1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
16 * Alan Cox : Removed the Ethernet assumptions in
18 * Alan Cox : Fixed some small errors in the ARP
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
103 #include <linux/sysctl.h>
106 #include <net/net_namespace.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
112 #include <net/sock.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
117 #include <linux/uaccess.h>
119 #include <linux/netfilter_arp.h>
122 * Interface to generic neighbour cache.
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
130 static const struct neigh_ops arp_generic_ops = {
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
138 static const struct neigh_ops arp_hh_ops = {
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
146 static const struct neigh_ops arp_direct_ops = {
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
152 static const struct neigh_ops arp_broken_ops = {
154 .solicit = arp_solicit,
155 .error_report = arp_error_report,
156 .output = neigh_compat_output,
157 .connected_output = neigh_compat_output,
160 struct neigh_table arp_tbl = {
164 .constructor = arp_constructor,
165 .proxy_redo = parp_redo,
169 .base_reachable_time = 30 * HZ,
170 .retrans_time = 1 * HZ,
171 .gc_staletime = 60 * HZ,
172 .reachable_time = 30 * HZ,
173 .delay_probe_time = 5 * HZ,
174 .queue_len_bytes = 64*1024,
177 .anycast_delay = 1 * HZ,
178 .proxy_delay = (8 * HZ) / 10,
182 .gc_interval = 30 * HZ,
187 EXPORT_SYMBOL(arp_tbl);
189 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
195 ip_eth_mc_map(addr, haddr);
197 case ARPHRD_INFINIBAND:
198 ip_ib_mc_map(addr, dev->broadcast, haddr);
201 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
205 memcpy(haddr, dev->broadcast, dev->addr_len);
213 static u32 arp_hash(const void *pkey,
214 const struct net_device *dev,
217 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
220 static int arp_constructor(struct neighbour *neigh)
222 __be32 addr = *(__be32 *)neigh->primary_key;
223 struct net_device *dev = neigh->dev;
224 struct in_device *in_dev;
225 struct neigh_parms *parms;
228 in_dev = __in_dev_get_rcu(dev);
229 if (in_dev == NULL) {
234 neigh->type = inet_addr_type(dev_net(dev), addr);
236 parms = in_dev->arp_parms;
237 __neigh_parms_put(neigh->parms);
238 neigh->parms = neigh_parms_clone(parms);
241 if (!dev->header_ops) {
242 neigh->nud_state = NUD_NOARP;
243 neigh->ops = &arp_direct_ops;
244 neigh->output = neigh_direct_output;
246 /* Good devices (checked by reading texts, but only Ethernet is
249 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_METRICOM: (strip)
256 ARPHRD_IPDDP will also work, if author repairs it.
257 I did not it, because this driver does not work even
262 /* So... these "amateur" devices are hopeless.
263 The only thing, that I can say now:
264 It is very sad that we need to keep ugly obsolete
265 code to make them happy.
267 They should be moved to more reasonable state, now
268 they use rebuild_header INSTEAD OF hard_start_xmit!!!
