skbuff: Make __skb_set_sw_hash a general function
[firefly-linux-kernel-4.4.55.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static bool skb_flow_dissector_uses_key(struct flow_dissector *flow_dissector,
23                                         enum flow_dissector_key_id key_id)
24 {
25         return flow_dissector->used_keys & (1 << key_id);
26 }
27
28 static void skb_flow_dissector_set_key(struct flow_dissector *flow_dissector,
29                                        enum flow_dissector_key_id key_id)
30 {
31         flow_dissector->used_keys |= (1 << key_id);
32 }
33
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35                                        enum flow_dissector_key_id key_id,
36                                        void *target_container)
37 {
38         return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42                              const struct flow_dissector_key *key,
43                              unsigned int key_count)
44 {
45         unsigned int i;
46
47         memset(flow_dissector, 0, sizeof(*flow_dissector));
48
49         for (i = 0; i < key_count; i++, key++) {
50                 /* User should make sure that every key target offset is withing
51                  * boundaries of unsigned short.
52                  */
53                 BUG_ON(key->offset > USHRT_MAX);
54                 BUG_ON(skb_flow_dissector_uses_key(flow_dissector,
55                                                    key->key_id));
56
57                 skb_flow_dissector_set_key(flow_dissector, key->key_id);
58                 flow_dissector->offset[key->key_id] = key->offset;
59         }
60
61         /* Ensure that the dissector always includes control and basic key.
62          * That way we are able to avoid handling lack of these in fast path.
63          */
64         BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
65                                             FLOW_DISSECTOR_KEY_CONTROL));
66         BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
67                                             FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83                             void *data, int hlen)
84 {
85         int poff = proto_ports_offset(ip_proto);
86
87         if (!data) {
88                 data = skb->data;
89                 hlen = skb_headlen(skb);
90         }
91
92         if (poff >= 0) {
93                 __be32 *ports, _ports;
94
95                 ports = __skb_header_pointer(skb, thoff + poff,
96                                              sizeof(_ports), data, hlen, &_ports);
97                 if (ports)
98                         return *ports;
99         }
100
101         return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122                         struct flow_dissector *flow_dissector,
123                         void *target_container,
124                         void *data, __be16 proto, int nhoff, int hlen)
125 {
126         struct flow_dissector_key_control *key_control;
127         struct flow_dissector_key_basic *key_basic;
128         struct flow_dissector_key_addrs *key_addrs;
129         struct flow_dissector_key_ports *key_ports;
130         struct flow_dissector_key_tags *key_tags;
131         struct flow_dissector_key_keyid *key_keyid;
132         u8 ip_proto = 0;
133
134         if (!data) {
135                 data = skb->data;
136                 proto = skb->protocol;
137                 nhoff = skb_network_offset(skb);
138                 hlen = skb_headlen(skb);
139         }
140
141         /* It is ensured by skb_flow_dissector_init() that control key will
142          * be always present.
143          */
144         key_control = skb_flow_dissector_target(flow_dissector,
145                                                 FLOW_DISSECTOR_KEY_CONTROL,
146                                                 target_container);
147
148         /* It is ensured by skb_flow_dissector_init() that basic key will
149          * be always present.
