Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[firefly-linux-kernel-4.4.55.git] / net / ipv6 / ip6mr.c
1 /*
2  *      Linux IPv6 multicast routing support for BSD pim6sd
3  *      Based on net/ipv4/ipmr.c.
4  *
5  *      (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
6  *              LSIIT Laboratory, Strasbourg, France
7  *      (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
8  *              6WIND, Paris, France
9  *      Copyright (C)2007,2008 USAGI/WIDE Project
10  *              YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  */
18
19 #include <asm/uaccess.h>
20 #include <linux/types.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/timer.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/fcntl.h>
27 #include <linux/stat.h>
28 #include <linux/socket.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/compat.h>
37 #include <net/protocol.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/raw.h>
41 #include <linux/notifier.h>
42 #include <linux/if_arp.h>
43 #include <net/checksum.h>
44 #include <net/netlink.h>
45 #include <net/fib_rules.h>
46
47 #include <net/ipv6.h>
48 #include <net/ip6_route.h>
49 #include <linux/mroute6.h>
50 #include <linux/pim.h>
51 #include <net/addrconf.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/export.h>
54 #include <net/ip6_checksum.h>
55 #include <linux/netconf.h>
56
57 struct mr6_table {
58         struct list_head        list;
59 #ifdef CONFIG_NET_NS
60         struct net              *net;
61 #endif
62         u32                     id;
63         struct sock             *mroute6_sk;
64         struct timer_list       ipmr_expire_timer;
65         struct list_head        mfc6_unres_queue;
66         struct list_head        mfc6_cache_array[MFC6_LINES];
67         struct mif_device       vif6_table[MAXMIFS];
68         int                     maxvif;
69         atomic_t                cache_resolve_queue_len;
70         bool                    mroute_do_assert;
71         bool                    mroute_do_pim;
72 #ifdef CONFIG_IPV6_PIMSM_V2
73         int                     mroute_reg_vif_num;
74 #endif
75 };
76
77 struct ip6mr_rule {
78         struct fib_rule         common;
79 };
80
81 struct ip6mr_result {
82         struct mr6_table        *mrt;
83 };
84
85 /* Big lock, protecting vif table, mrt cache and mroute socket state.
86    Note that the changes are semaphored via rtnl_lock.
87  */
88
89 static DEFINE_RWLOCK(mrt_lock);
90
91 /*
92  *      Multicast router control variables
93  */
94
95 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL)
96
97 /* Special spinlock for queue of unresolved entries */
98 static DEFINE_SPINLOCK(mfc_unres_lock);
99
100 /* We return to original Alan's scheme. Hash table of resolved
101    entries is changed only in process context and protected
102    with weak lock mrt_lock. Queue of unresolved entries is protected
103    with strong spinlock mfc_unres_lock.
104
105    In this case data path is free of exclusive locks at all.
106  */
107
108 static struct kmem_cache *mrt_cachep __read_mostly;
109
110 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id);
111 static void ip6mr_free_table(struct mr6_table *mrt);
112
113 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt,
114                            struct sk_buff *skb, struct mfc6_cache *cache);
115 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
116                               mifi_t mifi, int assert);
117 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
118                                struct mfc6_cache *c, struct rtmsg *rtm);
119 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
120                               int cmd);
121 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
122                                struct netlink_callback *cb);
123 static void mroute_clean_tables(struct mr6_table *mrt);
124 static void ipmr_expire_process(unsigned long arg);
125
126 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
127 #define ip6mr_for_each_table(mrt, net) \
128         list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list)
129
130 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
131 {
132         struct mr6_table *mrt;
133
134         ip6mr_for_each_table(mrt, net) {
135                 if (mrt->id == id)
136                         return mrt;
137         }
138         return NULL;
139 }
140
141 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
142                             struct mr6_table **mrt)
143 {
144         struct ip6mr_result res;
145         struct fib_lookup_arg arg = { .result = &res, };
146         int err;
147
148         err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
149                                flowi6_to_flowi(flp6), 0, &arg);
150         if (err < 0)
151                 return err;
152         *mrt = res.mrt;
153         return 0;
154 }
155
156 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
157                              int flags, struct fib_lookup_arg *arg)
158 {
159         struct ip6mr_result *res = arg->result;
160         struct mr6_table *mrt;
161
162         switch (rule->action) {
163         case FR_ACT_TO_TBL:
164                 break;
165         case FR_ACT_UNREACHABLE:
166                 return -ENETUNREACH;
167         case FR_ACT_PROHIBIT:
168                 return -EACCES;
169         case FR_ACT_BLACKHOLE:
170         default:
171                 return -EINVAL;
172         }
173
174         mrt = ip6mr_get_table(rule->fr_net, rule->table);
175         if (mrt == NULL)
176                 return -EAGAIN;
177         res->mrt = mrt;
178         return 0;
179 }
180
181 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
182 {
183         return 1;
184 }
185
186 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = {
187         FRA_GENERIC_POLICY,
188 };
189
190 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
191                                 struct fib_rule_hdr *frh, struct nlattr **tb)
192 {
193         return 0;
194 }
195
196 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
197                               struct nlattr **tb)
198 {
199         return 1;
200 }
201
202 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
203                            struct fib_rule_hdr *frh)
204 {
205         frh->dst_len = 0;
206         frh->src_len = 0;
207         frh->tos     = 0;
208         return 0;
209 }
210
211 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = {
212         .family         = RTNL_FAMILY_IP6MR,
213         .rule_size      = sizeof(struct ip6mr_rule),
214         .addr_size      = sizeof(struct in6_addr),
215         .action         = ip6mr_rule_action,
216         .match          = ip6mr_rule_match,
217         .configure      = ip6mr_rule_configure,
218         .compare        = ip6mr_rule_compare,
219         .default_pref   = fib_default_rule_pref,
220         .fill           = ip6mr_rule_fill,
221         .nlgroup        = RTNLGRP_IPV6_RULE,
222         .policy         = ip6mr_rule_policy,
223         .owner          = THIS_MODULE,
224 };
225
226 static int __net_init ip6mr_rules_init(struct net *net)
227 {
228         struct fib_rules_ops *ops;
229         struct mr6_table *mrt;
230         int err;
231
232         ops = fib_rules_register(&ip6mr_rules_ops_template, net);
233         if (IS_ERR(ops))
234                 return PTR_ERR(ops);
235
236         INIT_LIST_HEAD(&net->ipv6.mr6_tables);
237
238         mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
239         if (mrt == NULL) {
240                 err = -ENOMEM;
241                 goto err1;
242         }
243
244         err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
245         if (err < 0)
246                 goto err2;
247
248         net->ipv6.mr6_rules_ops = ops;
249         return 0;
250
251 err2:
252         kfree(mrt);
253 err1:
254         fib_rules_unregister(ops);
255         return err;
256 }
257
258 static void __net_exit ip6mr_rules_exit(struct net *net)
259 {
260         struct mr6_table *mrt, *next;
261
262         rtnl_lock();
263         list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
264                 list_del(&mrt->list);
265                 ip6mr_free_table(mrt);
266         }
267         rtnl_unlock();
268         fib_rules_unregister(net->ipv6.mr6_rules_ops);
269 }
270 #else
271 #define ip6mr_for_each_table(mrt, net) \
272         for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
273
274 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
275 {
276         return net->ipv6.mrt6;
277 }
278
279 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
280                             struct mr6_table **mrt)
281 {
282         *mrt = net->ipv6.mrt6;
283         return 0;
284 }
285
286 static int __net_init ip6mr_rules_init(struct net *net)
287 {
288         net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT);
289         return net->ipv6.mrt6 ? 0 : -ENOMEM;
290 }
291
292 static void __net_exit ip6mr_rules_exit(struct net *net)
293 {
294         rtnl_lock();
295         ip6mr_free_table(net->ipv6.mrt6);
296         net->ipv6.mrt6 = NULL;
297         rtnl_unlock();
298 }
299 #endif
300
301 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id)
302 {
303         struct mr6_table *mrt;
304         unsigned int i;
305
306         mrt = ip6mr_get_table(net, id);
307         if (mrt != NULL)
308                 return mrt;
309
310         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
311         if (mrt == NULL)
312                 return NULL;
313         mrt->id = id;
314         write_pnet(&mrt->net, net);
315
316         /* Forwarding cache */
317         for (i = 0; i < MFC6_LINES; i++)
318                 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]);
319
320         INIT_LIST_HEAD(&mrt->mfc6_unres_queue);
321
322         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
323                     (unsigned long)mrt);
324
325 #ifdef CONFIG_IPV6_PIMSM_V2
326         mrt->mroute_reg_vif_num = -1;
327 #endif
328 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
329         list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
330 #endif
331         return mrt;
332 }
333
334 static void ip6mr_free_table(struct mr6_table *mrt)
335 {
336         del_timer(&mrt->ipmr_expire_timer);
