atm: Introduce vcc_process_recv_queue
[firefly-linux-kernel-4.4.55.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <net/ipv6.h>
32 #include <net/ndisc.h>
33 #include <net/addrconf.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 #define RT6_DEBUG 2
39
40 #if RT6_DEBUG >= 3
41 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
42 #else
43 #define RT6_TRACE(x...) do { ; } while (0)
44 #endif
45
46 static struct kmem_cache * fib6_node_kmem __read_mostly;
47
48 enum fib_walk_state_t
49 {
50 #ifdef CONFIG_IPV6_SUBTREES
51         FWS_S,
52 #endif
53         FWS_L,
54         FWS_R,
55         FWS_C,
56         FWS_U
57 };
58
59 struct fib6_cleaner_t
60 {
61         struct fib6_walker_t w;
62         struct net *net;
63         int (*func)(struct rt6_info *, void *arg);
64         void *arg;
65 };
66
67 static DEFINE_RWLOCK(fib6_walker_lock);
68
69 #ifdef CONFIG_IPV6_SUBTREES
70 #define FWS_INIT FWS_S
71 #else
72 #define FWS_INIT FWS_L
73 #endif
74
75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
76                               struct rt6_info *rt);
77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
79 static int fib6_walk(struct fib6_walker_t *w);
80 static int fib6_walk_continue(struct fib6_walker_t *w);
81
82 /*
83  *      A routing update causes an increase of the serial number on the
84  *      affected subtree. This allows for cached routes to be asynchronously
85  *      tested when modifications are made to the destination cache as a
86  *      result of redirects, path MTU changes, etc.
87  */
88
89 static __u32 rt_sernum;
90
91 static void fib6_gc_timer_cb(unsigned long arg);
92
93 static LIST_HEAD(fib6_walkers);
94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95
96 static inline void fib6_walker_link(struct fib6_walker_t *w)
97 {
98         write_lock_bh(&fib6_walker_lock);
99         list_add(&w->lh, &fib6_walkers);
100         write_unlock_bh(&fib6_walker_lock);
101 }
102
103 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104 {
105         write_lock_bh(&fib6_walker_lock);
106         list_del(&w->lh);
107         write_unlock_bh(&fib6_walker_lock);
108 }
109 static __inline__ u32 fib6_new_sernum(void)
110 {
111         u32 n = ++rt_sernum;
112         if ((__s32)n <= 0)
113                 rt_sernum = n = 1;
114         return n;
115 }
116
117 /*
118  *      Auxiliary address test functions for the radix tree.
119  *
120  *      These assume a 32bit processor (although it will work on
121  *      64bit processors)
122  */
123
124 /*
125  *      test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE     0
131 #endif
132
133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135         const __be32 *addr = token;
136         /*
137          * Here,
138          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139          * is optimized version of
140          *      htonl(1 << ((~fn_bit)&0x1F))
141          * See include/asm-generic/bitops/le.h.
142          */
143         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144                addr[fn_bit >> 5];
145 }
146
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149         struct fib6_node *fn;
150
151         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153         return fn;
154 }
155
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158         kmem_cache_free(fib6_node_kmem, fn);
159 }
160
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163         if (atomic_dec_and_test(&rt->rt6i_ref))
164                 dst_free(&rt->dst);
165 }
166
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169         unsigned int h;
170
171         /*
172          * Initialize table lock at a single place to give lockdep a key,
173          * tables aren't visible prior to being linked to the list.
174          */
175         rwlock_init(&tb->tb6_lock);
176
177         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178
179         /*
180          * No protection necessary, this is the only list mutatation
181          * operation, tables never disappear once they exist.
182          */
183         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190         struct fib6_table *table;
191
192         table = kzalloc(sizeof(*table), GFP_ATOMIC);
193         if (table != NULL) {
194                 table->tb6_id = id;
195                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197         }
198
199         return table;
200 }
201
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204         struct fib6_table *tb;
205
206         if (id == 0)
207                 id = RT6_TABLE_MAIN;
208         tb = fib6_get_table(net, id);
209         if (tb)
210                 return tb;
211
212         tb = fib6_alloc_table(net, id);
213         if (tb != NULL)
214                 fib6_link_table(net, tb);
215
216         return tb;
217 }
218
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221         struct fib6_table *tb;
222         struct hlist_head *head;
223         struct hlist_node *node;
224         unsigned int h;
225
226         if (id == 0)
227                 id = RT6_TABLE_MAIN;
228         h = id & (FIB6_TABLE_HASHSZ - 1);
229         rcu_read_lock();
230         head = &net->ipv6.fib_table_hash[h];
231         hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232                 if (tb->tb6_id == id) {
233                         rcu_read_unlock();
234                         return tb;
235                 }
236         }
237         rcu_read_unlock();
238
239         return NULL;
240 }
241
242 static void __net_init fib6_tables_init(struct net *net)
243 {
244         fib6_link_table(net, net->ipv6.fib6_main_tbl);
245         fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251         return fib6_get_table(net, id);
252 }
253
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256           return net->ipv6.fib6_main_tbl;
257 }
258
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
260                                    int flags, pol_lookup_t lookup)
261 {
262         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
263 }
264
265 static void __net_init fib6_tables_init(struct net *net)
266 {
267         fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269
270 #endif
271
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274         int res;
275         struct rt6_info *rt;
276
277         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
278                 res = rt6_dump_route(rt, w->args);
279                 if (res < 0) {
280                         /* Frame is full, suspend walking */
281                         w->leaf = rt;
282                         return 1;
283                 }
284                 WARN_ON(res == 0);
285         }
286         w->leaf = NULL;
287         return 0;
288 }
289
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292         struct fib6_walker_t *w = (void*)cb->args[2];
293
294         if (w) {
295                 if (cb->args[4]) {
296                         cb->args[4] = 0;
