drm/rockchip: dsi: fix Non-SNPS PHY power on sequence
[firefly-linux-kernel-4.4.55.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51         struct fib6_walker w;
52         struct net *net;
53         int (*func)(struct rt6_info *, void *arg);
54         int sernum;
55         void *arg;
56 };
57
58 static DEFINE_RWLOCK(fib6_walker_lock);
59
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71
72 /*
73  *      A routing update causes an increase of the serial number on the
74  *      affected subtree. This allows for cached routes to be asynchronously
75  *      tested when modifications are made to the destination cache as a
76  *      result of redirects, path MTU changes, etc.
77  */
78
79 static void fib6_gc_timer_cb(unsigned long arg);
80
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86         write_lock_bh(&fib6_walker_lock);
87         list_add(&w->lh, &fib6_walkers);
88         write_unlock_bh(&fib6_walker_lock);
89 }
90
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93         write_lock_bh(&fib6_walker_lock);
94         list_del(&w->lh);
95         write_unlock_bh(&fib6_walker_lock);
96 }
97
98 static int fib6_new_sernum(struct net *net)
99 {
100         int new, old;
101
102         do {
103                 old = atomic_read(&net->ipv6.fib6_sernum);
104                 new = old < INT_MAX ? old + 1 : 1;
105         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106                                 old, new) != old);
107         return new;
108 }
109
110 enum {
111         FIB6_NO_SERNUM_CHANGE = 0,
112 };
113
114 /*
115  *      Auxiliary address test functions for the radix tree.
116  *
117  *      These assume a 32bit processor (although it will work on
118  *      64bit processors)
119  */
120
121 /*
122  *      test bit
123  */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE     0
128 #endif
129
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132         const __be32 *addr = token;
133         /*
134          * Here,
135          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136          * is optimized version of
137          *      htonl(1 << ((~fn_bit)&0x1F))
138          * See include/asm-generic/bitops/le.h.
139          */
140         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141                addr[fn_bit >> 5];
142 }
143
144 static struct fib6_node *node_alloc(void)
145 {
146         struct fib6_node *fn;
147
148         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149
150         return fn;
151 }
152
153 static void node_free(struct fib6_node *fn)
154 {
155         kmem_cache_free(fib6_node_kmem, fn);
156 }
157
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160         call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165         int cpu;
166
167         if (!non_pcpu_rt->rt6i_pcpu)
168                 return;
169
170         for_each_possible_cpu(cpu) {
171                 struct rt6_info **ppcpu_rt;
172                 struct rt6_info *pcpu_rt;
173
174                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175                 pcpu_rt = *ppcpu_rt;
176                 if (pcpu_rt) {
177                         rt6_rcu_free(pcpu_rt);
178                         *ppcpu_rt = NULL;
179                 }
180         }
181
182         free_percpu(non_pcpu_rt->rt6i_pcpu);
183         non_pcpu_rt->rt6i_pcpu = NULL;
184 }
185
186 static void rt6_release(struct rt6_info *rt)
187 {
188         if (atomic_dec_and_test(&rt->rt6i_ref)) {
189                 rt6_free_pcpu(rt);
190                 rt6_rcu_free(rt);
191         }
192 }
193
194 static void fib6_link_table(struct net *net, struct fib6_table *tb)
195 {
196         unsigned int h;
197
198         /*
199          * Initialize table lock at a single place to give lockdep a key,
200          * tables aren't visible prior to being linked to the list.
201          */
202         rwlock_init(&tb->tb6_lock);
203
204         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
205
206         /*
207          * No protection necessary, this is the only list mutatation
208          * operation, tables never disappear once they exist.
209          */
210         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
211 }
212
213 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
214
215 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
216 {
217         struct fib6_table *table;
218
219         table = kzalloc(sizeof(*table), GFP_ATOMIC);
220         if (table) {
221                 table->tb6_id = id;
222                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
223                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
224                 inet_peer_base_init(&table->tb6_peers);
225         }
226
227         return table;
228 }
229
230 struct fib6_table *fib6_new_table(struct net *net, u32 id)
231 {
232         struct fib6_table *tb;
233
234         if (id == 0)
235                 id = RT6_TABLE_MAIN;
236         tb = fib6_get_table(net, id);
237         if (tb)
238                 return tb;
239
240         tb = fib6_alloc_table(net, id);
241         if (tb)
242                 fib6_link_table(net, tb);
243
244         return tb;
245 }
246
247 struct fib6_table *fib6_get_table(struct net *net, u32 id)
248 {
249         struct fib6_table *tb;
250         struct hlist_head *head;
251         unsigned int h;
252
253         if (id == 0)
254                 id = RT6_TABLE_MAIN;
255         h = id & (FIB6_TABLE_HASHSZ - 1);
256         rcu_read_lock();
257         head = &net->ipv6.fib_table_hash[h];
258         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
259                 if (tb->tb6_id == id) {
260                         rcu_read_unlock();
261                         return tb;
262                 }
263         }
264         rcu_read_unlock();
265
266         return NULL;
267 }
268 EXPORT_SYMBOL_GPL(fib6_get_table);
269
270 static void __net_init fib6_tables_init(struct net *net)
271 {
272         fib6_link_table(net, net->ipv6.fib6_main_tbl);
273         fib6_link_table(net, net->ipv6.fib6_local_tbl);
274 }
275 #else
276
277 struct fib6_table *fib6_new_table(struct net *net, u32 id)
278 {
279         return fib6_get_table(net, id);
280 }
281
282 struct fib6_table *fib6_get_table(struct net *net, u32 id)
283 {
284           return net->ipv6.fib6_main_tbl;
285 }
286
287 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
288                                    int flags, pol_lookup_t lookup)
289 {
290         struct rt6_info *rt;
291
292         rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
293         if (rt->dst.error == -EAGAIN) {
294                 ip6_rt_put(rt);
295                 rt = net->ipv6.ip6_null_entry;
296                 dst_hold(&rt->dst);
297         }
298
299         return &rt->dst;
300 }
301
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304         fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306
307 #endif
308
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311         int res;
312         struct rt6_info *rt;
313
314         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315                 res = rt6_dump_route(rt, w->args);
316                 if (res < 0) {
317                         /* Frame is full, suspend walking */
318                         w->leaf = rt;
319                         return 1;
320                 }
321         }
322         w->leaf = NULL;
323         return 0;
324 }
325
326 static void fib6_dump_end(struct netlink_callback *cb)
327 {
328         struct fib6_walker *w = (void *)cb->args[2];
329
330         if (w) {
331                 if (cb->args[4]) {
332                         cb->args[4] = 0;
333                         fib6_walker_unlink(w);
334                 }
335                 cb->args[2] = 0;
336                 kfree(w);
337         }
338         cb->done = (void *)cb->args[3];
339         cb->args[1] = 3;
340 }
341
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344         fib6_dump_end(cb);
345         return cb->done ? cb->done(cb) : 0;
346 }
347
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349                            struct netlink_callback *cb)
350 {
351         struct fib6_walker *w;
352         int res;
353
354         w = (void *)cb->args[2];
355         w->root = &table->tb6_root;
356
357         if (cb->args[4] == 0) {
358                 w->count = 0;
359                 w->skip = 0;
360
361                 read_lock_bh(&table->tb6_lock);
362                 res = fib6_walk(w);
363                 read_unlock_bh(&table->tb6_lock);
364                 if (res > 0) {
365                         cb->args[4] = 1;
366                         cb->args[5] = w->root->fn_sernum;
367                 }
368         } else {
369                 if (cb->args[5] != w->root->fn_sernum) {
370                         /* Begin at the root if the tree changed */
371                         cb->args[5] = w->root->fn_sernum;
372                         w->state = FWS_INIT;
373                         w->node = w->root;
374                         w->skip = w->count;
375                 } else
376                         w->skip = 0;
377
378                 read_lock_bh(&table->tb6_lock);
379                 res = fib6_walk_continue(w);
380                 read_unlock_bh(&table->tb6_lock);
381                 if (res <= 0) {
382                         fib6_walker_unlink(w);
383                         cb->args[4] = 0;
384                 }
385         }
386
387         return res;
388 }
389
390 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
391 {
392         struct net *net = sock_net(skb->sk);
393         unsigned int h, s_h;
394         unsigned int e = 0, s_e;
395         struct rt6_rtnl_dump_arg arg;
396         struct fib6_walker *w;
397         struct fib6_table *tb;
398         struct hlist_head *head;
399         int res = 0;
400
401         s_h = cb->args[0];
402         s_e = cb->args[1];
403
404         w = (void *)cb->args[2];
405         if (!w) {
406                 /* New dump:
407                  *
408                  * 1. hook callback destructor.
