2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
53 # define RPCDBG_FACILITY RPCDBG_TRANS
57 static const char transfertypes[][12] = {
58 "pure inline", /* no chunks */
59 " read chunk", /* some argument via rdma read */
60 "*read chunk", /* entire request via rdma read */
61 "write chunk", /* some result via rdma write */
62 "reply chunk" /* entire reply via rdma write */
67 * Chunk assembly from upper layer xdr_buf.
69 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70 * elements. Segments are then coalesced when registered, if possible
71 * within the selected memreg mode.
73 * Returns positive number of segments converted, or a negative errno.
77 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
84 if (pos == 0 && xdrbuf->head[0].iov_len) {
85 seg[n].mr_page = NULL;
86 seg[n].mr_offset = xdrbuf->head[0].iov_base;
87 seg[n].mr_len = xdrbuf->head[0].iov_len;
91 len = xdrbuf->page_len;
92 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93 page_base = xdrbuf->page_base & ~PAGE_MASK;
95 while (len && n < nsegs) {
97 /* alloc the pagelist for receiving buffer */
98 ppages[p] = alloc_page(GFP_ATOMIC);
102 seg[n].mr_page = ppages[p];
103 seg[n].mr_offset = (void *)(unsigned long) page_base;
104 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105 if (seg[n].mr_len > PAGE_SIZE)
107 len -= seg[n].mr_len;
110 page_base = 0; /* page offset only applies to first page */
113 /* Message overflows the seg array */
114 if (len && n == nsegs)
117 if (xdrbuf->tail[0].iov_len) {
118 /* the rpcrdma protocol allows us to omit any trailing
119 * xdr pad bytes, saving the server an RDMA operation. */
120 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
123 /* Tail remains, but we're out of segments */
125 seg[n].mr_page = NULL;
126 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127 seg[n].mr_len = xdrbuf->tail[0].iov_len;
135 * Create read/write chunk lists, and reply chunks, for RDMA
137 * Assume check against THRESHOLD has been done, and chunks are required.
138 * Assume only encoding one list entry for read|write chunks. The NFSv3
139 * protocol is simple enough to allow this as it only has a single "bulk
140 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
143 * When used for a single reply chunk (which is a special write
144 * chunk used for the entire reply, rather than just the data), it
145 * is used primarily for READDIR and READLINK which would otherwise
146 * be severely size-limited by a small rdma inline read max. The server
147 * response will come back as an RDMA Write, followed by a message
148 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149 * chunks do not provide data alignment, however they do not require
150 * "fixup" (moving the response to the upper layer buffer) either.
152 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
154 * Read chunklist (a linked list):
155 * N elements, position P (same P for all chunks of same arg!):
156 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
158 * Write chunklist (a list of (one) counted array):
160 * 1 - N - HLOO - HLOO - ... - HLOO - 0
162 * Reply chunk (a counted array):
164 * 1 - N - HLOO - HLOO - ... - HLOO
166 * Returns positive RPC/RDMA header size, or negative errno.
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
173 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175 int n, nsegs, nchunks = 0;
177 struct rpcrdma_mr_seg *seg = req->rl_segments;
178 struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 struct rpcrdma_write_array *warray = NULL;
180 struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 __be32 *iptr = headerp->rm_body.rm_chunks;
183 if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 /* a read chunk - server will RDMA Read our memory */
185 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
187 /* a write or reply chunk - server will RDMA Write our memory */
188 *iptr++ = xdr_zero; /* encode a NULL read chunk list */
189 if (type == rpcrdma_replych)
190 *iptr++ = xdr_zero; /* a NULL write chunk list */
191 warray = (struct rpcrdma_write_array *) iptr;
192 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
195 if (type == rpcrdma_replych || type == rpcrdma_areadch)
198 pos = target->head[0].iov_len;
200 nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
205 n = rpcrdma_register_external(seg, nsegs,
206 cur_wchunk != NULL, r_xprt);
209 if (cur_rchunk) { /* read */
210 cur_rchunk->rc_discrim = xdr_one;
211 /* all read chunks have the same "position" */
212 cur_rchunk->rc_position = htonl(pos);
213 cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
214 cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216 (__be32 *)&cur_rchunk->rc_target.rs_offset,
218 dprintk("RPC: %s: read chunk "
219 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
220 seg->mr_len, (unsigned long long)seg->mr_base,
221 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223 r_xprt->rx_stats.read_chunk_count++;
224 } else { /* write/reply */
225 cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
226 cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228 (__be32 *)&cur_wchunk->wc_target.rs_offset,
230 dprintk("RPC: %s: %s chunk "
231 "elem %d@0x%llx:0x%x (%s)\n", __func__,
232 (type == rpcrdma_replych) ? "reply" : "write",
233 seg->mr_len, (unsigned long long)seg->mr_base,
234 seg->mr_rkey, n < nsegs ? "more" : "last");
236 if (type == rpcrdma_replych)
237 r_xprt->rx_stats.reply_chunk_count++;
239 r_xprt->rx_stats.write_chunk_count++;
240 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
247 /* success. all failures return above */
248 req->rl_nchunks = nchunks;
251 * finish off header. If write, marshal discrim and nchunks.