337         mroute_clean_tables(mrt);
338         kfree(mrt);
339 }
340
341 #ifdef CONFIG_PROC_FS
342
343 struct ipmr_mfc_iter {
344         struct seq_net_private p;
345         struct mr6_table *mrt;
346         struct list_head *cache;
347         int ct;
348 };
349
350
351 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
352                                            struct ipmr_mfc_iter *it, loff_t pos)
353 {
354         struct mr6_table *mrt = it->mrt;
355         struct mfc6_cache *mfc;
356
357         read_lock(&mrt_lock);
358         for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) {
359                 it->cache = &mrt->mfc6_cache_array[it->ct];
360                 list_for_each_entry(mfc, it->cache, list)
361                         if (pos-- == 0)
362                                 return mfc;
363         }
364         read_unlock(&mrt_lock);
365
366         spin_lock_bh(&mfc_unres_lock);
367         it->cache = &mrt->mfc6_unres_queue;
368         list_for_each_entry(mfc, it->cache, list)
369                 if (pos-- == 0)
370                         return mfc;
371         spin_unlock_bh(&mfc_unres_lock);
372
373         it->cache = NULL;
374         return NULL;
375 }
376
377 /*
378  *      The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
379  */
380
381 struct ipmr_vif_iter {
382         struct seq_net_private p;
383         struct mr6_table *mrt;
384         int ct;
385 };
386
387 static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
388                                             struct ipmr_vif_iter *iter,
389                                             loff_t pos)
390 {
391         struct mr6_table *mrt = iter->mrt;
392
393         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
394                 if (!MIF_EXISTS(mrt, iter->ct))
395                         continue;
396                 if (pos-- == 0)
397                         return &mrt->vif6_table[iter->ct];
398         }
399         return NULL;
400 }
401
402 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
403         __acquires(mrt_lock)
404 {
405         struct ipmr_vif_iter *iter = seq->private;
406         struct net *net = seq_file_net(seq);
407         struct mr6_table *mrt;
408
409         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
410         if (mrt == NULL)
411                 return ERR_PTR(-ENOENT);
412
413         iter->mrt = mrt;
414
415         read_lock(&mrt_lock);
416         return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
417                 : SEQ_START_TOKEN;
418 }
419
420 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
421 {
422         struct ipmr_vif_iter *iter = seq->private;
423         struct net *net = seq_file_net(seq);
424         struct mr6_table *mrt = iter->mrt;
425
426         ++*pos;
427         if (v == SEQ_START_TOKEN)
428                 return ip6mr_vif_seq_idx(net, iter, 0);
429
430         while (++iter->ct < mrt->maxvif) {
431                 if (!MIF_EXISTS(mrt, iter->ct))
432                         continue;
433                 return &mrt->vif6_table[iter->ct];
434         }
435         return NULL;
436 }
437
438 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
439         __releases(mrt_lock)
440 {
441         read_unlock(&mrt_lock);
442 }
443
444 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
445 {
446         struct ipmr_vif_iter *iter = seq->private;
447         struct mr6_table *mrt = iter->mrt;
448
449         if (v == SEQ_START_TOKEN) {
450                 seq_puts(seq,
451                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags\n");
452         } else {
453                 const struct mif_device *vif = v;
454                 const char *name = vif->dev ? vif->dev->name : "none";
455
456                 seq_printf(seq,
457                            "%2td %-10s %8ld %7ld  %8ld %7ld %05X\n",
458                            vif - mrt->vif6_table,
459                            name, vif->bytes_in, vif->pkt_in,
460                            vif->bytes_out, vif->pkt_out,
461                            vif->flags);
462         }
463         return 0;
464 }
465
466 static const struct seq_operations ip6mr_vif_seq_ops = {
467         .start = ip6mr_vif_seq_start,
468         .next  = ip6mr_vif_seq_next,
469         .stop  = ip6mr_vif_seq_stop,
470         .show  = ip6mr_vif_seq_show,
471 };
472
473 static int ip6mr_vif_open(struct inode *inode, struct file *file)
474 {
475         return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
476                             sizeof(struct ipmr_vif_iter));
477 }
478
479 static const struct file_operations ip6mr_vif_fops = {
480         .owner   = THIS_MODULE,
481         .open    = ip6mr_vif_open,
482         .read    = seq_read,
483         .llseek  = seq_lseek,
484         .release = seq_release_net,
485 };
486
487 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
488 {
489         struct ipmr_mfc_iter *it = seq->private;
490         struct net *net = seq_file_net(seq);
491         struct mr6_table *mrt;
492
493         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
494         if (mrt == NULL)
495                 return ERR_PTR(-ENOENT);
496
497         it->mrt = mrt;
498         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
499                 : SEQ_START_TOKEN;
500 }
501
502 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
503 {
504         struct mfc6_cache *mfc = v;
505         struct ipmr_mfc_iter *it = seq->private;
506         struct net *net = seq_file_net(seq);
507         struct mr6_table *mrt = it->mrt;
508
509         ++*pos;
510
511         if (v == SEQ_START_TOKEN)
512                 return ipmr_mfc_seq_idx(net, seq->private, 0);
513
514         if (mfc->list.next != it->cache)
515                 return list_entry(mfc->list.next, struct mfc6_cache, list);
516
517         if (it->cache == &mrt->mfc6_unres_queue)
518                 goto end_of_list;
519
520         BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]);
521
522         while (++it->ct < MFC6_LINES) {
523                 it->cache = &mrt->mfc6_cache_array[it->ct];
524                 if (list_empty(it->cache))
525                         continue;
526                 return list_first_entry(it->cache, struct mfc6_cache, list);
527         }
528
529         /* exhausted cache_array, show unresolved */
530         read_unlock(&mrt_lock);
531         it->cache = &mrt->mfc6_unres_queue;
532         it->ct = 0;
533
534         spin_lock_bh(&mfc_unres_lock);
535         if (!list_empty(it->cache))
536                 return list_first_entry(it->cache, struct mfc6_cache, list);
537
538  end_of_list:
539         spin_unlock_bh(&mfc_unres_lock);
540         it->cache = NULL;
541
542         return NULL;
543 }
544
545 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
546 {
547         struct ipmr_mfc_iter *it = seq->private;
548         struct mr6_table *mrt = it->mrt;
549
550         if (it->cache == &mrt->mfc6_unres_queue)
551                 spin_unlock_bh(&mfc_unres_lock);
552         else if (it->cache == mrt->mfc6_cache_array)
553                 read_unlock(&mrt_lock);
554 }
555
556 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
557 {
558         int n;
559
560         if (v == SEQ_START_TOKEN) {
561                 seq_puts(seq,
562                          "Group                            "
563                          "Origin                           "
564                          "Iif      Pkts  Bytes     Wrong  Oifs\n");
565         } else {
566                 const struct mfc6_cache *mfc = v;
567                 const struct ipmr_mfc_iter *it = seq->private;
568                 struct mr6_table *mrt = it->mrt;
569
570                 seq_printf(seq, "%pI6 %pI6 %-3hd",
571                            &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
572                            mfc->mf6c_parent);
573
574                 if (it->cache != &mrt->mfc6_unres_queue) {
575                         seq_printf(seq, " %8lu %8lu %8lu",
576                                    mfc->mfc_un.res.pkt,
577                                    mfc->mfc_un.res.bytes,
578                                    mfc->mfc_un.res.wrong_if);
579                         for (n = mfc->mfc_un.res.minvif;
580                              n < mfc->mfc_un.res.maxvif; n++) {
581                                 if (MIF_EXISTS(mrt, n) &&
582                                     mfc->mfc_un.res.ttls[n] < 255)
583                                         seq_printf(seq,
584                                                    " %2d:%-3d",
585                                                    n, mfc->mfc_un.res.ttls[n]);
586                         }
587                 } else {
588                         /* unresolved mfc_caches don't contain
589                          * pkt, bytes and wrong_if values
590                          */
591                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
592                 }
593                 seq_putc(seq, '\n');
594         }
595         return 0;
596 }
597
598 static const struct seq_operations ipmr_mfc_seq_ops = {
599         .start = ipmr_mfc_seq_start,
600         .next  = ipmr_mfc_seq_next,
601         .stop  = ipmr_mfc_seq_stop,
602         .show  = ipmr_mfc_seq_show,
603 };
604
605 static int ipmr_mfc_open(struct inode *inode, struct file *file)
606 {
607         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
608                             sizeof(struct ipmr_mfc_iter));
609 }
610
611 static const struct file_operations ip6mr_mfc_fops = {
612         .owner   = THIS_MODULE,
613         .open    = ipmr_mfc_open,
614         .read    = seq_read,
615         .llseek  = seq_lseek,
616         .release = seq_release_net,
617 };
618 #endif
619
620 #ifdef CONFIG_IPV6_PIMSM_V2
621
622 static int pim6_rcv(struct sk_buff *skb)
623 {
624         struct pimreghdr *pim;
625         struct ipv6hdr   *encap;
626         struct net_device  *reg_dev = NULL;
627         struct net *net = dev_net(skb->dev);
628         struct mr6_table *mrt;
629         struct flowi6 fl6 = {
630                 .flowi6_iif     = skb->dev->ifindex,
631                 .flowi6_mark    = skb->mark,
632         };
633         int reg_vif_num;
634
635         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