409                  */
410                 cb->args[3] = (long)cb->done;
411                 cb->done = fib6_dump_done;
412
413                 /*
414                  * 2. allocate and initialize walker.
415                  */
416                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
417                 if (!w)
418                         return -ENOMEM;
419                 w->func = fib6_dump_node;
420                 cb->args[2] = (long)w;
421         }
422
423         arg.skb = skb;
424         arg.cb = cb;
425         arg.net = net;
426         w->args = &arg;
427
428         rcu_read_lock();
429         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
430                 e = 0;
431                 head = &net->ipv6.fib_table_hash[h];
432                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
433                         if (e < s_e)
434                                 goto next;
435                         res = fib6_dump_table(tb, skb, cb);
436                         if (res != 0)
437                                 goto out;
438 next:
439                         e++;
440                 }
441         }
442 out:
443         rcu_read_unlock();
444         cb->args[1] = e;
445         cb->args[0] = h;
446
447         res = res < 0 ? res : skb->len;
448         if (res <= 0)
449                 fib6_dump_end(cb);
450         return res;
451 }
452
453 /*
454  *      Routing Table
455  *
456  *      return the appropriate node for a routing tree "add" operation
457  *      by either creating and inserting or by returning an existing
458  *      node.
459  */
460
461 static struct fib6_node *fib6_add_1(struct fib6_node *root,
462                                      struct in6_addr *addr, int plen,
463                                      int offset, int allow_create,
464                                      int replace_required, int sernum)
465 {
466         struct fib6_node *fn, *in, *ln;
467         struct fib6_node *pn = NULL;
468         struct rt6key *key;
469         int     bit;
470         __be32  dir = 0;
471
472         RT6_TRACE("fib6_add_1\n");
473
474         /* insert node in tree */
475
476         fn = root;
477
478         do {
479                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
480
481                 /*
482                  *      Prefix match
483                  */
484                 if (plen < fn->fn_bit ||
485                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
486                         if (!allow_create) {
487                                 if (replace_required) {
488                                         pr_warn("Can't replace route, no match found\n");
489                                         return ERR_PTR(-ENOENT);
490                                 }
491                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
492                         }
493                         goto insert_above;
494                 }
495
496                 /*
497                  *      Exact match ?
498                  */
499
500                 if (plen == fn->fn_bit) {
501                         /* clean up an intermediate node */
502                         if (!(fn->fn_flags & RTN_RTINFO)) {
503                                 rt6_release(fn->leaf);
504                                 fn->leaf = NULL;
505                         }
506
507                         fn->fn_sernum = sernum;
508
509                         return fn;
510                 }
511
512                 /*
513                  *      We have more bits to go
514                  */
515
516                 /* Try to walk down on tree. */
517                 fn->fn_sernum = sernum;
518                 dir = addr_bit_set(addr, fn->fn_bit);
519                 pn = fn;
520                 fn = dir ? fn->right : fn->left;
521         } while (fn);
522
523         if (!allow_create) {
524                 /* We should not create new node because
525                  * NLM_F_REPLACE was specified without NLM_F_CREATE
526                  * I assume it is safe to require NLM_F_CREATE when
527                  * REPLACE flag is used! Later we may want to remove the
528                  * check for replace_required, because according
529                  * to netlink specification, NLM_F_CREATE
530                  * MUST be specified if new route is created.
531                  * That would keep IPv6 consistent with IPv4
532                  */
533                 if (replace_required) {
534                         pr_warn("Can't replace route, no match found\n");
535                         return ERR_PTR(-ENOENT);
536                 }
537                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
538         }
539         /*
540          *      We walked to the bottom of tree.
541          *      Create new leaf node without children.
542          */
543
544         ln = node_alloc();
545
546         if (!ln)
547                 return ERR_PTR(-ENOMEM);
548         ln->fn_bit = plen;
549
550         ln->parent = pn;
551         ln->fn_sernum = sernum;
552
553         if (dir)
554                 pn->right = ln;
555         else
556                 pn->left  = ln;
557
558         return ln;
559
560
561 insert_above:
562         /*
563          * split since we don't have a common prefix anymore or
564          * we have a less significant route.
565          * we've to insert an intermediate node on the list
566          * this new node will point to the one we need to create
567          * and the current
568          */
569
570         pn = fn->parent;
571
572         /* find 1st bit in difference between the 2 addrs.
573
574            See comment in __ipv6_addr_diff: bit may be an invalid value,
575            but if it is >= plen, the value is ignored in any case.
576          */
577
578         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
579
580         /*
581          *              (intermediate)[in]
582          *                /        \
583          *      (new leaf node)[ln] (old node)[fn]
584          */
585         if (plen > bit) {
586                 in = node_alloc();
587                 ln = node_alloc();
588
589                 if (!in || !ln) {
590                         if (in)
591                                 node_free(in);
592                         if (ln)
593                                 node_free(ln);
594                         return ERR_PTR(-ENOMEM);
595                 }
596
597                 /*
598                  * new intermediate node.
