                         netdev_update_features(lower);
6384
6385                         if (unlikely(lower->features & feature))
6386                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6387                                             &feature, lower->name);
6388                 }
6389         }
6390 }
6391
6392 static netdev_features_t netdev_fix_features(struct net_device *dev,
6393         netdev_features_t features)
6394 {
6395         /* Fix illegal checksum combinations */
6396         if ((features & NETIF_F_HW_CSUM) &&
6397             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6398                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6399                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6400         }
6401
6402         /* TSO requires that SG is present as well. */
6403         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6404                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6405                 features &= ~NETIF_F_ALL_TSO;
6406         }
6407
6408         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6409                                         !(features & NETIF_F_IP_CSUM)) {
6410                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6411                 features &= ~NETIF_F_TSO;
6412                 features &= ~NETIF_F_TSO_ECN;
6413         }
6414
6415         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6416                                          !(features & NETIF_F_IPV6_CSUM)) {
6417                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6418                 features &= ~NETIF_F_TSO6;
6419         }
6420
6421         /* TSO ECN requires that TSO is present as well. */
6422         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6423                 features &= ~NETIF_F_TSO_ECN;
6424
6425         /* Software GSO depends on SG. */
6426         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6427                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6428                 features &= ~NETIF_F_GSO;
6429         }
6430
6431         /* UFO needs SG and checksumming */
6432         if (features & NETIF_F_UFO) {
6433                 /* maybe split UFO into V4 and V6? */
6434                 if (!((features & NETIF_F_GEN_CSUM) ||
6435                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6436                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6437                         netdev_dbg(dev,
6438                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6439                         features &= ~NETIF_F_UFO;
6440                 }
6441
6442                 if (!(features & NETIF_F_SG)) {
6443                         netdev_dbg(dev,
6444                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6445                         features &= ~NETIF_F_UFO;
6446                 }
6447         }
6448
6449 #ifdef CONFIG_NET_RX_BUSY_POLL
6450         if (dev->netdev_ops->ndo_busy_poll)
6451                 features |= NETIF_F_BUSY_POLL;
6452         else
6453 #endif
6454                 features &= ~NETIF_F_BUSY_POLL;
6455
6456         return features;
6457 }
6458
6459 int __netdev_update_features(struct net_device *dev)
6460 {
6461         struct net_device *upper, *lower;
6462         netdev_features_t features;
6463         struct list_head *iter;
6464         int err = -1;
6465
6466         ASSERT_RTNL();
6467
6468         features = netdev_get_wanted_features(dev);
6469
6470         if (dev->netdev_ops->ndo_fix_features)
6471                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6472
6473         /* driver might be less strict about feature dependencies */
6474         features = netdev_fix_features(dev, features);
6475
6476         /* some features can't be enabled if they're off an an upper device */
6477         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6478                 features = netdev_sync_upper_features(dev, upper, features);
6479
6480         if (dev->features == features)
6481                 goto sync_lower;
6482
6483         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6484                 &dev->features, &features);
6485
6486         if (dev->netdev_ops->ndo_set_features)
6487                 err = dev->netdev_ops->ndo_set_features(dev, features);
6488         else
6489                 err = 0;
6490
6491         if (unlikely(err < 0)) {
6492                 netdev_err(dev,
6493                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6494                         err, &features, &dev->features);
6495                 /* return non-0 since some features might have changed and
6496                  * it's better to fire a spurious notification than miss it
6497                  */
6498                 return -1;
6499         }
6500
6501 sync_lower:
6502         /* some features must be disabled on lower devices when disabled
6503          * on an upper device (think: bonding master or bridge)
6504          */
6505         netdev_for_each_lower_dev(dev, lower, iter)
6506                 netdev_sync_lower_features(dev, lower, features);
6507
6508         if (!err)
6509                 dev->features = features;
6510
6511         return err < 0 ? 0 : 1;
6512 }
6513
6514 /**
6515  *      netdev_update_features - recalculate device features
6516  *      @dev: the device to check
6517  *
6518  *      Recalculate dev->features set and send notifications if it
6519  *      has changed. Should be called after driver or hardware dependent
6520  *      conditions might have changed that influence the features.
6521  */
6522 void netdev_update_features(struct net_device *dev)
6523 {
6524         if (__netdev_update_features(dev))
6525                 netdev_features_change(dev);
6526 }
6527 EXPORT_SYMBOL(netdev_update_features);
6528
6529 /**
6530  *      netdev_change_features - recalculate device features
6531  *      @dev: the device to check
6532  *
6533  *      Recalculate dev->features set and send notifications even
6534  *      if they have not changed. Should be called instead of
6535  *      netdev_update_features() if also dev->vlan_features might
6536  *      have changed to allow the changes to be propagated to stacked
6537  *      VLAN devices.
6538  */
6539 void netdev_change_features(struct net_device *dev)
6540 {
6541         __netdev_update_features(dev);
6542         netdev_features_change(dev);
6543 }
6544 EXPORT_SYMBOL(netdev_change_features);
6545
6546 /**
6547  *      netif_stacked_transfer_operstate -      transfer operstate
6548  *      @rootdev: the root or lower level device to transfer state from
6549  *      @dev: the device to transfer operstate to
6550  *
6551  *      Transfer operational state from root to device. This is normally
6552  *      called when a stacking relationship exists between the root
6553  *      device and the device(a leaf device).