254 iptr = (__be32 *) cur_rchunk;
255 *iptr++ = xdr_zero; /* finish the read chunk list */
256 *iptr++ = xdr_zero; /* encode a NULL write chunk list */
257 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
259 warray->wc_discrim = xdr_one;
260 warray->wc_nchunks = htonl(nchunks);
261 iptr = (__be32 *) cur_wchunk;
262 if (type == rpcrdma_writech) {
263 *iptr++ = xdr_zero; /* finish the write chunk list */
264 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
269 * Return header size.
271 return (unsigned char *)iptr - (unsigned char *)headerp;
274 for (pos = 0; nchunks--;)
275 pos += rpcrdma_deregister_external(
276 &req->rl_segments[pos], r_xprt);
281 * Marshal chunks. This routine returns the header length
282 * consumed by marshaling.
284 * Returns positive RPC/RDMA header size, or negative errno.
288 rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
290 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
291 struct rpcrdma_msg *headerp = (struct rpcrdma_msg *)req->rl_base;
293 if (req->rl_rtype != rpcrdma_noch)
294 result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
295 headerp, req->rl_rtype);
296 else if (req->rl_wtype != rpcrdma_noch)
297 result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
298 headerp, req->rl_wtype);
303 * Copy write data inline.
304 * This function is used for "small" requests. Data which is passed
305 * to RPC via iovecs (or page list) is copied directly into the
306 * pre-registered memory buffer for this request. For small amounts
307 * of data, this is efficient. The cutoff value is tunable.
310 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
312 int i, npages, curlen;
314 unsigned char *srcp, *destp;
315 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
317 struct page **ppages;
319 destp = rqst->rq_svec[0].iov_base;
320 curlen = rqst->rq_svec[0].iov_len;
323 * Do optional padding where it makes sense. Alignment of write
324 * payload can help the server, if our setting is accurate.
326 pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
327 if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
328 pad = 0; /* don't pad this request */
330 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
331 __func__, pad, destp, rqst->rq_slen, curlen);
333 copy_len = rqst->rq_snd_buf.page_len;
335 if (rqst->rq_snd_buf.tail[0].iov_len) {
336 curlen = rqst->rq_snd_buf.tail[0].iov_len;
337 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
338 memmove(destp + copy_len,
339 rqst->rq_snd_buf.tail[0].iov_base, curlen);
340 r_xprt->rx_stats.pullup_copy_count += curlen;
342 dprintk("RPC: %s: tail destp 0x%p len %d\n",
343 __func__, destp + copy_len, curlen);
344 rqst->rq_svec[0].iov_len += curlen;
346 r_xprt->rx_stats.pullup_copy_count += copy_len;
348 page_base = rqst->rq_snd_buf.page_base;
349 ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
350 page_base &= ~PAGE_MASK;
351 npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
352 for (i = 0; copy_len && i < npages; i++) {
353 curlen = PAGE_SIZE - page_base;
354 if (curlen > copy_len)
356 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
357 __func__, i, destp, copy_len, curlen);
358 srcp = kmap_atomic(ppages[i]);
359 memcpy(destp, srcp+page_base, curlen);
361 rqst->rq_svec[0].iov_len += curlen;
366 /* header now contains entire send message */
371 * Marshal a request: the primary job of this routine is to choose
372 * the transfer modes. See comments below.
374 * Uses multiple RDMA IOVs for a request:
375 * [0] -- RPC RDMA header, which uses memory from the *start* of the
376 * preregistered buffer that already holds the RPC data in
378 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
379 * [2] -- optional padding.
380 * [3] -- if padded, header only in [1] and data here.
382 * Returns zero on success, otherwise a negative errno.
