Merge branch 'master' of git://1984.lsi.us.es/nf-next
[firefly-linux-kernel-4.4.55.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41 #include <linux/seccomp.h>
42
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49         u8 *ptr = NULL;
50
51         if (k >= SKF_NET_OFF)
52                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53         else if (k >= SKF_LL_OFF)
54                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55
56         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57                 return ptr;
58         return NULL;
59 }
60
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62                                  unsigned int size, void *buffer)
63 {
64         if (k >= 0)
65                 return skb_header_pointer(skb, k, size, buffer);
66         return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68
69 /**
70  *      sk_filter - run a packet through a socket filter
71  *      @sk: sock associated with &sk_buff
72  *      @skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92                 return -ENOMEM;
93
94         err = security_sock_rcv_skb(sk, skb);
95         if (err)
96                 return err;
97
98         rcu_read_lock();
99         filter = rcu_dereference(sk->sk_filter);
100         if (filter) {
101                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102
103                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104         }
105         rcu_read_unlock();
106
107         return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110
111 /**
112  *      sk_run_filter - run a filter on a socket
113  *      @skb: buffer to run the filter on
114  *      @fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124                            const struct sock_filter *fentry)
125 {
126         void *ptr;
127         u32 A = 0;                      /* Accumulator */
128         u32 X = 0;                      /* Index Register */
129         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
130         u32 tmp;
131         int k;
132
133         /*
134          * Process array of filter instructions.
135          */
136         for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define K (fentry->k)
139 #else
140                 const u32 K = fentry->k;
141 #endif
142
143                 switch (fentry->code) {
144                 case BPF_S_ALU_ADD_X:
145                         A += X;
146                         continue;
147                 case BPF_S_ALU_ADD_K:
148                         A += K;
149                         continue;
150                 case BPF_S_ALU_SUB_X:
151                         A -= X;
152                         continue;
153                 case BPF_S_ALU_SUB_K:
154                         A -= K;
155                         continue;
156                 case BPF_S_ALU_MUL_X:
157                         A *= X;
158                         continue;
159                 case BPF_S_ALU_MUL_K:
160                         A *= K;
161                         continue;
162                 case BPF_S_ALU_DIV_X:
163                         if (X == 0)
164                                 return 0;
165                         A /= X;
166                         continue;
167                 case BPF_S_ALU_DIV_K:
168                         A = reciprocal_divide(A, K);
169                         continue;
170                 case BPF_S_ALU_MOD_X:
171                         if (X == 0)
172                                 return 0;
173                         A %= X;
174                         continue;
175                 case BPF_S_ALU_MOD_K:
176                         A %= K;
177                         continue;
178                 case BPF_S_ALU_AND_X:
179                         A &= X;
180                         continue;
181                 case BPF_S_ALU_AND_K:
182                         A &= K;
183                         continue;
184                 case BPF_S_ALU_OR_X:
185                         A |= X;
186                         continue;
187                 case BPF_S_ALU_OR_K:
188                         A |= K;
189                         continue;
190                 case BPF_S_ALU_LSH_X:
191                         A <<= X;
192                         continue;
193                 case BPF_S_ALU_LSH_K:
194                         A <<= K;
195                         continue;
196                 case BPF_S_ALU_RSH_X:
197                         A >>= X;
198                         continue;
199                 case BPF_S_ALU_RSH_K:
200                         A >>= K;
201                         continue;
202                 case BPF_S_ALU_NEG:
203                         A = -A;
204                         continue;
205                 case BPF_S_JMP_JA:
206                         fentry += K;
207                         continue;
208                 case BPF_S_JMP_JGT_K:
209                         fentry += (A > K) ? fentry->jt : fentry->jf;
210                         continue;
211                 case BPF_S_JMP_JGE_K:
212                         fentry += (A >= K) ? fentry->jt : fentry->jf;