6554  */
6555 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6556                                         struct net_device *dev)
6557 {
6558         if (rootdev->operstate == IF_OPER_DORMANT)
6559                 netif_dormant_on(dev);
6560         else
6561                 netif_dormant_off(dev);
6562
6563         if (netif_carrier_ok(rootdev)) {
6564                 if (!netif_carrier_ok(dev))
6565                         netif_carrier_on(dev);
6566         } else {
6567                 if (netif_carrier_ok(dev))
6568                         netif_carrier_off(dev);
6569         }
6570 }
6571 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6572
6573 #ifdef CONFIG_SYSFS
6574 static int netif_alloc_rx_queues(struct net_device *dev)
6575 {
6576         unsigned int i, count = dev->num_rx_queues;
6577         struct netdev_rx_queue *rx;
6578         size_t sz = count * sizeof(*rx);
6579
6580         BUG_ON(count < 1);
6581
6582         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6583         if (!rx) {
6584                 rx = vzalloc(sz);
6585                 if (!rx)
6586                         return -ENOMEM;
6587         }
6588         dev->_rx = rx;
6589
6590         for (i = 0; i < count; i++)
6591                 rx[i].dev = dev;
6592         return 0;
6593 }
6594 #endif
6595
6596 static void netdev_init_one_queue(struct net_device *dev,
6597                                   struct netdev_queue *queue, void *_unused)
6598 {
6599         /* Initialize queue lock */
6600         spin_lock_init(&queue->_xmit_lock);
6601         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6602         queue->xmit_lock_owner = -1;
6603         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6604         queue->dev = dev;
6605 #ifdef CONFIG_BQL
6606         dql_init(&queue->dql, HZ);
6607 #endif
6608 }
6609
6610 static void netif_free_tx_queues(struct net_device *dev)
6611 {
6612         kvfree(dev->_tx);
6613 }
6614
6615 static int netif_alloc_netdev_queues(struct net_device *dev)
6616 {
6617         unsigned int count = dev->num_tx_queues;
6618         struct netdev_queue *tx;
6619         size_t sz = count * sizeof(*tx);
6620
6621         if (count < 1 || count > 0xffff)
6622                 return -EINVAL;
6623
6624         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6625         if (!tx) {
6626                 tx = vzalloc(sz);
6627                 if (!tx)
6628                         return -ENOMEM;
6629         }
6630         dev->_tx = tx;
6631
6632         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6633         spin_lock_init(&dev->tx_global_lock);
6634
6635         return 0;
6636 }
6637
6638 void netif_tx_stop_all_queues(struct net_device *dev)
6639 {
6640         unsigned int i;
6641
6642         for (i = 0; i < dev->num_tx_queues; i++) {
6643                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6644                 netif_tx_stop_queue(txq);
6645         }
6646 }
6647 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6648
6649 /**
6650  *      register_netdevice      - register a network device
6651  *      @dev: device to register
6652  *
6653  *      Take a completed network device structure and add it to the kernel
6654  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6655  *      chain. 0 is returned on success. A negative errno code is returned
6656  *      on a failure to set up the device, or if the name is a duplicate.
6657  *
6658  *      Callers must hold the rtnl semaphore. You may want
6659  *      register_netdev() instead of this.
6660  *
6661  *      BUGS:
6662  *      The locking appears insufficient to guarantee two parallel registers
6663  *      will not get the same name.
6664  */
6665
6666 int register_netdevice(struct net_device *dev)
6667 {
6668         int ret;
6669         struct net *net = dev_net(dev);
6670
6671         BUG_ON(dev_boot_phase);
6672         ASSERT_RTNL();
6673
6674         might_sleep();
6675
6676         /* When net_device's are persistent, this will be fatal. */
6677         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6678         BUG_ON(!net);
6679
6680         spin_lock_init(&dev->addr_list_lock);
6681         netdev_set_addr_lockdep_class(dev);
6682
6683         ret = dev_get_valid_name(net, dev, dev->name);
6684         if (ret < 0)
6685                 goto out;
6686
6687         /* Init, if this function is available */
6688         if (dev->netdev_ops->ndo_init) {
6689                 ret = dev->netdev_ops->ndo_init(dev);
6690                 if (ret) {
6691                         if (ret > 0)
6692                                 ret = -EIO;
6693                         goto out;
6694                 }
6695         }
6696
6697         if (((dev->hw_features | dev->features) &
6698              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6699             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6700              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6701                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6702                 ret = -EINVAL;
6703                 goto err_uninit;
6704         }
6705
6706         ret = -EBUSY;
6707         if (!dev->ifindex)
6708                 dev->ifindex = dev_new_index(net);
6709         else if (__dev_get_by_index(net, dev->ifindex))
6710                 goto err_uninit;
6711
6712         /* Transfer changeable features to wanted_features and enable
6713          * software offloads (GSO and GRO).
6714          */
6715         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6716         dev->features |= NETIF_F_SOFT_FEATURES;
6717         dev->wanted_features = dev->features & dev->hw_features;
6718
6719         if (!(dev->flags & IFF_LOOPBACK)) {
6720                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6721         }
6722
6723         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6724          */
6725         dev->vlan_features |= NETIF_F_HIGHDMA;
6726
6727         /* Make NETIF_F_SG inheritable to tunnel devices.
6728          */
6729         dev->hw_enc_features |= NETIF_F_SG;
6730
6731         /* Make NETIF_F_SG inheritable to MPLS.
6732          */
6733         dev->mpls_features |= NETIF_F_SG;
6734
6735         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6736         ret = notifier_to_errno(ret);
6737         if (ret)
6738                 goto err_uninit;
6739
6740         ret = netdev_register_kobject(dev);
6741         if (ret)
6742                 goto err_uninit;
6743         dev->reg_state = NETREG_REGISTERED;
6744
6745         __netdev_update_features(dev);
6746
6747         /*
6748          *      Default initial state at registry is that the
6749          *      device is present.
6750          */
6751
6752         set_bit(__LINK_STATE_PRESENT, &dev->state);
6753
6754         linkwatch_init_dev(dev);
6755
6756         dev_init_scheduler(dev);
6757         dev_hold(dev);
6758         list_netdevice(dev);
6759         add_device_randomness(dev->dev_addr, dev->addr_len);
6760
6761         /* If the device has permanent device address, driver should
6762          * set dev_addr and also addr_assign_type should be set to
6763          * NET_ADDR_PERM (default value).
