54422f73b03ba96971386f8a906ba57515194b2b
[firefly-linux-kernel-4.4.55.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47
48 #include "xprt_rdma.h"
49
50 #include <linux/highmem.h>
51
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY        RPCDBG_TRANS
54 #endif
55
56 #ifdef RPC_DEBUG
57 static const char transfertypes[][12] = {
58         "pure inline",  /* no chunks */
59         " read chunk",  /* some argument via rdma read */
60         "*read chunk",  /* entire request via rdma read */
61         "write chunk",  /* some result via rdma write */
62         "reply chunk"   /* entire reply via rdma write */
63 };
64 #endif
65
66 /*
67  * Chunk assembly from upper layer xdr_buf.
68  *
69  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70  * elements. Segments are then coalesced when registered, if possible
71  * within the selected memreg mode.
72  *
73  * Returns positive number of segments converted, or a negative errno.
74  */
75
76 static int
77 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78         enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
79 {
80         int len, n = 0, p;
81         int page_base;
82         struct page **ppages;
83
84         if (pos == 0 && xdrbuf->head[0].iov_len) {
85                 seg[n].mr_page = NULL;
86                 seg[n].mr_offset = xdrbuf->head[0].iov_base;
87                 seg[n].mr_len = xdrbuf->head[0].iov_len;
88                 ++n;
89         }
90
91         len = xdrbuf->page_len;
92         ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93         page_base = xdrbuf->page_base & ~PAGE_MASK;
94         p = 0;
95         while (len && n < nsegs) {
96                 if (!ppages[p]) {
97                         /* alloc the pagelist for receiving buffer */
98                         ppages[p] = alloc_page(GFP_ATOMIC);
99                         if (!ppages[p])
100                                 return -ENOMEM;
101                 }
102                 seg[n].mr_page = ppages[p];
103                 seg[n].mr_offset = (void *)(unsigned long) page_base;
104                 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105                 if (seg[n].mr_len > PAGE_SIZE)
106                         return -EIO;
107                 len -= seg[n].mr_len;
108                 ++n;
109                 ++p;
110                 page_base = 0;  /* page offset only applies to first page */
111         }
112
113         /* Message overflows the seg array */
114         if (len && n == nsegs)
115                 return -EIO;
116
117         if (xdrbuf->tail[0].iov_len) {
118                 /* the rpcrdma protocol allows us to omit any trailing
119                  * xdr pad bytes, saving the server an RDMA operation. */
120                 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
121                         return n;
122                 if (n == nsegs)
123                         /* Tail remains, but we're out of segments */
124                         return -EIO;
125                 seg[n].mr_page = NULL;
126                 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127                 seg[n].mr_len = xdrbuf->tail[0].iov_len;
128                 ++n;
129         }
130
131         return n;
132 }
133
134 /*
135  * Create read/write chunk lists, and reply chunks, for RDMA
136  *
137  *   Assume check against THRESHOLD has been done, and chunks are required.
138  *   Assume only encoding one list entry for read|write chunks. The NFSv3
139  *     protocol is simple enough to allow this as it only has a single "bulk
140  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
142  *
143  * When used for a single reply chunk (which is a special write
144  * chunk used for the entire reply, rather than just the data), it
145  * is used primarily for READDIR and READLINK which would otherwise
146  * be severely size-limited by a small rdma inline read max. The server
147  * response will come back as an RDMA Write, followed by a message
148  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149  * chunks do not provide data alignment, however they do not require
150  * "fixup" (moving the response to the upper layer buffer) either.
151  *
152  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
153  *
154  *  Read chunklist (a linked list):
155  *   N elements, position P (same P for all chunks of same arg!):
156  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
157  *
158  *  Write chunklist (a list of (one) counted array):
159  *   N elements:
160  *    1 - N - HLOO - HLOO - ... - HLOO - 0
161  *
162  *  Reply chunk (a counted array):
163  *   N elements:
164  *    1 - N - HLOO - HLOO - ... - HLOO
165  *
166  * Returns positive RPC/RDMA header size, or negative errno.