269 Besides that, they are sort of out of date
270 (a lot of redundant clones/copies, useless in 2.1),
271 I wonder why people believe that they work.
277 #if IS_ENABLED(CONFIG_AX25)
279 #if IS_ENABLED(CONFIG_NETROM)
282 neigh->ops = &arp_broken_ops;
283 neigh->output = neigh->ops->output;
290 if (neigh->type == RTN_MULTICAST) {
291 neigh->nud_state = NUD_NOARP;
292 arp_mc_map(addr, neigh->ha, dev, 1);
293 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
294 neigh->nud_state = NUD_NOARP;
295 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
296 } else if (neigh->type == RTN_BROADCAST ||
297 (dev->flags & IFF_POINTOPOINT)) {
298 neigh->nud_state = NUD_NOARP;
299 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
302 if (dev->header_ops->cache)
303 neigh->ops = &arp_hh_ops;
305 neigh->ops = &arp_generic_ops;
307 if (neigh->nud_state & NUD_VALID)
308 neigh->output = neigh->ops->connected_output;
310 neigh->output = neigh->ops->output;
315 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
317 dst_link_failure(skb);
321 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
324 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
325 struct net_device *dev = neigh->dev;
326 __be32 target = *(__be32 *)neigh->primary_key;
327 int probes = atomic_read(&neigh->probes);
328 struct in_device *in_dev;
331 in_dev = __in_dev_get_rcu(dev);
336 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
338 case 0: /* By default announce any local IP */
339 if (skb && inet_addr_type(dev_net(dev),
340 ip_hdr(skb)->saddr) == RTN_LOCAL)
341 saddr = ip_hdr(skb)->saddr;
343 case 1: /* Restrict announcements of saddr in same subnet */
346 saddr = ip_hdr(skb)->saddr;
347 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
348 /* saddr should be known to target */
349 if (inet_addr_onlink(in_dev, target, saddr))
354 case 2: /* Avoid secondary IPs, get a primary/preferred one */
360 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
362 probes -= neigh->parms->ucast_probes;
364 if (!(neigh->nud_state & NUD_VALID))
365 pr_debug("trying to ucast probe in NUD_INVALID\n");
366 neigh_ha_snapshot(dst_ha, neigh, dev);
369 probes -= neigh->parms->app_probes;
378 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
379 dst_hw, dev->dev_addr, NULL);
382 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
386 switch (IN_DEV_ARP_IGNORE(in_dev)) {
387 case 0: /* Reply, the tip is already validated */
389 case 1: /* Reply only if tip is configured on the incoming interface */
391 scope = RT_SCOPE_HOST;
394 * Reply only if tip is configured on the incoming interface
395 * and is in same subnet as sip
397 scope = RT_SCOPE_HOST;
399 case 3: /* Do not reply for scope host addresses */
401 scope = RT_SCOPE_LINK;
403 case 4: /* Reserved */
408 case 8: /* Do not reply */
413 return !inet_confirm_addr(in_dev, sip, tip, scope);
416 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
420 /*unsigned long now; */
421 struct net *net = dev_net(dev);
423 rt = ip_route_output(net, sip, tip, 0, 0);
426 if (rt->dst.dev != dev) {
427 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
434 /* OBSOLETE FUNCTIONS */
437 * Find an arp mapping in the cache. If not found, post a request.
439 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
440 * even if it exists. It is supposed that skb->dev was mangled
441 * by a virtual device (eql, shaper). Nobody but broken devices
442 * is allowed to use this function, it is scheduled to be removed. --ANK
445 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
446 __be32 paddr, struct net_device *dev)
450 pr_debug("arp called for own IP address\n");
451 memcpy(haddr, dev->dev_addr, dev->addr_len);
454 arp_mc_map(paddr, haddr, dev, 1);
457 memcpy(haddr, dev->broadcast, dev->addr_len);
464 int arp_find(unsigned char *haddr, struct sk_buff *skb)
466 struct net_device *dev = skb->dev;
471 pr_debug("arp_find is called with dst==NULL\n");
476 paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
477 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
481 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
485 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
486 neigh_ha_snapshot(haddr, n, dev);
495 EXPORT_SYMBOL(arp_find);
497 /* END OF OBSOLETE FUNCTIONS */
500 * Check if we can use proxy ARP for this path
502 static inline int arp_fwd_proxy(struct in_device *in_dev,
503 struct net_device *dev, struct rtable *rt)
505 struct in_device *out_dev;
508 if (rt->dst.dev == dev)
511 if (!IN_DEV_PROXY_ARP(in_dev))
513 imi = IN_DEV_MEDIUM_ID(in_dev);
519 /* place to check for proxy_arp for routes */
521 out_dev = __in_dev_get_rcu(rt->dst.dev);
523 omi = IN_DEV_MEDIUM_ID(out_dev);
525 return omi != imi && omi != -1;
529 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
531 * RFC3069 supports proxy arp replies back to the same interface. This
532 * is done to support (ethernet) switch features, like RFC 3069, where
533 * the individual ports are not allowed to communicate with each
534 * other, BUT they are allowed to talk to the upstream router. As
535 * described in RFC 3069, it is possible to allow these hosts to
536 * communicate through the upstream router, by proxy_arp'ing.
538 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
540 * This technology is known by different names:
541 * In RFC 3069 it is called VLAN Aggregation.
542 * Cisco and Allied Telesyn call it Private VLAN.
543 * Hewlett-Packard call it Source-Port filtering or port-isolation.