386 rpcrdma_marshal_req(struct rpc_rqst *rqst)
388 struct rpc_xprt *xprt = rqst->rq_xprt;
389 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
390 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
392 size_t rpclen, padlen;
394 struct rpcrdma_msg *headerp;
397 * rpclen gets amount of data in first buffer, which is the
398 * pre-registered buffer.
400 base = rqst->rq_svec[0].iov_base;
401 rpclen = rqst->rq_svec[0].iov_len;
403 /* build RDMA header in private area at front */
404 headerp = (struct rpcrdma_msg *) req->rl_base;
405 /* don't htonl XID, it's already done in request */
406 headerp->rm_xid = rqst->rq_xid;
407 headerp->rm_vers = xdr_one;
408 headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
409 headerp->rm_type = htonl(RDMA_MSG);
412 * Chunks needed for results?
414 * o If the expected result is under the inline threshold, all ops
415 * return as inline (but see later).
416 * o Large non-read ops return as a single reply chunk.
417 * o Large read ops return data as write chunk(s), header as inline.
419 * Note: the NFS code sending down multiple result segments implies
420 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
424 * This code can handle read chunks, write chunks OR reply
425 * chunks -- only one type. If the request is too big to fit
426 * inline, then we will choose read chunks. If the request is
427 * a READ, then use write chunks to separate the file data
428 * into pages; otherwise use reply chunks.
430 if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
431 req->rl_wtype = rpcrdma_noch;
432 else if (rqst->rq_rcv_buf.page_len == 0)
433 req->rl_wtype = rpcrdma_replych;
434 else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
435 req->rl_wtype = rpcrdma_writech;
437 req->rl_wtype = rpcrdma_replych;
440 * Chunks needed for arguments?
442 * o If the total request is under the inline threshold, all ops
443 * are sent as inline.
444 * o Large non-write ops are sent with the entire message as a
445 * single read chunk (protocol 0-position special case).
446 * o Large write ops transmit data as read chunk(s), header as
449 * Note: the NFS code sending down multiple argument segments
450 * implies the op is a write.
451 * TBD check NFSv4 setacl
453 if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
454 req->rl_rtype = rpcrdma_noch;
455 else if (rqst->rq_snd_buf.page_len == 0)
456 req->rl_rtype = rpcrdma_areadch;
458 req->rl_rtype = rpcrdma_readch;
460 /* The following simplification is not true forever */
461 if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
462 req->rl_wtype = rpcrdma_noch;
463 if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
464 dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
469 hdrlen = 28; /*sizeof *headerp;*/
473 * Pull up any extra send data into the preregistered buffer.
474 * When padding is in use and applies to the transfer, insert
475 * it and change the message type.
477 if (req->rl_rtype == rpcrdma_noch) {
479 padlen = rpcrdma_inline_pullup(rqst,
480 RPCRDMA_INLINE_PAD_VALUE(rqst));
483 headerp->rm_type = htonl(RDMA_MSGP);
484 headerp->rm_body.rm_padded.rm_align =
485 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
486 headerp->rm_body.rm_padded.rm_thresh =
487 htonl(RPCRDMA_INLINE_PAD_THRESH);
488 headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
489 headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
490 headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
491 hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
492 if (req->rl_wtype != rpcrdma_noch) {
493 dprintk("RPC: %s: invalid chunk list\n",
498 headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
499 headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
500 headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
501 /* new length after pullup */
502 rpclen = rqst->rq_svec[0].iov_len;
504 * Currently we try to not actually use read inline.
505 * Reply chunks have the desirable property that
506 * they land, packed, directly in the target buffers
507 * without headers, so they require no fixup. The
508 * additional RDMA Write op sends the same amount
509 * of data, streams on-the-wire and adds no overhead
510 * on receive. Therefore, we request a reply chunk
511 * for non-writes wherever feasible and efficient.
513 if (req->rl_wtype == rpcrdma_noch)
514 req->rl_wtype = rpcrdma_replych;
518 hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
522 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
523 " headerp 0x%p base 0x%p lkey 0x%x\n",
524 __func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
525 headerp, base, req->rl_iov.lkey);
528 * initialize send_iov's - normally only two: rdma chunk header and
529 * single preregistered RPC header buffer, but if padding is present,
530 * then use a preregistered (and zeroed) pad buffer between the RPC
531 * header and any write data. In all non-rdma cases, any following
532 * data has been copied into the RPC header buffer.