297                         fib6_walker_unlink(w);
298                 }
299                 cb->args[2] = 0;
300                 kfree(w);
301         }
302         cb->done = (void*)cb->args[3];
303         cb->args[1] = 3;
304 }
305
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308         fib6_dump_end(cb);
309         return cb->done ? cb->done(cb) : 0;
310 }
311
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313                            struct netlink_callback *cb)
314 {
315         struct fib6_walker_t *w;
316         int res;
317
318         w = (void *)cb->args[2];
319         w->root = &table->tb6_root;
320
321         if (cb->args[4] == 0) {
322                 w->count = 0;
323                 w->skip = 0;
324
325                 read_lock_bh(&table->tb6_lock);
326                 res = fib6_walk(w);
327                 read_unlock_bh(&table->tb6_lock);
328                 if (res > 0) {
329                         cb->args[4] = 1;
330                         cb->args[5] = w->root->fn_sernum;
331                 }
332         } else {
333                 if (cb->args[5] != w->root->fn_sernum) {
334                         /* Begin at the root if the tree changed */
335                         cb->args[5] = w->root->fn_sernum;
336                         w->state = FWS_INIT;
337                         w->node = w->root;
338                         w->skip = w->count;
339                 } else
340                         w->skip = 0;
341
342                 read_lock_bh(&table->tb6_lock);
343                 res = fib6_walk_continue(w);
344                 read_unlock_bh(&table->tb6_lock);
345                 if (res <= 0) {
346                         fib6_walker_unlink(w);
347                         cb->args[4] = 0;
348                 }
349         }
350
351         return res;
352 }
353
354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 {
356         struct net *net = sock_net(skb->sk);
357         unsigned int h, s_h;
358         unsigned int e = 0, s_e;
359         struct rt6_rtnl_dump_arg arg;
360         struct fib6_walker_t *w;
361         struct fib6_table *tb;
362         struct hlist_node *node;
363         struct hlist_head *head;
364         int res = 0;
365
366         s_h = cb->args[0];
367         s_e = cb->args[1];
368
369         w = (void *)cb->args[2];
370         if (w == NULL) {
371                 /* New dump:
372                  *
373                  * 1. hook callback destructor.
374                  */
375                 cb->args[3] = (long)cb->done;
376                 cb->done = fib6_dump_done;
377
378                 /*
379                  * 2. allocate and initialize walker.
380                  */
381                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
382                 if (w == NULL)
383                         return -ENOMEM;
384                 w->func = fib6_dump_node;
385                 cb->args[2] = (long)w;
386         }
387
388         arg.skb = skb;
389         arg.cb = cb;
390         arg.net = net;
391         w->args = &arg;
392
393         rcu_read_lock();
394         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
395                 e = 0;
396                 head = &net->ipv6.fib_table_hash[h];
397                 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
398                         if (e < s_e)
399                                 goto next;
400                         res = fib6_dump_table(tb, skb, cb);
401                         if (res != 0)
402                                 goto out;
403 next:
404                         e++;
405                 }
406         }
407 out:
408         rcu_read_unlock();
409         cb->args[1] = e;
410         cb->args[0] = h;
411
412         res = res < 0 ? res : skb->len;
413         if (res <= 0)
414                 fib6_dump_end(cb);
415         return res;
416 }
417
418 /*
419  *      Routing Table
420  *
421  *      return the appropriate node for a routing tree "add" operation
422  *      by either creating and inserting or by returning an existing
423  *      node.
424  */
425
426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427                                      int addrlen, int plen,
428                                      int offset, int allow_create,
429                                      int replace_required)
430 {
431         struct fib6_node *fn, *in, *ln;
432         struct fib6_node *pn = NULL;
433         struct rt6key *key;
434         int     bit;
435         __be32  dir = 0;
436         __u32   sernum = fib6_new_sernum();
437
438         RT6_TRACE("fib6_add_1\n");
439
440         /* insert node in tree */
441
442         fn = root;
443
444         do {
445                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
446
447                 /*
448                  *      Prefix match
449                  */
450                 if (plen < fn->fn_bit ||
451                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
452                         if (!allow_create) {
453                                 if (replace_required) {
454                                         pr_warn("IPv6: Can't replace route, "
455                                                 "no match found\n");
456                                         return ERR_PTR(-ENOENT);
457                                 }
458                                 pr_warn("IPv6: NLM_F_CREATE should be set "
459                                         "when creating new route\n");
460                         }
461                         goto insert_above;
462                 }
463
464                 /*
465                  *      Exact match ?
466                  */
467
468                 if (plen == fn->fn_bit) {
469                         /* clean up an intermediate node */
470                         if ((fn->fn_flags & RTN_RTINFO) == 0) {
471                                 rt6_release(fn->leaf);
472                                 fn->leaf = NULL;
473                         }
474
475                         fn->fn_sernum = sernum;
476
477                         return fn;
478                 }
479
480                 /*
481                  *      We have more bits to go
482                  */
483
484                 /* Try to walk down on tree. */
485                 fn->fn_sernum = sernum;
486                 dir = addr_bit_set(addr, fn->fn_bit);
487                 pn = fn;
488                 fn = dir ? fn->right: fn->left;
489         } while (fn);
490
491         if (!allow_create) {
492                 /* We should not create new node because
493                  * NLM_F_REPLACE was specified without NLM_F_CREATE
494                  * I assume it is safe to require NLM_F_CREATE when
495                  * REPLACE flag is used! Later we may want to remove the
496                  * check for replace_required, because according
497                  * to netlink specification, NLM_F_CREATE
498                  * MUST be specified if new route is created.