636                 goto drop;
637
638         pim = (struct pimreghdr *)skb_transport_header(skb);
639         if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
640             (pim->flags & PIM_NULL_REGISTER) ||
641             (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
642                              sizeof(*pim), IPPROTO_PIM,
643                              csum_partial((void *)pim, sizeof(*pim), 0)) &&
644              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
645                 goto drop;
646
647         /* check if the inner packet is destined to mcast group */
648         encap = (struct ipv6hdr *)(skb_transport_header(skb) +
649                                    sizeof(*pim));
650
651         if (!ipv6_addr_is_multicast(&encap->daddr) ||
652             encap->payload_len == 0 ||
653             ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
654                 goto drop;
655
656         if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
657                 goto drop;
658         reg_vif_num = mrt->mroute_reg_vif_num;
659
660         read_lock(&mrt_lock);
661         if (reg_vif_num >= 0)
662                 reg_dev = mrt->vif6_table[reg_vif_num].dev;
663         if (reg_dev)
664                 dev_hold(reg_dev);
665         read_unlock(&mrt_lock);
666
667         if (reg_dev == NULL)
668                 goto drop;
669
670         skb->mac_header = skb->network_header;
671         skb_pull(skb, (u8 *)encap - skb->data);
672         skb_reset_network_header(skb);
673         skb->protocol = htons(ETH_P_IPV6);
674         skb->ip_summed = CHECKSUM_NONE;
675         skb->pkt_type = PACKET_HOST;
676
677         skb_tunnel_rx(skb, reg_dev);
678
679         netif_rx(skb);
680
681         dev_put(reg_dev);
682         return 0;
683  drop:
684         kfree_skb(skb);
685         return 0;
686 }
687
688 static const struct inet6_protocol pim6_protocol = {
689         .handler        =       pim6_rcv,
690 };
691
692 /* Service routines creating virtual interfaces: PIMREG */
693
694 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
695                                       struct net_device *dev)
696 {
697         struct net *net = dev_net(dev);
698         struct mr6_table *mrt;
699         struct flowi6 fl6 = {
700                 .flowi6_oif     = dev->ifindex,
701                 .flowi6_iif     = skb->skb_iif,
702                 .flowi6_mark    = skb->mark,
703         };
704         int err;
705
706         err = ip6mr_fib_lookup(net, &fl6, &mrt);
707         if (err < 0) {
708                 kfree_skb(skb);
709                 return err;
710         }
711
712         read_lock(&mrt_lock);
713         dev->stats.tx_bytes += skb->len;
714         dev->stats.tx_packets++;
715         ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
716         read_unlock(&mrt_lock);
717         kfree_skb(skb);
718         return NETDEV_TX_OK;
719 }
720
721 static const struct net_device_ops reg_vif_netdev_ops = {
722         .ndo_start_xmit = reg_vif_xmit,
723 };
724
725 static void reg_vif_setup(struct net_device *dev)
726 {
727         dev->type               = ARPHRD_PIMREG;
728         dev->mtu                = 1500 - sizeof(struct ipv6hdr) - 8;
729         dev->flags              = IFF_NOARP;
730         dev->netdev_ops         = &reg_vif_netdev_ops;
731         dev->destructor         = free_netdev;
732         dev->features           |= NETIF_F_NETNS_LOCAL;
733 }
734
735 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt)
736 {
737         struct net_device *dev;
738         char name[IFNAMSIZ];
739
740         if (mrt->id == RT6_TABLE_DFLT)
741                 sprintf(name, "pim6reg");
742         else
743                 sprintf(name, "pim6reg%u", mrt->id);
744
745         dev = alloc_netdev(0, name, reg_vif_setup);
746         if (dev == NULL)
747                 return NULL;
748
749         dev_net_set(dev, net);
750
751         if (register_netdevice(dev)) {
752                 free_netdev(dev);
753                 return NULL;
754         }
755         dev->iflink = 0;
756
757         if (dev_open(dev))
758                 goto failure;
759
760         dev_hold(dev);
761         return dev;
762
763 failure:
764         /* allow the register to be completed before unregistering. */
765         rtnl_unlock();
766         rtnl_lock();
767
768         unregister_netdevice(dev);
769         return NULL;
770 }
771 #endif
772
773 /*
774  *      Delete a VIF entry
775  */
776
777 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head)
778 {
779         struct mif_device *v;
780         struct net_device *dev;
781         struct inet6_dev *in6_dev;
782
783         if (vifi < 0 || vifi >= mrt->maxvif)
784                 return -EADDRNOTAVAIL;
785
786         v = &mrt->vif6_table[vifi];
787
788         write_lock_bh(&mrt_lock);
789         dev = v->dev;
790         v->dev = NULL;
791
792         if (!dev) {
793                 write_unlock_bh(&mrt_lock);
794                 return -EADDRNOTAVAIL;
795         }
796
797 #ifdef CONFIG_IPV6_PIMSM_V2
798         if (vifi == mrt->mroute_reg_vif_num)
799                 mrt->mroute_reg_vif_num = -1;
800 #endif
801
802         if (vifi + 1 == mrt->maxvif) {
803                 int tmp;
804                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
805                         if (MIF_EXISTS(mrt, tmp))
806                                 break;
807                 }
808                 mrt->maxvif = tmp + 1;
809         }
810
811         write_unlock_bh(&mrt_lock);
812
813         dev_set_allmulti(dev, -1);
814
815         in6_dev = __in6_dev_get(dev);
816         if (in6_dev) {
817                 in6_dev->cnf.mc_forwarding--;
818                 inet6_netconf_notify_devconf(dev_net(dev),
819                                              NETCONFA_MC_FORWARDING,
820                                              dev->ifindex, &in6_dev->cnf);
821         }
822
823         if (v->flags & MIFF_REGISTER)
824                 unregister_netdevice_queue(dev, head);
825
826         dev_put(dev);
827         return 0;
828 }
829
830 static inline void ip6mr_cache_free(struct mfc6_cache *c)
831 {
832         kmem_cache_free(mrt_cachep, c);
833 }
834
835 /* Destroy an unresolved cache entry, killing queued skbs
836    and reporting error to netlink readers.
837  */
838
839 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c)
840 {
841         struct net *net = read_pnet(&mrt->net);
842         struct sk_buff *skb;
843
844         atomic_dec(&mrt->cache_resolve_queue_len);
845
846         while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
847                 if (ipv6_hdr(skb)->version == 0) {
848                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
849                         nlh->nlmsg_type = NLMSG_ERROR;
850                         nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
851                         skb_trim(skb, nlh->nlmsg_len);
852                         ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT;
853                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
854                 } else
855                         kfree_skb(skb);
856         }
857
858         ip6mr_cache_free(c);
859 }
860
861
862 /* Timer process for all the unresolved queue. */
863
864 static void ipmr_do_expire_process(struct mr6_table *mrt)
865 {
866         unsigned long now = jiffies;
867         unsigned long expires = 10 * HZ;
868         struct mfc6_cache *c, *next;
869
870         list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
871                 if (time_after(c->mfc_un.unres.expires, now)) {
872                         /* not yet... */
873                         unsigned long interval = c->mfc_un.unres.expires - now;
874                         if (interval < expires)
875                                 expires = interval;
876                         continue;
877                 }
878
879                 list_del(&c->list);
880                 mr6_netlink_event(mrt, c, RTM_DELROUTE);
881                 ip6mr_destroy_unres(mrt, c);
882         }
883
884         if (!list_empty(&mrt->mfc6_unres_queue))
885                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
886 }
887
888 static void ipmr_expire_process(unsigned long arg)
889 {
890         struct mr6_table *mrt = (struct mr6_table *)arg;
891
892         if (!spin_trylock(&mfc_unres_lock)) {
893                 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
894                 return;
895         }
896
897         if (!list_empty(&mrt->mfc6_unres_queue))
898                 ipmr_do_expire_process(mrt);
899
900         spin_unlock(&mfc_unres_lock);
901 }
902
903 /* Fill oifs list. It is called under write locked mrt_lock. */
904
905 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache,
906                                     unsigned char *ttls)
907 {
908         int vifi;
909
910         cache->mfc_un.res.minvif = MAXMIFS;
911         cache->mfc_un.res.maxvif = 0;
912         memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
913
914         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
915                 if (MIF_EXISTS(mrt, vifi) &&
916                     ttls[vifi] && ttls[vifi] < 255) {
917                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
918                         if (cache->mfc_un.res.minvif > vifi)
919                                 cache->mfc_un.res.minvif = vifi;
920                         if (cache->mfc_un.res.maxvif <= vifi)
921                                 cache->mfc_un.res.maxvif = vifi + 1;
922                 }
923         }
924 }
925
926 static int mif6_add(struct net *net, struct mr6_table *mrt,
927                     struct mif6ctl *vifc, int mrtsock)
928 {
929         int vifi = vifc->mif6c_mifi;
930         struct mif_device *v = &mrt->vif6_table[vifi];
931         struct net_device *dev;
932         struct inet6_dev *in6_dev;
933         int err;
934
935         /* Is vif busy ? */
936         if (MIF_EXISTS(mrt, vifi))
937                 return -EADDRINUSE;
938
939         switch (vifc->mif6c_flags) {
940 #ifdef CONFIG_IPV6_PIMSM_V2
941         case MIFF_REGISTER:
942                 /*
943                  * Special Purpose VIF in PIM