167  */
168
169 static ssize_t
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171                 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175         int n, nsegs, nchunks = 0;
176         unsigned int pos;
177         struct rpcrdma_mr_seg *seg = req->rl_segments;
178         struct rpcrdma_read_chunk *cur_rchunk = NULL;
179         struct rpcrdma_write_array *warray = NULL;
180         struct rpcrdma_write_chunk *cur_wchunk = NULL;
181         __be32 *iptr = headerp->rm_body.rm_chunks;
182
183         if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184                 /* a read chunk - server will RDMA Read our memory */
185                 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186         } else {
187                 /* a write or reply chunk - server will RDMA Write our memory */
188                 *iptr++ = xdr_zero;     /* encode a NULL read chunk list */
189                 if (type == rpcrdma_replych)
190                         *iptr++ = xdr_zero;     /* a NULL write chunk list */
191                 warray = (struct rpcrdma_write_array *) iptr;
192                 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193         }
194
195         if (type == rpcrdma_replych || type == rpcrdma_areadch)
196                 pos = 0;
197         else
198                 pos = target->head[0].iov_len;
199
200         nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201         if (nsegs < 0)
202                 return nsegs;
203
204         do {
205                 n = rpcrdma_register_external(seg, nsegs,
206                                                 cur_wchunk != NULL, r_xprt);
207                 if (n <= 0)
208                         goto out;
209                 if (cur_rchunk) {       /* read */
210                         cur_rchunk->rc_discrim = xdr_one;
211                         /* all read chunks have the same "position" */
212                         cur_rchunk->rc_position = htonl(pos);
213                         cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
214                         cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
215                         xdr_encode_hyper(
216                                         (__be32 *)&cur_rchunk->rc_target.rs_offset,
217                                         seg->mr_base);
218                         dprintk("RPC:       %s: read chunk "
219                                 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
220                                 seg->mr_len, (unsigned long long)seg->mr_base,
221                                 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
222                         cur_rchunk++;
223                         r_xprt->rx_stats.read_chunk_count++;
224                 } else {                /* write/reply */
225                         cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
226                         cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
227                         xdr_encode_hyper(
228                                         (__be32 *)&cur_wchunk->wc_target.rs_offset,
229                                         seg->mr_base);
230                         dprintk("RPC:       %s: %s chunk "
231                                 "elem %d@0x%llx:0x%x (%s)\n", __func__,
232                                 (type == rpcrdma_replych) ? "reply" : "write",
233                                 seg->mr_len, (unsigned long long)seg->mr_base,
234                                 seg->mr_rkey, n < nsegs ? "more" : "last");
235                         cur_wchunk++;
236                         if (type == rpcrdma_replych)
237                                 r_xprt->rx_stats.reply_chunk_count++;
238                         else
239                                 r_xprt->rx_stats.write_chunk_count++;
240                         r_xprt->rx_stats.total_rdma_request += seg->mr_len;
241                 }
242                 nchunks++;
243                 seg   += n;
244                 nsegs -= n;
245         } while (nsegs);
246
247         /* success. all failures return above */
248         req->rl_nchunks = nchunks;
249
250         /*
251          * finish off header. If write, marshal discrim and nchunks.
252          */
253         if (cur_rchunk) {
254                 iptr = (__be32 *) cur_rchunk;
255                 *iptr++ = xdr_zero;     /* finish the read chunk list */
256                 *iptr++ = xdr_zero;     /* encode a NULL write chunk list */
257                 *iptr++ = xdr_zero;     /* encode a NULL reply chunk */
258         } else {
259                 warray->wc_discrim = xdr_one;
260                 warray->wc_nchunks = htonl(nchunks);
261                 iptr = (__be32 *) cur_wchunk;
262                 if (type == rpcrdma_writech) {
263                         *iptr++ = xdr_zero; /* finish the write chunk list */
264                         *iptr++ = xdr_zero; /* encode a NULL reply chunk */
265                 }
266         }
267
268         /*
269          * Return header size.
270          */
271         return (unsigned char *)iptr - (unsigned char *)headerp;
272
273 out:
274         for (pos = 0; nchunks--;)
275                 pos += rpcrdma_deregister_external(
276                                 &req->rl_segments[pos], r_xprt);
277         return n;
278 }
279
280 /*
281  * Marshal chunks. This routine returns the header length
282  * consumed by marshaling.