544 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
547 static inline int arp_fwd_pvlan(struct in_device *in_dev,
548 struct net_device *dev, struct rtable *rt,
549 __be32 sip, __be32 tip)
551 /* Private VLAN is only concerned about the same ethernet segment */
552 if (rt->dst.dev != dev)
555 /* Don't reply on self probes (often done by windowz boxes)*/
559 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
566 * Interface to link layer: send routine and receive handler.
570 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
573 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
574 struct net_device *dev, __be32 src_ip,
575 const unsigned char *dest_hw,
576 const unsigned char *src_hw,
577 const unsigned char *target_hw)
581 unsigned char *arp_ptr;
582 int hlen = LL_RESERVED_SPACE(dev);
583 int tlen = dev->needed_tailroom;
589 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
593 skb_reserve(skb, hlen);
594 skb_reset_network_header(skb);
595 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
597 skb->protocol = htons(ETH_P_ARP);
599 src_hw = dev->dev_addr;
601 dest_hw = dev->broadcast;
604 * Fill the device header for the ARP frame
606 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
610 * Fill out the arp protocol part.
612 * The arp hardware type should match the device type, except for FDDI,
613 * which (according to RFC 1390) should always equal 1 (Ethernet).
616 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
617 * DIX code for the protocol. Make these device structure fields.
621 arp->ar_hrd = htons(dev->type);
622 arp->ar_pro = htons(ETH_P_IP);
625 #if IS_ENABLED(CONFIG_AX25)
627 arp->ar_hrd = htons(ARPHRD_AX25);
628 arp->ar_pro = htons(AX25_P_IP);
631 #if IS_ENABLED(CONFIG_NETROM)
633 arp->ar_hrd = htons(ARPHRD_NETROM);
634 arp->ar_pro = htons(AX25_P_IP);
639 #if IS_ENABLED(CONFIG_FDDI)
641 arp->ar_hrd = htons(ARPHRD_ETHER);
642 arp->ar_pro = htons(ETH_P_IP);
647 arp->ar_hln = dev->addr_len;
649 arp->ar_op = htons(type);
651 arp_ptr = (unsigned char *)(arp + 1);
653 memcpy(arp_ptr, src_hw, dev->addr_len);
654 arp_ptr += dev->addr_len;
655 memcpy(arp_ptr, &src_ip, 4);
657 if (target_hw != NULL)
658 memcpy(arp_ptr, target_hw, dev->addr_len);
660 memset(arp_ptr, 0, dev->addr_len);
661 arp_ptr += dev->addr_len;
662 memcpy(arp_ptr, &dest_ip, 4);
670 EXPORT_SYMBOL(arp_create);
673 * Send an arp packet.
675 void arp_xmit(struct sk_buff *skb)
677 /* Send it off, maybe filter it using firewalling first. */
678 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
680 EXPORT_SYMBOL(arp_xmit);
683 * Create and send an arp packet.
685 void arp_send(int type, int ptype, __be32 dest_ip,
686 struct net_device *dev, __be32 src_ip,
687 const unsigned char *dest_hw, const unsigned char *src_hw,
688 const unsigned char *target_hw)
693 * No arp on this interface.
696 if (dev->flags&IFF_NOARP)
699 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
700 dest_hw, src_hw, target_hw);
706 EXPORT_SYMBOL(arp_send);
709 * Process an arp request.
712 static int arp_process(struct sk_buff *skb)
714 struct net_device *dev = skb->dev;
715 struct in_device *in_dev = __in_dev_get_rcu(dev);
717 unsigned char *arp_ptr;
721 u16 dev_type = dev->type;
724 struct net *net = dev_net(dev);
726 /* arp_rcv below verifies the ARP header and verifies the device
737 if (arp->ar_pro != htons(ETH_P_IP) ||
738 htons(dev_type) != arp->ar_hrd)
745 * ETHERNET, and Fibre Channel (which are IEEE 802
746 * devices, according to RFC 2625) devices will accept ARP
747 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
748 * This is the case also of FDDI, where the RFC 1390 says that
749 * FDDI devices should accept ARP hardware of (1) Ethernet,
750 * however, to be more robust, we'll accept both 1 (Ethernet)
753 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
754 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
755 arp->ar_pro != htons(ETH_P_IP))
759 if (arp->ar_pro != htons(AX25_P_IP) ||
760 arp->ar_hrd != htons(ARPHRD_AX25))
764 if (arp->ar_pro != htons(AX25_P_IP) ||
765 arp->ar_hrd != htons(ARPHRD_NETROM))
770 /* Understand only these message types */
772 if (arp->ar_op != htons(ARPOP_REPLY) &&
773 arp->ar_op != htons(ARPOP_REQUEST))
779 arp_ptr = (unsigned char *)(arp + 1);
781 arp_ptr += dev->addr_len;
782 memcpy(&sip, arp_ptr, 4);
784 arp_ptr += dev->addr_len;
785 memcpy(&tip, arp_ptr, 4);
787 * Check for bad requests for 127.x.x.x and requests for multicast
788 * addresses. If this is one such, delete it.