944                  * All the packets will be sent to the daemon
945                  */
946                 if (mrt->mroute_reg_vif_num >= 0)
947                         return -EADDRINUSE;
948                 dev = ip6mr_reg_vif(net, mrt);
949                 if (!dev)
950                         return -ENOBUFS;
951                 err = dev_set_allmulti(dev, 1);
952                 if (err) {
953                         unregister_netdevice(dev);
954                         dev_put(dev);
955                         return err;
956                 }
957                 break;
958 #endif
959         case 0:
960                 dev = dev_get_by_index(net, vifc->mif6c_pifi);
961                 if (!dev)
962                         return -EADDRNOTAVAIL;
963                 err = dev_set_allmulti(dev, 1);
964                 if (err) {
965                         dev_put(dev);
966                         return err;
967                 }
968                 break;
969         default:
970                 return -EINVAL;
971         }
972
973         in6_dev = __in6_dev_get(dev);
974         if (in6_dev) {
975                 in6_dev->cnf.mc_forwarding++;
976                 inet6_netconf_notify_devconf(dev_net(dev),
977                                              NETCONFA_MC_FORWARDING,
978                                              dev->ifindex, &in6_dev->cnf);
979         }
980
981         /*
982          *      Fill in the VIF structures
983          */
984         v->rate_limit = vifc->vifc_rate_limit;
985         v->flags = vifc->mif6c_flags;
986         if (!mrtsock)
987                 v->flags |= VIFF_STATIC;
988         v->threshold = vifc->vifc_threshold;
989         v->bytes_in = 0;
990         v->bytes_out = 0;
991         v->pkt_in = 0;
992         v->pkt_out = 0;
993         v->link = dev->ifindex;
994         if (v->flags & MIFF_REGISTER)
995                 v->link = dev->iflink;
996
997         /* And finish update writing critical data */
998         write_lock_bh(&mrt_lock);
999         v->dev = dev;
1000 #ifdef CONFIG_IPV6_PIMSM_V2
1001         if (v->flags & MIFF_REGISTER)
1002                 mrt->mroute_reg_vif_num = vifi;
1003 #endif
1004         if (vifi + 1 > mrt->maxvif)
1005                 mrt->maxvif = vifi + 1;
1006         write_unlock_bh(&mrt_lock);
1007         return 0;
1008 }
1009
1010 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt,
1011                                            const struct in6_addr *origin,
1012                                            const struct in6_addr *mcastgrp)
1013 {
1014         int line = MFC6_HASH(mcastgrp, origin);
1015         struct mfc6_cache *c;
1016
1017         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1018                 if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
1019                     ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
1020                         return c;
1021         }
1022         return NULL;
1023 }
1024
1025 /* Look for a (*,*,oif) entry */
1026 static struct mfc6_cache *ip6mr_cache_find_any_parent(struct mr6_table *mrt,
1027                                                       mifi_t mifi)
1028 {
1029         int line = MFC6_HASH(&in6addr_any, &in6addr_any);
1030         struct mfc6_cache *c;
1031
1032         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list)
1033                 if (ipv6_addr_any(&c->mf6c_origin) &&
1034                     ipv6_addr_any(&c->mf6c_mcastgrp) &&
1035                     (c->mfc_un.res.ttls[mifi] < 255))
1036                         return c;
1037
1038         return NULL;
1039 }
1040
1041 /* Look for a (*,G) entry */
1042 static struct mfc6_cache *ip6mr_cache_find_any(struct mr6_table *mrt,
1043                                                struct in6_addr *mcastgrp,
1044                                                mifi_t mifi)
1045 {
1046         int line = MFC6_HASH(mcastgrp, &in6addr_any);
1047         struct mfc6_cache *c, *proxy;
1048
1049         if (ipv6_addr_any(mcastgrp))
1050                 goto skip;
1051
1052         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list)
1053                 if (ipv6_addr_any(&c->mf6c_origin) &&
1054                     ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) {
1055                         if (c->mfc_un.res.ttls[mifi] < 255)
1056                                 return c;
1057
1058                         /* It's ok if the mifi is part of the static tree */
1059                         proxy = ip6mr_cache_find_any_parent(mrt,
1060                                                             c->mf6c_parent);
1061                         if (proxy && proxy->mfc_un.res.ttls[mifi] < 255)
1062                                 return c;
1063                 }
1064
1065 skip:
1066         return ip6mr_cache_find_any_parent(mrt, mifi);
1067 }
1068
1069 /*
1070  *      Allocate a multicast cache entry
1071  */
1072 static struct mfc6_cache *ip6mr_cache_alloc(void)
1073 {
1074         struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
1075         if (c == NULL)
1076                 return NULL;
1077         c->mfc_un.res.minvif = MAXMIFS;
1078         return c;
1079 }
1080
1081 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
1082 {
1083         struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1084         if (c == NULL)
1085                 return NULL;
1086         skb_queue_head_init(&c->mfc_un.unres.unresolved);
1087         c->mfc_un.unres.expires = jiffies + 10 * HZ;
1088         return c;
1089 }
1090
1091 /*
1092  *      A cache entry has gone into a resolved state from queued
1093  */
1094
1095 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt,
1096                                 struct mfc6_cache *uc, struct mfc6_cache *c)
1097 {
1098         struct sk_buff *skb;
1099
1100         /*
1101          *      Play the pending entries through our router
1102          */
1103
1104         while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
1105                 if (ipv6_hdr(skb)->version == 0) {
1106                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
1107
1108                         if (__ip6mr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
1109                                 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1110                         } else {
1111                                 nlh->nlmsg_type = NLMSG_ERROR;
1112                                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1113                                 skb_trim(skb, nlh->nlmsg_len);
1114                                 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE;
1115                         }
1116                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1117                 } else
1118                         ip6_mr_forward(net, mrt, skb, c);
1119         }
1120 }
1121
1122 /*
1123  *      Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
1124  *      expects the following bizarre scheme.
1125  *
1126  *      Called under mrt_lock.
1127  */
1128
1129 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
1130                               mifi_t mifi, int assert)
1131 {
1132         struct sk_buff *skb;
1133         struct mrt6msg *msg;
1134         int ret;
1135
1136 #ifdef CONFIG_IPV6_PIMSM_V2
1137         if (assert == MRT6MSG_WHOLEPKT)
1138                 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1139                                                 +sizeof(*msg));
1140         else
1141 #endif
1142                 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1143
1144         if (!skb)
1145                 return -ENOBUFS;
1146
1147         /* I suppose that internal messages
1148          * do not require checksums */
1149
1150         skb->ip_summed = CHECKSUM_UNNECESSARY;
1151
1152 #ifdef CONFIG_IPV6_PIMSM_V2
1153         if (assert == MRT6MSG_WHOLEPKT) {
1154                 /* Ugly, but we have no choice with this interface.
1155                    Duplicate old header, fix length etc.
1156                    And all this only to mangle msg->im6_msgtype and
1157                    to set msg->im6_mbz to "mbz" :-)
1158                  */
1159                 skb_push(skb, -skb_network_offset(pkt));
1160
1161                 skb_push(skb, sizeof(*msg));
1162                 skb_reset_transport_header(skb);
1163                 msg = (struct mrt6msg *)skb_transport_header(skb);
1164                 msg->im6_mbz = 0;
1165                 msg->im6_msgtype = MRT6MSG_WHOLEPKT;
1166                 msg->im6_mif = mrt->mroute_reg_vif_num;
1167                 msg->im6_pad = 0;
1168                 msg->im6_src = ipv6_hdr(pkt)->saddr;
1169                 msg->im6_dst = ipv6_hdr(pkt)->daddr;
1170
1171                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1172         } else
1173 #endif
1174         {
1175         /*
1176          *      Copy the IP header
1177          */
1178
1179         skb_put(skb, sizeof(struct ipv6hdr));
1180         skb_reset_network_header(skb);
1181         skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1182
1183         /*
1184          *      Add our header
1185          */
1186         skb_put(skb, sizeof(*msg));
1187         skb_reset_transport_header(skb);
1188         msg = (struct mrt6msg *)skb_transport_header(skb);
1189
1190         msg->im6_mbz = 0;
1191         msg->im6_msgtype = assert;
1192         msg->im6_mif = mifi;
1193         msg->im6_pad = 0;
1194         msg->im6_src = ipv6_hdr(pkt)->saddr;
1195         msg->im6_dst = ipv6_hdr(pkt)->daddr;
1196
1197         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1198         skb->ip_summed = CHECKSUM_UNNECESSARY;
1199         }
1200
1201         if (mrt->mroute6_sk == NULL) {
1202                 kfree_skb(skb);
1203                 return -EINVAL;
1204         }
1205
1206         /*
1207          *      Deliver to user space multicast routing algorithms
1208          */
1209         ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb);
1210         if (ret < 0) {
1211                 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n");
1212                 kfree_skb(skb);
1213         }
1214
1215         return ret;
1216 }
1217
1218 /*
1219  *      Queue a packet for resolution. It gets locked cache entry!