599                  * RTN_RTINFO will
600                  * be off since that an address that chooses one of
601                  * the branches would not match less specific routes
602                  * in the other branch
603                  */
604
605                 in->fn_bit = bit;
606
607                 in->parent = pn;
608                 in->leaf = fn->leaf;
609                 atomic_inc(&in->leaf->rt6i_ref);
610
611                 in->fn_sernum = sernum;
612
613                 /* update parent pointer */
614                 if (dir)
615                         pn->right = in;
616                 else
617                         pn->left  = in;
618
619                 ln->fn_bit = plen;
620
621                 ln->parent = in;
622                 fn->parent = in;
623
624                 ln->fn_sernum = sernum;
625
626                 if (addr_bit_set(addr, bit)) {
627                         in->right = ln;
628                         in->left  = fn;
629                 } else {
630                         in->left  = ln;
631                         in->right = fn;
632                 }
633         } else { /* plen <= bit */
634
635                 /*
636                  *              (new leaf node)[ln]
637                  *                /        \
638                  *           (old node)[fn] NULL
639                  */
640
641                 ln = node_alloc();
642
643                 if (!ln)
644                         return ERR_PTR(-ENOMEM);
645
646                 ln->fn_bit = plen;
647
648                 ln->parent = pn;
649
650                 ln->fn_sernum = sernum;
651
652                 if (dir)
653                         pn->right = ln;
654                 else
655                         pn->left  = ln;
656
657                 if (addr_bit_set(&key->addr, plen))
658                         ln->right = fn;
659                 else
660                         ln->left  = fn;
661
662                 fn->parent = ln;
663         }
664         return ln;
665 }
666
667 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
668 {
669         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
670                RTF_GATEWAY;
671 }
672
673 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
674 {
675         int i;
676
677         for (i = 0; i < RTAX_MAX; i++) {
678                 if (test_bit(i, mxc->mx_valid))
679                         mp[i] = mxc->mx[i];
680         }
681 }
682
683 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
684 {
685         if (!mxc->mx)
686                 return 0;
687
688         if (dst->flags & DST_HOST) {
689                 u32 *mp = dst_metrics_write_ptr(dst);
690
691                 if (unlikely(!mp))
692                         return -ENOMEM;
693
694                 fib6_copy_metrics(mp, mxc);
695         } else {
696                 dst_init_metrics(dst, mxc->mx, false);
697
698                 /* We've stolen mx now. */
699                 mxc->mx = NULL;
700         }
701
702         return 0;
703 }
704
705 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
706                           struct net *net)
707 {
708         if (atomic_read(&rt->rt6i_ref) != 1) {
709                 /* This route is used as dummy address holder in some split
710                  * nodes. It is not leaked, but it still holds other resources,
711                  * which must be released in time. So, scan ascendant nodes
712                  * and replace dummy references to this route with references
713                  * to still alive ones.
714                  */
715                 while (fn) {
716                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
717                                 fn->leaf = fib6_find_prefix(net, fn);
718                                 atomic_inc(&fn->leaf->rt6i_ref);
719                                 rt6_release(rt);
720                         }
721                         fn = fn->parent;
722                 }
723                 /* No more references are possible at this point. */
724                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
725         }
726 }
727
728 /*
729  *      Insert routing information in a node.
730  */
731
732 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
733                             struct nl_info *info, struct mx6_config *mxc)
734 {
735         struct rt6_info *iter = NULL;
736         struct rt6_info **ins;
737         struct rt6_info **fallback_ins = NULL;
738         int replace = (info->nlh &&
739                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
740         int add = (!info->nlh ||
741                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
742         int found = 0;
743         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
744         int err;
745
746         ins = &fn->leaf;
747
748         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
749                 /*
750                  *      Search for duplicates
751                  */
752
753                 if (iter->rt6i_metric == rt->rt6i_metric) {
754                         /*
755                          *      Same priority level
756                          */
757                         if (info->nlh &&
758                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
759                                 return -EEXIST;
760                         if (replace) {
761                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
762                                         found++;
763                                         break;
764                                 }
765                                 if (rt_can_ecmp)
766                                         fallback_ins = fallback_ins ?: ins;
767                                 goto next_iter;
768                         }
769
770                         if (iter->dst.dev == rt->dst.dev &&
771                             iter->rt6i_idev == rt->rt6i_idev &&
772                             ipv6_addr_equal(&iter->rt6i_gateway,
773                                             &rt->rt6i_gateway)) {
774                                 if (rt->rt6i_nsiblings)
775                                         rt->rt6i_nsiblings = 0;
776                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
777                                         return -EEXIST;
778                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
779                                         rt6_clean_expires(iter);
780                                 else
781                                         rt6_set_expires(iter, rt->dst.expires);
782                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
783                                 return -EEXIST;
784                         }
785                         /* If we have the same destination and the same metric,
786                          * but not the same gateway, then the route we try to
787                          * add is sibling to this route, increment our counter
788                          * of siblings, and later we will add our route to the
789                          * list.
790                          * Only static routes (which don't have flag
791                          * RTF_EXPIRES) are used for ECMPv6.
792                          *
793                          * To avoid long list, we only had siblings if the
794                          * route have a gateway.
795                          */
796                         if (rt_can_ecmp &&
797                             rt6_qualify_for_ecmp(iter))
798                                 rt->rt6i_nsiblings++;
799                 }
800
801                 if (iter->rt6i_metric > rt->rt6i_metric)
802                         break;
803
804 next_iter:
805                 ins = &iter->dst.rt6_next;
806         }
807
808         if (fallback_ins && !found) {
809                 /* No ECMP-able route found, replace first non-ECMP one */
810                 ins = fallback_ins;
811                 iter = *ins;
812                 found++;
813         }
814
815         /* Reset round-robin state, if necessary */
816         if (ins == &fn->leaf)
817                 fn->rr_ptr = NULL;
818
819         /* Link this route to others same route. */
820         if (rt->rt6i_nsiblings) {
821                 unsigned int rt6i_nsiblings;
822                 struct rt6_info *sibling, *temp_sibling;
823
824                 /* Find the first route that have the same metric */
825                 sibling = fn->leaf;
826                 while (sibling) {
827                         if (sibling->rt6i_metric == rt->rt6i_metric &&
828                             rt6_qualify_for_ecmp(sibling)) {
829                                 list_add_tail(&rt->rt6i_siblings,
830                                               &sibling->rt6i_siblings);
831                                 break;
832                         }
833                         sibling = sibling->dst.rt6_next;
834                 }
835                 /* For each sibling in the list, increment the counter of
836                  * siblings. BUG() if counters does not match, list of siblings
837                  * is broken!