499                  * That would keep IPv6 consistent with IPv4
500                  */
501                 if (replace_required) {
502                         pr_warn("IPv6: Can't replace route, no match found\n");
503                         return ERR_PTR(-ENOENT);
504                 }
505                 pr_warn("IPv6: NLM_F_CREATE should be set "
506                         "when creating new route\n");
507         }
508         /*
509          *      We walked to the bottom of tree.
510          *      Create new leaf node without children.
511          */
512
513         ln = node_alloc();
514
515         if (ln == NULL)
516                 return NULL;
517         ln->fn_bit = plen;
518
519         ln->parent = pn;
520         ln->fn_sernum = sernum;
521
522         if (dir)
523                 pn->right = ln;
524         else
525                 pn->left  = ln;
526
527         return ln;
528
529
530 insert_above:
531         /*
532          * split since we don't have a common prefix anymore or
533          * we have a less significant route.
534          * we've to insert an intermediate node on the list
535          * this new node will point to the one we need to create
536          * and the current
537          */
538
539         pn = fn->parent;
540
541         /* find 1st bit in difference between the 2 addrs.
542
543            See comment in __ipv6_addr_diff: bit may be an invalid value,
544            but if it is >= plen, the value is ignored in any case.
545          */
546
547         bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
548
549         /*
550          *              (intermediate)[in]
551          *                /        \
552          *      (new leaf node)[ln] (old node)[fn]
553          */
554         if (plen > bit) {
555                 in = node_alloc();
556                 ln = node_alloc();
557
558                 if (in == NULL || ln == NULL) {
559                         if (in)
560                                 node_free(in);
561                         if (ln)
562                                 node_free(ln);
563                         return NULL;
564                 }
565
566                 /*
567                  * new intermediate node.
568                  * RTN_RTINFO will
569                  * be off since that an address that chooses one of
570                  * the branches would not match less specific routes
571                  * in the other branch
572                  */
573
574                 in->fn_bit = bit;
575
576                 in->parent = pn;
577                 in->leaf = fn->leaf;
578                 atomic_inc(&in->leaf->rt6i_ref);
579
580                 in->fn_sernum = sernum;
581
582                 /* update parent pointer */
583                 if (dir)
584                         pn->right = in;
585                 else
586                         pn->left  = in;
587
588                 ln->fn_bit = plen;
589
590                 ln->parent = in;
591                 fn->parent = in;
592
593                 ln->fn_sernum = sernum;
594
595                 if (addr_bit_set(addr, bit)) {
596                         in->right = ln;
597                         in->left  = fn;
598                 } else {
599                         in->left  = ln;
600                         in->right = fn;
601                 }
602         } else { /* plen <= bit */
603
604                 /*
605                  *              (new leaf node)[ln]
606                  *                /        \
607                  *           (old node)[fn] NULL
608                  */
609
610                 ln = node_alloc();
611
612                 if (ln == NULL)
613                         return NULL;
614
615                 ln->fn_bit = plen;
616
617                 ln->parent = pn;
618
619                 ln->fn_sernum = sernum;
620
621                 if (dir)
622                         pn->right = ln;
623                 else
624                         pn->left  = ln;
625
626                 if (addr_bit_set(&key->addr, plen))
627                         ln->right = fn;
628                 else
629                         ln->left  = fn;
630
631                 fn->parent = ln;
632         }
633         return ln;
634 }
635
636 /*
637  *      Insert routing information in a node.
638  */
639
640 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
641                             struct nl_info *info)
642 {
643         struct rt6_info *iter = NULL;
644         struct rt6_info **ins;
645         int replace = (NULL != info->nlh &&
646             (info->nlh->nlmsg_flags&NLM_F_REPLACE));
647         int add = (NULL == info->nlh ||
648             (info->nlh->nlmsg_flags&NLM_F_CREATE));
649         int found = 0;
650
651         ins = &fn->leaf;
652
653         for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
654                 /*
655                  *      Search for duplicates
656                  */
657
658                 if (iter->rt6i_metric == rt->rt6i_metric) {
659                         /*
660                          *      Same priority level
661                          */
662                         if (NULL != info->nlh &&
663                             (info->nlh->nlmsg_flags&NLM_F_EXCL))
664                                 return -EEXIST;
665                         if (replace) {
666                                 found++;
667                                 break;
668                         }
669
670                         if (iter->rt6i_dev == rt->rt6i_dev &&
671                             iter->rt6i_idev == rt->rt6i_idev &&
672                             ipv6_addr_equal(&iter->rt6i_gateway,
673                                             &rt->rt6i_gateway)) {
674                                 if (!(iter->rt6i_flags&RTF_EXPIRES))
675                                         return -EEXIST;
676                                 iter->rt6i_expires = rt->rt6i_expires;
677                                 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
678                                         iter->rt6i_flags &= ~RTF_EXPIRES;
679                                         iter->rt6i_expires = 0;
680                                 }
681                                 return -EEXIST;
682                         }
683                 }
684
685                 if (iter->rt6i_metric > rt->rt6i_metric)
686                         break;
687
688                 ins = &iter->dst.rt6_next;
689         }
690
691         /* Reset round-robin state, if necessary */
692         if (ins == &fn->leaf)
693                 fn->rr_ptr = NULL;
694
695         /*
696          *      insert node
697          */
698         if (!replace) {
699                 if (!add)
700                         pr_warn("IPv6: NLM_F_CREATE should be set when creating new route\n");
701
702 add:
703                 rt->dst.rt6_next = iter;
704                 *ins = rt;
705                 rt->rt6i_node = fn;
706                 atomic_inc(&rt->rt6i_ref);
707                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
708                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
709
710                 if ((fn->fn_flags & RTN_RTINFO) == 0) {
711                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
712                         fn->fn_flags |= RTN_RTINFO;
713                 }
714
715         } else {
716                 if (!found) {
717                         if (add)
718                                 goto add;
719                         pr_warn("IPv6: NLM_F_REPLACE set, but no existing node found!\n");
720                         return -ENOENT;
721                 }
722                 *ins = rt;
723                 rt->rt6i_node = fn;
724                 rt->dst.rt6_next = iter->dst.rt6_next;
725                 atomic_inc(&rt->rt6i_ref);
726                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
727                 rt6_release(iter);
728                 if ((fn->fn_flags & RTN_RTINFO) == 0) {
729                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
730                         fn->fn_flags |= RTN_RTINFO;
731                 }
732         }
733
734         return 0;
735 }
736
737 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
738 {
739         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
740             (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
741                 mod_timer(&net->ipv6.ip6_fib_timer,
742                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
743 }
744
745 void fib6_force_start_gc(struct net *net)
746 {
747         if (!timer_pending(&net->ipv6.ip6_fib_timer))
748                 mod_timer(&net->ipv6.ip6_fib_timer,
749                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
750 }
751
752 /*
753  *      Add routing information to the routing tree.
