2a7c3adf902f6bfcc7053e6ff9277098aa686d07
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request __rcu *last_request =
86         (void __rcu *)&core_request_world;
87
88 /* To trigger userspace events */
89 static struct platform_device *reg_pdev;
90
91 static struct device_type reg_device_type = {
92         .uevent = reg_device_uevent,
93 };
94
95 /*
96  * Central wireless core regulatory domains, we only need two,
97  * the current one and a world regulatory domain in case we have no
98  * information to give us an alpha2.
99  */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103  * Protects static reg.c components:
104  *      - cfg80211_regdomain (if not used with RCU)
105  *      - cfg80211_world_regdom
106  *      - last_request (if not used with RCU)
107  *      - reg_num_devs_support_basehint
108  */
109 static DEFINE_MUTEX(reg_mutex);
110
111 /*
112  * Number of devices that registered to the core
113  * that support cellular base station regulatory hints
114  */
115 static int reg_num_devs_support_basehint;
116
117 static inline void assert_reg_lock(void)
118 {
119         lockdep_assert_held(&reg_mutex);
120 }
121
122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
123 {
124         return rcu_dereference_protected(cfg80211_regdomain,
125                                          lockdep_is_held(&reg_mutex));
126 }
127
128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
129 {
130         return rcu_dereference_protected(wiphy->regd,
131                                          lockdep_is_held(&reg_mutex));
132 }
133
134 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
135 {
136         if (!r)
137                 return;
138         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
139 }
140
141 static struct regulatory_request *get_last_request(void)
142 {
143         return rcu_dereference_protected(last_request,
144                                          lockdep_is_held(&reg_mutex));
145 }
146
147 /* Used to queue up regulatory hints */
148 static LIST_HEAD(reg_requests_list);
149 static spinlock_t reg_requests_lock;
150
151 /* Used to queue up beacon hints for review */
152 static LIST_HEAD(reg_pending_beacons);
153 static spinlock_t reg_pending_beacons_lock;
154
155 /* Used to keep track of processed beacon hints */
156 static LIST_HEAD(reg_beacon_list);
157
158 struct reg_beacon {
159         struct list_head list;
160         struct ieee80211_channel chan;
161 };
162
163 static void reg_todo(struct work_struct *work);
164 static DECLARE_WORK(reg_work, reg_todo);
165
166 static void reg_timeout_work(struct work_struct *work);
167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
168
169 /* We keep a static world regulatory domain in case of the absence of CRDA */
170 static const struct ieee80211_regdomain world_regdom = {
171         .n_reg_rules = 6,
172         .alpha2 =  "00",
173         .reg_rules = {
174                 /* IEEE 802.11b/g, channels 1..11 */
175                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
176                 /* IEEE 802.11b/g, channels 12..13. */
177                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
178                         NL80211_RRF_PASSIVE_SCAN |
179                         NL80211_RRF_NO_IBSS),
180                 /* IEEE 802.11 channel 14 - Only JP enables
181                  * this and for 802.11b only */
182                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
183                         NL80211_RRF_PASSIVE_SCAN |
184                         NL80211_RRF_NO_IBSS |
185                         NL80211_RRF_NO_OFDM),
186                 /* IEEE 802.11a, channel 36..48 */
187                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
188                         NL80211_RRF_PASSIVE_SCAN |
189                         NL80211_RRF_NO_IBSS),
190
191                 /* NB: 5260 MHz - 5700 MHz requies DFS */
192
193                 /* IEEE 802.11a, channel 149..165 */
194                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
195                         NL80211_RRF_PASSIVE_SCAN |
196                         NL80211_RRF_NO_IBSS),
197
198                 /* IEEE 802.11ad (60gHz), channels 1..3 */
199                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
200         }
201 };
202
203 static const struct ieee80211_regdomain *cfg80211_world_regdom =
204         &world_regdom;
205
206 static char *ieee80211_regdom = "00";
207 static char user_alpha2[2];
208
209 module_param(ieee80211_regdom, charp, 0444);
210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211
212 static void reset_regdomains(bool full_reset,
213                              const struct ieee80211_regdomain *new_regdom)
214 {
215         const struct ieee80211_regdomain *r;
216         struct regulatory_request *lr;
217
218         assert_reg_lock();
219
220         r = get_cfg80211_regdom();
221
222         /* avoid freeing static information or freeing something twice */
223         if (r == cfg80211_world_regdom)
224                 r = NULL;