150          */
151         key_basic = skb_flow_dissector_target(flow_dissector,
152                                               FLOW_DISSECTOR_KEY_BASIC,
153                                               target_container);
154
155         if (skb_flow_dissector_uses_key(flow_dissector,
156                                         FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
157                 struct ethhdr *eth = eth_hdr(skb);
158                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
159
160                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
161                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
162                                                           target_container);
163                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
164         }
165
166 again:
167         switch (proto) {
168         case htons(ETH_P_IP): {
169                 const struct iphdr *iph;
170                 struct iphdr _iph;
171 ip:
172                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
173                 if (!iph || iph->ihl < 5)
174                         return false;
175                 nhoff += iph->ihl * 4;
176
177                 ip_proto = iph->protocol;
178                 if (ip_is_fragment(iph))
179                         ip_proto = 0;
180
181                 if (!skb_flow_dissector_uses_key(flow_dissector,
182                                                  FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183                         break;
184
185                 key_addrs = skb_flow_dissector_target(flow_dissector,
186                               FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187                 memcpy(&key_addrs->v4addrs, &iph->saddr,
188                        sizeof(key_addrs->v4addrs));
189                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190                 break;
191         }
192         case htons(ETH_P_IPV6): {
193                 const struct ipv6hdr *iph;
194                 struct ipv6hdr _iph;
195                 __be32 flow_label;
196
197 ipv6:
198                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
199                 if (!iph)
200                         return false;
201
202                 ip_proto = iph->nexthdr;
203                 nhoff += sizeof(struct ipv6hdr);
204
205                 if (skb_flow_dissector_uses_key(flow_dissector,
206                                                 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
207                         struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
208
209                         key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
210                                                                    FLOW_DISSECTOR_KEY_IPV6_ADDRS,
211                                                                    target_container);
212
213                         memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
214                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
215                 }
216
217                 flow_label = ip6_flowlabel(iph);
218                 if (flow_label) {
219                         if (skb_flow_dissector_uses_key(flow_dissector,
220                                 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
221                                 key_tags = skb_flow_dissector_target(flow_dissector,
222                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
223                                                                      target_container);
224                                 key_tags->flow_label = ntohl(flow_label);
225                         }
226                 }
227
228                 break;
229         }
230         case htons(ETH_P_8021AD):
231         case htons(ETH_P_8021Q): {
232                 const struct vlan_hdr *vlan;
233                 struct vlan_hdr _vlan;
234
235                 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
236                 if (!vlan)
237                         return false;
238
239                 if (skb_flow_dissector_uses_key(flow_dissector,
240                                                 FLOW_DISSECTOR_KEY_VLANID)) {
241                         key_tags = skb_flow_dissector_target(flow_dissector,
242                                                              FLOW_DISSECTOR_KEY_VLANID,
243                                                              target_container);
244
245                         key_tags->vlan_id = skb_vlan_tag_get_id(skb);
246                 }
247
248                 proto = vlan->h_vlan_encapsulated_proto;
249                 nhoff += sizeof(*vlan);
250                 goto again;
251         }
252         case htons(ETH_P_PPP_SES): {
253                 struct {
254                         struct pppoe_hdr hdr;
255                         __be16 proto;
256                 } *hdr, _hdr;
257                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
258                 if (!hdr)
259                         return false;
260                 proto = hdr->proto;
261                 nhoff += PPPOE_SES_HLEN;
262                 switch (proto) {
263                 case htons(PPP_IP):
264                         goto ip;
265                 case htons(PPP_IPV6):
266                         goto ipv6;
267                 default:
268                         return false;
269                 }
270         }
271         case htons(ETH_P_TIPC): {
272                 struct {
273                         __be32 pre[3];
274                         __be32 srcnode;
275                 } *hdr, _hdr;
276                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
277                 if (!hdr)
278                         return false;
279                 key_basic->n_proto = proto;
280                 key_control->thoff = (u16)nhoff;
281
282                 if (skb_flow_dissector_uses_key(flow_dissector,
283                                                 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
284                         key_addrs = skb_flow_dissector_target(flow_dissector,
285                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