754  *      <destination addr>/<source addr>
755  *      with source addr info in sub-trees
756  */
757
758 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
759 {
760         struct fib6_node *fn, *pn = NULL;
761         int err = -ENOMEM;
762         int allow_create = 1;
763         int replace_required = 0;
764         if (NULL != info->nlh) {
765                 if (!(info->nlh->nlmsg_flags&NLM_F_CREATE))
766                         allow_create = 0;
767                 if ((info->nlh->nlmsg_flags&NLM_F_REPLACE))
768                         replace_required = 1;
769         }
770         if (!allow_create && !replace_required)
771                 pr_warn("IPv6: RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
772
773         fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
774                     rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
775                     allow_create, replace_required);
776
777         if (IS_ERR(fn)) {
778                 err = PTR_ERR(fn);
779                 fn = NULL;
780         }
781
782         if (fn == NULL)
783                 goto out;
784
785         pn = fn;
786
787 #ifdef CONFIG_IPV6_SUBTREES
788         if (rt->rt6i_src.plen) {
789                 struct fib6_node *sn;
790
791                 if (fn->subtree == NULL) {
792                         struct fib6_node *sfn;
793
794                         /*
795                          * Create subtree.
796                          *
797                          *              fn[main tree]
798                          *              |
799                          *              sfn[subtree root]
800                          *                 \
801                          *                  sn[new leaf node]
802                          */
803
804                         /* Create subtree root node */
805                         sfn = node_alloc();
806                         if (sfn == NULL)
807                                 goto st_failure;
808
809                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
810                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
811                         sfn->fn_flags = RTN_ROOT;
812                         sfn->fn_sernum = fib6_new_sernum();
813
814                         /* Now add the first leaf node to new subtree */
815
816                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
817                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
818                                         offsetof(struct rt6_info, rt6i_src),
819                                         allow_create, replace_required);
820
821                         if (sn == NULL) {
822                                 /* If it is failed, discard just allocated
823                                    root, and then (in st_failure) stale node
824                                    in main tree.
825                                  */
826                                 node_free(sfn);
827                                 goto st_failure;
828                         }
829
830                         /* Now link new subtree to main tree */
831                         sfn->parent = fn;
832                         fn->subtree = sfn;
833                 } else {
834                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
835                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
836                                         offsetof(struct rt6_info, rt6i_src),
837                                         allow_create, replace_required);
838
839                         if (IS_ERR(sn)) {
840                                 err = PTR_ERR(sn);
841                                 sn = NULL;
842                         }
843                         if (sn == NULL)
844                                 goto st_failure;
845                 }
846
847                 if (fn->leaf == NULL) {
848                         fn->leaf = rt;
849                         atomic_inc(&rt->rt6i_ref);
850                 }
851                 fn = sn;
852         }
853 #endif
854
855         err = fib6_add_rt2node(fn, rt, info);
856
857         if (err == 0) {
858                 fib6_start_gc(info->nl_net, rt);
859                 if (!(rt->rt6i_flags&RTF_CACHE))
860                         fib6_prune_clones(info->nl_net, pn, rt);
861         }
862
863 out:
864         if (err) {
865 #ifdef CONFIG_IPV6_SUBTREES
866                 /*
867                  * If fib6_add_1 has cleared the old leaf pointer in the
868                  * super-tree leaf node we have to find a new one for it.
869                  */
870                 if (pn != fn && pn->leaf == rt) {
871                         pn->leaf = NULL;
872                         atomic_dec(&rt->rt6i_ref);
873                 }
874                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
875                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
876 #if RT6_DEBUG >= 2
877                         if (!pn->leaf) {
878                                 WARN_ON(pn->leaf == NULL);
879                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
880                         }
881 #endif
882                         atomic_inc(&pn->leaf->rt6i_ref);
883                 }
884 #endif
885                 dst_free(&rt->dst);
886         }
887         return err;
888
889 #ifdef CONFIG_IPV6_SUBTREES
890         /* Subtree creation failed, probably main tree node
891            is orphan. If it is, shoot it.