283  *
284  * Returns positive RPC/RDMA header size, or negative errno.
285  */
286
287 ssize_t
288 rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
289 {
290         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
291         struct rpcrdma_msg *headerp = (struct rpcrdma_msg *)req->rl_base;
292
293         if (req->rl_rtype != rpcrdma_noch)
294                 result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
295                                                headerp, req->rl_rtype);
296         else if (req->rl_wtype != rpcrdma_noch)
297                 result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
298                                                headerp, req->rl_wtype);
299         return result;
300 }
301
302 /*
303  * Copy write data inline.
304  * This function is used for "small" requests. Data which is passed
305  * to RPC via iovecs (or page list) is copied directly into the
306  * pre-registered memory buffer for this request. For small amounts
307  * of data, this is efficient. The cutoff value is tunable.
308  */
309 static int
310 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
311 {
312         int i, npages, curlen;
313         int copy_len;
314         unsigned char *srcp, *destp;
315         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
316         int page_base;
317         struct page **ppages;
318
319         destp = rqst->rq_svec[0].iov_base;
320         curlen = rqst->rq_svec[0].iov_len;
321         destp += curlen;
322         /*
323          * Do optional padding where it makes sense. Alignment of write
324          * payload can help the server, if our setting is accurate.
325          */
326         pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
327         if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
328                 pad = 0;        /* don't pad this request */
329
330         dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
331                 __func__, pad, destp, rqst->rq_slen, curlen);
332
333         copy_len = rqst->rq_snd_buf.page_len;
334
335         if (rqst->rq_snd_buf.tail[0].iov_len) {
336                 curlen = rqst->rq_snd_buf.tail[0].iov_len;
337                 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
338                         memmove(destp + copy_len,
339                                 rqst->rq_snd_buf.tail[0].iov_base, curlen);
340                         r_xprt->rx_stats.pullup_copy_count += curlen;
341                 }
342                 dprintk("RPC:       %s: tail destp 0x%p len %d\n",
343                         __func__, destp + copy_len, curlen);
344                 rqst->rq_svec[0].iov_len += curlen;
345         }
346         r_xprt->rx_stats.pullup_copy_count += copy_len;
347
348         page_base = rqst->rq_snd_buf.page_base;
349         ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
350         page_base &= ~PAGE_MASK;
351         npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
352         for (i = 0; copy_len && i < npages; i++) {
353                 curlen = PAGE_SIZE - page_base;
354                 if (curlen > copy_len)
355                         curlen = copy_len;
356                 dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
357                         __func__, i, destp, copy_len, curlen);
358                 srcp = kmap_atomic(ppages[i]);
359                 memcpy(destp, srcp+page_base, curlen);
360                 kunmap_atomic(srcp);
361                 rqst->rq_svec[0].iov_len += curlen;
362                 destp += curlen;
363                 copy_len -= curlen;
364                 page_base = 0;
365         }
366         /* header now contains entire send message */
367         return pad;
368 }
369
370 /*
371  * Marshal a request: the primary job of this routine is to choose
372  * the transfer modes. See comments below.
373  *
374  * Uses multiple RDMA IOVs for a request:
375  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
376  *         preregistered buffer that already holds the RPC data in
377  *         its middle.
378  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
379  *  [2] -- optional padding.
380  *  [3] -- if padded, header only in [1] and data here.
381  *
382  * Returns zero on success, otherwise a negative errno.
383  */
384
385 int
386 rpcrdma_marshal_req(struct rpc_rqst *rqst)
387 {
388         struct rpc_xprt *xprt = rqst->rq_xprt;
389         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
390         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
391         char *base;
392         size_t rpclen, padlen;
393         ssize_t hdrlen;
394         struct rpcrdma_msg *headerp;
395
396         /*
397          * rpclen gets amount of data in first buffer, which is the
398          * pre-registered buffer.