286                                                               target_container);
287                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
288                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
289                 }
290                 return true;
291         }
292
293         case htons(ETH_P_MPLS_UC):
294         case htons(ETH_P_MPLS_MC): {
295                 struct mpls_label *hdr, _hdr[2];
296 mpls:
297                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
298                                            hlen, &_hdr);
299                 if (!hdr)
300                         return false;
301
302                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
303                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
304                         if (skb_flow_dissector_uses_key(flow_dissector,
305                                                         FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
306                                 key_keyid = skb_flow_dissector_target(flow_dissector,
307                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
308                                                                       target_container);
309                                 key_keyid->keyid = hdr[1].entry &
310                                         htonl(MPLS_LS_LABEL_MASK);
311                         }
312
313                         key_basic->n_proto = proto;
314                         key_basic->ip_proto = ip_proto;
315                         key_control->thoff = (u16)nhoff;
316
317                         return true;
318                 }
319
320                 return true;
321         }
322
323         case htons(ETH_P_FCOE):
324                 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
325                 /* fall through */
326         default:
327                 return false;
328         }
329
330 ip_proto_again:
331         switch (ip_proto) {
332         case IPPROTO_GRE: {
333                 struct gre_hdr {
334                         __be16 flags;
335                         __be16 proto;
336                 } *hdr, _hdr;
337
338                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
339                 if (!hdr)
340                         return false;
341                 /*
342                  * Only look inside GRE if version zero and no
343                  * routing
344                  */
345                 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
346                         break;
347
348                 proto = hdr->proto;
349                 nhoff += 4;
350                 if (hdr->flags & GRE_CSUM)
351                         nhoff += 4;
352                 if (hdr->flags & GRE_KEY) {
353                         const __be32 *keyid;
354                         __be32 _keyid;
355
356                         keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
357                                                      data, hlen, &_keyid);
358
359                         if (!keyid)
360                                 return false;
361
362                         if (skb_flow_dissector_uses_key(flow_dissector,
363                                                         FLOW_DISSECTOR_KEY_GRE_KEYID)) {
364                                 key_keyid = skb_flow_dissector_target(flow_dissector,
365                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
366                                                                       target_container);
367                                 key_keyid->keyid = *keyid;
368                         }
369                         nhoff += 4;
370                 }
371                 if (hdr->flags & GRE_SEQ)
372                         nhoff += 4;
373                 if (proto == htons(ETH_P_TEB)) {
374                         const struct ethhdr *eth;
375                         struct ethhdr _eth;
376
377                         eth = __skb_header_pointer(skb, nhoff,
378                                                    sizeof(_eth),
379                                                    data, hlen, &_eth);
380                         if (!eth)
381                                 return false;
382                         proto = eth->h_proto;
383                         nhoff += sizeof(*eth);
384                 }
385                 goto again;
386         }
387         case NEXTHDR_HOP:
388         case NEXTHDR_ROUTING:
389         case NEXTHDR_DEST: {
390                 u8 _opthdr[2], *opthdr;
391
392                 if (proto != htons(ETH_P_IPV6))
393                         break;
394
395                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
396                                               data, hlen, &_opthdr);
397                 if (!opthdr)
398                         return false;
399
400                 ip_proto = opthdr[0];
401                 nhoff += (opthdr[1] + 1) << 3;
402
403                 goto ip_proto_again;
404         }
405         case IPPROTO_IPIP:
406                 proto = htons(ETH_P_IP);
407                 goto ip;
408         case IPPROTO_IPV6:
409                 proto = htons(ETH_P_IPV6);
410                 goto ipv6;
411         case IPPROTO_MPLS:
412                 proto = htons(ETH_P_MPLS_UC);
413                 goto mpls;
414         default:
415                 break;
416         }
417
418         key_basic->n_proto = proto;
419         key_basic->ip_proto = ip_proto;
420         key_control->thoff = (u16)nhoff;
421
422         if (skb_flow_dissector_uses_key(flow_dissector,
423                                         FLOW_DISSECTOR_KEY_PORTS)) {
424                 key_ports = skb_flow_dissector_target(flow_dissector,
425                                                       FLOW_DISSECTOR_KEY_PORTS,
426                                                       target_container);
427                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
428                                                         data, hlen);
429         }
430
431         return true;
432 }
433 EXPORT_SYMBOL(__skb_flow_dissect);
434
435 static u32 hashrnd __read_mostly;