892          */
893 st_failure:
894         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
895                 fib6_repair_tree(info->nl_net, fn);
896         dst_free(&rt->dst);
897         return err;
898 #endif
899 }
900
901 /*
902  *      Routing tree lookup
903  *
904  */
905
906 struct lookup_args {
907         int             offset;         /* key offset on rt6_info       */
908         const struct in6_addr   *addr;          /* search key                   */
909 };
910
911 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
912                                         struct lookup_args *args)
913 {
914         struct fib6_node *fn;
915         __be32 dir;
916
917         if (unlikely(args->offset == 0))
918                 return NULL;
919
920         /*
921          *      Descend on a tree
922          */
923
924         fn = root;
925
926         for (;;) {
927                 struct fib6_node *next;
928
929                 dir = addr_bit_set(args->addr, fn->fn_bit);
930
931                 next = dir ? fn->right : fn->left;
932
933                 if (next) {
934                         fn = next;
935                         continue;
936                 }
937
938                 break;
939         }
940
941         while(fn) {
942                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
943                         struct rt6key *key;
944
945                         key = (struct rt6key *) ((u8 *) fn->leaf +
946                                                  args->offset);
947
948                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
949 #ifdef CONFIG_IPV6_SUBTREES
950                                 if (fn->subtree)
951                                         fn = fib6_lookup_1(fn->subtree, args + 1);
952 #endif
953                                 if (!fn || fn->fn_flags & RTN_RTINFO)
954                                         return fn;
955                         }
956                 }
957
958                 if (fn->fn_flags & RTN_ROOT)
959                         break;
960
961                 fn = fn->parent;
962         }
963
964         return NULL;
965 }
966
967 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
968                                const struct in6_addr *saddr)
969 {
970         struct fib6_node *fn;
971         struct lookup_args args[] = {
972                 {
973                         .offset = offsetof(struct rt6_info, rt6i_dst),
974                         .addr = daddr,
975                 },
976 #ifdef CONFIG_IPV6_SUBTREES
977                 {
978                         .offset = offsetof(struct rt6_info, rt6i_src),
979                         .addr = saddr,
980                 },
981 #endif
982                 {
983                         .offset = 0,    /* sentinel */
984                 }
985         };
986
987         fn = fib6_lookup_1(root, daddr ? args : args + 1);
988
989         if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
990                 fn = root;
991
992         return fn;
993 }
994
995 /*
996  *      Get node with specified destination prefix (and source prefix,
997  *      if subtrees are used)
998  */
999
1000
1001 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1002                                         const struct in6_addr *addr,
1003                                         int plen, int offset)
1004 {
1005         struct fib6_node *fn;
1006
1007         for (fn = root; fn ; ) {
1008                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1009
1010                 /*
1011                  *      Prefix match
1012                  */
1013                 if (plen < fn->fn_bit ||
1014                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1015                         return NULL;
1016
1017                 if (plen == fn->fn_bit)
1018                         return fn;
1019
1020                 /*
1021                  *      We have more bits to go
1022                  */
1023                 if (addr_bit_set(addr, fn->fn_bit))
1024                         fn = fn->right;
1025                 else
1026                         fn = fn->left;
1027         }
1028         return NULL;
1029 }
1030
1031 struct fib6_node * fib6_locate(struct fib6_node *root,
1032                                const struct in6_addr *daddr, int dst_len,
1033                                const struct in6_addr *saddr, int src_len)
1034 {
1035         struct fib6_node *fn;
1036
1037         fn = fib6_locate_1(root, daddr, dst_len,
1038                            offsetof(struct rt6_info, rt6i_dst));
1039
1040 #ifdef CONFIG_IPV6_SUBTREES
1041         if (src_len) {
1042                 WARN_ON(saddr == NULL);
1043                 if (fn && fn->subtree)
1044                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1045                                            offsetof(struct rt6_info, rt6i_src));
1046         }
1047 #endif
1048
1049         if (fn && fn->fn_flags&RTN_RTINFO)
1050                 return fn;
1051
1052         return NULL;
1053 }
1054
1055
1056 /*
1057  *      Deletion
1058  *
1059  */
1060
1061 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1062 {
1063         if (fn->fn_flags&RTN_ROOT)
1064                 return net->ipv6.ip6_null_entry;
1065
1066         while(fn) {
1067                 if(fn->left)
1068                         return fn->left->leaf;
1069
1070                 if(fn->right)
1071                         return fn->right->leaf;
1072
1073                 fn = FIB6_SUBTREE(fn);
1074         }
1075         return NULL;
1076 }
1077
1078 /*
1079  *      Called to trim the tree of intermediate nodes when possible. "fn"
1080  *      is the node we want to try and remove.