838                  */
839                 rt6i_nsiblings = 0;
840                 list_for_each_entry_safe(sibling, temp_sibling,
841                                          &rt->rt6i_siblings, rt6i_siblings) {
842                         sibling->rt6i_nsiblings++;
843                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
844                         rt6i_nsiblings++;
845                 }
846                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
847         }
848
849         /*
850          *      insert node
851          */
852         if (!replace) {
853                 if (!add)
854                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
855
856 add:
857                 err = fib6_commit_metrics(&rt->dst, mxc);
858                 if (err)
859                         return err;
860
861                 rt->dst.rt6_next = iter;
862                 *ins = rt;
863                 rt->rt6i_node = fn;
864                 atomic_inc(&rt->rt6i_ref);
865                 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
866                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
867
868                 if (!(fn->fn_flags & RTN_RTINFO)) {
869                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
870                         fn->fn_flags |= RTN_RTINFO;
871                 }
872
873         } else {
874                 int nsiblings;
875
876                 if (!found) {
877                         if (add)
878                                 goto add;
879                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
880                         return -ENOENT;
881                 }
882
883                 err = fib6_commit_metrics(&rt->dst, mxc);
884                 if (err)
885                         return err;
886
887                 *ins = rt;
888                 rt->rt6i_node = fn;
889                 rt->dst.rt6_next = iter->dst.rt6_next;
890                 atomic_inc(&rt->rt6i_ref);
891                 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
892                 if (!(fn->fn_flags & RTN_RTINFO)) {
893                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
894                         fn->fn_flags |= RTN_RTINFO;
895                 }
896                 nsiblings = iter->rt6i_nsiblings;
897                 fib6_purge_rt(iter, fn, info->nl_net);
898                 rt6_release(iter);
899
900                 if (nsiblings) {
901                         /* Replacing an ECMP route, remove all siblings */
902                         ins = &rt->dst.rt6_next;
903                         iter = *ins;
904                         while (iter) {
905                                 if (iter->rt6i_metric > rt->rt6i_metric)
906                                         break;
907                                 if (rt6_qualify_for_ecmp(iter)) {
908                                         *ins = iter->dst.rt6_next;
909                                         fib6_purge_rt(iter, fn, info->nl_net);
910                                         rt6_release(iter);
911                                         nsiblings--;
912                                 } else {
913                                         ins = &iter->dst.rt6_next;
914                                 }
915                                 iter = *ins;
916                         }
917                         WARN_ON(nsiblings != 0);
918                 }
919         }
920
921         return 0;
922 }
923
924 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
925 {
926         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
927             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
928                 mod_timer(&net->ipv6.ip6_fib_timer,
929                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
930 }
931
932 void fib6_force_start_gc(struct net *net)
933 {
934         if (!timer_pending(&net->ipv6.ip6_fib_timer))
935                 mod_timer(&net->ipv6.ip6_fib_timer,
936                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
937 }
938
939 /*
940  *      Add routing information to the routing tree.
941  *      <destination addr>/<source addr>
942  *      with source addr info in sub-trees
943  */
944
945 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
946              struct nl_info *info, struct mx6_config *mxc)
947 {
948         struct fib6_node *fn, *pn = NULL;
949         int err = -ENOMEM;
950         int allow_create = 1;
951         int replace_required = 0;
952         int sernum = fib6_new_sernum(info->nl_net);
953
954         if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
955                          !atomic_read(&rt->dst.__refcnt)))
956                 return -EINVAL;
957
958         if (info->nlh) {
959                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
960                         allow_create = 0;
961                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
962                         replace_required = 1;
963         }
964         if (!allow_create && !replace_required)
965                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
966
967         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
968                         offsetof(struct rt6_info, rt6i_dst), allow_create,
969                         replace_required, sernum);
970         if (IS_ERR(fn)) {
971                 err = PTR_ERR(fn);
972                 fn = NULL;
973                 goto out;
974         }
975
976         pn = fn;
977
978 #ifdef CONFIG_IPV6_SUBTREES
979         if (rt->rt6i_src.plen) {
980                 struct fib6_node *sn;
981
982                 if (!fn->subtree) {
983                         struct fib6_node *sfn;
984
985                         /*
986                          * Create subtree.
987                          *
988                          *              fn[main tree]
989                          *              |
990                          *              sfn[subtree root]
991                          *                 \
992                          *                  sn[new leaf node]
993                          */
994
995                         /* Create subtree root node */
996                         sfn = node_alloc();
997                         if (!sfn)
998                                 goto st_failure;
999
1000                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1001                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1002                         sfn->fn_flags = RTN_ROOT;
1003                         sfn->fn_sernum = sernum;
1004
1005                         /* Now add the first leaf node to new subtree */
1006
1007                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1008                                         rt->rt6i_src.plen,
1009                                         offsetof(struct rt6_info, rt6i_src),
1010                                         allow_create, replace_required, sernum);
1011
1012                         if (IS_ERR(sn)) {
1013                                 /* If it is failed, discard just allocated
1014                                    root, and then (in st_failure) stale node
1015                                    in main tree.
1016                                  */
1017                                 node_free(sfn);
1018                                 err = PTR_ERR(sn);
1019                                 goto st_failure;
1020                         }
1021
1022                         /* Now link new subtree to main tree */
1023                         sfn->parent = fn;
1024                         fn->subtree = sfn;
1025                 } else {
1026                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1027                                         rt->rt6i_src.plen,
1028                                         offsetof(struct rt6_info, rt6i_src),
1029                                         allow_create, replace_required, sernum);
1030
1031                         if (IS_ERR(sn)) {
1032                                 err = PTR_ERR(sn);
1033                                 goto st_failure;
1034                         }
1035                 }
1036
1037                 if (!fn->leaf) {
1038                         fn->leaf = rt;
1039                         atomic_inc(&rt->rt6i_ref);
1040                 }
1041                 fn = sn;
1042         }
1043 #endif
1044
1045         err = fib6_add_rt2node(fn, rt, info, mxc);
1046         if (!err) {
1047                 fib6_start_gc(info->nl_net, rt);
1048                 if (!(rt->rt6i_flags & RTF_CACHE))
1049                         fib6_prune_clones(info->nl_net, pn);
1050                 rt->dst.flags &= ~DST_NOCACHE;
1051         }
1052
1053 out:
1054         if (err) {
1055 #ifdef CONFIG_IPV6_SUBTREES
1056                 /*
1057                  * If fib6_add_1 has cleared the old leaf pointer in the
1058                  * super-tree leaf node we have to find a new one for it.
1059                  */
1060                 if (pn != fn && pn->leaf == rt) {
1061                         pn->leaf = NULL;
1062                         atomic_dec(&rt->rt6i_ref);
1063                 }
1064                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1065                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1066 #if RT6_DEBUG >= 2
1067                         if (!pn->leaf) {
1068                                 WARN_ON(pn->leaf == NULL);
1069                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1070                         }
1071 #endif
1072                         atomic_inc(&pn->leaf->rt6i_ref);
1073                 }
1074 #endif
1075                 if (!(rt->dst.flags & DST_NOCACHE))
1076                         dst_free(&rt->dst);
1077         }
1078         return err;
1079
1080 #ifdef CONFIG_IPV6_SUBTREES
1081         /* Subtree creation failed, probably main tree node
1082            is orphan. If it is, shoot it.