225         if (cfg80211_world_regdom == &world_regdom)
226                 cfg80211_world_regdom = NULL;
227         if (r == &world_regdom)
228                 r = NULL;
229
230         rcu_free_regdom(r);
231         rcu_free_regdom(cfg80211_world_regdom);
232
233         cfg80211_world_regdom = &world_regdom;
234         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
235
236         if (!full_reset)
237                 return;
238
239         lr = get_last_request();
240         if (lr != &core_request_world && lr)
241                 kfree_rcu(lr, rcu_head);
242         rcu_assign_pointer(last_request, &core_request_world);
243 }
244
245 /*
246  * Dynamic world regulatory domain requested by the wireless
247  * core upon initialization
248  */
249 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 {
251         struct regulatory_request *lr;
252
253         lr = get_last_request();
254
255         WARN_ON(!lr);
256
257         reset_regdomains(false, rd);
258
259         cfg80211_world_regdom = rd;
260 }
261
262 bool is_world_regdom(const char *alpha2)
263 {
264         if (!alpha2)
265                 return false;
266         return alpha2[0] == '0' && alpha2[1] == '0';
267 }
268
269 static bool is_alpha2_set(const char *alpha2)
270 {
271         if (!alpha2)
272                 return false;
273         return alpha2[0] && alpha2[1];
274 }
275
276 static bool is_unknown_alpha2(const char *alpha2)
277 {
278         if (!alpha2)
279                 return false;
280         /*
281          * Special case where regulatory domain was built by driver
282          * but a specific alpha2 cannot be determined
283          */
284         return alpha2[0] == '9' && alpha2[1] == '9';
285 }
286
287 static bool is_intersected_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain is the
293          * result of an intersection between two regulatory domain
294          * structures
295          */
296         return alpha2[0] == '9' && alpha2[1] == '8';
297 }
298
299 static bool is_an_alpha2(const char *alpha2)
300 {
301         if (!alpha2)
302                 return false;
303         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
304 }
305
306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 {
308         if (!alpha2_x || !alpha2_y)
309                 return false;
310         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
311 }
312
313 static bool regdom_changes(const char *alpha2)
314 {
315         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
316
317         if (!r)
318                 return true;
319         return !alpha2_equal(r->alpha2, alpha2);
320 }
321
322 /*
323  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
324  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
325  * has ever been issued.
326  */
327 static bool is_user_regdom_saved(void)
328 {
329         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
330                 return false;
331
332         /* This would indicate a mistake on the design */
333         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
334                  "Unexpected user alpha2: %c%c\n",
335                  user_alpha2[0], user_alpha2[1]))
336                 return false;
337
338         return true;
339 }
340
341 static const struct ieee80211_regdomain *
342 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 {
344         struct ieee80211_regdomain *regd;
345         int size_of_regd;
346         unsigned int i;
347
348         size_of_regd =
349                 sizeof(struct ieee80211_regdomain) +
350                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351
352         regd = kzalloc(size_of_regd, GFP_KERNEL);
353         if (!regd)
354                 return ERR_PTR(-ENOMEM);
355
356         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357
358         for (i = 0; i < src_regd->n_reg_rules; i++)
359                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
360                        sizeof(struct ieee80211_reg_rule));
361
362         return regd;
363 }
364
365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
366 struct reg_regdb_search_request {
367         char alpha2[2];
368         struct list_head list;
369 };
370
371 static LIST_HEAD(reg_regdb_search_list);
372 static DEFINE_MUTEX(reg_regdb_search_mutex);
373
374 static void reg_regdb_search(struct work_struct *work)
375 {
376         struct reg_regdb_search_request *request;
377         const struct ieee80211_regdomain *curdom, *regdom = NULL;
378         int i;
379
380         mutex_lock(&cfg80211_mutex);
381
382         mutex_lock(&reg_regdb_search_mutex);
383         while (!list_empty(&reg_regdb_search_list)) {
384                 request = list_first_entry(&reg_regdb_search_list,
385                                            struct reg_regdb_search_request,
386                                            list);
387                 list_del(&request->list);
388
389                 for (i = 0; i < reg_regdb_size; i++) {
390                         curdom = reg_regdb[i];
391