1220  */
1221
1222 static int
1223 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb)
1224 {
1225         bool found = false;
1226         int err;
1227         struct mfc6_cache *c;
1228
1229         spin_lock_bh(&mfc_unres_lock);
1230         list_for_each_entry(c, &mrt->mfc6_unres_queue, list) {
1231                 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1232                     ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1233                         found = true;
1234                         break;
1235                 }
1236         }
1237
1238         if (!found) {
1239                 /*
1240                  *      Create a new entry if allowable
1241                  */
1242
1243                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1244                     (c = ip6mr_cache_alloc_unres()) == NULL) {
1245                         spin_unlock_bh(&mfc_unres_lock);
1246
1247                         kfree_skb(skb);
1248                         return -ENOBUFS;
1249                 }
1250
1251                 /*
1252                  *      Fill in the new cache entry
1253                  */
1254                 c->mf6c_parent = -1;
1255                 c->mf6c_origin = ipv6_hdr(skb)->saddr;
1256                 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1257
1258                 /*
1259                  *      Reflect first query at pim6sd
1260                  */
1261                 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1262                 if (err < 0) {
1263                         /* If the report failed throw the cache entry
1264                            out - Brad Parker
1265                          */
1266                         spin_unlock_bh(&mfc_unres_lock);
1267
1268                         ip6mr_cache_free(c);
1269                         kfree_skb(skb);
1270                         return err;
1271                 }
1272
1273                 atomic_inc(&mrt->cache_resolve_queue_len);
1274                 list_add(&c->list, &mrt->mfc6_unres_queue);
1275                 mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1276
1277                 ipmr_do_expire_process(mrt);
1278         }
1279
1280         /*
1281          *      See if we can append the packet
1282          */
1283         if (c->mfc_un.unres.unresolved.qlen > 3) {
1284                 kfree_skb(skb);
1285                 err = -ENOBUFS;
1286         } else {
1287                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1288                 err = 0;
1289         }
1290
1291         spin_unlock_bh(&mfc_unres_lock);
1292         return err;
1293 }
1294
1295 /*
1296  *      MFC6 cache manipulation by user space
1297  */
1298
1299 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc,
1300                             int parent)
1301 {
1302         int line;
1303         struct mfc6_cache *c, *next;
1304
1305         line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1306
1307         list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) {
1308                 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1309                     ipv6_addr_equal(&c->mf6c_mcastgrp,
1310                                     &mfc->mf6cc_mcastgrp.sin6_addr) &&
1311                     (parent == -1 || parent == c->mf6c_parent)) {
1312                         write_lock_bh(&mrt_lock);
1313                         list_del(&c->list);
1314                         write_unlock_bh(&mrt_lock);
1315
1316                         mr6_netlink_event(mrt, c, RTM_DELROUTE);
1317                         ip6mr_cache_free(c);
1318                         return 0;
1319                 }
1320         }
1321         return -ENOENT;
1322 }
1323
1324 static int ip6mr_device_event(struct notifier_block *this,
1325                               unsigned long event, void *ptr)
1326 {
1327         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1328         struct net *net = dev_net(dev);
1329         struct mr6_table *mrt;
1330         struct mif_device *v;
1331         int ct;
1332         LIST_HEAD(list);
1333
1334         if (event != NETDEV_UNREGISTER)
1335                 return NOTIFY_DONE;
1336
1337         ip6mr_for_each_table(mrt, net) {
1338                 v = &mrt->vif6_table[0];
1339                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1340                         if (v->dev == dev)
1341                                 mif6_delete(mrt, ct, &list);
1342                 }
1343         }
1344         unregister_netdevice_many(&list);
1345
1346         return NOTIFY_DONE;
1347 }
1348
1349 static struct notifier_block ip6_mr_notifier = {
1350         .notifier_call = ip6mr_device_event
1351 };
1352
1353 /*
1354  *      Setup for IP multicast routing
1355  */
1356
1357 static int __net_init ip6mr_net_init(struct net *net)
1358 {
1359         int err;
1360
1361         err = ip6mr_rules_init(net);
1362         if (err < 0)
1363                 goto fail;
1364
1365 #ifdef CONFIG_PROC_FS
1366         err = -ENOMEM;
1367         if (!proc_create("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_fops))
1368                 goto proc_vif_fail;
1369         if (!proc_create("ip6_mr_cache", 0, net->proc_net, &ip6mr_mfc_fops))
1370                 goto proc_cache_fail;
1371 #endif
1372
1373         return 0;
1374
1375 #ifdef CONFIG_PROC_FS
1376 proc_cache_fail:
1377         remove_proc_entry("ip6_mr_vif", net->proc_net);
1378 proc_vif_fail:
1379         ip6mr_rules_exit(net);
1380 #endif
1381 fail:
1382         return err;
1383 }
1384
1385 static void __net_exit ip6mr_net_exit(struct net *net)
1386 {
1387 #ifdef CONFIG_PROC_FS
1388         remove_proc_entry("ip6_mr_cache", net->proc_net);
1389         remove_proc_entry("ip6_mr_vif", net->proc_net);
1390 #endif
1391         ip6mr_rules_exit(net);
1392 }
1393
1394 static struct pernet_operations ip6mr_net_ops = {
1395         .init = ip6mr_net_init,
1396         .exit = ip6mr_net_exit,
1397 };
1398
1399 int __init ip6_mr_init(void)
1400 {
1401         int err;
1402
1403         mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1404                                        sizeof(struct mfc6_cache),
1405                                        0, SLAB_HWCACHE_ALIGN,
1406                                        NULL);
1407         if (!mrt_cachep)
1408                 return -ENOMEM;
1409
1410         err = register_pernet_subsys(&ip6mr_net_ops);
1411         if (err)
1412                 goto reg_pernet_fail;
1413
1414         err = register_netdevice_notifier(&ip6_mr_notifier);
1415         if (err)
1416                 goto reg_notif_fail;
1417 #ifdef CONFIG_IPV6_PIMSM_V2
1418         if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1419                 pr_err("%s: can't add PIM protocol\n", __func__);
1420                 err = -EAGAIN;
1421                 goto add_proto_fail;
1422         }
1423 #endif
1424         rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL,
1425                       ip6mr_rtm_dumproute, NULL);
1426         return 0;
1427 #ifdef CONFIG_IPV6_PIMSM_V2
1428 add_proto_fail:
1429         unregister_netdevice_notifier(&ip6_mr_notifier);
1430 #endif
1431 reg_notif_fail:
1432         unregister_pernet_subsys(&ip6mr_net_ops);
1433 reg_pernet_fail:
1434         kmem_cache_destroy(mrt_cachep);
1435         return err;
1436 }
1437
1438 void ip6_mr_cleanup(void)
1439 {
1440         unregister_netdevice_notifier(&ip6_mr_notifier);
1441         unregister_pernet_subsys(&ip6mr_net_ops);
1442         kmem_cache_destroy(mrt_cachep);
1443 }
1444
1445 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt,
1446                          struct mf6cctl *mfc, int mrtsock, int parent)
1447 {
1448         bool found = false;
1449         int line;
1450         struct mfc6_cache *uc, *c;
1451         unsigned char ttls[MAXMIFS];
1452         int i;
1453
1454         if (mfc->mf6cc_parent >= MAXMIFS)
1455                 return -ENFILE;
1456
1457         memset(ttls, 255, MAXMIFS);
1458         for (i = 0; i < MAXMIFS; i++) {
1459                 if (IF_ISSET(i, &mfc->mf6cc_ifset))
1460                         ttls[i] = 1;
1461
1462         }
1463
1464         line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1465
1466         list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1467                 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1468                     ipv6_addr_equal(&c->mf6c_mcastgrp,
1469                                     &mfc->mf6cc_mcastgrp.sin6_addr) &&
1470                     (parent == -1 || parent == mfc->mf6cc_parent)) {
1471                         found = true;
1472                         break;
1473                 }
1474         }
1475
1476         if (found) {
1477                 write_lock_bh(&mrt_lock);
1478                 c->mf6c_parent = mfc->mf6cc_parent;
1479                 ip6mr_update_thresholds(mrt, c, ttls);
1480                 if (!mrtsock)
1481                         c->mfc_flags |= MFC_STATIC;
1482                 write_unlock_bh(&mrt_lock);
1483                 mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1484                 return 0;
1485         }
1486
1487         if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) &&
1488             !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1489                 return -EINVAL;
1490
1491         c = ip6mr_cache_alloc();
1492         if (c == NULL)
1493                 return -ENOMEM;
1494
1495         c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1496         c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1497         c->mf6c_parent = mfc->mf6cc_parent;
1498         ip6mr_update_thresholds(mrt, c, ttls);
1499         if (!mrtsock)
1500                 c->mfc_flags |= MFC_STATIC;
1501
1502         write_lock_bh(&mrt_lock);
1503         list_add(&c->list, &mrt->mfc6_cache_array[line]);
1504         write_unlock_bh(&mrt_lock);
1505
1506         /*
1507          *      Check to see if we resolved a queued list. If so we
1508          *      need to send on the frames and tidy up.
1509          */
1510         found = false;
1511         spin_lock_bh(&mfc_unres_lock);
1512         list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) {
1513                 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1514                     ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1515                         list_del(&uc->list);
1516                         atomic_dec(&mrt->cache_resolve_queue_len);
1517                         found = true;
1518                         break;
1519                 }
1520         }
1521         if (list_empty(&mrt->mfc6_unres_queue))
1522                 del_timer(&mrt->ipmr_expire_timer);
1523         spin_unlock_bh(&mfc_unres_lock);
1524
1525         if (found) {
1526                 ip6mr_cache_resolve(net, mrt, uc, c);
1527                 ip6mr_cache_free(uc);
1528         }
1529         mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1530         return 0;
1531 }
1532
1533 /*
1534  *      Close the multicast socket, and clear the vif tables etc
1535  */
1536
1537 static void mroute_clean_tables(struct mr6_table *mrt)
1538 {
1539         int i;
1540         LIST_HEAD(list);
1541         struct mfc6_cache *c, *next;
1542
1543         /*
1544          *      Shut down all active vif entries
1545          */
1546         for (i = 0; i < mrt->maxvif; i++) {
1547                 if (!(mrt->vif6_table[i].flags & VIFF_STATIC))
1548                         mif6_delete(mrt, i, &list);
1549         }
1550         unregister_netdevice_many(&list);
1551
1552         /*
1553          *      Wipe the cache
1554          */
1555         for (i = 0; i < MFC6_LINES; i++) {
1556                 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) {
1557                         if (c->mfc_flags & MFC_STATIC)
1558                                 continue;
1559                         write_lock_bh(&mrt_lock);
1560                         list_del(&c->list);
1561                         write_unlock_bh(&mrt_lock);
1562
1563                         mr6_netlink_event(mrt, c, RTM_DELROUTE);
1564                         ip6mr_cache_free(c);
1565                 }
1566         }
1567
1568         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1569                 spin_lock_bh(&mfc_unres_lock);
1570                 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
1571                         list_del(&c->list);
1572                         mr6_netlink_event(mrt, c, RTM_DELROUTE);
1573                         ip6mr_destroy_unres(mrt, c);
1574                 }
1575                 spin_unlock_bh(&mfc_unres_lock);
1576         }
1577 }
1578
1579 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk)
1580 {
1581         int err = 0;
1582         struct net *net = sock_net(sk);
1583
1584         rtnl_lock();
1585         write_lock_bh(&mrt_lock);
1586         if (likely(mrt->mroute6_sk == NULL)) {
1587                 mrt->mroute6_sk = sk;
1588                 net->ipv6.devconf_all->mc_forwarding++;
1589                 inet6_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1590                                              NETCONFA_IFINDEX_ALL,
1591                                              net->ipv6.devconf_all);
1592         }
1593         else
1594                 err = -EADDRINUSE;
1595         write_unlock_bh(&mrt_lock);
1596
1597         rtnl_unlock();
1598
1599         return err;
1600 }
1601
1602 int ip6mr_sk_done(struct sock *sk)
1603 {
1604         int err = -EACCES;
1605         struct net *net = sock_net(sk);
1606         struct mr6_table *mrt;
1607
1608         rtnl_lock();
1609         ip6mr_for_each_table(mrt, net) {
1610                 if (sk == mrt->mroute6_sk) {
1611                         write_lock_bh(&mrt_lock);
1612                         mrt->mroute6_sk = NULL;
1613                         net->ipv6.devconf_all->mc_forwarding--;
1614                         inet6_netconf_notify_devconf(net,
1615                                                      NETCONFA_MC_FORWARDING,
1616                                                      NETCONFA_IFINDEX_ALL,
1617                                                      net->ipv6.devconf_all);
1618                         write_unlock_bh(&mrt_lock);
1619
1620                         mroute_clean_tables(mrt);
1621                         err = 0;
1622                         break;
1623                 }
1624         }
1625         rtnl_unlock();
1626
1627         return err;
1628 }
1629
1630 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb)
1631 {
1632         struct mr6_table *mrt;
1633         struct flowi6 fl6 = {
1634                 .flowi6_iif     = skb->skb_iif,
1635                 .flowi6_oif     = skb->dev->ifindex,
1636                 .flowi6_mark    = skb->mark,
1637         };
1638
1639         if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1640                 return NULL;
1641
1642         return mrt->mroute6_sk;
1643 }
1644
1645 /*
1646  *      Socket options and virtual interface manipulation. The whole
1647  *      virtual interface system is a complete heap, but unfortunately
1648  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1649  *      MOSPF/PIM router set up we can clean this up.