1081  */
1082
1083 static struct fib6_node *fib6_repair_tree(struct net *net,
1084                                            struct fib6_node *fn)
1085 {
1086         int children;
1087         int nstate;
1088         struct fib6_node *child, *pn;
1089         struct fib6_walker_t *w;
1090         int iter = 0;
1091
1092         for (;;) {
1093                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1094                 iter++;
1095
1096                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1097                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1098                 WARN_ON(fn->leaf != NULL);
1099
1100                 children = 0;
1101                 child = NULL;
1102                 if (fn->right) child = fn->right, children |= 1;
1103                 if (fn->left) child = fn->left, children |= 2;
1104
1105                 if (children == 3 || FIB6_SUBTREE(fn)
1106 #ifdef CONFIG_IPV6_SUBTREES
1107                     /* Subtree root (i.e. fn) may have one child */
1108                     || (children && fn->fn_flags&RTN_ROOT)
1109 #endif
1110                     ) {
1111                         fn->leaf = fib6_find_prefix(net, fn);
1112 #if RT6_DEBUG >= 2
1113                         if (fn->leaf==NULL) {
1114                                 WARN_ON(!fn->leaf);
1115                                 fn->leaf = net->ipv6.ip6_null_entry;
1116                         }
1117 #endif
1118                         atomic_inc(&fn->leaf->rt6i_ref);
1119                         return fn->parent;
1120                 }
1121
1122                 pn = fn->parent;
1123 #ifdef CONFIG_IPV6_SUBTREES
1124                 if (FIB6_SUBTREE(pn) == fn) {
1125                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1126                         FIB6_SUBTREE(pn) = NULL;
1127                         nstate = FWS_L;
1128                 } else {
1129                         WARN_ON(fn->fn_flags & RTN_ROOT);
1130 #endif
1131                         if (pn->right == fn) pn->right = child;
1132                         else if (pn->left == fn) pn->left = child;
1133 #if RT6_DEBUG >= 2
1134                         else
1135                                 WARN_ON(1);
1136 #endif
1137                         if (child)
1138                                 child->parent = pn;
1139                         nstate = FWS_R;
1140 #ifdef CONFIG_IPV6_SUBTREES
1141                 }
1142 #endif
1143
1144                 read_lock(&fib6_walker_lock);
1145                 FOR_WALKERS(w) {
1146                         if (child == NULL) {
1147                                 if (w->root == fn) {
1148                                         w->root = w->node = NULL;
1149                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1150                                 } else if (w->node == fn) {
1151                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1152                                         w->node = pn;
1153                                         w->state = nstate;
1154                                 }
1155                         } else {
1156                                 if (w->root == fn) {
1157                                         w->root = child;
1158                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1159                                 }
1160                                 if (w->node == fn) {
1161                                         w->node = child;
1162                                         if (children&2) {
1163                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1164                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1165                                         } else {
1166                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1167                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1168                                         }
1169                                 }
1170                         }
1171                 }
1172                 read_unlock(&fib6_walker_lock);
1173
1174                 node_free(fn);
1175                 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1176                         return pn;
1177
1178                 rt6_release(pn->leaf);
1179                 pn->leaf = NULL;
1180                 fn = pn;
1181         }
1182 }
1183
1184 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1185                            struct nl_info *info)
1186 {
1187         struct fib6_walker_t *w;
1188         struct rt6_info *rt = *rtp;
1189         struct net *net = info->nl_net;
1190
1191         RT6_TRACE("fib6_del_route\n");
1192
1193         /* Unlink it */
1194         *rtp = rt->dst.rt6_next;
1195         rt->rt6i_node = NULL;
1196         net->ipv6.rt6_stats->fib_rt_entries--;
1197         net->ipv6.rt6_stats->fib_discarded_routes++;
1198
1199         /* Reset round-robin state, if necessary */
1200         if (fn->rr_ptr == rt)
1201                 fn->rr_ptr = NULL;
1202
1203         /* Adjust walkers */
1204         read_lock(&fib6_walker_lock);
1205         FOR_WALKERS(w) {
1206                 if (w->state == FWS_C && w->leaf == rt) {
1207                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1208                         w->leaf = rt->dst.rt6_next;
1209                         if (w->leaf == NULL)
1210                                 w->state = FWS_U;
1211                 }
1212         }
1213         read_unlock(&fib6_walker_lock);
1214
1215         rt->dst.rt6_next = NULL;
1216
1217         /* If it was last route, expunge its radix tree node */
1218         if (fn->leaf == NULL) {
1219                 fn->fn_flags &= ~RTN_RTINFO;
1220                 net->ipv6.rt6_stats->fib_route_nodes--;
1221                 fn = fib6_repair_tree(net, fn);
1222         }
1223
1224         if (atomic_read(&rt->rt6i_ref) != 1) {
1225                 /* This route is used as dummy address holder in some split
1226                  * nodes. It is not leaked, but it still holds other resources,
1227                  * which must be released in time. So, scan ascendant nodes
1228                  * and replace dummy references to this route with references
1229                  * to still alive ones.
1230                  */
1231                 while (fn) {
1232                         if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1233                                 fn->leaf = fib6_find_prefix(net, fn);
1234                                 atomic_inc(&fn->leaf->rt6i_ref);
1235                                 rt6_release(rt);
1236                         }
1237                         fn = fn->parent;
1238                 }
1239                 /* No more references are possible at this point. */
1240                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1241         }
1242
1243         inet6_rt_notify(RTM_DELROUTE, rt, info);
1244         rt6_release(rt);
1245 }
1246
1247 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1248 {
1249         struct net *net = info->nl_net;
1250         struct fib6_node *fn = rt->rt6i_node;
1251         struct rt6_info **rtp;
1252
1253 #if RT6_DEBUG >= 2
1254         if (rt->dst.obsolete>0) {
1255                 WARN_ON(fn != NULL);
1256                 return -ENOENT;
1257         }
1258 #endif
1259         if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1260                 return -ENOENT;
1261
1262         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1263
1264         if (!(rt->rt6i_flags&RTF_CACHE)) {
1265                 struct fib6_node *pn = fn;
1266 #ifdef CONFIG_IPV6_SUBTREES
1267                 /* clones of this route might be in another subtree */
1268                 if (rt->rt6i_src.plen) {
1269                         while (!(pn->fn_flags&RTN_ROOT))
1270                                 pn = pn->parent;
1271                         pn = pn->parent;
1272                 }
1273 #endif
1274                 fib6_prune_clones(info->nl_net, pn, rt);
1275         }
1276
1277         /*
1278          *      Walk the leaf entries looking for ourself
1279          */
1280
1281         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1282                 if (*rtp == rt) {
1283                         fib6_del_route(fn, rtp, info);
1284                         return 0;
1285                 }
1286         }
1287         return -ENOENT;
1288 }
1289
1290 /*
1291  *      Tree traversal function.
1292  *
1293  *      Certainly, it is not interrupt safe.