1083          */
1084 st_failure:
1085         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1086                 fib6_repair_tree(info->nl_net, fn);
1087         if (!(rt->dst.flags & DST_NOCACHE))
1088                 dst_free(&rt->dst);
1089         return err;
1090 #endif
1091 }
1092
1093 /*
1094  *      Routing tree lookup
1095  *
1096  */
1097
1098 struct lookup_args {
1099         int                     offset;         /* key offset on rt6_info       */
1100         const struct in6_addr   *addr;          /* search key                   */
1101 };
1102
1103 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1104                                        struct lookup_args *args)
1105 {
1106         struct fib6_node *fn;
1107         __be32 dir;
1108
1109         if (unlikely(args->offset == 0))
1110                 return NULL;
1111
1112         /*
1113          *      Descend on a tree
1114          */
1115
1116         fn = root;
1117
1118         for (;;) {
1119                 struct fib6_node *next;
1120
1121                 dir = addr_bit_set(args->addr, fn->fn_bit);
1122
1123                 next = dir ? fn->right : fn->left;
1124
1125                 if (next) {
1126                         fn = next;
1127                         continue;
1128                 }
1129                 break;
1130         }
1131
1132         while (fn) {
1133                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1134                         struct rt6key *key;
1135
1136                         key = (struct rt6key *) ((u8 *) fn->leaf +
1137                                                  args->offset);
1138
1139                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1140 #ifdef CONFIG_IPV6_SUBTREES
1141                                 if (fn->subtree) {
1142                                         struct fib6_node *sfn;
1143                                         sfn = fib6_lookup_1(fn->subtree,
1144                                                             args + 1);
1145                                         if (!sfn)
1146                                                 goto backtrack;
1147                                         fn = sfn;
1148                                 }
1149 #endif
1150                                 if (fn->fn_flags & RTN_RTINFO)
1151                                         return fn;
1152                         }
1153                 }
1154 #ifdef CONFIG_IPV6_SUBTREES
1155 backtrack:
1156 #endif
1157                 if (fn->fn_flags & RTN_ROOT)
1158                         break;
1159
1160                 fn = fn->parent;
1161         }
1162
1163         return NULL;
1164 }
1165
1166 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1167                               const struct in6_addr *saddr)
1168 {
1169         struct fib6_node *fn;
1170         struct lookup_args args[] = {
1171                 {
1172                         .offset = offsetof(struct rt6_info, rt6i_dst),
1173                         .addr = daddr,
1174                 },
1175 #ifdef CONFIG_IPV6_SUBTREES
1176                 {
1177                         .offset = offsetof(struct rt6_info, rt6i_src),
1178                         .addr = saddr,
1179                 },
1180 #endif
1181                 {
1182                         .offset = 0,    /* sentinel */
1183                 }
1184         };
1185
1186         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1187         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1188                 fn = root;
1189
1190         return fn;
1191 }
1192
1193 /*
1194  *      Get node with specified destination prefix (and source prefix,
1195  *      if subtrees are used)
1196  */
1197
1198
1199 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1200                                        const struct in6_addr *addr,
1201                                        int plen, int offset)
1202 {
1203         struct fib6_node *fn;
1204
1205         for (fn = root; fn ; ) {
1206                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1207
1208                 /*
1209                  *      Prefix match
1210                  */
1211                 if (plen < fn->fn_bit ||
1212                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1213                         return NULL;
1214
1215                 if (plen == fn->fn_bit)
1216                         return fn;
1217
1218                 /*
1219                  *      We have more bits to go
1220                  */
1221                 if (addr_bit_set(addr, fn->fn_bit))
1222                         fn = fn->right;
1223                 else
1224                         fn = fn->left;
1225         }
1226         return NULL;
1227 }
1228
1229 struct fib6_node *fib6_locate(struct fib6_node *root,
1230                               const struct in6_addr *daddr, int dst_len,
1231                               const struct in6_addr *saddr, int src_len)
1232 {
1233         struct fib6_node *fn;
1234
1235         fn = fib6_locate_1(root, daddr, dst_len,
1236                            offsetof(struct rt6_info, rt6i_dst));
1237
1238 #ifdef CONFIG_IPV6_SUBTREES
1239         if (src_len) {
1240                 WARN_ON(saddr == NULL);
1241                 if (fn && fn->subtree)
1242                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1243                                            offsetof(struct rt6_info, rt6i_src));
1244         }
1245 #endif
1246
1247         if (fn && fn->fn_flags & RTN_RTINFO)
1248                 return fn;
1249
1250         return NULL;
1251 }
1252
1253
1254 /*
1255  *      Deletion
1256  *
1257  */
1258
1259 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1260 {
1261         if (fn->fn_flags & RTN_ROOT)
1262                 return net->ipv6.ip6_null_entry;
1263
1264         while (fn) {
1265                 if (fn->left)
1266                         return fn->left->leaf;
1267                 if (fn->right)
1268                         return fn->right->leaf;
1269
1270                 fn = FIB6_SUBTREE(fn);
1271         }
1272         return NULL;
1273 }
1274
1275 /*
1276  *      Called to trim the tree of intermediate nodes when possible. "fn"
1277  *      is the node we want to try and remove.
1278  */
1279
1280 static struct fib6_node *fib6_repair_tree(struct net *net,
1281                                            struct fib6_node *fn)
1282 {
1283         int children;
1284         int nstate;
1285         struct fib6_node *child, *pn;
1286         struct fib6_walker *w;
1287         int iter = 0;
1288
1289         for (;;) {
1290                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1291                 iter++;
1292
1293                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1294                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1295                 WARN_ON(fn->leaf);
1296
1297                 children = 0;
1298                 child = NULL;
1299                 if (fn->right)
1300                         child = fn->right, children |= 1;
1301                 if (fn->left)
1302                         child = fn->left, children |= 2;
1303
1304                 if (children == 3 || FIB6_SUBTREE(fn)
1305 #ifdef CONFIG_IPV6_SUBTREES
1306                     /* Subtree root (i.e. fn) may have one child */
1307                     || (children && fn->fn_flags & RTN_ROOT)
1308 #endif
1309                     ) {
1310                         fn->leaf = fib6_find_prefix(net, fn);
1311 #if RT6_DEBUG >= 2
1312                         if (!fn->leaf) {
1313                                 WARN_ON(!fn->leaf);
1314                                 fn->leaf = net->ipv6.ip6_null_entry;
1315                         }
1316 #endif
1317                         atomic_inc(&fn->leaf->rt6i_ref);
1318                         return fn->parent;
1319                 }
1320
1321                 pn = fn->parent;
1322 #ifdef CONFIG_IPV6_SUBTREES
1323                 if (FIB6_SUBTREE(pn) == fn) {
1324                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1325                         FIB6_SUBTREE(pn) = NULL;
1326                         nstate = FWS_L;
1327                 } else {
1328                         WARN_ON(fn->fn_flags & RTN_ROOT);
1329 #endif
1330                         if (pn->right == fn)
1331                                 pn->right = child;
1332                         else if (pn->left == fn)
1333                                 pn->left = child;
1334 #if RT6_DEBUG >= 2
1335                         else
1336                                 WARN_ON(1);
1337 #endif
1338                         if (child)
1339                                 child->parent = pn;
1340                         nstate = FWS_R;
1341 #ifdef CONFIG_IPV6_SUBTREES
1342                 }
1343 #endif
1344
1345                 read_lock(&fib6_walker_lock);
1346                 FOR_WALKERS(w) {
1347                         if (!child) {
1348                                 if (w->root == fn) {
1349                                         w->root = w->node = NULL;
1350                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1351                                 } else if (w->node == fn) {
1352                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1353                                         w->node = pn;
1354                                         w->state = nstate;
1355                                 }
1356                         } else {
1357                                 if (w->root == fn) {
1358                                         w->root = child;
1359                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1360                                 }
1361                                 if (w->node == fn) {
1362                                         w->node = child;
1363                                         if (children&2) {
1364                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1365                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1366                                         } else {