1650  */
1651
1652 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1653 {
1654         int ret, parent = 0;
1655         struct mif6ctl vif;
1656         struct mf6cctl mfc;
1657         mifi_t mifi;
1658         struct net *net = sock_net(sk);
1659         struct mr6_table *mrt;
1660
1661         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1662         if (mrt == NULL)
1663                 return -ENOENT;
1664
1665         if (optname != MRT6_INIT) {
1666                 if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN))
1667                         return -EACCES;
1668         }
1669
1670         switch (optname) {
1671         case MRT6_INIT:
1672                 if (sk->sk_type != SOCK_RAW ||
1673                     inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1674                         return -EOPNOTSUPP;
1675                 if (optlen < sizeof(int))
1676                         return -EINVAL;
1677
1678                 return ip6mr_sk_init(mrt, sk);
1679
1680         case MRT6_DONE:
1681                 return ip6mr_sk_done(sk);
1682
1683         case MRT6_ADD_MIF:
1684                 if (optlen < sizeof(vif))
1685                         return -EINVAL;
1686                 if (copy_from_user(&vif, optval, sizeof(vif)))
1687                         return -EFAULT;
1688                 if (vif.mif6c_mifi >= MAXMIFS)
1689                         return -ENFILE;
1690                 rtnl_lock();
1691                 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk);
1692                 rtnl_unlock();
1693                 return ret;
1694
1695         case MRT6_DEL_MIF:
1696                 if (optlen < sizeof(mifi_t))
1697                         return -EINVAL;
1698                 if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
1699                         return -EFAULT;
1700                 rtnl_lock();
1701                 ret = mif6_delete(mrt, mifi, NULL);
1702                 rtnl_unlock();
1703                 return ret;
1704
1705         /*
1706          *      Manipulate the forwarding caches. These live
1707          *      in a sort of kernel/user symbiosis.
1708          */
1709         case MRT6_ADD_MFC:
1710         case MRT6_DEL_MFC:
1711                 parent = -1;
1712         case MRT6_ADD_MFC_PROXY:
1713         case MRT6_DEL_MFC_PROXY:
1714                 if (optlen < sizeof(mfc))
1715                         return -EINVAL;
1716                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1717                         return -EFAULT;
1718                 if (parent == 0)
1719                         parent = mfc.mf6cc_parent;
1720                 rtnl_lock();
1721                 if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY)
1722                         ret = ip6mr_mfc_delete(mrt, &mfc, parent);
1723                 else
1724                         ret = ip6mr_mfc_add(net, mrt, &mfc,
1725                                             sk == mrt->mroute6_sk, parent);
1726                 rtnl_unlock();
1727                 return ret;
1728
1729         /*
1730          *      Control PIM assert (to activate pim will activate assert)
1731          */
1732         case MRT6_ASSERT:
1733         {
1734                 int v;
1735
1736                 if (optlen != sizeof(v))
1737                         return -EINVAL;
1738                 if (get_user(v, (int __user *)optval))
1739                         return -EFAULT;
1740                 mrt->mroute_do_assert = v;
1741                 return 0;
1742         }
1743
1744 #ifdef CONFIG_IPV6_PIMSM_V2
1745         case MRT6_PIM:
1746         {
1747                 int v;
1748
1749                 if (optlen != sizeof(v))
1750                         return -EINVAL;
1751                 if (get_user(v, (int __user *)optval))
1752                         return -EFAULT;
1753                 v = !!v;
1754                 rtnl_lock();
1755                 ret = 0;
1756                 if (v != mrt->mroute_do_pim) {
1757                         mrt->mroute_do_pim = v;
1758                         mrt->mroute_do_assert = v;
1759                 }
1760                 rtnl_unlock();
1761                 return ret;
1762         }
1763
1764 #endif
1765 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1766         case MRT6_TABLE:
1767         {
1768                 u32 v;
1769
1770                 if (optlen != sizeof(u32))
1771                         return -EINVAL;
1772                 if (get_user(v, (u32 __user *)optval))
1773                         return -EFAULT;
1774                 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */
1775                 if (v != RT_TABLE_DEFAULT && v >= 100000000)
1776                         return -EINVAL;
1777                 if (sk == mrt->mroute6_sk)
1778                         return -EBUSY;
1779
1780                 rtnl_lock();
1781                 ret = 0;
1782                 if (!ip6mr_new_table(net, v))
1783                         ret = -ENOMEM;
1784                 raw6_sk(sk)->ip6mr_table = v;
1785                 rtnl_unlock();
1786                 return ret;
1787         }
1788 #endif
1789         /*
1790          *      Spurious command, or MRT6_VERSION which you cannot
1791          *      set.
1792          */
1793         default:
1794                 return -ENOPROTOOPT;
1795         }
1796 }
1797
1798 /*
1799  *      Getsock opt support for the multicast routing system.
1800  */
1801
1802 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1803                           int __user *optlen)
1804 {
1805         int olr;
1806         int val;
1807         struct net *net = sock_net(sk);
1808         struct mr6_table *mrt;
1809
1810         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1811         if (mrt == NULL)
1812                 return -ENOENT;
1813
1814         switch (optname) {
1815         case MRT6_VERSION:
1816                 val = 0x0305;
1817                 break;
1818 #ifdef CONFIG_IPV6_PIMSM_V2
1819         case MRT6_PIM:
1820                 val = mrt->mroute_do_pim;
1821                 break;
1822 #endif
1823         case MRT6_ASSERT:
1824                 val = mrt->mroute_do_assert;
1825                 break;
1826         default:
1827                 return -ENOPROTOOPT;
1828         }
1829
1830         if (get_user(olr, optlen))
1831                 return -EFAULT;
1832
1833         olr = min_t(int, olr, sizeof(int));
1834         if (olr < 0)
1835                 return -EINVAL;
1836
1837         if (put_user(olr, optlen))
1838                 return -EFAULT;
1839         if (copy_to_user(optval, &val, olr))
1840                 return -EFAULT;
1841         return 0;
1842 }
1843
1844 /*
1845  *      The IP multicast ioctl support routines.