6764          */
6765         if (dev->addr_assign_type == NET_ADDR_PERM)
6766                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6767
6768         /* Notify protocols, that a new device appeared. */
6769         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6770         ret = notifier_to_errno(ret);
6771         if (ret) {
6772                 rollback_registered(dev);
6773                 dev->reg_state = NETREG_UNREGISTERED;
6774         }
6775         /*
6776          *      Prevent userspace races by waiting until the network
6777          *      device is fully setup before sending notifications.
6778          */
6779         if (!dev->rtnl_link_ops ||
6780             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6781                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6782
6783 out:
6784         return ret;
6785
6786 err_uninit:
6787         if (dev->netdev_ops->ndo_uninit)
6788                 dev->netdev_ops->ndo_uninit(dev);
6789         goto out;
6790 }
6791 EXPORT_SYMBOL(register_netdevice);
6792
6793 /**
6794  *      init_dummy_netdev       - init a dummy network device for NAPI
6795  *      @dev: device to init
6796  *
6797  *      This takes a network device structure and initialize the minimum
6798  *      amount of fields so it can be used to schedule NAPI polls without
6799  *      registering a full blown interface. This is to be used by drivers
6800  *      that need to tie several hardware interfaces to a single NAPI
6801  *      poll scheduler due to HW limitations.
6802  */
6803 int init_dummy_netdev(struct net_device *dev)
6804 {
6805         /* Clear everything. Note we don't initialize spinlocks
6806          * are they aren't supposed to be taken by any of the
6807          * NAPI code and this dummy netdev is supposed to be
6808          * only ever used for NAPI polls
6809          */
6810         memset(dev, 0, sizeof(struct net_device));
6811
6812         /* make sure we BUG if trying to hit standard
6813          * register/unregister code path
6814          */
6815         dev->reg_state = NETREG_DUMMY;
6816
6817         /* NAPI wants this */
6818         INIT_LIST_HEAD(&dev->napi_list);
6819
6820         /* a dummy interface is started by default */
6821         set_bit(__LINK_STATE_PRESENT, &dev->state);
6822         set_bit(__LINK_STATE_START, &dev->state);
6823
6824         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6825          * because users of this 'device' dont need to change
6826          * its refcount.
6827          */
6828
6829         return 0;
6830 }
6831 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6832
6833
6834 /**
6835  *      register_netdev - register a network device
6836  *      @dev: device to register
6837  *
6838  *      Take a completed network device structure and add it to the kernel
6839  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6840  *      chain. 0 is returned on success. A negative errno code is returned
6841  *      on a failure to set up the device, or if the name is a duplicate.
6842  *
6843  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6844  *      and expands the device name if you passed a format string to
6845  *      alloc_netdev.
6846  */
6847 int register_netdev(struct net_device *dev)
6848 {
6849         int err;
6850
6851         rtnl_lock();
6852         err = register_netdevice(dev);
6853         rtnl_unlock();
6854         return err;
6855 }
6856 EXPORT_SYMBOL(register_netdev);
6857
6858 int netdev_refcnt_read(const struct net_device *dev)
6859 {
6860         int i, refcnt = 0;
6861
6862         for_each_possible_cpu(i)
6863                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6864         return refcnt;
6865 }
6866 EXPORT_SYMBOL(netdev_refcnt_read);
6867
6868 /**
6869  * netdev_wait_allrefs - wait until all references are gone.
6870  * @dev: target net_device
6871  *
6872  * This is called when unregistering network devices.
6873  *
6874  * Any protocol or device that holds a reference should register
6875  * for netdevice notification, and cleanup and put back the
6876  * reference if they receive an UNREGISTER event.
6877  * We can get stuck here if buggy protocols don't correctly
6878  * call dev_put.
6879  */
6880 static void netdev_wait_allrefs(struct net_device *dev)
6881 {
6882         unsigned long rebroadcast_time, warning_time;
6883         int refcnt;
6884
6885         linkwatch_forget_dev(dev);
6886
6887         rebroadcast_time = warning_time = jiffies;
6888         refcnt = netdev_refcnt_read(dev);
6889
6890         while (refcnt != 0) {
6891                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6892                         rtnl_lock();
6893
6894                         /* Rebroadcast unregister notification */
6895                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6896
6897                         __rtnl_unlock();
6898                         rcu_barrier();
6899                         rtnl_lock();
6900
6901                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6902                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6903                                      &dev->state)) {
6904                                 /* We must not have linkwatch events
6905                                  * pending on unregister. If this
6906                                  * happens, we simply run the queue
6907                                  * unscheduled, resulting in a noop
6908                                  * for this device.
6909                                  */
6910                                 linkwatch_run_queue();
6911                         }
6912
6913                         __rtnl_unlock();
6914
6915                         rebroadcast_time = jiffies;
6916                 }
6917
6918                 msleep(250);
6919
6920                 refcnt = netdev_refcnt_read(dev);
6921
6922                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6923                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6924                                  dev->name, refcnt);
6925                         warning_time = jiffies;
6926                 }
6927         }
6928 }
6929
6930 /* The sequence is:
6931  *
6932  *      rtnl_lock();
6933  *      ...
6934  *      register_netdevice(x1);
6935  *      register_netdevice(x2);
6936  *      ...
6937  *      unregister_netdevice(y1);
6938  *      unregister_netdevice(y2);
6939  *      ...
6940  *      rtnl_unlock();
6941  *      free_netdev(y1);
6942  *      free_netdev(y2);
6943  *
6944  * We are invoked by rtnl_unlock().
6945  * This allows us to deal with problems:
6946  * 1) We can delete sysfs objects which invoke hotplug
6947  *    without deadlocking with linkwatch via keventd.