399          */
400         base = rqst->rq_svec[0].iov_base;
401         rpclen = rqst->rq_svec[0].iov_len;
402
403         /* build RDMA header in private area at front */
404         headerp = (struct rpcrdma_msg *) req->rl_base;
405         /* don't htonl XID, it's already done in request */
406         headerp->rm_xid = rqst->rq_xid;
407         headerp->rm_vers = xdr_one;
408         headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
409         headerp->rm_type = htonl(RDMA_MSG);
410
411         /*
412          * Chunks needed for results?
413          *
414          * o If the expected result is under the inline threshold, all ops
415          *   return as inline (but see later).
416          * o Large non-read ops return as a single reply chunk.
417          * o Large read ops return data as write chunk(s), header as inline.
418          *
419          * Note: the NFS code sending down multiple result segments implies
420          * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
421          */
422
423         /*
424          * This code can handle read chunks, write chunks OR reply
425          * chunks -- only one type. If the request is too big to fit
426          * inline, then we will choose read chunks. If the request is
427          * a READ, then use write chunks to separate the file data
428          * into pages; otherwise use reply chunks.
429          */
430         if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
431                 req->rl_wtype = rpcrdma_noch;
432         else if (rqst->rq_rcv_buf.page_len == 0)
433                 req->rl_wtype = rpcrdma_replych;
434         else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
435                 req->rl_wtype = rpcrdma_writech;
436         else
437                 req->rl_wtype = rpcrdma_replych;
438
439         /*
440          * Chunks needed for arguments?
441          *
442          * o If the total request is under the inline threshold, all ops
443          *   are sent as inline.
444          * o Large non-write ops are sent with the entire message as a
445          *   single read chunk (protocol 0-position special case).
446          * o Large write ops transmit data as read chunk(s), header as
447          *   inline.
448          *
449          * Note: the NFS code sending down multiple argument segments
450          * implies the op is a write.
451          * TBD check NFSv4 setacl
452          */
453         if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
454                 req->rl_rtype = rpcrdma_noch;
455         else if (rqst->rq_snd_buf.page_len == 0)
456                 req->rl_rtype = rpcrdma_areadch;
457         else
458                 req->rl_rtype = rpcrdma_readch;
459
460         /* The following simplification is not true forever */
461         if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
462                 req->rl_wtype = rpcrdma_noch;
463         if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
464                 dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
465                         __func__);
466                 return -EIO;
467         }
468
469         hdrlen = 28; /*sizeof *headerp;*/
470         padlen = 0;
471
472         /*
473          * Pull up any extra send data into the preregistered buffer.
474          * When padding is in use and applies to the transfer, insert
475          * it and change the message type.
476          */
477         if (req->rl_rtype == rpcrdma_noch) {
478
479                 padlen = rpcrdma_inline_pullup(rqst,
480                                                 RPCRDMA_INLINE_PAD_VALUE(rqst));
481
482                 if (padlen) {
483                         headerp->rm_type = htonl(RDMA_MSGP);
484                         headerp->rm_body.rm_padded.rm_align =
485                                 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
486                         headerp->rm_body.rm_padded.rm_thresh =
487                                 htonl(RPCRDMA_INLINE_PAD_THRESH);
488                         headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
489                         headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
490                         headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
491                         hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
492                         if (req->rl_wtype != rpcrdma_noch) {
493                                 dprintk("RPC:       %s: invalid chunk list\n",
494                                         __func__);
495                                 return -EIO;
496                         }
497                 } else {
498                         headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
499                         headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
500                         headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
501                         /* new length after pullup */
502                         rpclen = rqst->rq_svec[0].iov_len;
503                         /*
504                          * Currently we try to not actually use read inline.
505                          * Reply chunks have the desirable property that
506                          * they land, packed, directly in the target buffers
507                          * without headers, so they require no fixup. The
508                          * additional RDMA Write op sends the same amount
509                          * of data, streams on-the-wire and adds no overhead
510                          * on receive. Therefore, we request a reply chunk
511                          * for non-writes wherever feasible and efficient.