1846  */
1847
1848 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1849 {
1850         struct sioc_sg_req6 sr;
1851         struct sioc_mif_req6 vr;
1852         struct mif_device *vif;
1853         struct mfc6_cache *c;
1854         struct net *net = sock_net(sk);
1855         struct mr6_table *mrt;
1856
1857         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1858         if (mrt == NULL)
1859                 return -ENOENT;
1860
1861         switch (cmd) {
1862         case SIOCGETMIFCNT_IN6:
1863                 if (copy_from_user(&vr, arg, sizeof(vr)))
1864                         return -EFAULT;
1865                 if (vr.mifi >= mrt->maxvif)
1866                         return -EINVAL;
1867                 read_lock(&mrt_lock);
1868                 vif = &mrt->vif6_table[vr.mifi];
1869                 if (MIF_EXISTS(mrt, vr.mifi)) {
1870                         vr.icount = vif->pkt_in;
1871                         vr.ocount = vif->pkt_out;
1872                         vr.ibytes = vif->bytes_in;
1873                         vr.obytes = vif->bytes_out;
1874                         read_unlock(&mrt_lock);
1875
1876                         if (copy_to_user(arg, &vr, sizeof(vr)))
1877                                 return -EFAULT;
1878                         return 0;
1879                 }
1880                 read_unlock(&mrt_lock);
1881                 return -EADDRNOTAVAIL;
1882         case SIOCGETSGCNT_IN6:
1883                 if (copy_from_user(&sr, arg, sizeof(sr)))
1884                         return -EFAULT;
1885
1886                 read_lock(&mrt_lock);
1887                 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1888                 if (c) {
1889                         sr.pktcnt = c->mfc_un.res.pkt;
1890                         sr.bytecnt = c->mfc_un.res.bytes;
1891                         sr.wrong_if = c->mfc_un.res.wrong_if;
1892                         read_unlock(&mrt_lock);
1893
1894                         if (copy_to_user(arg, &sr, sizeof(sr)))
1895                                 return -EFAULT;
1896                         return 0;
1897                 }
1898                 read_unlock(&mrt_lock);
1899                 return -EADDRNOTAVAIL;
1900         default:
1901                 return -ENOIOCTLCMD;
1902         }
1903 }
1904
1905 #ifdef CONFIG_COMPAT
1906 struct compat_sioc_sg_req6 {
1907         struct sockaddr_in6 src;
1908         struct sockaddr_in6 grp;
1909         compat_ulong_t pktcnt;
1910         compat_ulong_t bytecnt;
1911         compat_ulong_t wrong_if;
1912 };
1913
1914 struct compat_sioc_mif_req6 {
1915         mifi_t  mifi;
1916         compat_ulong_t icount;
1917         compat_ulong_t ocount;
1918         compat_ulong_t ibytes;
1919         compat_ulong_t obytes;
1920 };
1921
1922 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1923 {
1924         struct compat_sioc_sg_req6 sr;
1925         struct compat_sioc_mif_req6 vr;
1926         struct mif_device *vif;
1927         struct mfc6_cache *c;
1928         struct net *net = sock_net(sk);
1929         struct mr6_table *mrt;
1930
1931         mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1932         if (mrt == NULL)
1933                 return -ENOENT;
1934
1935         switch (cmd) {
1936         case SIOCGETMIFCNT_IN6:
1937                 if (copy_from_user(&vr, arg, sizeof(vr)))
1938                         return -EFAULT;
1939                 if (vr.mifi >= mrt->maxvif)
1940                         return -EINVAL;
1941                 read_lock(&mrt_lock);
1942                 vif = &mrt->vif6_table[vr.mifi];
1943                 if (MIF_EXISTS(mrt, vr.mifi)) {
1944                         vr.icount = vif->pkt_in;
1945                         vr.ocount = vif->pkt_out;
1946                         vr.ibytes = vif->bytes_in;
1947                         vr.obytes = vif->bytes_out;
1948                         read_unlock(&mrt_lock);
1949
1950                         if (copy_to_user(arg, &vr, sizeof(vr)))
1951                                 return -EFAULT;
1952                         return 0;
1953                 }
1954                 read_unlock(&mrt_lock);
1955                 return -EADDRNOTAVAIL;
1956         case SIOCGETSGCNT_IN6:
1957                 if (copy_from_user(&sr, arg, sizeof(sr)))
1958                         return -EFAULT;
1959
1960                 read_lock(&mrt_lock);
1961                 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1962                 if (c) {
1963                         sr.pktcnt = c->mfc_un.res.pkt;
1964                         sr.bytecnt = c->mfc_un.res.bytes;
1965                         sr.wrong_if = c->mfc_un.res.wrong_if;
1966                         read_unlock(&mrt_lock);
1967
1968                         if (copy_to_user(arg, &sr, sizeof(sr)))
1969                                 return -EFAULT;
1970                         return 0;
1971                 }
1972                 read_unlock(&mrt_lock);
1973                 return -EADDRNOTAVAIL;
1974         default:
1975                 return -ENOIOCTLCMD;
1976         }
1977 }
1978 #endif
1979
1980 static inline int ip6mr_forward2_finish(struct sk_buff *skb)
1981 {
1982         IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1983                          IPSTATS_MIB_OUTFORWDATAGRAMS);
1984         IP6_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1985                          IPSTATS_MIB_OUTOCTETS, skb->len);
1986         return dst_output(skb);
1987 }
1988
1989 /*
1990  *      Processing handlers for ip6mr_forward
1991  */
1992
1993 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt,
1994                           struct sk_buff *skb, struct mfc6_cache *c, int vifi)
1995 {
1996         struct ipv6hdr *ipv6h;
1997         struct mif_device *vif = &mrt->vif6_table[vifi];
1998         struct net_device *dev;
1999         struct dst_entry *dst;
2000         struct flowi6 fl6;
2001
2002         if (vif->dev == NULL)
2003                 goto out_free;
2004
2005 #ifdef CONFIG_IPV6_PIMSM_V2
2006         if (vif->flags & MIFF_REGISTER) {
2007                 vif->pkt_out++;
2008                 vif->bytes_out += skb->len;
2009                 vif->dev->stats.tx_bytes += skb->len;
2010                 vif->dev->stats.tx_packets++;
2011                 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
2012                 goto out_free;
2013         }
2014 #endif
2015
2016         ipv6h = ipv6_hdr(skb);
2017
2018         fl6 = (struct flowi6) {
2019                 .flowi6_oif = vif->link,
2020                 .daddr = ipv6h->daddr,
2021         };
2022
2023         dst = ip6_route_output(net, NULL, &fl6);
2024         if (dst->error) {
2025                 dst_release(dst);
2026                 goto out_free;
2027         }
2028
2029         skb_dst_drop(skb);
2030         skb_dst_set(skb, dst);
2031
2032         /*
2033          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
2034          * not only before forwarding, but after forwarding on all output
2035          * interfaces. It is clear, if mrouter runs a multicasting
2036          * program, it should receive packets not depending to what interface
2037          * program is joined.
2038          * If we will not make it, the program will have to join on all
2039          * interfaces. On the other hand, multihoming host (or router, but
2040          * not mrouter) cannot join to more than one interface - it will
2041          * result in receiving multiple packets.
2042          */
2043         dev = vif->dev;
2044         skb->dev = dev;
2045         vif->pkt_out++;
2046         vif->bytes_out += skb->len;
2047
2048         /* We are about to write */
2049         /* XXX: extension headers? */
2050         if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
2051                 goto out_free;
2052
2053         ipv6h = ipv6_hdr(skb);
2054         ipv6h->hop_limit--;
2055
2056         IP6CB(skb)->flags |= IP6SKB_FORWARDED;
2057
2058         return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev,
2059                        ip6mr_forward2_finish);
2060
2061 out_free:
2062         kfree_skb(skb);
2063         return 0;
2064 }
2065
2066 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev)
2067 {
2068         int ct;
2069
2070         for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
2071                 if (mrt->vif6_table[ct].dev == dev)
2072                         break;
2073         }
2074         return ct;
2075 }
2076
2077 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt,
2078                            struct sk_buff *skb, struct mfc6_cache *cache)
2079 {
2080         int psend = -1;
2081         int vif, ct;
2082         int true_vifi = ip6mr_find_vif(mrt, skb->dev);
2083
2084         vif = cache->mf6c_parent;
2085         cache->mfc_un.res.pkt++;
2086         cache->mfc_un.res.bytes += skb->len;
2087
2088         if (ipv6_addr_any(&cache->mf6c_origin) && true_vifi >= 0) {
2089                 struct mfc6_cache *cache_proxy;
2090
2091                 /* For an (*,G) entry, we only check that the incomming
2092                  * interface is part of the static tree.
2093                  */
2094                 cache_proxy = ip6mr_cache_find_any_parent(mrt, vif);
2095                 if (cache_proxy &&
2096                     cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
2097                         goto forward;
2098         }
2099
2100         /*
2101          * Wrong interface: drop packet and (maybe) send PIM assert.
2102          */
2103         if (mrt->vif6_table[vif].dev != skb->dev) {
2104                 cache->mfc_un.res.wrong_if++;
2105
2106                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2107                     /* pimsm uses asserts, when switching from RPT to SPT,
2108                        so that we cannot check that packet arrived on an oif.
2109                        It is bad, but otherwise we would need to move pretty
2110                        large chunk of pimd to kernel. Ough... --ANK
2111                      */
2112                     (mrt->mroute_do_pim ||
2113                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
2114                     time_after(jiffies,
2115                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
2116                         cache->mfc_un.res.last_assert = jiffies;
2117                         ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2118                 }
2119                 goto dont_forward;
2120         }
2121
2122 forward:
2123         mrt->vif6_table[vif].pkt_in++;
2124         mrt->vif6_table[vif].bytes_in += skb->len;
2125
2126         /*
2127          *      Forward the frame
2128          */
2129         if (ipv6_addr_any(&cache->mf6c_origin) &&
2130             ipv6_addr_any(&cache->mf6c_mcastgrp)) {
2131                 if (true_vifi >= 0 &&
2132                     true_vifi != cache->mf6c_parent &&
2133                     ipv6_hdr(skb)->hop_limit >
2134                                 cache->mfc_un.res.ttls[cache->mf6c_parent]) {
2135                         /* It's an (*,*) entry and the packet is not coming from
2136                          * the upstream: forward the packet to the upstream
2137                          * only.