790 if (ipv4_is_multicast(tip) ||
791 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
795 * Special case: We must set Frame Relay source Q.922 address
797 if (dev_type == ARPHRD_DLCI)
798 sha = dev->broadcast;
801 * Process entry. The idea here is we want to send a reply if it is a
802 * request for us or if it is a request for someone else that we hold
803 * a proxy for. We want to add an entry to our cache if it is a reply
804 * to us or if it is a request for our address.
805 * (The assumption for this last is that if someone is requesting our
806 * address, they are probably intending to talk to us, so it saves time
807 * if we cache their address. Their address is also probably not in
808 * our cache, since ours is not in their cache.)
810 * Putting this another way, we only care about replies if they are to
811 * us, in which case we add them to the cache. For requests, we care
812 * about those for us and those for our proxies. We reply to both,
813 * and in the case of requests for us we add the requester to the arp
817 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
819 if (arp->ar_op == htons(ARPOP_REQUEST) &&
820 inet_addr_type(net, tip) == RTN_LOCAL &&
821 !arp_ignore(in_dev, sip, tip))
822 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
827 if (arp->ar_op == htons(ARPOP_REQUEST) &&
828 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
830 rt = skb_rtable(skb);
831 addr_type = rt->rt_type;
833 if (addr_type == RTN_LOCAL) {
836 dont_send = arp_ignore(in_dev, sip, tip);
837 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
838 dont_send = arp_filter(sip, tip, dev);
840 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
843 dev, tip, sha, dev->dev_addr,
849 } else if (IN_DEV_FORWARD(in_dev)) {
850 if (addr_type == RTN_UNICAST &&
851 (arp_fwd_proxy(in_dev, dev, rt) ||
852 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
853 (rt->dst.dev != dev &&
854 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
855 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
860 skb->pkt_type == PACKET_HOST ||
861 in_dev->arp_parms->proxy_delay == 0) {
862 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
863 dev, tip, sha, dev->dev_addr,
866 pneigh_enqueue(&arp_tbl,
867 in_dev->arp_parms, skb);
875 /* Update our ARP tables */
877 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
879 if (IN_DEV_ARP_ACCEPT(in_dev)) {
880 /* Unsolicited ARP is not accepted by default.
881 It is possible, that this option should be enabled for some
882 devices (strip is candidate)
885 (arp->ar_op == htons(ARPOP_REPLY) ||
886 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
887 inet_addr_type(net, sip) == RTN_UNICAST)
888 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
892 int state = NUD_REACHABLE;
895 /* If several different ARP replies follows back-to-back,
896 use the FIRST one. It is possible, if several proxy
897 agents are active. Taking the first reply prevents
898 arp trashing and chooses the fastest router.
900 override = time_after(jiffies, n->updated + n->parms->locktime);
902 /* Broadcast replies and request packets
903 do not assert neighbour reachability.
905 if (arp->ar_op != htons(ARPOP_REPLY) ||
906 skb->pkt_type != PACKET_HOST)
908 neigh_update(n, sha, state,
909 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
918 static void parp_redo(struct sk_buff *skb)
925 * Receive an arp request from the device layer.
928 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
929 struct packet_type *pt, struct net_device *orig_dev)
931 const struct arphdr *arp;
933 if (dev->flags & IFF_NOARP ||
934 skb->pkt_type == PACKET_OTHERHOST ||
935 skb->pkt_type == PACKET_LOOPBACK)
938 skb = skb_share_check(skb, GFP_ATOMIC);
942 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
943 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
947 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
950 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
952 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
961 * User level interface (ioctl)
965 * Set (create) an ARP cache entry.