512                          */
513                         if (req->rl_wtype == rpcrdma_noch)
514                                 req->rl_wtype = rpcrdma_replych;
515                 }
516         }
517
518         hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
519         if (hdrlen < 0)
520                 return hdrlen;
521
522         dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
523                 " headerp 0x%p base 0x%p lkey 0x%x\n",
524                 __func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
525                 headerp, base, req->rl_iov.lkey);
526
527         /*
528          * initialize send_iov's - normally only two: rdma chunk header and
529          * single preregistered RPC header buffer, but if padding is present,
530          * then use a preregistered (and zeroed) pad buffer between the RPC
531          * header and any write data. In all non-rdma cases, any following
532          * data has been copied into the RPC header buffer.
533          */
534         req->rl_send_iov[0].addr = req->rl_iov.addr;
535         req->rl_send_iov[0].length = hdrlen;
536         req->rl_send_iov[0].lkey = req->rl_iov.lkey;
537
538         req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
539         req->rl_send_iov[1].length = rpclen;
540         req->rl_send_iov[1].lkey = req->rl_iov.lkey;
541
542         req->rl_niovs = 2;
543
544         if (padlen) {
545                 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
546
547                 req->rl_send_iov[2].addr = ep->rep_pad.addr;
548                 req->rl_send_iov[2].length = padlen;
549                 req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
550
551                 req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
552                 req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
553                 req->rl_send_iov[3].lkey = req->rl_iov.lkey;
554
555                 req->rl_niovs = 4;
556         }
557
558         return 0;
559 }
560
561 /*
562  * Chase down a received write or reply chunklist to get length
563  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
564  */
565 static int
566 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
567 {
568         unsigned int i, total_len;
569         struct rpcrdma_write_chunk *cur_wchunk;
570
571         i = ntohl(**iptrp);     /* get array count */
572         if (i > max)
573                 return -1;
574         cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
575         total_len = 0;
576         while (i--) {
577                 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
578                 ifdebug(FACILITY) {
579                         u64 off;
580                         xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
581                         dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
582                                 __func__,
583                                 ntohl(seg->rs_length),
584                                 (unsigned long long)off,
585                                 ntohl(seg->rs_handle));
586                 }
587                 total_len += ntohl(seg->rs_length);
588                 ++cur_wchunk;
589         }
590         /* check and adjust for properly terminated write chunk */
591         if (wrchunk) {
592                 __be32 *w = (__be32 *) cur_wchunk;
593                 if (*w++ != xdr_zero)
594                         return -1;
595                 cur_wchunk = (struct rpcrdma_write_chunk *) w;
596         }
597         if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
598                 return -1;
599
600         *iptrp = (__be32 *) cur_wchunk;
601         return total_len;
602 }
603
604 /*
605  * Scatter inline received data back into provided iov's.
606  */
607 static void
608 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
609 {
610         int i, npages, curlen, olen;
611         char *destp;
612         struct page **ppages;
613         int page_base;
614
615         curlen = rqst->rq_rcv_buf.head[0].iov_len;
616         if (curlen > copy_len) {        /* write chunk header fixup */
617                 curlen = copy_len;
618                 rqst->rq_rcv_buf.head[0].iov_len = curlen;
619         }
620
621         dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
622                 __func__, srcp, copy_len, curlen);
623
624         /* Shift pointer for first receive segment only */
625         rqst->rq_rcv_buf.head[0].iov_base = srcp;
626         srcp += curlen;
627         copy_len -= curlen;
628
629         olen = copy_len;
630         i = 0;
631         rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
632         page_base = rqst->rq_rcv_buf.page_base;
633         ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
634         page_base &= ~PAGE_MASK;
635
636         if (copy_len && rqst->rq_rcv_buf.page_len) {
637                 npages = PAGE_ALIGN(page_base +
638                         rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
639                 for (; i < npages; i++) {
640                         curlen = PAGE_SIZE - page_base;
641                         if (curlen > copy_len)
642                                 curlen = copy_len;
643                         dprintk("RPC:       %s: page %d"