6948  * 2) Since we run with the RTNL semaphore not held, we can sleep
6949  *    safely in order to wait for the netdev refcnt to drop to zero.
6950  *
6951  * We must not return until all unregister events added during
6952  * the interval the lock was held have been completed.
6953  */
6954 void netdev_run_todo(void)
6955 {
6956         struct list_head list;
6957
6958         /* Snapshot list, allow later requests */
6959         list_replace_init(&net_todo_list, &list);
6960
6961         __rtnl_unlock();
6962
6963
6964         /* Wait for rcu callbacks to finish before next phase */
6965         if (!list_empty(&list))
6966                 rcu_barrier();
6967
6968         while (!list_empty(&list)) {
6969                 struct net_device *dev
6970                         = list_first_entry(&list, struct net_device, todo_list);
6971                 list_del(&dev->todo_list);
6972
6973                 rtnl_lock();
6974                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6975                 __rtnl_unlock();
6976
6977                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6978                         pr_err("network todo '%s' but state %d\n",
6979                                dev->name, dev->reg_state);
6980                         dump_stack();
6981                         continue;
6982                 }
6983
6984                 dev->reg_state = NETREG_UNREGISTERED;
6985
6986                 netdev_wait_allrefs(dev);
6987
6988                 /* paranoia */
6989                 BUG_ON(netdev_refcnt_read(dev));
6990                 BUG_ON(!list_empty(&dev->ptype_all));
6991                 BUG_ON(!list_empty(&dev->ptype_specific));
6992                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6993                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6994                 WARN_ON(dev->dn_ptr);
6995
6996                 if (dev->destructor)
6997                         dev->destructor(dev);
6998
6999                 /* Report a network device has been unregistered */
7000                 rtnl_lock();
7001                 dev_net(dev)->dev_unreg_count--;
7002                 __rtnl_unlock();
7003                 wake_up(&netdev_unregistering_wq);
7004
7005                 /* Free network device */
7006                 kobject_put(&dev->dev.kobj);
7007         }
7008 }
7009
7010 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
7011  * fields in the same order, with only the type differing.
7012  */
7013 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7014                              const struct net_device_stats *netdev_stats)
7015 {
7016 #if BITS_PER_LONG == 64
7017         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7018         memcpy(stats64, netdev_stats, sizeof(*stats64));
7019 #else
7020         size_t i, n = sizeof(*stats64) / sizeof(u64);
7021         const unsigned long *src = (const unsigned long *)netdev_stats;
7022         u64 *dst = (u64 *)stats64;
7023
7024         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7025                      sizeof(*stats64) / sizeof(u64));
7026         for (i = 0; i < n; i++)
7027                 dst[i] = src[i];
7028 #endif
7029 }
7030 EXPORT_SYMBOL(netdev_stats_to_stats64);
7031
7032 /**
7033  *      dev_get_stats   - get network device statistics
7034  *      @dev: device to get statistics from
7035  *      @storage: place to store stats
7036  *
7037  *      Get network statistics from device. Return @storage.
7038  *      The device driver may provide its own method by setting
7039  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7040  *      otherwise the internal statistics structure is used.
7041  */
7042 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7043                                         struct rtnl_link_stats64 *storage)
7044 {
7045         const struct net_device_ops *ops = dev->netdev_ops;
7046
7047         if (ops->ndo_get_stats64) {
7048                 memset(storage, 0, sizeof(*storage));
7049                 ops->ndo_get_stats64(dev, storage);
7050         } else if (ops->ndo_get_stats) {
7051                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7052         } else {
7053                 netdev_stats_to_stats64(storage, &dev->stats);
7054         }
7055         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7056         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7057         return storage;
7058 }
7059 EXPORT_SYMBOL(dev_get_stats);
7060
7061 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7062 {
7063         struct netdev_queue *queue = dev_ingress_queue(dev);
7064
7065 #ifdef CONFIG_NET_CLS_ACT
7066         if (queue)
7067                 return queue;
7068         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7069         if (!queue)
7070                 return NULL;
7071         netdev_init_one_queue(dev, queue, NULL);
7072         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7073         queue->qdisc_sleeping = &noop_qdisc;
7074         rcu_assign_pointer(dev->ingress_queue, queue);
7075 #endif
7076         return queue;
7077 }
7078
7079 static const struct ethtool_ops default_ethtool_ops;
7080
7081 void netdev_set_default_ethtool_ops(struct net_device *dev,
7082                                     const struct ethtool_ops *ops)
7083 {
7084         if (dev->ethtool_ops == &default_ethtool_ops)
7085                 dev->ethtool_ops = ops;
7086 }
7087 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7088
7089 void netdev_freemem(struct net_device *dev)
7090 {
7091         char *addr = (char *)dev - dev->padded;
7092
7093         kvfree(addr);
7094 }
7095
7096 /**
7097  *      alloc_netdev_mqs - allocate network device
7098  *      @sizeof_priv:           size of private data to allocate space for
7099  *      @name:                  device name format string
7100  *      @name_assign_type:      origin of device name
7101  *      @setup:                 callback to initialize device
7102  *      @txqs:                  the number of TX subqueues to allocate
7103  *      @rxqs:                  the number of RX subqueues to allocate
7104  *
7105  *      Allocates a struct net_device with private data area for driver use
7106  *      and performs basic initialization.  Also allocates subqueue structs
7107  *      for each queue on the device.