436 static __always_inline void __flow_hash_secret_init(void)
437 {
438         net_get_random_once(&hashrnd, sizeof(hashrnd));
439 }
440
441 static __always_inline u32 __flow_hash_words(u32 *words, u32 length, u32 keyval)
442 {
443         return jhash2(words, length, keyval);
444 }
445
446 static inline void *flow_keys_hash_start(struct flow_keys *flow)
447 {
448         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
449         return (void *)flow + FLOW_KEYS_HASH_OFFSET;
450 }
451
452 static inline size_t flow_keys_hash_length(struct flow_keys *flow)
453 {
454         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
455         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
456         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
457                      sizeof(*flow) - sizeof(flow->addrs));
458
459         switch (flow->control.addr_type) {
460         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
461                 diff -= sizeof(flow->addrs.v4addrs);
462                 break;
463         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
464                 diff -= sizeof(flow->addrs.v6addrs);
465                 break;
466         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
467                 diff -= sizeof(flow->addrs.tipcaddrs);
468                 break;
469         }
470         return (sizeof(*flow) - diff) / sizeof(u32);
471 }
472
473 __be32 flow_get_u32_src(const struct flow_keys *flow)
474 {
475         switch (flow->control.addr_type) {
476         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
477                 return flow->addrs.v4addrs.src;
478         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
479                 return (__force __be32)ipv6_addr_hash(
480                         &flow->addrs.v6addrs.src);
481         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
482                 return flow->addrs.tipcaddrs.srcnode;
483         default:
484                 return 0;
485         }
486 }
487 EXPORT_SYMBOL(flow_get_u32_src);
488
489 __be32 flow_get_u32_dst(const struct flow_keys *flow)
490 {
491         switch (flow->control.addr_type) {
492         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
493                 return flow->addrs.v4addrs.dst;
494         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
495                 return (__force __be32)ipv6_addr_hash(
496                         &flow->addrs.v6addrs.dst);
497         default:
498                 return 0;
499         }
500 }
501 EXPORT_SYMBOL(flow_get_u32_dst);
502
503 static inline void __flow_hash_consistentify(struct flow_keys *keys)
504 {
505         int addr_diff, i;
506
507         switch (keys->control.addr_type) {
508         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
509                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
510                             (__force u32)keys->addrs.v4addrs.src;
511                 if ((addr_diff < 0) ||
512                     (addr_diff == 0 &&
513                      ((__force u16)keys->ports.dst <
514                       (__force u16)keys->ports.src))) {
515                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
516                         swap(keys->ports.src, keys->ports.dst);
517                 }
518                 break;
519         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
520                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
521                                    &keys->addrs.v6addrs.src,
522                                    sizeof(keys->addrs.v6addrs.dst));
523                 if ((addr_diff < 0) ||
524                     (addr_diff == 0 &&
525                      ((__force u16)keys->ports.dst <
526                       (__force u16)keys->ports.src))) {
527                         for (i = 0; i < 4; i++)
528                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
529                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
530                         swap(keys->ports.src, keys->ports.dst);
531                 }
532                 break;
533         }
534 }
535
536 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
537 {
538         u32 hash;
539
540         __flow_hash_consistentify(keys);
541
542         hash = __flow_hash_words((u32 *)flow_keys_hash_start(keys),
543                                  flow_keys_hash_length(keys), keyval);
544         if (!hash)
545                 hash = 1;
546
547         return hash;
548 }
549
550 u32 flow_hash_from_keys(struct flow_keys *keys)
551 {
552         __flow_hash_secret_init();
553         return __flow_hash_from_keys(keys, hashrnd);
554 }
555 EXPORT_SYMBOL(flow_hash_from_keys);
556
557 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
558                                   struct flow_keys *keys, u32 keyval)
559 {
560         if (!skb_flow_dissect_flow_keys(skb, keys))
561                 return 0;
562
563         return __flow_hash_from_keys(keys, keyval);
564 }
565
566 struct _flow_keys_digest_data {
567         __be16  n_proto;
568         u8      ip_proto;
569         u8      padding;
570         __be32  ports;
571         __be32  src;
572         __be32  dst;
573 };
574
575 void make_flow_keys_digest(struct flow_keys_digest *digest,
576                            const struct flow_keys *flow)
577 {
578         struct _flow_keys_digest_data *data =
579             (struct _flow_keys_digest_data *)digest;
580
581         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
582
583         memset(digest, 0, sizeof(*digest));
584
585         data->n_proto = flow->basic.n_proto;
586         data->ip_proto = flow->basic.ip_proto;
587         data->ports = flow->ports.ports;
588         data->src = flow->addrs.v4addrs.src;
589         data->dst = flow->addrs.v4addrs.dst;
590 }
591 EXPORT_SYMBOL(make_flow_keys_digest);
592
593 /**
594  * __skb_get_hash: calculate a flow hash
595  * @skb: sk_buff to calculate flow hash from
596  *
597  * This function calculates a flow hash based on src/dst addresses
598  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
599  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
600  * if hash is a canonical 4-tuple hash over transport ports.