644                                 " srcp 0x%p len %d curlen %d\n",
645                                 __func__, i, srcp, copy_len, curlen);
646                         destp = kmap_atomic(ppages[i]);
647                         memcpy(destp + page_base, srcp, curlen);
648                         flush_dcache_page(ppages[i]);
649                         kunmap_atomic(destp);
650                         srcp += curlen;
651                         copy_len -= curlen;
652                         if (copy_len == 0)
653                                 break;
654                         page_base = 0;
655                 }
656         }
657
658         if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
659                 curlen = copy_len;
660                 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661                         curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662                 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663                         memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664                 dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
665                         __func__, srcp, copy_len, curlen);
666                 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667                 copy_len -= curlen; ++i;
668         } else
669                 rqst->rq_rcv_buf.tail[0].iov_len = 0;
670
671         if (pad) {
672                 /* implicit padding on terminal chunk */
673                 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
674                 while (pad--)
675                         p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
676         }
677
678         if (copy_len)
679                 dprintk("RPC:       %s: %d bytes in"
680                         " %d extra segments (%d lost)\n",
681                         __func__, olen, i, copy_len);
682
683         /* TBD avoid a warning from call_decode() */
684         rqst->rq_private_buf = rqst->rq_rcv_buf;
685 }
686
687 void
688 rpcrdma_connect_worker(struct work_struct *work)
689 {
690         struct rpcrdma_ep *ep =
691                 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
692         struct rpc_xprt *xprt = ep->rep_xprt;
693
694         spin_lock_bh(&xprt->transport_lock);
695         if (++xprt->connect_cookie == 0)        /* maintain a reserved value */
696                 ++xprt->connect_cookie;
697         if (ep->rep_connected > 0) {
698                 if (!xprt_test_and_set_connected(xprt))
699                         xprt_wake_pending_tasks(xprt, 0);
700         } else {
701                 if (xprt_test_and_clear_connected(xprt))
702                         xprt_wake_pending_tasks(xprt, -ENOTCONN);
703         }
704         spin_unlock_bh(&xprt->transport_lock);
705 }
706
707 /*
708  * This function is called when an async event is posted to
709  * the connection which changes the connection state. All it
710  * does at this point is mark the connection up/down, the rpc
711  * timers do the rest.
712  */
713 void
714 rpcrdma_conn_func(struct rpcrdma_ep *ep)
715 {
716         schedule_delayed_work(&ep->rep_connect_worker, 0);
717 }
718
719 /*
720  * Called as a tasklet to do req/reply match and complete a request
721  * Errors must result in the RPC task either being awakened, or
722  * allowed to timeout, to discover the errors at that time.
723  */
724 void
725 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
726 {
727         struct rpcrdma_msg *headerp;
728         struct rpcrdma_req *req;
729         struct rpc_rqst *rqst;
730         struct rpc_xprt *xprt = rep->rr_xprt;
731         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
732         __be32 *iptr;
733         int rdmalen, status;
734         unsigned long cwnd;
735
736         /* Check status. If bad, signal disconnect and return rep to pool */
737         if (rep->rr_len == ~0U) {
738                 rpcrdma_recv_buffer_put(rep);
739                 if (r_xprt->rx_ep.rep_connected == 1) {
740                         r_xprt->rx_ep.rep_connected = -EIO;
741                         rpcrdma_conn_func(&r_xprt->rx_ep);
742                 }
743                 return;
744         }
745         if (rep->rr_len < 28) {
746                 dprintk("RPC:       %s: short/invalid reply\n", __func__);
747                 goto repost;
748         }
749         headerp = (struct rpcrdma_msg *) rep->rr_base;
750         if (headerp->rm_vers != xdr_one) {
751                 dprintk("RPC:       %s: invalid version %d\n",
752                         __func__, ntohl(headerp->rm_vers));
753                 goto repost;
754         }
755
756         /* Get XID and try for a match. */
757         spin_lock(&xprt->transport_lock);
758         rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
759         if (rqst == NULL) {
760                 spin_unlock(&xprt->transport_lock);
761                 dprintk("RPC:       %s: reply 0x%p failed "
762                         "to match any request xid 0x%08x len %d\n",
763                         __func__, rep, headerp->rm_xid, rep->rr_len);
764 repost:
765                 r_xprt->rx_stats.bad_reply_count++;
766                 rep->rr_func = rpcrdma_reply_handler;
767                 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