7108  */
7109 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7110                 unsigned char name_assign_type,
7111                 void (*setup)(struct net_device *),
7112                 unsigned int txqs, unsigned int rxqs)
7113 {
7114         struct net_device *dev;
7115         size_t alloc_size;
7116         struct net_device *p;
7117
7118         BUG_ON(strlen(name) >= sizeof(dev->name));
7119
7120         if (txqs < 1) {
7121                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7122                 return NULL;
7123         }
7124
7125 #ifdef CONFIG_SYSFS
7126         if (rxqs < 1) {
7127                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7128                 return NULL;
7129         }
7130 #endif
7131
7132         alloc_size = sizeof(struct net_device);
7133         if (sizeof_priv) {
7134                 /* ensure 32-byte alignment of private area */
7135                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7136                 alloc_size += sizeof_priv;
7137         }
7138         /* ensure 32-byte alignment of whole construct */
7139         alloc_size += NETDEV_ALIGN - 1;
7140
7141         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7142         if (!p)
7143                 p = vzalloc(alloc_size);
7144         if (!p)
7145                 return NULL;
7146
7147         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7148         dev->padded = (char *)dev - (char *)p;
7149
7150         dev->pcpu_refcnt = alloc_percpu(int);
7151         if (!dev->pcpu_refcnt)
7152                 goto free_dev;
7153
7154         if (dev_addr_init(dev))
7155                 goto free_pcpu;
7156
7157         dev_mc_init(dev);
7158         dev_uc_init(dev);
7159
7160         dev_net_set(dev, &init_net);
7161
7162         dev->gso_max_size = GSO_MAX_SIZE;
7163         dev->gso_max_segs = GSO_MAX_SEGS;
7164         dev->gso_min_segs = 0;
7165
7166         INIT_LIST_HEAD(&dev->napi_list);
7167         INIT_LIST_HEAD(&dev->unreg_list);
7168         INIT_LIST_HEAD(&dev->close_list);
7169         INIT_LIST_HEAD(&dev->link_watch_list);
7170         INIT_LIST_HEAD(&dev->adj_list.upper);
7171         INIT_LIST_HEAD(&dev->adj_list.lower);
7172         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7173         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7174         INIT_LIST_HEAD(&dev->ptype_all);
7175         INIT_LIST_HEAD(&dev->ptype_specific);
7176         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7177         setup(dev);
7178
7179         if (!dev->tx_queue_len) {
7180                 dev->priv_flags |= IFF_NO_QUEUE;
7181                 dev->tx_queue_len = 1;
7182         }
7183
7184         dev->num_tx_queues = txqs;
7185         dev->real_num_tx_queues = txqs;
7186         if (netif_alloc_netdev_queues(dev))
7187                 goto free_all;
7188
7189 #ifdef CONFIG_SYSFS
7190         dev->num_rx_queues = rxqs;
7191         dev->real_num_rx_queues = rxqs;
7192         if (netif_alloc_rx_queues(dev))
7193                 goto free_all;
7194 #endif
7195
7196         strcpy(dev->name, name);
7197         dev->name_assign_type = name_assign_type;
7198         dev->group = INIT_NETDEV_GROUP;
7199         if (!dev->ethtool_ops)
7200                 dev->ethtool_ops = &default_ethtool_ops;
7201
7202         nf_hook_ingress_init(dev);
7203
7204         return dev;
7205
7206 free_all:
7207         free_netdev(dev);
7208         return NULL;
7209
7210 free_pcpu:
7211         free_percpu(dev->pcpu_refcnt);
7212 free_dev:
7213         netdev_freemem(dev);
7214         return NULL;
7215 }
7216 EXPORT_SYMBOL(alloc_netdev_mqs);
7217
7218 /**
7219  *      free_netdev - free network device
7220  *      @dev: device
7221  *
7222  *      This function does the last stage of destroying an allocated device
7223  *      interface. The reference to the device object is released.
7224  *      If this is the last reference then it will be freed.
7225  */
7226 void free_netdev(struct net_device *dev)
7227 {
7228         struct napi_struct *p, *n;
7229
7230         netif_free_tx_queues(dev);
7231 #ifdef CONFIG_SYSFS
7232         kvfree(dev->_rx);
7233 #endif
7234
7235         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7236
7237         /* Flush device addresses */
7238         dev_addr_flush(dev);
7239
7240         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7241                 netif_napi_del(p);
7242
7243         free_percpu(dev->pcpu_refcnt);
7244         dev->pcpu_refcnt = NULL;
7245
7246         /*  Compatibility with error handling in drivers */
7247         if (dev->reg_state == NETREG_UNINITIALIZED) {
7248                 netdev_freemem(dev);
7249                 return;
7250         }
7251
7252         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7253         dev->reg_state = NETREG_RELEASED;
7254
7255         /* will free via device release */
7256         put_device(&dev->dev);
7257 }
7258 EXPORT_SYMBOL(free_netdev);
7259
7260 /**
7261  *      synchronize_net -  Synchronize with packet receive processing
7262  *
7263  *      Wait for packets currently being received to be done.
7264  *      Does not block later packets from starting.
7265  */
7266 void synchronize_net(void)
7267 {
7268         might_sleep();
7269         if (rtnl_is_locked())
7270                 synchronize_rcu_expedited();
7271         else
7272                 synchronize_rcu();
7273 }
7274 EXPORT_SYMBOL(synchronize_net);
7275
7276 /**
7277  *      unregister_netdevice_queue - remove device from the kernel
7278  *      @dev: device
7279  *      @head: list
7280  *
7281  *      This function shuts down a device interface and removes it
7282  *      from the kernel tables.
7283  *      If head not NULL, device is queued to be unregistered later.
7284  *
7285  *      Callers must hold the rtnl semaphore.  You may want
7286  *      unregister_netdev() instead of this.
7287  */
7288
7289 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7290 {
7291         ASSERT_RTNL();
7292
7293         if (head) {
7294                 list_move_tail(&dev->unreg_list, head);
7295         } else {
7296                 rollback_registered(dev);
7297                 /* Finish processing unregister after unlock */
7298                 net_set_todo(dev);
7299         }
7300 }
7301 EXPORT_SYMBOL(unregister_netdevice_queue);
7302
7303 /**
7304  *      unregister_netdevice_many - unregister many devices
7305  *      @head: list of devices
7306  *
7307  *  Note: As most callers use a stack allocated list_head,
7308  *  we force a list_del() to make sure stack wont be corrupted later.