2138                          */
2139                         psend = cache->mf6c_parent;
2140                         goto last_forward;
2141                 }
2142                 goto dont_forward;
2143         }
2144         for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
2145                 /* For (*,G) entry, don't forward to the incoming interface */
2146                 if ((!ipv6_addr_any(&cache->mf6c_origin) || ct != true_vifi) &&
2147                     ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
2148                         if (psend != -1) {
2149                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2150                                 if (skb2)
2151                                         ip6mr_forward2(net, mrt, skb2, cache, psend);
2152                         }
2153                         psend = ct;
2154                 }
2155         }
2156 last_forward:
2157         if (psend != -1) {
2158                 ip6mr_forward2(net, mrt, skb, cache, psend);
2159                 return;
2160         }
2161
2162 dont_forward:
2163         kfree_skb(skb);
2164 }
2165
2166
2167 /*
2168  *      Multicast packets for forwarding arrive here
2169  */
2170
2171 int ip6_mr_input(struct sk_buff *skb)
2172 {
2173         struct mfc6_cache *cache;
2174         struct net *net = dev_net(skb->dev);
2175         struct mr6_table *mrt;
2176         struct flowi6 fl6 = {
2177                 .flowi6_iif     = skb->dev->ifindex,
2178                 .flowi6_mark    = skb->mark,
2179         };
2180         int err;
2181
2182         err = ip6mr_fib_lookup(net, &fl6, &mrt);
2183         if (err < 0) {
2184                 kfree_skb(skb);
2185                 return err;
2186         }
2187
2188         read_lock(&mrt_lock);
2189         cache = ip6mr_cache_find(mrt,
2190                                  &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2191         if (cache == NULL) {
2192                 int vif = ip6mr_find_vif(mrt, skb->dev);
2193
2194                 if (vif >= 0)
2195                         cache = ip6mr_cache_find_any(mrt,
2196                                                      &ipv6_hdr(skb)->daddr,
2197                                                      vif);
2198         }
2199
2200         /*
2201          *      No usable cache entry
2202          */
2203         if (cache == NULL) {
2204                 int vif;
2205
2206                 vif = ip6mr_find_vif(mrt, skb->dev);
2207                 if (vif >= 0) {
2208                         int err = ip6mr_cache_unresolved(mrt, vif, skb);
2209                         read_unlock(&mrt_lock);
2210
2211                         return err;
2212                 }
2213                 read_unlock(&mrt_lock);
2214                 kfree_skb(skb);
2215                 return -ENODEV;
2216         }
2217
2218         ip6_mr_forward(net, mrt, skb, cache);
2219
2220         read_unlock(&mrt_lock);
2221
2222         return 0;
2223 }
2224
2225
2226 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2227                                struct mfc6_cache *c, struct rtmsg *rtm)
2228 {
2229         int ct;
2230         struct rtnexthop *nhp;
2231         struct nlattr *mp_attr;
2232         struct rta_mfc_stats mfcs;
2233
2234         /* If cache is unresolved, don't try to parse IIF and OIF */
2235         if (c->mf6c_parent >= MAXMIFS)
2236                 return -ENOENT;
2237
2238         if (MIF_EXISTS(mrt, c->mf6c_parent) &&
2239             nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0)
2240                 return -EMSGSIZE;
2241         mp_attr = nla_nest_start(skb, RTA_MULTIPATH);
2242         if (mp_attr == NULL)
2243                 return -EMSGSIZE;
2244
2245         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2246                 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2247                         nhp = nla_reserve_nohdr(skb, sizeof(*nhp));
2248                         if (nhp == NULL) {
2249                                 nla_nest_cancel(skb, mp_attr);
2250                                 return -EMSGSIZE;
2251                         }
2252
2253                         nhp->rtnh_flags = 0;
2254                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2255                         nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex;
2256                         nhp->rtnh_len = sizeof(*nhp);
2257                 }
2258         }
2259
2260         nla_nest_end(skb, mp_attr);
2261
2262         mfcs.mfcs_packets = c->mfc_un.res.pkt;
2263         mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2264         mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2265         if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2266                 return -EMSGSIZE;
2267
2268         rtm->rtm_type = RTN_MULTICAST;
2269         return 1;
2270 }
2271
2272 int ip6mr_get_route(struct net *net,
2273                     struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2274 {
2275         int err;
2276         struct mr6_table *mrt;
2277         struct mfc6_cache *cache;
2278         struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2279
2280         mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2281         if (mrt == NULL)
2282                 return -ENOENT;
2283
2284         read_lock(&mrt_lock);
2285         cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2286         if (!cache && skb->dev) {
2287                 int vif = ip6mr_find_vif(mrt, skb->dev);
2288
2289                 if (vif >= 0)
2290                         cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr,
2291                                                      vif);
2292         }
2293
2294         if (!cache) {
2295                 struct sk_buff *skb2;
2296                 struct ipv6hdr *iph;
2297                 struct net_device *dev;
2298                 int vif;
2299
2300                 if (nowait) {
2301                         read_unlock(&mrt_lock);
2302                         return -EAGAIN;
2303                 }
2304
2305                 dev = skb->dev;
2306                 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2307                         read_unlock(&mrt_lock);
2308                         return -ENODEV;
2309                 }
2310
2311                 /* really correct? */
2312                 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2313                 if (!skb2) {
2314                         read_unlock(&mrt_lock);
2315                         return -ENOMEM;
2316                 }
2317
2318                 skb_reset_transport_header(skb2);
2319
2320                 skb_put(skb2, sizeof(struct ipv6hdr));
2321                 skb_reset_network_header(skb2);
2322
2323                 iph = ipv6_hdr(skb2);
2324                 iph->version = 0;
2325                 iph->priority = 0;
2326                 iph->flow_lbl[0] = 0;
2327                 iph->flow_lbl[1] = 0;
2328                 iph->flow_lbl[2] = 0;
2329                 iph->payload_len = 0;
2330                 iph->nexthdr = IPPROTO_NONE;
2331                 iph->hop_limit = 0;
2332                 iph->saddr = rt->rt6i_src.addr;
2333                 iph->daddr = rt->rt6i_dst.addr;
2334
2335                 err = ip6mr_cache_unresolved(mrt, vif, skb2);
2336                 read_unlock(&mrt_lock);
2337
2338                 return err;
2339         }
2340
2341         if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
2342                 cache->mfc_flags |= MFC_NOTIFY;
2343
2344         err = __ip6mr_fill_mroute(mrt, skb, cache, rtm);
2345         read_unlock(&mrt_lock);
2346         return err;
2347 }
2348
2349 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2350                              u32 portid, u32 seq, struct mfc6_cache *c, int cmd)
2351 {
2352         struct nlmsghdr *nlh;
2353         struct rtmsg *rtm;
2354         int err;
2355
2356         nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
2357         if (nlh == NULL)
2358                 return -EMSGSIZE;
2359
2360         rtm = nlmsg_data(nlh);
2361         rtm->rtm_family   = RTNL_FAMILY_IP6MR;
2362         rtm->rtm_dst_len  = 128;
2363         rtm->rtm_src_len  = 128;
2364         rtm->rtm_tos      = 0;
2365         rtm->rtm_table    = mrt->id;
2366         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2367                 goto nla_put_failure;
2368         rtm->rtm_type = RTN_MULTICAST;
2369         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2370         if (c->mfc_flags & MFC_STATIC)
2371                 rtm->rtm_protocol = RTPROT_STATIC;
2372         else
2373                 rtm->rtm_protocol = RTPROT_MROUTED;
2374         rtm->rtm_flags    = 0;
2375
2376         if (nla_put(skb, RTA_SRC, 16, &c->mf6c_origin) ||
2377             nla_put(skb, RTA_DST, 16, &c->mf6c_mcastgrp))
2378                 goto nla_put_failure;
2379         err = __ip6mr_fill_mroute(mrt, skb, c, rtm);
2380         /* do not break the dump if cache is unresolved */
2381         if (err < 0 && err != -ENOENT)
2382                 goto nla_put_failure;
2383
2384         return nlmsg_end(skb, nlh);
2385
2386 nla_put_failure:
2387         nlmsg_cancel(skb, nlh);
2388         return -EMSGSIZE;
2389 }
2390
2391 static int mr6_msgsize(bool unresolved, int maxvif)
2392 {
2393         size_t len =
2394                 NLMSG_ALIGN(sizeof(struct rtmsg))
2395                 + nla_total_size(4)     /* RTA_TABLE */
2396                 + nla_total_size(sizeof(struct in6_addr))       /* RTA_SRC */
2397                 + nla_total_size(sizeof(struct in6_addr))       /* RTA_DST */
2398                 ;
2399
2400         if (!unresolved)
2401                 len = len
2402                       + nla_total_size(4)       /* RTA_IIF */
2403                       + nla_total_size(0)       /* RTA_MULTIPATH */
2404                       + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2405                                                 /* RTA_MFC_STATS */
2406                       + nla_total_size(sizeof(struct rta_mfc_stats))
2407                 ;
2408
2409         return len;
2410 }
2411
2412 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
2413                               int cmd)
2414 {
2415         struct net *net = read_pnet(&mrt->net);
2416         struct sk_buff *skb;
2417         int err = -ENOBUFS;
2418
2419         skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif),
2420                         GFP_ATOMIC);
2421         if (skb == NULL)
2422                 goto errout;
2423
2424         err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
2425         if (err < 0)
2426                 goto errout;
2427
2428         rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC);
2429         return;
2430
2431 errout:
2432         kfree_skb(skb);
2433         if (err < 0)
2434                 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err);
2435 }
2436
2437 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2438 {
2439         struct net *net = sock_net(skb->sk);
2440         struct mr6_table *mrt;
2441         struct mfc6_cache *mfc;
2442         unsigned int t = 0, s_t;
2443         unsigned int h = 0, s_h;
2444         unsigned int e = 0, s_e;
2445
2446         s_t = cb->args[0];
2447         s_h = cb->args[1];
2448         s_e = cb->args[2];
2449
2450         read_lock(&mrt_lock);
2451         ip6mr_for_each_table(mrt, net) {
2452                 if (t < s_t)
2453                         goto next_table;
2454                 if (t > s_t)
2455                         s_h = 0;
2456                 for (h = s_h; h < MFC6_LINES; h++) {
2457                         list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) {
2458                                 if (e < s_e)
2459                                         goto next_entry;
2460                                 if (ip6mr_fill_mroute(mrt, skb,
2461                                                       NETLINK_CB(cb->skb).portid,
2462                                                       cb->nlh->nlmsg_seq,
2463                                                       mfc, RTM_NEWROUTE) < 0)
2464                                         goto done;
2465 next_entry:
2466                                 e++;
2467                         }
2468                         e = s_e = 0;
2469                 }
2470                 spin_lock_bh(&mfc_unres_lock);
2471                 list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) {
2472                         if (e < s_e)
2473                                 goto next_entry2;
2474                         if (ip6mr_fill_mroute(mrt, skb,
2475                                               NETLINK_CB(cb->skb).portid,
2476                                               cb->nlh->nlmsg_seq,
2477                                               mfc, RTM_NEWROUTE) < 0) {
2478                                 spin_unlock_bh(&mfc_unres_lock);
2479                                 goto done;
2480                         }
2481 next_entry2:
2482                         e++;
2483                 }
2484                 spin_unlock_bh(&mfc_unres_lock);
2485                 e = s_e = 0;
2486                 s_h = 0;
2487 next_table:
2488                 t++;
2489         }
2490 done:
2491         read_unlock(&mrt_lock);
2492
2493         cb->args[2] = e;
2494         cb->args[1] = h;
2495         cb->args[0] = t;
2496
2497         return skb->len;
2498 }