213                         continue;
214                 case BPF_S_JMP_JEQ_K:
215                         fentry += (A == K) ? fentry->jt : fentry->jf;
216                         continue;
217                 case BPF_S_JMP_JSET_K:
218                         fentry += (A & K) ? fentry->jt : fentry->jf;
219                         continue;
220                 case BPF_S_JMP_JGT_X:
221                         fentry += (A > X) ? fentry->jt : fentry->jf;
222                         continue;
223                 case BPF_S_JMP_JGE_X:
224                         fentry += (A >= X) ? fentry->jt : fentry->jf;
225                         continue;
226                 case BPF_S_JMP_JEQ_X:
227                         fentry += (A == X) ? fentry->jt : fentry->jf;
228                         continue;
229                 case BPF_S_JMP_JSET_X:
230                         fentry += (A & X) ? fentry->jt : fentry->jf;
231                         continue;
232                 case BPF_S_LD_W_ABS:
233                         k = K;
234 load_w:
235                         ptr = load_pointer(skb, k, 4, &tmp);
236                         if (ptr != NULL) {
237                                 A = get_unaligned_be32(ptr);
238                                 continue;
239                         }
240                         return 0;
241                 case BPF_S_LD_H_ABS:
242                         k = K;
243 load_h:
244                         ptr = load_pointer(skb, k, 2, &tmp);
245                         if (ptr != NULL) {
246                                 A = get_unaligned_be16(ptr);
247                                 continue;
248                         }
249                         return 0;
250                 case BPF_S_LD_B_ABS:
251                         k = K;
252 load_b:
253                         ptr = load_pointer(skb, k, 1, &tmp);
254                         if (ptr != NULL) {
255                                 A = *(u8 *)ptr;
256                                 continue;
257                         }
258                         return 0;
259                 case BPF_S_LD_W_LEN:
260                         A = skb->len;
261                         continue;
262                 case BPF_S_LDX_W_LEN:
263                         X = skb->len;
264                         continue;
265                 case BPF_S_LD_W_IND:
266                         k = X + K;
267                         goto load_w;
268                 case BPF_S_LD_H_IND:
269                         k = X + K;
270                         goto load_h;
271                 case BPF_S_LD_B_IND:
272                         k = X + K;
273                         goto load_b;
274                 case BPF_S_LDX_B_MSH:
275                         ptr = load_pointer(skb, K, 1, &tmp);
276                         if (ptr != NULL) {
277                                 X = (*(u8 *)ptr & 0xf) << 2;
278                                 continue;
279                         }
280                         return 0;
281                 case BPF_S_LD_IMM:
282                         A = K;
283                         continue;
284                 case BPF_S_LDX_IMM:
285                         X = K;
286                         continue;
287                 case BPF_S_LD_MEM:
288                         A = mem[K];
289                         continue;
290                 case BPF_S_LDX_MEM:
291                         X = mem[K];
292                         continue;
293                 case BPF_S_MISC_TAX:
294                         X = A;
295                         continue;
296                 case BPF_S_MISC_TXA:
297                         A = X;
298                         continue;
299                 case BPF_S_RET_K:
300                         return K;
301                 case BPF_S_RET_A:
302                         return A;
303                 case BPF_S_ST:
304                         mem[K] = A;
305                         continue;
306                 case BPF_S_STX:
307                         mem[K] = X;
308                         continue;
309                 case BPF_S_ANC_PROTOCOL:
310                         A = ntohs(skb->protocol);
311                         continue;
312                 case BPF_S_ANC_PKTTYPE:
313                         A = skb->pkt_type;
314                         continue;
315                 case BPF_S_ANC_IFINDEX:
316                         if (!skb->dev)
317                                 return 0;
318                         A = skb->dev->ifindex;
319                         continue;
320                 case BPF_S_ANC_MARK:
321                         A = skb->mark;
322                         continue;
323                 case BPF_S_ANC_QUEUE:
324                         A = skb->queue_mapping;
325                         continue;
326                 case BPF_S_ANC_HATYPE:
327                         if (!skb->dev)
328                                 return 0;
329                         A = skb->dev->type;
330                         continue;
331                 case BPF_S_ANC_RXHASH:
332                         A = skb->rxhash;
333                         continue;