7309  */
7310 void unregister_netdevice_many(struct list_head *head)
7311 {
7312         struct net_device *dev;
7313
7314         if (!list_empty(head)) {
7315                 rollback_registered_many(head);
7316                 list_for_each_entry(dev, head, unreg_list)
7317                         net_set_todo(dev);
7318                 list_del(head);
7319         }
7320 }
7321 EXPORT_SYMBOL(unregister_netdevice_many);
7322
7323 /**
7324  *      unregister_netdev - remove device from the kernel
7325  *      @dev: device
7326  *
7327  *      This function shuts down a device interface and removes it
7328  *      from the kernel tables.
7329  *
7330  *      This is just a wrapper for unregister_netdevice that takes
7331  *      the rtnl semaphore.  In general you want to use this and not
7332  *      unregister_netdevice.
7333  */
7334 void unregister_netdev(struct net_device *dev)
7335 {
7336         rtnl_lock();
7337         unregister_netdevice(dev);
7338         rtnl_unlock();
7339 }
7340 EXPORT_SYMBOL(unregister_netdev);
7341
7342 /**
7343  *      dev_change_net_namespace - move device to different nethost namespace
7344  *      @dev: device
7345  *      @net: network namespace
7346  *      @pat: If not NULL name pattern to try if the current device name
7347  *            is already taken in the destination network namespace.
7348  *
7349  *      This function shuts down a device interface and moves it
7350  *      to a new network namespace. On success 0 is returned, on
7351  *      a failure a netagive errno code is returned.
7352  *
7353  *      Callers must hold the rtnl semaphore.
7354  */
7355
7356 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7357 {
7358         int err;
7359
7360         ASSERT_RTNL();
7361
7362         /* Don't allow namespace local devices to be moved. */
7363         err = -EINVAL;
7364         if (dev->features & NETIF_F_NETNS_LOCAL)
7365                 goto out;
7366
7367         /* Ensure the device has been registrered */
7368         if (dev->reg_state != NETREG_REGISTERED)
7369                 goto out;
7370
7371         /* Get out if there is nothing todo */
7372         err = 0;
7373         if (net_eq(dev_net(dev), net))
7374                 goto out;
7375
7376         /* Pick the destination device name, and ensure
7377          * we can use it in the destination network namespace.
7378          */
7379         err = -EEXIST;
7380         if (__dev_get_by_name(net, dev->name)) {
7381                 /* We get here if we can't use the current device name */
7382                 if (!pat)
7383                         goto out;
7384                 if (dev_get_valid_name(net, dev, pat) < 0)
7385                         goto out;
7386         }
7387
7388         /*
7389          * And now a mini version of register_netdevice unregister_netdevice.
7390          */
7391
7392         /* If device is running close it first. */
7393         dev_close(dev);
7394
7395         /* And unlink it from device chain */
7396         err = -ENODEV;
7397         unlist_netdevice(dev);
7398
7399         synchronize_net();
7400
7401         /* Shutdown queueing discipline. */
7402         dev_shutdown(dev);
7403
7404         /* Notify protocols, that we are about to destroy
7405            this device. They should clean all the things.
7406
7407            Note that dev->reg_state stays at NETREG_REGISTERED.
7408            This is wanted because this way 8021q and macvlan know
7409            the device is just moving and can keep their slaves up.
7410         */
7411         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7412         rcu_barrier();
7413         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7414         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7415
7416         /*
7417          *      Flush the unicast and multicast chains
7418          */
7419         dev_uc_flush(dev);
7420         dev_mc_flush(dev);
7421
7422         /* Send a netdev-removed uevent to the old namespace */
7423         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7424         netdev_adjacent_del_links(dev);
7425
7426         /* Actually switch the network namespace */
7427         dev_net_set(dev, net);
7428
7429         /* If there is an ifindex conflict assign a new one */
7430         if (__dev_get_by_index(net, dev->ifindex))
7431                 dev->ifindex = dev_new_index(net);
7432
7433         /* Send a netdev-add uevent to the new namespace */
7434         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7435         netdev_adjacent_add_links(dev);
7436
7437         /* Fixup kobjects */
7438         err = device_rename(&dev->dev, dev->name);
7439         WARN_ON(err);
7440
7441         /* Add the device back in the hashes */
7442         list_netdevice(dev);
7443
7444         /* Notify protocols, that a new device appeared. */
7445         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7446
7447         /*
7448          *      Prevent userspace races by waiting until the network
7449          *      device is fully setup before sending notifications.
7450          */
7451         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7452
7453         synchronize_net();
7454         err = 0;
7455 out:
7456         return err;
7457 }
7458 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7459
7460 static int dev_cpu_callback(struct notifier_block *nfb,
7461                             unsigned long action,
7462                             void *ocpu)
7463 {
7464         struct sk_buff **list_skb;
7465         struct sk_buff *skb;
7466         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7467         struct softnet_data *sd, *oldsd;
7468
7469         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7470                 return NOTIFY_OK;
7471
7472         local_irq_disable();
7473         cpu = smp_processor_id();
7474         sd = &per_cpu(softnet_data, cpu);
7475         oldsd = &per_cpu(softnet_data, oldcpu);
7476
7477         /* Find end of our completion_queue. */
7478         list_skb = &sd->completion_queue;
7479         while (*list_skb)
7480                 list_skb = &(*list_skb)->next;
7481         /* Append completion queue from offline CPU. */
7482         *list_skb = oldsd->completion_queue;
7483         oldsd->completion_queue = NULL;
7484
7485         /* Append output queue from offline CPU. */
7486         if (oldsd->output_queue) {
7487                 *sd->output_queue_tailp = oldsd->output_queue;
7488                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7489                 oldsd->output_queue = NULL;
7490                 oldsd->output_queue_tailp = &oldsd->output_queue;
7491         }
7492         /* Append NAPI poll list from offline CPU, with one exception :
7493          * process_backlog() must be called by cpu owning percpu backlog.