601  */
602 void __skb_get_hash(struct sk_buff *skb)
603 {
604         struct flow_keys keys;
605         u32 hash;
606
607         __flow_hash_secret_init();
608
609         hash = ___skb_get_hash(skb, &keys, hashrnd);
610         if (!hash)
611                 return;
612
613         __skb_set_sw_hash(skb, hash,
614                           flow_keys_have_l4(&keys));
615 }
616 EXPORT_SYMBOL(__skb_get_hash);
617
618 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
619 {
620         struct flow_keys keys;
621
622         return ___skb_get_hash(skb, &keys, perturb);
623 }
624 EXPORT_SYMBOL(skb_get_hash_perturb);
625
626 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6)
627 {
628         struct flow_keys keys;
629
630         memset(&keys, 0, sizeof(keys));
631
632         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
633                sizeof(keys.addrs.v6addrs.src));
634         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
635                sizeof(keys.addrs.v6addrs.dst));
636         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
637         keys.ports.src = fl6->fl6_sport;
638         keys.ports.dst = fl6->fl6_dport;
639         keys.keyid.keyid = fl6->fl6_gre_key;
640         keys.tags.flow_label = (__force u32)fl6->flowlabel;
641         keys.basic.ip_proto = fl6->flowi6_proto;
642
643         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
644                           flow_keys_have_l4(&keys));
645
646         return skb->hash;
647 }
648 EXPORT_SYMBOL(__skb_get_hash_flowi6);
649
650 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl4)
651 {
652         struct flow_keys keys;
653
654         memset(&keys, 0, sizeof(keys));
655
656         keys.addrs.v4addrs.src = fl4->saddr;
657         keys.addrs.v4addrs.dst = fl4->daddr;
658         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
659         keys.ports.src = fl4->fl4_sport;
660         keys.ports.dst = fl4->fl4_dport;
661         keys.keyid.keyid = fl4->fl4_gre_key;
662         keys.basic.ip_proto = fl4->flowi4_proto;
663
664         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
665                           flow_keys_have_l4(&keys));
666
667         return skb->hash;
668 }
669 EXPORT_SYMBOL(__skb_get_hash_flowi4);
670
671 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
672                    const struct flow_keys *keys, int hlen)
673 {
674         u32 poff = keys->control.thoff;
675
676         switch (keys->basic.ip_proto) {
677         case IPPROTO_TCP: {
678                 /* access doff as u8 to avoid unaligned access */
679                 const u8 *doff;
680                 u8 _doff;
681
682                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
683                                             data, hlen, &_doff);
684                 if (!doff)
685                         return poff;
686
687                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
688                 break;
689         }
690         case IPPROTO_UDP:
691         case IPPROTO_UDPLITE:
692                 poff += sizeof(struct udphdr);
693                 break;
694         /* For the rest, we do not really care about header
695          * extensions at this point for now.
696          */
697         case IPPROTO_ICMP:
698                 poff += sizeof(struct icmphdr);
699                 break;
700         case IPPROTO_ICMPV6:
701                 poff += sizeof(struct icmp6hdr);
702                 break;
703         case IPPROTO_IGMP:
704                 poff += sizeof(struct igmphdr);
705                 break;
706         case IPPROTO_DCCP:
707                 poff += sizeof(struct dccp_hdr);
708                 break;
709         case IPPROTO_SCTP:
710                 poff += sizeof(struct sctphdr);
711                 break;
712         }
713
714         return poff;
715 }
716
717 /**
718  * skb_get_poff - get the offset to the payload
719  * @skb: sk_buff to get the payload offset from
720  *
721  * The function will get the offset to the payload as far as it could
722  * be dissected.  The main user is currently BPF, so that we can dynamically
723  * truncate packets without needing to push actual payload to the user
724  * space and can analyze headers only, instead.
725  */
726 u32 skb_get_poff(const struct sk_buff *skb)
727 {
728         struct flow_keys keys;
729
730         if (!skb_flow_dissect_flow_keys(skb, &keys))
731                 return 0;
732
733         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
734 }
735
736 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
737         {
738                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
739                 .offset = offsetof(struct flow_keys, control),
740         },
741         {
742                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
743                 .offset = offsetof(struct flow_keys, basic),
744         },
745         {
746                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
747                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
748         },
749         {
750                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
751                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
752         },
753         {
754                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
755                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
756         },
757         {
758                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
759                 .offset = offsetof(struct flow_keys, ports),
760         },
761         {
762                 .key_id = FLOW_DISSECTOR_KEY_VLANID,
763                 .offset = offsetof(struct flow_keys, tags),
764         },
765         {
766                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
767                 .offset = offsetof(struct flow_keys, tags),
768         },
769         {
770                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
771                 .offset = offsetof(struct flow_keys, keyid),
772         },
773 };
774
775 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
776         {
777                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
778                 .offset = offsetof(struct flow_keys, control),
779         },
780         {
781                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
782                 .offset = offsetof(struct flow_keys, basic),
783         },
784 };
785
786 struct flow_dissector flow_keys_dissector __read_mostly;
787 EXPORT_SYMBOL(flow_keys_dissector);
788
789 struct flow_dissector flow_keys_buf_dissector __read_mostly;
790
791 static int __init init_default_flow_dissectors(void)
792 {
793         skb_flow_dissector_init(&flow_keys_dissector,
794                                 flow_keys_dissector_keys,
795                                 ARRAY_SIZE(flow_keys_dissector_keys));
796         skb_flow_dissector_init(&flow_keys_buf_dissector,
797                                 flow_keys_buf_dissector_keys,
798                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
799         return 0;
800 }
801
802 late_initcall_sync(init_default_flow_dissectors);