334                 case BPF_S_ANC_CPU:
335                         A = raw_smp_processor_id();
336                         continue;
337                 case BPF_S_ANC_ALU_XOR_X:
338                         A ^= X;
339                         continue;
340                 case BPF_S_ANC_NLATTR: {
341                         struct nlattr *nla;
342
343                         if (skb_is_nonlinear(skb))
344                                 return 0;
345                         if (A > skb->len - sizeof(struct nlattr))
346                                 return 0;
347
348                         nla = nla_find((struct nlattr *)&skb->data[A],
349                                        skb->len - A, X);
350                         if (nla)
351                                 A = (void *)nla - (void *)skb->data;
352                         else
353                                 A = 0;
354                         continue;
355                 }
356                 case BPF_S_ANC_NLATTR_NEST: {
357                         struct nlattr *nla;
358
359                         if (skb_is_nonlinear(skb))
360                                 return 0;
361                         if (A > skb->len - sizeof(struct nlattr))
362                                 return 0;
363
364                         nla = (struct nlattr *)&skb->data[A];
365                         if (nla->nla_len > A - skb->len)
366                                 return 0;
367
368                         nla = nla_find_nested(nla, X);
369                         if (nla)
370                                 A = (void *)nla - (void *)skb->data;
371                         else
372                                 A = 0;
373                         continue;
374                 }
375 #ifdef CONFIG_SECCOMP_FILTER
376                 case BPF_S_ANC_SECCOMP_LD_W:
377                         A = seccomp_bpf_load(fentry->k);
378                         continue;
379 #endif
380                 default:
381                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
382                                        fentry->code, fentry->jt,
383                                        fentry->jf, fentry->k);
384                         return 0;
385                 }
386         }
387
388         return 0;
389 }
390 EXPORT_SYMBOL(sk_run_filter);
391
392 /*
393  * Security :
394  * A BPF program is able to use 16 cells of memory to store intermediate
395  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
396  * As we dont want to clear mem[] array for each packet going through
397  * sk_run_filter(), we check that filter loaded by user never try to read
398  * a cell if not previously written, and we check all branches to be sure
399  * a malicious user doesn't try to abuse us.
400  */
401 static int check_load_and_stores(struct sock_filter *filter, int flen)
402 {
403         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
404         int pc, ret = 0;
405
406         BUILD_BUG_ON(BPF_MEMWORDS > 16);
407         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
408         if (!masks)
409                 return -ENOMEM;
410         memset(masks, 0xff, flen * sizeof(*masks));
411
412         for (pc = 0; pc < flen; pc++) {
413                 memvalid &= masks[pc];
414
415                 switch (filter[pc].code) {
416                 case BPF_S_ST:
417                 case BPF_S_STX:
418                         memvalid |= (1 << filter[pc].k);
419                         break;
420                 case BPF_S_LD_MEM:
421                 case BPF_S_LDX_MEM:
422                         if (!(memvalid & (1 << filter[pc].k))) {
423                                 ret = -EINVAL;
424                                 goto error;
425                         }
426                         break;
427                 case BPF_S_JMP_JA:
428                         /* a jump must set masks on target */
429                         masks[pc + 1 + filter[pc].k] &= memvalid;
430                         memvalid = ~0;
431                         break;
432                 case BPF_S_JMP_JEQ_K:
433                 case BPF_S_JMP_JEQ_X:
434                 case BPF_S_JMP_JGE_K:
435                 case BPF_S_JMP_JGE_X:
436                 case BPF_S_JMP_JGT_K:
437                 case BPF_S_JMP_JGT_X:
438                 case BPF_S_JMP_JSET_X:
439                 case BPF_S_JMP_JSET_K:
440                         /* a jump must set masks on targets */
441                         masks[pc + 1 + filter[pc].jt] &= memvalid;
442                         masks[pc + 1 + filter[pc].jf] &= memvalid;
443                         memvalid = ~0;
444                         break;
445                 }
446         }
447 error:
448         kfree(masks);
449         return ret;
450 }
451
452 /**
453  *      sk_chk_filter - verify socket filter code
454  *      @filter: filter to verify
455  *      @flen: length of filter
456  *
457  * Check the user's filter code. If we let some ugly
458  * filter code slip through kaboom! The filter must contain
459  * no references or jumps that are out of range, no illegal
460  * instructions, and must end with a RET instruction.