1367                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1368                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1369                                         }
1370                                 }
1371                         }
1372                 }
1373                 read_unlock(&fib6_walker_lock);
1374
1375                 node_free(fn);
1376                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1377                         return pn;
1378
1379                 rt6_release(pn->leaf);
1380                 pn->leaf = NULL;
1381                 fn = pn;
1382         }
1383 }
1384
1385 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1386                            struct nl_info *info)
1387 {
1388         struct fib6_walker *w;
1389         struct rt6_info *rt = *rtp;
1390         struct net *net = info->nl_net;
1391
1392         RT6_TRACE("fib6_del_route\n");
1393
1394         /* Unlink it */
1395         *rtp = rt->dst.rt6_next;
1396         rt->rt6i_node = NULL;
1397         net->ipv6.rt6_stats->fib_rt_entries--;
1398         net->ipv6.rt6_stats->fib_discarded_routes++;
1399
1400         /* Reset round-robin state, if necessary */
1401         if (fn->rr_ptr == rt)
1402                 fn->rr_ptr = NULL;
1403
1404         /* Remove this entry from other siblings */
1405         if (rt->rt6i_nsiblings) {
1406                 struct rt6_info *sibling, *next_sibling;
1407
1408                 list_for_each_entry_safe(sibling, next_sibling,
1409                                          &rt->rt6i_siblings, rt6i_siblings)
1410                         sibling->rt6i_nsiblings--;
1411                 rt->rt6i_nsiblings = 0;
1412                 list_del_init(&rt->rt6i_siblings);
1413         }
1414
1415         /* Adjust walkers */
1416         read_lock(&fib6_walker_lock);
1417         FOR_WALKERS(w) {
1418                 if (w->state == FWS_C && w->leaf == rt) {
1419                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1420                         w->leaf = rt->dst.rt6_next;
1421                         if (!w->leaf)
1422                                 w->state = FWS_U;
1423                 }
1424         }
1425         read_unlock(&fib6_walker_lock);
1426
1427         rt->dst.rt6_next = NULL;
1428
1429         /* If it was last route, expunge its radix tree node */
1430         if (!fn->leaf) {
1431                 fn->fn_flags &= ~RTN_RTINFO;
1432                 net->ipv6.rt6_stats->fib_route_nodes--;
1433                 fn = fib6_repair_tree(net, fn);
1434         }
1435
1436         fib6_purge_rt(rt, fn, net);
1437
1438         inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1439         rt6_release(rt);
1440 }
1441
1442 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1443 {
1444         struct net *net = info->nl_net;
1445         struct fib6_node *fn = rt->rt6i_node;
1446         struct rt6_info **rtp;
1447
1448 #if RT6_DEBUG >= 2
1449         if (rt->dst.obsolete > 0) {
1450                 WARN_ON(fn);
1451                 return -ENOENT;
1452         }
1453 #endif
1454         if (!fn || rt == net->ipv6.ip6_null_entry)
1455                 return -ENOENT;
1456
1457         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1458
1459         if (!(rt->rt6i_flags & RTF_CACHE)) {
1460                 struct fib6_node *pn = fn;
1461 #ifdef CONFIG_IPV6_SUBTREES
1462                 /* clones of this route might be in another subtree */
1463                 if (rt->rt6i_src.plen) {
1464                         while (!(pn->fn_flags & RTN_ROOT))
1465                                 pn = pn->parent;
1466                         pn = pn->parent;
1467                 }
1468 #endif
1469                 fib6_prune_clones(info->nl_net, pn);
1470         }
1471
1472         /*
1473          *      Walk the leaf entries looking for ourself
1474          */
1475
1476         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1477                 if (*rtp == rt) {
1478                         fib6_del_route(fn, rtp, info);
1479                         return 0;
1480                 }
1481         }
1482         return -ENOENT;
1483 }
1484
1485 /*
1486  *      Tree traversal function.
1487  *
1488  *      Certainly, it is not interrupt safe.
1489  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1490  *      It means, that we can modify tree during walking
1491  *      and use this function for garbage collection, clone pruning,
1492  *      cleaning tree when a device goes down etc. etc.
1493  *
1494  *      It guarantees that every node will be traversed,
1495  *      and that it will be traversed only once.
1496  *
1497  *      Callback function w->func may return:
1498  *      0 -> continue walking.
1499  *      positive value -> walking is suspended (used by tree dumps,
1500  *      and probably by gc, if it will be split to several slices)
1501  *      negative value -> terminate walking.
1502  *
1503  *      The function itself returns:
1504  *      0   -> walk is complete.
1505  *      >0  -> walk is incomplete (i.e. suspended)
1506  *      <0  -> walk is terminated by an error.
1507  */
1508
1509 static int fib6_walk_continue(struct fib6_walker *w)
1510 {
1511         struct fib6_node *fn, *pn;
1512
1513         for (;;) {
1514                 fn = w->node;
1515                 if (!fn)
1516                         return 0;
1517
1518                 if (w->prune && fn != w->root &&
1519                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1520                         w->state = FWS_C;
1521                         w->leaf = fn->leaf;
1522                 }
1523                 switch (w->state) {
1524 #ifdef CONFIG_IPV6_SUBTREES
1525                 case FWS_S:
1526                         if (FIB6_SUBTREE(fn)) {
1527                                 w->node = FIB6_SUBTREE(fn);
1528                                 continue;
1529                         }
1530                         w->state = FWS_L;
1531 #endif
1532                 case FWS_L:
1533                         if (fn->left) {
1534                                 w->node = fn->left;
1535                                 w->state = FWS_INIT;
1536                                 continue;
1537                         }
1538                         w->state = FWS_R;
1539                 case FWS_R:
1540                         if (fn->right) {
1541                                 w->node = fn->right;
1542                                 w->state = FWS_INIT;
1543                                 continue;
1544                         }
1545                         w->state = FWS_C;
1546                         w->leaf = fn->leaf;
1547                 case FWS_C:
1548                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1549                                 int err;
1550
1551                                 if (w->skip) {
1552                                         w->skip--;
1553                                         goto skip;
1554                                 }
1555
1556                                 err = w->func(w);
1557                                 if (err)
1558                                         return err;
1559
1560                                 w->count++;
1561                                 continue;
1562                         }
1563 skip:
1564                         w->state = FWS_U;
1565                 case FWS_U:
1566                         if (fn == w->root)
1567                                 return 0;
1568                         pn = fn->parent;
1569                         w->node = pn;
1570 #ifdef CONFIG_IPV6_SUBTREES
1571                         if (FIB6_SUBTREE(pn) == fn) {
1572                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1573                                 w->state = FWS_L;
1574                                 continue;
1575                         }
1576 #endif
1577                         if (pn->left == fn) {
1578                                 w->state = FWS_R;
1579                                 continue;
1580                         }
1581                         if (pn->right == fn) {
1582                                 w->state = FWS_C;
1583                                 w->leaf = w->node->leaf;
1584                                 continue;
1585                         }
1586 #if RT6_DEBUG >= 2
1587                         WARN_ON(1);
1588 #endif
1589                 }
1590         }
1591 }
1592
1593 static int fib6_walk(struct fib6_walker *w)
1594 {
1595         int res;
1596
1597         w->state = FWS_INIT;
1598         w->node = w->root;
1599
1600         fib6_walker_link(w);
1601         res = fib6_walk_continue(w);
1602         if (res <= 0)
1603                 fib6_walker_unlink(w);
1604         return res;
1605 }
1606
1607 static int fib6_clean_node(struct fib6_walker *w)
1608 {
1609         int res;
1610         struct rt6_info *rt;
1611         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1612         struct nl_info info = {
1613                 .nl_net = c->net,
1614         };
1615
1616         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1617             w->node->fn_sernum != c->sernum)
1618                 w->node->fn_sernum = c->sernum;
1619
1620         if (!c->func) {
1621                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1622                 w->leaf = NULL;
1623                 return 0;
1624         }
1625
1626         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1627                 res = c->func(rt, c->arg);
1628                 if (res < 0) {
1629                         w->leaf = rt;
1630                         res = fib6_del(rt, &info);
1631                         if (res) {
1632 #if RT6_DEBUG >= 2
1633                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1634                                          __func__, rt, rt->rt6i_node, res);
1635 #endif
1636                                 continue;
1637                         }
1638                         return 0;
1639                 }
1640                 WARN_ON(res != 0);
1641         }
1642         w->leaf = rt;
1643         return 0;
1644 }
1645
1646 /*
1647  *      Convenient frontend to tree walker.