1294  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1295  *      It means, that we can modify tree during walking
1296  *      and use this function for garbage collection, clone pruning,
1297  *      cleaning tree when a device goes down etc. etc.
1298  *
1299  *      It guarantees that every node will be traversed,
1300  *      and that it will be traversed only once.
1301  *
1302  *      Callback function w->func may return:
1303  *      0 -> continue walking.
1304  *      positive value -> walking is suspended (used by tree dumps,
1305  *      and probably by gc, if it will be split to several slices)
1306  *      negative value -> terminate walking.
1307  *
1308  *      The function itself returns:
1309  *      0   -> walk is complete.
1310  *      >0  -> walk is incomplete (i.e. suspended)
1311  *      <0  -> walk is terminated by an error.
1312  */
1313
1314 static int fib6_walk_continue(struct fib6_walker_t *w)
1315 {
1316         struct fib6_node *fn, *pn;
1317
1318         for (;;) {
1319                 fn = w->node;
1320                 if (fn == NULL)
1321                         return 0;
1322
1323                 if (w->prune && fn != w->root &&
1324                     fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1325                         w->state = FWS_C;
1326                         w->leaf = fn->leaf;
1327                 }
1328                 switch (w->state) {
1329 #ifdef CONFIG_IPV6_SUBTREES
1330                 case FWS_S:
1331                         if (FIB6_SUBTREE(fn)) {
1332                                 w->node = FIB6_SUBTREE(fn);
1333                                 continue;
1334                         }
1335                         w->state = FWS_L;
1336 #endif
1337                 case FWS_L:
1338                         if (fn->left) {
1339                                 w->node = fn->left;
1340                                 w->state = FWS_INIT;
1341                                 continue;
1342                         }
1343                         w->state = FWS_R;
1344                 case FWS_R:
1345                         if (fn->right) {
1346                                 w->node = fn->right;
1347                                 w->state = FWS_INIT;
1348                                 continue;
1349                         }
1350                         w->state = FWS_C;
1351                         w->leaf = fn->leaf;
1352                 case FWS_C:
1353                         if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1354                                 int err;
1355
1356                                 if (w->count < w->skip) {
1357                                         w->count++;
1358                                         continue;
1359                                 }
1360
1361                                 err = w->func(w);
1362                                 if (err)
1363                                         return err;
1364
1365                                 w->count++;
1366                                 continue;
1367                         }
1368                         w->state = FWS_U;
1369                 case FWS_U:
1370                         if (fn == w->root)
1371                                 return 0;
1372                         pn = fn->parent;
1373                         w->node = pn;
1374 #ifdef CONFIG_IPV6_SUBTREES
1375                         if (FIB6_SUBTREE(pn) == fn) {
1376                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1377                                 w->state = FWS_L;
1378                                 continue;
1379                         }
1380 #endif
1381                         if (pn->left == fn) {
1382                                 w->state = FWS_R;
1383                                 continue;
1384                         }
1385                         if (pn->right == fn) {
1386                                 w->state = FWS_C;
1387                                 w->leaf = w->node->leaf;
1388                                 continue;
1389                         }
1390 #if RT6_DEBUG >= 2
1391                         WARN_ON(1);
1392 #endif
1393                 }
1394         }
1395 }
1396
1397 static int fib6_walk(struct fib6_walker_t *w)
1398 {
1399         int res;
1400
1401         w->state = FWS_INIT;
1402         w->node = w->root;
1403
1404         fib6_walker_link(w);
1405         res = fib6_walk_continue(w);
1406         if (res <= 0)
1407                 fib6_walker_unlink(w);
1408         return res;
1409 }
1410
1411 static int fib6_clean_node(struct fib6_walker_t *w)
1412 {
1413         int res;
1414         struct rt6_info *rt;
1415         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1416         struct nl_info info = {
1417                 .nl_net = c->net,
1418         };
1419
1420         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1421                 res = c->func(rt, c->arg);
1422                 if (res < 0) {
1423                         w->leaf = rt;
1424                         res = fib6_del(rt, &info);
1425                         if (res) {
1426 #if RT6_DEBUG >= 2
1427                                 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1428 #endif
1429                                 continue;
1430                         }
1431                         return 0;
1432                 }
1433                 WARN_ON(res != 0);
1434         }
1435         w->leaf = rt;
1436         return 0;
1437 }
1438
1439 /*
1440  *      Convenient frontend to tree walker.
1441  *
1442  *      func is called on each route.
1443  *              It may return -1 -> delete this route.
1444  *                            0  -> continue walking
1445  *
1446  *      prune==1 -> only immediate children of node (certainly,
1447  *      ignoring pure split nodes) will be scanned.
1448  */
1449
1450 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1451                             int (*func)(struct rt6_info *, void *arg),
1452                             int prune, void *arg)
1453 {
1454         struct fib6_cleaner_t c;
1455
1456         c.w.root = root;
1457         c.w.func = fib6_clean_node;
1458         c.w.prune = prune;
1459         c.w.count = 0;
1460         c.w.skip = 0;
1461         c.func = func;
1462         c.arg = arg;
1463         c.net = net;
1464
1465         fib6_walk(&c.w);
1466 }
1467
1468 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1469                     int prune, void *arg)
1470 {
1471         struct fib6_table *table;
1472         struct hlist_node *node;
1473         struct hlist_head *head;
1474         unsigned int h;
1475
1476         rcu_read_lock();
1477         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1478                 head = &net->ipv6.fib_table_hash[h];
1479                 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1480                         write_lock_bh(&table->tb6_lock);
1481                         fib6_clean_tree(net, &table->tb6_root,
1482                                         func, prune, arg);
1483                         write_unlock_bh(&table->tb6_lock);
1484                 }
1485         }
1486         rcu_read_unlock();
1487 }
1488
1489 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1490 {
1491         if (rt->rt6i_flags & RTF_CACHE) {
1492                 RT6_TRACE("pruning clone %p\n", rt);
1493                 return -1;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1500                               struct rt6_info *rt)
1501 {
1502         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1503 }
1504
1505 /*
1506  *      Garbage collection
1507  */
1508
1509 static struct fib6_gc_args
1510 {
1511         int                     timeout;
1512         int                     more;
1513 } gc_args;
1514
1515 static int fib6_age(struct rt6_info *rt, void *arg)
1516 {
1517         unsigned long now = jiffies;
1518
1519         /*
1520          *      check addrconf expiration here.