968 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
971 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
974 if (__in_dev_get_rtnl(dev)) {
975 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
981 static int arp_req_set_public(struct net *net, struct arpreq *r,
982 struct net_device *dev)
984 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
985 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
987 if (mask && mask != htonl(0xFFFFFFFF))
989 if (!dev && (r->arp_flags & ATF_COM)) {
990 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
996 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1001 return arp_req_set_proxy(net, dev, 1);
1004 static int arp_req_set(struct net *net, struct arpreq *r,
1005 struct net_device *dev)
1008 struct neighbour *neigh;
1011 if (r->arp_flags & ATF_PUBL)
1012 return arp_req_set_public(net, r, dev);
1014 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1015 if (r->arp_flags & ATF_PERM)
1016 r->arp_flags |= ATF_COM;
1018 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1027 switch (dev->type) {
1028 #if IS_ENABLED(CONFIG_FDDI)
1031 * According to RFC 1390, FDDI devices should accept ARP
1032 * hardware types of 1 (Ethernet). However, to be more
1033 * robust, we'll accept hardware types of either 1 (Ethernet)
1034 * or 6 (IEEE 802.2).
1036 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1037 r->arp_ha.sa_family != ARPHRD_ETHER &&
1038 r->arp_ha.sa_family != ARPHRD_IEEE802)
1043 if (r->arp_ha.sa_family != dev->type)
1048 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1049 err = PTR_ERR(neigh);
1050 if (!IS_ERR(neigh)) {
1051 unsigned int state = NUD_STALE;
1052 if (r->arp_flags & ATF_PERM)
1053 state = NUD_PERMANENT;
1054 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1055 r->arp_ha.sa_data : NULL, state,
1056 NEIGH_UPDATE_F_OVERRIDE |
1057 NEIGH_UPDATE_F_ADMIN);
1058 neigh_release(neigh);
1063 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065 if (neigh->nud_state&NUD_PERMANENT)
1066 return ATF_PERM | ATF_COM;
1067 else if (neigh->nud_state&NUD_VALID)
1074 * Get an ARP cache entry.
1077 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1080 struct neighbour *neigh;
1083 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085 read_lock_bh(&neigh->lock);
1086 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1087 r->arp_flags = arp_state_to_flags(neigh);
1088 read_unlock_bh(&neigh->lock);
1089 r->arp_ha.sa_family = dev->type;
1090 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1091 neigh_release(neigh);
1097 int arp_invalidate(struct net_device *dev, __be32 ip)
1099 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1103 if (neigh->nud_state & ~NUD_NOARP)
1104 err = neigh_update(neigh, NULL, NUD_FAILED,
1105 NEIGH_UPDATE_F_OVERRIDE|
1106 NEIGH_UPDATE_F_ADMIN);
1107 neigh_release(neigh);
1112 EXPORT_SYMBOL(arp_invalidate);
1114 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1115 struct net_device *dev)
1117 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1118 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120 if (mask == htonl(0xFFFFFFFF))
1121 return pneigh_delete(&arp_tbl, net, &ip, dev);
1126 return arp_req_set_proxy(net, dev, 0);
1129 static int arp_req_delete(struct net *net, struct arpreq *r,
1130 struct net_device *dev)
1134 if (r->arp_flags & ATF_PUBL)
1135 return arp_req_delete_public(net, r, dev);
1137 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1147 return arp_invalidate(dev, ip);
1151 * Handle an ARP layer I/O control request.
1154 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1158 struct net_device *dev = NULL;
1163 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1166 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1174 if (r.arp_pa.sa_family != AF_INET)
1175 return -EPFNOSUPPORT;
1177 if (!(r.arp_flags & ATF_PUBL) &&
1178 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180 if (!(r.arp_flags & ATF_NETMASK))
1181 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1182 htonl(0xFFFFFFFFUL);
1186 dev = __dev_get_by_name(net, r.arp_dev);
1190 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1191 if (!r.arp_ha.sa_family)
1192 r.arp_ha.sa_family = dev->type;
1194 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196 } else if (cmd == SIOCGARP) {
1203 err = arp_req_delete(net, &r, dev);
1206 err = arp_req_set(net, &r, dev);
1209 err = arp_req_get(&r, dev);
1214 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1219 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1222 struct net_device *dev = ptr;
1225 case NETDEV_CHANGEADDR:
1226 neigh_changeaddr(&arp_tbl, dev);
1227 rt_cache_flush(dev_net(dev));
1236 static struct notifier_block arp_netdev_notifier = {
1237 .notifier_call = arp_netdev_event,
1240 /* Note, that it is not on notifier chain.