461  *
462  * All jumps are forward as they are not signed.
463  *
464  * Returns 0 if the rule set is legal or -EINVAL if not.
465  */
466 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
467 {
468         /*
469          * Valid instructions are initialized to non-0.
470          * Invalid instructions are initialized to 0.
471          */
472         static const u8 codes[] = {
473                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
474                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
475                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
476                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
477                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
478                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
479                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
480                 [BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
481                 [BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
482                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
483                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
484                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
485                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
486                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
487                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
488                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
489                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
490                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
491                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
492                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
493                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
494                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
495                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
496                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
497                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
498                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
499                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
500                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
501                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
502                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
503                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
504                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
505                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
506                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
507                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
508                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
509                 [BPF_ST]                 = BPF_S_ST,
510                 [BPF_STX]                = BPF_S_STX,
511                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
512                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
513                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
514                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
515                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
516                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
517                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
518                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
519                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
520         };
521         int pc;
522
523         if (flen == 0 || flen > BPF_MAXINSNS)
524                 return -EINVAL;
525
526         /* check the filter code now */
527         for (pc = 0; pc < flen; pc++) {
528                 struct sock_filter *ftest = &filter[pc];
529                 u16 code = ftest->code;
530
531                 if (code >= ARRAY_SIZE(codes))
532                         return -EINVAL;
533                 code = codes[code];
534                 if (!code)
535                         return -EINVAL;
536                 /* Some instructions need special checks */
537                 switch (code) {
538                 case BPF_S_ALU_DIV_K:
539                         /* check for division by zero */
540                         if (ftest->k == 0)
541                                 return -EINVAL;
542                         ftest->k = reciprocal_value(ftest->k);
543                         break;
544                 case BPF_S_ALU_MOD_K:
545                         /* check for division by zero */
546                         if (ftest->k == 0)
547                                 return -EINVAL;
548                         break;
549                 case BPF_S_LD_MEM:
550                 case BPF_S_LDX_MEM:
551                 case BPF_S_ST:
552                 case BPF_S_STX:
553                         /* check for invalid memory addresses */
554                         if (ftest->k >= BPF_MEMWORDS)
555                                 return -EINVAL;
556                         break;
557                 case BPF_S_JMP_JA:
558                         /*
559                          * Note, the large ftest->k might cause loops.
560                          * Compare this with conditional jumps below,
561                          * where offsets are limited. --ANK (981016)
562                          */
563                         if (ftest->k >= (unsigned int)(flen-pc-1))
564                                 return -EINVAL;
565                         break;
566                 case BPF_S_JMP_JEQ_K:
567                 case BPF_S_JMP_JEQ_X:
568                 case BPF_S_JMP_JGE_K:
569                 case BPF_S_JMP_JGE_X:
570                 case BPF_S_JMP_JGT_K:
571                 case BPF_S_JMP_JGT_X:
572                 case BPF_S_JMP_JSET_X:
573                 case BPF_S_JMP_JSET_K:
574                         /* for conditionals both must be safe */
575                         if (pc + ftest->jt + 1 >= flen ||
576                             pc + ftest->jf + 1 >= flen)
577                                 return -EINVAL;
578                         break;
579                 case BPF_S_LD_W_ABS:
580                 case BPF_S_LD_H_ABS:
581                 case BPF_S_LD_B_ABS:
582 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
583                                 code = BPF_S_ANC_##CODE;        \
584                                 break
585                         switch (ftest->k) {
586                         ANCILLARY(PROTOCOL);
587                         ANCILLARY(PKTTYPE);
588                         ANCILLARY(IFINDEX);
589                         ANCILLARY(NLATTR);
590                         ANCILLARY(NLATTR_NEST);
591                         ANCILLARY(MARK);
592                         ANCILLARY(QUEUE);
593                         ANCILLARY(HATYPE);
594                         ANCILLARY(RXHASH);
595                         ANCILLARY(CPU);
596                         ANCILLARY(ALU_XOR_X);
597                         }
598                 }
599                 ftest->code = code;
600         }
601
602         /* last instruction must be a RET code */
603         switch (filter[flen - 1].code) {
604         case BPF_S_RET_K:
605         case BPF_S_RET_A:
606                 return check_load_and_stores(filter, flen);
607         }
608         return -EINVAL;
609 }
610 EXPORT_SYMBOL(sk_chk_filter);
611
612 /**
613  *      sk_filter_release_rcu - Release a socket filter by rcu_head
614  *      @rcu: rcu_head that contains the sk_filter to free
615  */
616 void sk_filter_release_rcu(struct rcu_head *rcu)
617 {
618         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
619
620         bpf_jit_free(fp);
621         kfree(fp);
622 }
623 EXPORT_SYMBOL(sk_filter_release_rcu);
624
625 static int __sk_prepare_filter(struct sk_filter *fp)
626 {
627         int err;
628
629         fp->bpf_func = sk_run_filter;
630
631         err = sk_chk_filter(fp->insns, fp->len);
632         if (err)
633                 return err;
634
635         bpf_jit_compile(fp);
636         return 0;
637 }
638
639 /**
640  *      sk_unattached_filter_create - create an unattached filter
641  *      @fprog: the filter program
642  *      @pfp: the unattached filter that is created
643  *
644  * Create a filter independent of any socket. We first run some
645  * sanity checks on it to make sure it does not explode on us later.