1521          *      Routes are expired even if they are in use.
1522          *
1523          *      Also age clones. Note, that clones are aged out
1524          *      only if they are not in use now.
1525          */
1526
1527         if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1528                 if (time_after(now, rt->rt6i_expires)) {
1529                         RT6_TRACE("expiring %p\n", rt);
1530                         return -1;
1531                 }
1532                 gc_args.more++;
1533         } else if (rt->rt6i_flags & RTF_CACHE) {
1534                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1535                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1536                         RT6_TRACE("aging clone %p\n", rt);
1537                         return -1;
1538                 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1539                            (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1540                         RT6_TRACE("purging route %p via non-router but gateway\n",
1541                                   rt);
1542                         return -1;
1543                 }
1544                 gc_args.more++;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static DEFINE_SPINLOCK(fib6_gc_lock);
1551
1552 void fib6_run_gc(unsigned long expires, struct net *net)
1553 {
1554         if (expires != ~0UL) {
1555                 spin_lock_bh(&fib6_gc_lock);
1556                 gc_args.timeout = expires ? (int)expires :
1557                         net->ipv6.sysctl.ip6_rt_gc_interval;
1558         } else {
1559                 if (!spin_trylock_bh(&fib6_gc_lock)) {
1560                         mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1561                         return;
1562                 }
1563                 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1564         }
1565
1566         gc_args.more = icmp6_dst_gc();
1567
1568         fib6_clean_all(net, fib6_age, 0, NULL);
1569
1570         if (gc_args.more)
1571                 mod_timer(&net->ipv6.ip6_fib_timer,
1572                           round_jiffies(jiffies
1573                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1574         else
1575                 del_timer(&net->ipv6.ip6_fib_timer);
1576         spin_unlock_bh(&fib6_gc_lock);
1577 }
1578
1579 static void fib6_gc_timer_cb(unsigned long arg)
1580 {
1581         fib6_run_gc(0, (struct net *)arg);
1582 }
1583
1584 static int __net_init fib6_net_init(struct net *net)
1585 {
1586         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1587
1588         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1589
1590         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1591         if (!net->ipv6.rt6_stats)
1592                 goto out_timer;
1593
1594         /* Avoid false sharing : Use at least a full cache line */
1595         size = max_t(size_t, size, L1_CACHE_BYTES);
1596
1597         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1598         if (!net->ipv6.fib_table_hash)
1599                 goto out_rt6_stats;
1600
1601         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1602                                           GFP_KERNEL);
1603         if (!net->ipv6.fib6_main_tbl)
1604                 goto out_fib_table_hash;
1605
1606         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1607         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1608         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1609                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1610
1611 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1612         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1613                                            GFP_KERNEL);
1614         if (!net->ipv6.fib6_local_tbl)
1615                 goto out_fib6_main_tbl;
1616         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1617         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1618         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1619                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1620 #endif
1621         fib6_tables_init(net);
1622
1623         return 0;
1624
1625 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1626 out_fib6_main_tbl:
1627         kfree(net->ipv6.fib6_main_tbl);
1628 #endif
1629 out_fib_table_hash:
1630         kfree(net->ipv6.fib_table_hash);
1631 out_rt6_stats:
1632         kfree(net->ipv6.rt6_stats);
1633 out_timer:
1634         return -ENOMEM;
1635  }
1636
1637 static void fib6_net_exit(struct net *net)
1638 {
1639         rt6_ifdown(net, NULL);
1640         del_timer_sync(&net->ipv6.ip6_fib_timer);
1641
1642 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1643         kfree(net->ipv6.fib6_local_tbl);
1644 #endif
1645         kfree(net->ipv6.fib6_main_tbl);
1646         kfree(net->ipv6.fib_table_hash);
1647         kfree(net->ipv6.rt6_stats);
1648 }
1649
1650 static struct pernet_operations fib6_net_ops = {
1651         .init = fib6_net_init,
1652         .exit = fib6_net_exit,
1653 };
1654
1655 int __init fib6_init(void)
1656 {
1657         int ret = -ENOMEM;
1658
1659         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1660                                            sizeof(struct fib6_node),
1661                                            0, SLAB_HWCACHE_ALIGN,
1662                                            NULL);
1663         if (!fib6_node_kmem)
1664                 goto out;
1665
1666         ret = register_pernet_subsys(&fib6_net_ops);
1667         if (ret)
1668                 goto out_kmem_cache_create;
1669
1670         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1671                               NULL);
1672         if (ret)
1673                 goto out_unregister_subsys;
1674 out:
1675         return ret;
1676
1677 out_unregister_subsys:
1678         unregister_pernet_subsys(&fib6_net_ops);
1679 out_kmem_cache_create:
1680         kmem_cache_destroy(fib6_node_kmem);
1681         goto out;
1682 }
1683
1684 void fib6_gc_cleanup(void)
1685 {
1686         unregister_pernet_subsys(&fib6_net_ops);
1687         kmem_cache_destroy(fib6_node_kmem);
1688 }