7494          * We properly handle process_queue & input_pkt_queue later.
7495          */
7496         while (!list_empty(&oldsd->poll_list)) {
7497                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7498                                                             struct napi_struct,
7499                                                             poll_list);
7500
7501                 list_del_init(&napi->poll_list);
7502                 if (napi->poll == process_backlog)
7503                         napi->state = 0;
7504                 else
7505                         ____napi_schedule(sd, napi);
7506         }
7507
7508         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7509         local_irq_enable();
7510
7511         /* Process offline CPU's input_pkt_queue */
7512         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7513                 netif_rx_ni(skb);
7514                 input_queue_head_incr(oldsd);
7515         }
7516         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7517                 netif_rx_ni(skb);
7518                 input_queue_head_incr(oldsd);
7519         }
7520
7521         return NOTIFY_OK;
7522 }
7523
7524
7525 /**
7526  *      netdev_increment_features - increment feature set by one
7527  *      @all: current feature set
7528  *      @one: new feature set
7529  *      @mask: mask feature set
7530  *
7531  *      Computes a new feature set after adding a device with feature set
7532  *      @one to the master device with current feature set @all.  Will not
7533  *      enable anything that is off in @mask. Returns the new feature set.
7534  */
7535 netdev_features_t netdev_increment_features(netdev_features_t all,
7536         netdev_features_t one, netdev_features_t mask)
7537 {
7538         if (mask & NETIF_F_GEN_CSUM)
7539                 mask |= NETIF_F_ALL_CSUM;
7540         mask |= NETIF_F_VLAN_CHALLENGED;
7541
7542         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7543         all &= one | ~NETIF_F_ALL_FOR_ALL;
7544
7545         /* If one device supports hw checksumming, set for all. */
7546         if (all & NETIF_F_GEN_CSUM)
7547                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7548
7549         return all;
7550 }
7551 EXPORT_SYMBOL(netdev_increment_features);
7552
7553 static struct hlist_head * __net_init netdev_create_hash(void)
7554 {
7555         int i;
7556         struct hlist_head *hash;
7557
7558         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7559         if (hash != NULL)
7560                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7561                         INIT_HLIST_HEAD(&hash[i]);
7562
7563         return hash;
7564 }
7565
7566 /* Initialize per network namespace state */
7567 static int __net_init netdev_init(struct net *net)
7568 {
7569         if (net != &init_net)
7570                 INIT_LIST_HEAD(&net->dev_base_head);
7571
7572         net->dev_name_head = netdev_create_hash();
7573         if (net->dev_name_head == NULL)
7574                 goto err_name;
7575
7576         net->dev_index_head = netdev_create_hash();
7577         if (net->dev_index_head == NULL)
7578                 goto err_idx;
7579
7580         return 0;
7581
7582 err_idx:
7583         kfree(net->dev_name_head);
7584 err_name:
7585         return -ENOMEM;
7586 }
7587
7588 /**
7589  *      netdev_drivername - network driver for the device
7590  *      @dev: network device
7591  *
7592  *      Determine network driver for device.
7593  */
7594 const char *netdev_drivername(const struct net_device *dev)
7595 {
7596         const struct device_driver *driver;
7597         const struct device *parent;
7598         const char *empty = "";
7599
7600         parent = dev->dev.parent;
7601         if (!parent)
7602                 return empty;
7603
7604         driver = parent->driver;
7605         if (driver && driver->name)
7606                 return driver->name;
7607         return empty;
7608 }
7609
7610 static void __netdev_printk(const char *level, const struct net_device *dev,
7611                             struct va_format *vaf)
7612 {
7613         if (dev && dev->dev.parent) {
7614                 dev_printk_emit(level[1] - '0',
7615                                 dev->dev.parent,
7616                                 "%s %s %s%s: %pV",
7617                                 dev_driver_string(dev->dev.parent),
7618                                 dev_name(dev->dev.parent),
7619                                 netdev_name(dev), netdev_reg_state(dev),
7620                                 vaf);
7621         } else if (dev) {
7622                 printk("%s%s%s: %pV",
7623                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7624         } else {
7625                 printk("%s(NULL net_device): %pV", level, vaf);
7626         }
7627 }
7628
7629 void netdev_printk(const char *level, const struct net_device *dev,
7630                    const char *format, ...)
7631 {
7632         struct va_format vaf;
7633         va_list args;
7634
7635         va_start(args, format);
7636
7637         vaf.fmt = format;
7638         vaf.va = &args;
7639
7640         __netdev_printk(level, dev, &vaf);
7641
7642         va_end(args);
7643 }
7644 EXPORT_SYMBOL(netdev_printk);
7645
7646 #define define_netdev_printk_level(func, level)                 \
7647 void func(const struct net_device *dev, const char *fmt, ...)   \
7648 {                                                               \
7649         struct va_format vaf;                                   \
7650         va_list args;                                           \
7651                                                                 \
7652         va_start(args, fmt);                                    \
7653                                                                 \
7654         vaf.fmt = fmt;                                          \
7655         vaf.va = &args;                                         \
7656                                                                 \
7657         __netdev_printk(level, dev, &vaf);                      \
7658                                                                 \
7659         va_end(args);                                           \
7660 }                                                               \
7661 EXPORT_SYMBOL(func);
7662
7663 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7664 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7665 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7666 define_netdev_printk_level(netdev_err, KERN_ERR);
7667 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7668 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7669 define_netdev_printk_level(netdev_info, KERN_INFO);
7670
7671 static void __net_exit netdev_exit(struct net *net)
7672 {
7673         kfree(net->dev_name_head);
7674         kfree(net->dev_index_head);
7675 }
7676
7677 static struct pernet_operations __net_initdata netdev_net_ops = {
7678         .init = netdev_init,
7679         .exit = netdev_exit,
7680 };
7681
7682 static void __net_exit default_device_exit(struct net *net)
7683 {
7684         struct net_device *dev, *aux;
7685         /*
7686          * Push all migratable network devices back to the
7687          * initial network namespace
7688          */
7689         rtnl_lock();
7690         for_each_netdev_safe(net, dev, aux) {
7691                 int err;
7692                 char fb_name[IFNAMSIZ];
7693
7694                 /* Ignore unmoveable devices (i.e. loopback) */
7695                 if (dev->features & NETIF_F_NETNS_LOCAL)
7696                         continue;
7697
7698                 /* Leave virtual devices for the generic cleanup */
7699                 if (dev->rtnl_link_ops)
7700                         continue;
7701
7702                 /* Push remaining network devices to init_net */
7703                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7704                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7705                 if (err) {
7706                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7707                                  __func__, dev->name, err);
7708                         BUG();
7709                 }
7710         }
7711         rtnl_unlock();
7712 }
7713
7714 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7715 {
7716         /* Return with the rtnl_lock held when there are no network
7717          * devices unregistering in any network namespace in net_list.