1648  *
1649  *      func is called on each route.
1650  *              It may return -1 -> delete this route.
1651  *                            0  -> continue walking
1652  *
1653  *      prune==1 -> only immediate children of node (certainly,
1654  *      ignoring pure split nodes) will be scanned.
1655  */
1656
1657 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1658                             int (*func)(struct rt6_info *, void *arg),
1659                             bool prune, int sernum, void *arg)
1660 {
1661         struct fib6_cleaner c;
1662
1663         c.w.root = root;
1664         c.w.func = fib6_clean_node;
1665         c.w.prune = prune;
1666         c.w.count = 0;
1667         c.w.skip = 0;
1668         c.func = func;
1669         c.sernum = sernum;
1670         c.arg = arg;
1671         c.net = net;
1672
1673         fib6_walk(&c.w);
1674 }
1675
1676 static void __fib6_clean_all(struct net *net,
1677                              int (*func)(struct rt6_info *, void *),
1678                              int sernum, void *arg)
1679 {
1680         struct fib6_table *table;
1681         struct hlist_head *head;
1682         unsigned int h;
1683
1684         rcu_read_lock();
1685         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1686                 head = &net->ipv6.fib_table_hash[h];
1687                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1688                         write_lock_bh(&table->tb6_lock);
1689                         fib6_clean_tree(net, &table->tb6_root,
1690                                         func, false, sernum, arg);
1691                         write_unlock_bh(&table->tb6_lock);
1692                 }
1693         }
1694         rcu_read_unlock();
1695 }
1696
1697 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1698                     void *arg)
1699 {
1700         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1701 }
1702
1703 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1704 {
1705         if (rt->rt6i_flags & RTF_CACHE) {
1706                 RT6_TRACE("pruning clone %p\n", rt);
1707                 return -1;
1708         }
1709
1710         return 0;
1711 }
1712
1713 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1714 {
1715         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1716                         FIB6_NO_SERNUM_CHANGE, NULL);
1717 }
1718
1719 static void fib6_flush_trees(struct net *net)
1720 {
1721         int new_sernum = fib6_new_sernum(net);
1722
1723         __fib6_clean_all(net, NULL, new_sernum, NULL);
1724 }
1725
1726 /*
1727  *      Garbage collection
1728  */
1729
1730 static struct fib6_gc_args
1731 {
1732         int                     timeout;
1733         int                     more;
1734 } gc_args;
1735
1736 static int fib6_age(struct rt6_info *rt, void *arg)
1737 {
1738         unsigned long now = jiffies;
1739
1740         /*
1741          *      check addrconf expiration here.
1742          *      Routes are expired even if they are in use.
1743          *
1744          *      Also age clones. Note, that clones are aged out
1745          *      only if they are not in use now.
1746          */
1747
1748         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1749                 if (time_after(now, rt->dst.expires)) {
1750                         RT6_TRACE("expiring %p\n", rt);
1751                         return -1;
1752                 }
1753                 gc_args.more++;
1754         } else if (rt->rt6i_flags & RTF_CACHE) {
1755                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1756                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1757                         RT6_TRACE("aging clone %p\n", rt);
1758                         return -1;
1759                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1760                         struct neighbour *neigh;
1761                         __u8 neigh_flags = 0;
1762
1763                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1764                         if (neigh) {
1765                                 neigh_flags = neigh->flags;
1766                                 neigh_release(neigh);
1767                         }
1768                         if (!(neigh_flags & NTF_ROUTER)) {
1769                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1770                                           rt);
1771                                 return -1;
1772                         }
1773                 }
1774                 gc_args.more++;
1775         }
1776
1777         return 0;
1778 }
1779
1780 static DEFINE_SPINLOCK(fib6_gc_lock);
1781
1782 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1783 {
1784         unsigned long now;
1785
1786         if (force) {
1787                 spin_lock_bh(&fib6_gc_lock);
1788         } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1789                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1790                 return;
1791         }
1792         gc_args.timeout = expires ? (int)expires :
1793                           net->ipv6.sysctl.ip6_rt_gc_interval;
1794
1795         gc_args.more = icmp6_dst_gc();
1796
1797         fib6_clean_all(net, fib6_age, NULL);
1798         now = jiffies;
1799         net->ipv6.ip6_rt_last_gc = now;
1800
1801         if (gc_args.more)
1802                 mod_timer(&net->ipv6.ip6_fib_timer,
1803                           round_jiffies(now
1804                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1805         else
1806                 del_timer(&net->ipv6.ip6_fib_timer);
1807         spin_unlock_bh(&fib6_gc_lock);
1808 }
1809
1810 static void fib6_gc_timer_cb(unsigned long arg)
1811 {
1812         fib6_run_gc(0, (struct net *)arg, true);
1813 }
1814
1815 static int __net_init fib6_net_init(struct net *net)
1816 {
1817         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1818
1819         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1820
1821         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1822         if (!net->ipv6.rt6_stats)
1823                 goto out_timer;
1824
1825         /* Avoid false sharing : Use at least a full cache line */
1826         size = max_t(size_t, size, L1_CACHE_BYTES);
1827
1828         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1829         if (!net->ipv6.fib_table_hash)
1830                 goto out_rt6_stats;
1831
1832         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1833                                           GFP_KERNEL);
1834         if (!net->ipv6.fib6_main_tbl)
1835                 goto out_fib_table_hash;
1836
1837         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1838         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1839         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1840                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1841         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1842
1843 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1844         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1845                                            GFP_KERNEL);
1846         if (!net->ipv6.fib6_local_tbl)
1847                 goto out_fib6_main_tbl;
1848         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1849         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1850         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1851                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1852         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1853 #endif
1854         fib6_tables_init(net);
1855
1856         return 0;
1857
1858 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1859 out_fib6_main_tbl:
1860         kfree(net->ipv6.fib6_main_tbl);
1861 #endif
1862 out_fib_table_hash:
1863         kfree(net->ipv6.fib_table_hash);
1864 out_rt6_stats:
1865         kfree(net->ipv6.rt6_stats);
1866 out_timer:
1867         return -ENOMEM;
1868 }
1869
1870 static void fib6_net_exit(struct net *net)
1871 {
1872         rt6_ifdown(net, NULL);
1873         del_timer_sync(&net->ipv6.ip6_fib_timer);
1874
1875 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1876         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1877         kfree(net->ipv6.fib6_local_tbl);
1878 #endif
1879         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1880         kfree(net->ipv6.fib6_main_tbl);
1881         kfree(net->ipv6.fib_table_hash);
1882         kfree(net->ipv6.rt6_stats);
1883 }
1884
1885 static struct pernet_operations fib6_net_ops = {
1886         .init = fib6_net_init,
1887         .exit = fib6_net_exit,
1888 };
1889
1890 int __init fib6_init(void)
1891 {
1892         int ret = -ENOMEM;
1893
1894         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1895                                            sizeof(struct fib6_node),
1896                                            0, SLAB_HWCACHE_ALIGN,
1897                                            NULL);
1898         if (!fib6_node_kmem)
1899                 goto out;
1900
1901         ret = register_pernet_subsys(&fib6_net_ops);
1902         if (ret)
1903                 goto out_kmem_cache_create;
1904
1905         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1906                               NULL);
1907         if (ret)
1908                 goto out_unregister_subsys;
1909
1910         __fib6_flush_trees = fib6_flush_trees;
1911 out:
1912         return ret;
1913
1914 out_unregister_subsys:
1915         unregister_pernet_subsys(&fib6_net_ops);
1916 out_kmem_cache_create:
1917         kmem_cache_destroy(fib6_node_kmem);
1918         goto out;
1919 }
1920
1921 void fib6_gc_cleanup(void)
1922 {
1923         unregister_pernet_subsys(&fib6_net_ops);
1924         kmem_cache_destroy(fib6_node_kmem);
1925 }
1926
1927 #ifdef CONFIG_PROC_FS
1928
1929 struct ipv6_route_iter {
1930         struct seq_net_private p;
1931         struct fib6_walker w;
1932         loff_t skip;
1933         struct fib6_table *tbl;
1934         int sernum;
1935 };
1936
1937 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1938 {
1939         struct rt6_info *rt = v;
1940         struct ipv6_route_iter *iter = seq->private;
1941
1942         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1943
1944 #ifdef CONFIG_IPV6_SUBTREES
1945         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1946 #else
1947         seq_puts(seq, "00000000000000000000000000000000 00 ");
1948 #endif
1949         if (rt->rt6i_flags & RTF_GATEWAY)
1950                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1951         else
1952                 seq_puts(seq, "00000000000000000000000000000000");
1953
1954         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1955                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1956                    rt->dst.__use, rt->rt6i_flags,
1957                    rt->dst.dev ? rt->dst.dev->name : "");
1958         iter->w.leaf = NULL;
1959         return 0;
1960 }
1961
1962 static int ipv6_route_yield(struct fib6_walker *w)
1963 {
1964         struct ipv6_route_iter *iter = w->args;
1965
1966         if (!iter->skip)
1967                 return 1;
1968
1969         do {
1970                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1971                 iter->skip--;
1972                 if (!iter->skip && iter->w.leaf)
1973                         return 1;
1974         } while (iter->w.leaf);
1975
1976         return 0;
1977 }
1978
1979 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1980 {
1981         memset(&iter->w, 0, sizeof(iter->w));
1982         iter->w.func = ipv6_route_yield;
1983         iter->w.root = &iter->tbl->tb6_root;
1984         iter->w.state = FWS_INIT;
1985         iter->w.node = iter->w.root;
1986         iter->w.args = iter;
1987         iter->sernum = iter->w.root->fn_sernum;
1988         INIT_LIST_HEAD(&iter->w.lh);
1989         fib6_walker_link(&iter->w);
1990 }
1991
1992 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1993                                                     struct net *net)
1994 {
1995         unsigned int h;
1996         struct hlist_node *node;
1997
1998         if (tbl) {
1999                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2000                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2001         } else {
2002                 h = 0;
2003                 node = NULL;
2004         }
2005
2006         while (!node && h < FIB6_TABLE_HASHSZ) {
2007                 node = rcu_dereference_bh(
2008                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2009         }
2010         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2011 }
2012
2013 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2014 {
2015         if (iter->sernum != iter->w.root->fn_sernum) {
2016                 iter->sernum = iter->w.root->fn_sernum;
2017                 iter->w.state = FWS_INIT;
2018                 iter->w.node = iter->w.root;
2019                 WARN_ON(iter->w.skip);
2020                 iter->w.skip = iter->w.count;
2021         }
2022 }
2023
2024 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2025 {
2026         int r;
2027         struct rt6_info *n;
2028         struct net *net = seq_file_net(seq);
2029         struct ipv6_route_iter *iter = seq->private;
2030
2031         if (!v)
2032                 goto iter_table;
2033
2034         n = ((struct rt6_info *)v)->dst.rt6_next;
2035         if (n) {
2036                 ++*pos;
2037                 return n;
2038         }
2039
2040 iter_table:
2041         ipv6_route_check_sernum(iter);
2042         read_lock(&iter->tbl->tb6_lock);
2043         r = fib6_walk_continue(&iter->w);
2044         read_unlock(&iter->tbl->tb6_lock);
2045         if (r > 0) {
2046                 if (v)
2047                         ++*pos;
2048                 return iter->w.leaf;
2049         } else if (r < 0) {
2050                 fib6_walker_unlink(&iter->w);
2051                 return NULL;
2052         }
2053         fib6_walker_unlink(&iter->w);
2054
2055         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2056         if (!iter->tbl)
2057                 return NULL;
2058
2059         ipv6_route_seq_setup_walk(iter);
2060         goto iter_table;
2061 }
2062
2063 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2064         __acquires(RCU_BH)
2065 {
2066         struct net *net = seq_file_net(seq);
2067         struct ipv6_route_iter *iter = seq->private;
2068
2069         rcu_read_lock_bh();
2070         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2071         iter->skip = *pos;
2072
2073         if (iter->tbl) {
2074                 ipv6_route_seq_setup_walk(iter);
2075                 return ipv6_route_seq_next(seq, NULL, pos);
2076         } else {
2077                 return NULL;
2078         }
2079 }
2080
2081 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2082 {
2083         struct fib6_walker *w = &iter->w;
2084         return w->node && !(w->state == FWS_U && w->node == w->root);
2085 }
2086
2087 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2088         __releases(RCU_BH)
2089 {
2090         struct ipv6_route_iter *iter = seq->private;
2091
2092         if (ipv6_route_iter_active(iter))
2093                 fib6_walker_unlink(&iter->w);
2094
2095         rcu_read_unlock_bh();
2096 }
2097
2098 static const struct seq_operations ipv6_route_seq_ops = {
2099         .start  = ipv6_route_seq_start,
2100         .next   = ipv6_route_seq_next,
2101         .stop   = ipv6_route_seq_stop,
2102         .show   = ipv6_route_seq_show
2103 };
2104
2105 int ipv6_route_open(struct inode *inode, struct file *file)
2106 {
2107         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2108                             sizeof(struct ipv6_route_iter));
2109 }
2110
2111 #endif /* CONFIG_PROC_FS */