1241 It is necessary, that this routine was called after route cache will be
1244 void arp_ifdown(struct net_device *dev)
1246 neigh_ifdown(&arp_tbl, dev);
1251 * Called once on startup.
1254 static struct packet_type arp_packet_type __read_mostly = {
1255 .type = cpu_to_be16(ETH_P_ARP),
1259 static int arp_proc_init(void);
1261 void __init arp_init(void)
1263 neigh_table_init(&arp_tbl);
1265 dev_add_pack(&arp_packet_type);
1267 #ifdef CONFIG_SYSCTL
1268 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270 register_netdevice_notifier(&arp_netdev_notifier);
1273 #ifdef CONFIG_PROC_FS
1274 #if IS_ENABLED(CONFIG_AX25)
1276 /* ------------------------------------------------------------------------ */
1278 * ax25 -> ASCII conversion
1280 static char *ax2asc2(ax25_address *a, char *buf)
1285 for (n = 0, s = buf; n < 6; n++) {
1286 c = (a->ax25_call[n] >> 1) & 0x7F;
1293 n = (a->ax25_call[6] >> 1) & 0x0F;
1302 if (*buf == '\0' || *buf == '-')
1307 #endif /* CONFIG_AX25 */
1309 #define HBUFFERLEN 30
1311 static void arp_format_neigh_entry(struct seq_file *seq,
1312 struct neighbour *n)
1314 char hbuffer[HBUFFERLEN];
1317 struct net_device *dev = n->dev;
1318 int hatype = dev->type;
1320 read_lock(&n->lock);
1321 /* Convert hardware address to XX:XX:XX:XX ... form. */
1322 #if IS_ENABLED(CONFIG_AX25)
1323 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1324 ax2asc2((ax25_address *)n->ha, hbuffer);
1327 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1328 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1329 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1335 #if IS_ENABLED(CONFIG_AX25)
1338 sprintf(tbuf, "%pI4", n->primary_key);
1339 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1340 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1341 read_unlock(&n->lock);
1344 static void arp_format_pneigh_entry(struct seq_file *seq,
1345 struct pneigh_entry *n)
1347 struct net_device *dev = n->dev;
1348 int hatype = dev ? dev->type : 0;
1351 sprintf(tbuf, "%pI4", n->key);
1352 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1353 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1354 dev ? dev->name : "*");
1357 static int arp_seq_show(struct seq_file *seq, void *v)
1359 if (v == SEQ_START_TOKEN) {
1360 seq_puts(seq, "IP address HW type Flags "
1361 "HW address Mask Device\n");
1363 struct neigh_seq_state *state = seq->private;
1365 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1366 arp_format_pneigh_entry(seq, v);
1368 arp_format_neigh_entry(seq, v);
1374 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376 /* Don't want to confuse "arp -a" w/ magic entries,
1377 * so we tell the generic iterator to skip NUD_NOARP.
1379 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1382 /* ------------------------------------------------------------------------ */
1384 static const struct seq_operations arp_seq_ops = {
1385 .start = arp_seq_start,
1386 .next = neigh_seq_next,
1387 .stop = neigh_seq_stop,
1388 .show = arp_seq_show,
1391 static int arp_seq_open(struct inode *inode, struct file *file)
1393 return seq_open_net(inode, file, &arp_seq_ops,
1394 sizeof(struct neigh_seq_state));
1397 static const struct file_operations arp_seq_fops = {
1398 .owner = THIS_MODULE,
1399 .open = arp_seq_open,
1401 .llseek = seq_lseek,
1402 .release = seq_release_net,
1406 static int __net_init arp_net_init(struct net *net)
1408 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1413 static void __net_exit arp_net_exit(struct net *net)
1415 proc_net_remove(net, "arp");
1418 static struct pernet_operations arp_net_ops = {
1419 .init = arp_net_init,
1420 .exit = arp_net_exit,
1423 static int __init arp_proc_init(void)
1425 return register_pernet_subsys(&arp_net_ops);
1428 #else /* CONFIG_PROC_FS */
1430 static int __init arp_proc_init(void)
1435 #endif /* CONFIG_PROC_FS */