7718          */
7719         struct net *net;
7720         bool unregistering;
7721         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7722
7723         add_wait_queue(&netdev_unregistering_wq, &wait);
7724         for (;;) {
7725                 unregistering = false;
7726                 rtnl_lock();
7727                 list_for_each_entry(net, net_list, exit_list) {
7728                         if (net->dev_unreg_count > 0) {
7729                                 unregistering = true;
7730                                 break;
7731                         }
7732                 }
7733                 if (!unregistering)
7734                         break;
7735                 __rtnl_unlock();
7736
7737                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7738         }
7739         remove_wait_queue(&netdev_unregistering_wq, &wait);
7740 }
7741
7742 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7743 {
7744         /* At exit all network devices most be removed from a network
7745          * namespace.  Do this in the reverse order of registration.
7746          * Do this across as many network namespaces as possible to
7747          * improve batching efficiency.
7748          */
7749         struct net_device *dev;
7750         struct net *net;
7751         LIST_HEAD(dev_kill_list);
7752
7753         /* To prevent network device cleanup code from dereferencing
7754          * loopback devices or network devices that have been freed
7755          * wait here for all pending unregistrations to complete,
7756          * before unregistring the loopback device and allowing the
7757          * network namespace be freed.
7758          *
7759          * The netdev todo list containing all network devices
7760          * unregistrations that happen in default_device_exit_batch
7761          * will run in the rtnl_unlock() at the end of
7762          * default_device_exit_batch.
7763          */
7764         rtnl_lock_unregistering(net_list);
7765         list_for_each_entry(net, net_list, exit_list) {
7766                 for_each_netdev_reverse(net, dev) {
7767                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7768                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7769                         else
7770                                 unregister_netdevice_queue(dev, &dev_kill_list);
7771                 }
7772         }
7773         unregister_netdevice_many(&dev_kill_list);
7774         rtnl_unlock();
7775 }
7776
7777 static struct pernet_operations __net_initdata default_device_ops = {
7778         .exit = default_device_exit,
7779         .exit_batch = default_device_exit_batch,
7780 };
7781
7782 /*
7783  *      Initialize the DEV module. At boot time this walks the device list and
7784  *      unhooks any devices that fail to initialise (normally hardware not
7785  *      present) and leaves us with a valid list of present and active devices.
7786  *
7787  */
7788
7789 /*
7790  *       This is called single threaded during boot, so no need
7791  *       to take the rtnl semaphore.
7792  */
7793 static int __init net_dev_init(void)
7794 {
7795         int i, rc = -ENOMEM;
7796
7797         BUG_ON(!dev_boot_phase);
7798
7799         if (dev_proc_init())
7800                 goto out;
7801
7802         if (netdev_kobject_init())
7803                 goto out;
7804
7805         INIT_LIST_HEAD(&ptype_all);
7806         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7807                 INIT_LIST_HEAD(&ptype_base[i]);
7808
7809         INIT_LIST_HEAD(&offload_base);
7810
7811         if (register_pernet_subsys(&netdev_net_ops))
7812                 goto out;
7813
7814         /*
7815          *      Initialise the packet receive queues.
7816          */
7817
7818         for_each_possible_cpu(i) {
7819                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7820
7821                 skb_queue_head_init(&sd->input_pkt_queue);
7822                 skb_queue_head_init(&sd->process_queue);
7823                 INIT_LIST_HEAD(&sd->poll_list);
7824                 sd->output_queue_tailp = &sd->output_queue;
7825 #ifdef CONFIG_RPS
7826                 sd->csd.func = rps_trigger_softirq;
7827                 sd->csd.info = sd;
7828                 sd->cpu = i;
7829 #endif
7830
7831                 sd->backlog.poll = process_backlog;
7832                 sd->backlog.weight = weight_p;
7833         }
7834
7835         dev_boot_phase = 0;
7836
7837         /* The loopback device is special if any other network devices
7838          * is present in a network namespace the loopback device must
7839          * be present. Since we now dynamically allocate and free the
7840          * loopback device ensure this invariant is maintained by
7841          * keeping the loopback device as the first device on the
7842          * list of network devices.  Ensuring the loopback devices
7843          * is the first device that appears and the last network device
7844          * that disappears.
7845          */
7846         if (register_pernet_device(&loopback_net_ops))
7847                 goto out;
7848
7849         if (register_pernet_device(&default_device_ops))
7850                 goto out;
7851
7852         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7853         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7854
7855         hotcpu_notifier(dev_cpu_callback, 0);
7856         dst_subsys_init();
7857         rc = 0;
7858 out:
7859         return rc;
7860 }
7861
7862 subsys_initcall(net_dev_init);