768                         rpcrdma_recv_buffer_put(rep);
769
770                 return;
771         }
772
773         /* get request object */
774         req = rpcr_to_rdmar(rqst);
775         if (req->rl_reply) {
776                 spin_unlock(&xprt->transport_lock);
777                 dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
778                         "request 0x%p: xid 0x%08x\n", __func__, rep, req,
779                         headerp->rm_xid);
780                 goto repost;
781         }
782
783         dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
784                 "                   RPC request 0x%p xid 0x%08x\n",
785                         __func__, rep, req, rqst, headerp->rm_xid);
786
787         /* from here on, the reply is no longer an orphan */
788         req->rl_reply = rep;
789         xprt->reestablish_timeout = 0;
790
791         /* check for expected message types */
792         /* The order of some of these tests is important. */
793         switch (headerp->rm_type) {
794         case htonl(RDMA_MSG):
795                 /* never expect read chunks */
796                 /* never expect reply chunks (two ways to check) */
797                 /* never expect write chunks without having offered RDMA */
798                 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
799                     (headerp->rm_body.rm_chunks[1] == xdr_zero &&
800                      headerp->rm_body.rm_chunks[2] != xdr_zero) ||
801                     (headerp->rm_body.rm_chunks[1] != xdr_zero &&
802                      req->rl_nchunks == 0))
803                         goto badheader;
804                 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
805                         /* count any expected write chunks in read reply */
806                         /* start at write chunk array count */
807                         iptr = &headerp->rm_body.rm_chunks[2];
808                         rdmalen = rpcrdma_count_chunks(rep,
809                                                 req->rl_nchunks, 1, &iptr);
810                         /* check for validity, and no reply chunk after */
811                         if (rdmalen < 0 || *iptr++ != xdr_zero)
812                                 goto badheader;
813                         rep->rr_len -=
814                             ((unsigned char *)iptr - (unsigned char *)headerp);
815                         status = rep->rr_len + rdmalen;
816                         r_xprt->rx_stats.total_rdma_reply += rdmalen;
817                         /* special case - last chunk may omit padding */
818                         if (rdmalen &= 3) {
819                                 rdmalen = 4 - rdmalen;
820                                 status += rdmalen;
821                         }
822                 } else {
823                         /* else ordinary inline */
824                         rdmalen = 0;
825                         iptr = (__be32 *)((unsigned char *)headerp + 28);
826                         rep->rr_len -= 28; /*sizeof *headerp;*/
827                         status = rep->rr_len;
828                 }
829                 /* Fix up the rpc results for upper layer */
830                 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
831                 break;
832
833         case htonl(RDMA_NOMSG):
834                 /* never expect read or write chunks, always reply chunks */
835                 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
836                     headerp->rm_body.rm_chunks[1] != xdr_zero ||
837                     headerp->rm_body.rm_chunks[2] != xdr_one ||
838                     req->rl_nchunks == 0)
839                         goto badheader;
840                 iptr = (__be32 *)((unsigned char *)headerp + 28);
841                 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
842                 if (rdmalen < 0)
843                         goto badheader;
844                 r_xprt->rx_stats.total_rdma_reply += rdmalen;
845                 /* Reply chunk buffer already is the reply vector - no fixup. */
846                 status = rdmalen;
847                 break;
848
849 badheader:
850         default:
851                 dprintk("%s: invalid rpcrdma reply header (type %d):"
852                                 " chunks[012] == %d %d %d"
853                                 " expected chunks <= %d\n",
854                                 __func__, ntohl(headerp->rm_type),
855                                 headerp->rm_body.rm_chunks[0],
856                                 headerp->rm_body.rm_chunks[1],
857                                 headerp->rm_body.rm_chunks[2],
858                                 req->rl_nchunks);
859                 status = -EIO;
860                 r_xprt->rx_stats.bad_reply_count++;
861                 break;
862         }
863
864         cwnd = xprt->cwnd;
865         xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
866         if (xprt->cwnd > cwnd)
867                 xprt_release_rqst_cong(rqst->rq_task);
868
869         dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
870                         __func__, xprt, rqst, status);
871         xprt_complete_rqst(rqst->rq_task, status);
872         spin_unlock(&xprt->transport_lock);
873 }