534 req->rl_send_iov[0].addr = req->rl_iov.addr;
535 req->rl_send_iov[0].length = hdrlen;
536 req->rl_send_iov[0].lkey = req->rl_iov.lkey;
538 req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
539 req->rl_send_iov[1].length = rpclen;
540 req->rl_send_iov[1].lkey = req->rl_iov.lkey;
545 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
547 req->rl_send_iov[2].addr = ep->rep_pad.addr;
548 req->rl_send_iov[2].length = padlen;
549 req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
551 req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
552 req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
553 req->rl_send_iov[3].lkey = req->rl_iov.lkey;
562 * Chase down a received write or reply chunklist to get length
563 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
566 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
568 unsigned int i, total_len;
569 struct rpcrdma_write_chunk *cur_wchunk;
571 i = ntohl(**iptrp); /* get array count */
574 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
577 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
580 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
581 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
583 ntohl(seg->rs_length),
584 (unsigned long long)off,
585 ntohl(seg->rs_handle));
587 total_len += ntohl(seg->rs_length);
590 /* check and adjust for properly terminated write chunk */
592 __be32 *w = (__be32 *) cur_wchunk;
593 if (*w++ != xdr_zero)
595 cur_wchunk = (struct rpcrdma_write_chunk *) w;
597 if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
600 *iptrp = (__be32 *) cur_wchunk;
605 * Scatter inline received data back into provided iov's.
608 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
610 int i, npages, curlen, olen;
612 struct page **ppages;
615 curlen = rqst->rq_rcv_buf.head[0].iov_len;
616 if (curlen > copy_len) { /* write chunk header fixup */
618 rqst->rq_rcv_buf.head[0].iov_len = curlen;
621 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
622 __func__, srcp, copy_len, curlen);
624 /* Shift pointer for first receive segment only */
625 rqst->rq_rcv_buf.head[0].iov_base = srcp;
631 rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
632 page_base = rqst->rq_rcv_buf.page_base;
633 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
634 page_base &= ~PAGE_MASK;
636 if (copy_len && rqst->rq_rcv_buf.page_len) {
637 npages = PAGE_ALIGN(page_base +
638 rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
639 for (; i < npages; i++) {
640 curlen = PAGE_SIZE - page_base;
641 if (curlen > copy_len)
643 dprintk("RPC: %s: page %d"
644 " srcp 0x%p len %d curlen %d\n",
645 __func__, i, srcp, copy_len, curlen);
646 destp = kmap_atomic(ppages[i]);
647 memcpy(destp + page_base, srcp, curlen);
648 flush_dcache_page(ppages[i]);
649 kunmap_atomic(destp);
658 if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
660 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661 curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663 memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
665 __func__, srcp, copy_len, curlen);
666 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667 copy_len -= curlen; ++i;
669 rqst->rq_rcv_buf.tail[0].iov_len = 0;
672 /* implicit padding on terminal chunk */
673 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
675 p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
679 dprintk("RPC: %s: %d bytes in"
680 " %d extra segments (%d lost)\n",
681 __func__, olen, i, copy_len);
683 /* TBD avoid a warning from call_decode() */
684 rqst->rq_private_buf = rqst->rq_rcv_buf;
688 rpcrdma_connect_worker(struct work_struct *work)
690 struct rpcrdma_ep *ep =
691 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
692 struct rpc_xprt *xprt = ep->rep_xprt;
694 spin_lock_bh(&xprt->transport_lock);
695 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
696 ++xprt->connect_cookie;
697 if (ep->rep_connected > 0) {
698 if (!xprt_test_and_set_connected(xprt))
699 xprt_wake_pending_tasks(xprt, 0);
701 if (xprt_test_and_clear_connected(xprt))
702 xprt_wake_pending_tasks(xprt, -ENOTCONN);
704 spin_unlock_bh(&xprt->transport_lock);
708 * This function is called when an async event is posted to
709 * the connection which changes the connection state. All it
710 * does at this point is mark the connection up/down, the rpc
711 * timers do the rest.
714 rpcrdma_conn_func(struct rpcrdma_ep *ep)
716 schedule_delayed_work(&ep->rep_connect_worker, 0);
720 * Called as a tasklet to do req/reply match and complete a request
721 * Errors must result in the RPC task either being awakened, or
722 * allowed to timeout, to discover the errors at that time.