646  * If an error occurs or there is insufficient memory for the filter
647  * a negative errno code is returned. On success the return is zero.
648  */
649 int sk_unattached_filter_create(struct sk_filter **pfp,
650                                 struct sock_fprog *fprog)
651 {
652         struct sk_filter *fp;
653         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
654         int err;
655
656         /* Make sure new filter is there and in the right amounts. */
657         if (fprog->filter == NULL)
658                 return -EINVAL;
659
660         fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL);
661         if (!fp)
662                 return -ENOMEM;
663         memcpy(fp->insns, fprog->filter, fsize);
664
665         atomic_set(&fp->refcnt, 1);
666         fp->len = fprog->len;
667
668         err = __sk_prepare_filter(fp);
669         if (err)
670                 goto free_mem;
671
672         *pfp = fp;
673         return 0;
674 free_mem:
675         kfree(fp);
676         return err;
677 }
678 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
679
680 void sk_unattached_filter_destroy(struct sk_filter *fp)
681 {
682         sk_filter_release(fp);
683 }
684 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
685
686 /**
687  *      sk_attach_filter - attach a socket filter
688  *      @fprog: the filter program
689  *      @sk: the socket to use
690  *
691  * Attach the user's filter code. We first run some sanity checks on
692  * it to make sure it does not explode on us later. If an error
693  * occurs or there is insufficient memory for the filter a negative
694  * errno code is returned. On success the return is zero.
695  */
696 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
697 {
698         struct sk_filter *fp, *old_fp;
699         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
700         int err;
701
702         /* Make sure new filter is there and in the right amounts. */
703         if (fprog->filter == NULL)
704                 return -EINVAL;
705
706         fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
707         if (!fp)
708                 return -ENOMEM;
709         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
710                 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
711                 return -EFAULT;
712         }
713
714         atomic_set(&fp->refcnt, 1);
715         fp->len = fprog->len;
716
717         err = __sk_prepare_filter(fp);
718         if (err) {
719                 sk_filter_uncharge(sk, fp);
720                 return err;
721         }
722
723         old_fp = rcu_dereference_protected(sk->sk_filter,
724                                            sock_owned_by_user(sk));
725         rcu_assign_pointer(sk->sk_filter, fp);
726
727         if (old_fp)
728                 sk_filter_uncharge(sk, old_fp);
729         return 0;
730 }
731 EXPORT_SYMBOL_GPL(sk_attach_filter);
732
733 int sk_detach_filter(struct sock *sk)
734 {
735         int ret = -ENOENT;
736         struct sk_filter *filter;
737
738         filter = rcu_dereference_protected(sk->sk_filter,
739                                            sock_owned_by_user(sk));
740         if (filter) {
741                 RCU_INIT_POINTER(sk->sk_filter, NULL);
742                 sk_filter_uncharge(sk, filter);
743                 ret = 0;
744         }
745         return ret;
746 }
747 EXPORT_SYMBOL_GPL(sk_detach_filter);