725 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
727 struct rpcrdma_msg *headerp;
728 struct rpcrdma_req *req;
729 struct rpc_rqst *rqst;
730 struct rpc_xprt *xprt = rep->rr_xprt;
731 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
736 /* Check status. If bad, signal disconnect and return rep to pool */
737 if (rep->rr_len == ~0U) {
738 rpcrdma_recv_buffer_put(rep);
739 if (r_xprt->rx_ep.rep_connected == 1) {
740 r_xprt->rx_ep.rep_connected = -EIO;
741 rpcrdma_conn_func(&r_xprt->rx_ep);
745 if (rep->rr_len < 28) {
746 dprintk("RPC: %s: short/invalid reply\n", __func__);
749 headerp = (struct rpcrdma_msg *) rep->rr_base;
750 if (headerp->rm_vers != xdr_one) {
751 dprintk("RPC: %s: invalid version %d\n",
752 __func__, ntohl(headerp->rm_vers));
756 /* Get XID and try for a match. */
757 spin_lock(&xprt->transport_lock);
758 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
760 spin_unlock(&xprt->transport_lock);
761 dprintk("RPC: %s: reply 0x%p failed "
762 "to match any request xid 0x%08x len %d\n",
763 __func__, rep, headerp->rm_xid, rep->rr_len);
765 r_xprt->rx_stats.bad_reply_count++;
766 rep->rr_func = rpcrdma_reply_handler;
767 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
768 rpcrdma_recv_buffer_put(rep);
773 /* get request object */
774 req = rpcr_to_rdmar(rqst);
776 spin_unlock(&xprt->transport_lock);
777 dprintk("RPC: %s: duplicate reply 0x%p to RPC "
778 "request 0x%p: xid 0x%08x\n", __func__, rep, req,
783 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
784 " RPC request 0x%p xid 0x%08x\n",
785 __func__, rep, req, rqst, headerp->rm_xid);
787 /* from here on, the reply is no longer an orphan */
789 xprt->reestablish_timeout = 0;
791 /* check for expected message types */
792 /* The order of some of these tests is important. */
793 switch (headerp->rm_type) {
794 case htonl(RDMA_MSG):
795 /* never expect read chunks */
796 /* never expect reply chunks (two ways to check) */
797 /* never expect write chunks without having offered RDMA */
798 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
799 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
800 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
801 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
802 req->rl_nchunks == 0))
804 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
805 /* count any expected write chunks in read reply */
806 /* start at write chunk array count */
807 iptr = &headerp->rm_body.rm_chunks[2];
808 rdmalen = rpcrdma_count_chunks(rep,
809 req->rl_nchunks, 1, &iptr);
810 /* check for validity, and no reply chunk after */
811 if (rdmalen < 0 || *iptr++ != xdr_zero)
814 ((unsigned char *)iptr - (unsigned char *)headerp);
815 status = rep->rr_len + rdmalen;
816 r_xprt->rx_stats.total_rdma_reply += rdmalen;
817 /* special case - last chunk may omit padding */
819 rdmalen = 4 - rdmalen;
823 /* else ordinary inline */
825 iptr = (__be32 *)((unsigned char *)headerp + 28);
826 rep->rr_len -= 28; /*sizeof *headerp;*/
827 status = rep->rr_len;
829 /* Fix up the rpc results for upper layer */
830 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
833 case htonl(RDMA_NOMSG):
834 /* never expect read or write chunks, always reply chunks */
835 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
836 headerp->rm_body.rm_chunks[1] != xdr_zero ||
837 headerp->rm_body.rm_chunks[2] != xdr_one ||
838 req->rl_nchunks == 0)
840 iptr = (__be32 *)((unsigned char *)headerp + 28);
841 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
844 r_xprt->rx_stats.total_rdma_reply += rdmalen;
845 /* Reply chunk buffer already is the reply vector - no fixup. */
851 dprintk("%s: invalid rpcrdma reply header (type %d):"
852 " chunks[012] == %d %d %d"
853 " expected chunks <= %d\n",
854 __func__, ntohl(headerp->rm_type),
855 headerp->rm_body.rm_chunks[0],
856 headerp->rm_body.rm_chunks[1],
857 headerp->rm_body.rm_chunks[2],
860 r_xprt->rx_stats.bad_reply_count++;
865 xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
866 if (xprt->cwnd > cwnd)
867 xprt_release_rqst_cong(rqst->rq_task);
869 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
870 __func__, xprt, rqst, status);
871 xprt_complete_rqst(rqst->rq_task, status);
872 spin_unlock(&xprt->transport_lock);