392                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
393                                 regdom = reg_copy_regd(curdom);
394                                 break;
395                         }
396                 }
397
398                 kfree(request);
399         }
400         mutex_unlock(&reg_regdb_search_mutex);
401
402         if (!IS_ERR_OR_NULL(regdom))
403                 set_regdom(regdom);
404
405         mutex_unlock(&cfg80211_mutex);
406 }
407
408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409
410 static void reg_regdb_query(const char *alpha2)
411 {
412         struct reg_regdb_search_request *request;
413
414         if (!alpha2)
415                 return;
416
417         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
418         if (!request)
419                 return;
420
421         memcpy(request->alpha2, alpha2, 2);
422
423         mutex_lock(&reg_regdb_search_mutex);
424         list_add_tail(&request->list, &reg_regdb_search_list);
425         mutex_unlock(&reg_regdb_search_mutex);
426
427         schedule_work(&reg_regdb_work);
428 }
429
430 /* Feel free to add any other sanity checks here */
431 static void reg_regdb_size_check(void)
432 {
433         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
434         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
435 }
436 #else
437 static inline void reg_regdb_size_check(void) {}
438 static inline void reg_regdb_query(const char *alpha2) {}
439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
440
441 /*
442  * This lets us keep regulatory code which is updated on a regulatory
443  * basis in userspace. Country information is filled in by
444  * reg_device_uevent
445  */
446 static int call_crda(const char *alpha2)
447 {
448         if (!is_world_regdom((char *) alpha2))
449                 pr_info("Calling CRDA for country: %c%c\n",
450                         alpha2[0], alpha2[1]);
451         else
452                 pr_info("Calling CRDA to update world regulatory domain\n");
453
454         /* query internal regulatory database (if it exists) */
455         reg_regdb_query(alpha2);
456
457         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
458 }
459
460 static bool reg_is_valid_request(const char *alpha2)
461 {
462         struct regulatory_request *lr = get_last_request();
463
464         if (!lr || lr->processed)
465                 return false;
466
467         return alpha2_equal(lr->alpha2, alpha2);
468 }
469
470 /* Sanity check on a regulatory rule */
471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 {
473         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
474         u32 freq_diff;
475
476         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
477                 return false;
478
479         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
480                 return false;
481
482         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483
484         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
485             freq_range->max_bandwidth_khz > freq_diff)
486                 return false;
487
488         return true;
489 }
490
491 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 {
493         const struct ieee80211_reg_rule *reg_rule = NULL;
494         unsigned int i;
495
496         if (!rd->n_reg_rules)
497                 return false;
498
499         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
500                 return false;
501
502         for (i = 0; i < rd->n_reg_rules; i++) {
503                 reg_rule = &rd->reg_rules[i];
504                 if (!is_valid_reg_rule(reg_rule))
505                         return false;
506         }
507
508         return true;
509 }
510
511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
512                             u32 center_freq_khz, u32 bw_khz)
513 {
514         u32 start_freq_khz, end_freq_khz;
515
516         start_freq_khz = center_freq_khz - (bw_khz/2);
517         end_freq_khz = center_freq_khz + (bw_khz/2);
518
519         if (start_freq_khz >= freq_range->start_freq_khz &&
520             end_freq_khz <= freq_range->end_freq_khz)
521                 return true;
522
523         return false;
524 }
525
526 /**
527  * freq_in_rule_band - tells us if a frequency is in a frequency band
528  * @freq_range: frequency rule we want to query
529  * @freq_khz: frequency we are inquiring about
530  *
531  * This lets us know if a specific frequency rule is or is not relevant to
532  * a specific frequency's band. Bands are device specific and artificial
533  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
534  * however it is safe for now to assume that a frequency rule should not be
535  * part of a frequency's band if the start freq or end freq are off by more
536  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537  * 60 GHz band.
538  * This resolution can be lowered and should be considered as we add
539  * regulatory rule support for other "bands".
540  **/
541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
542                               u32 freq_khz)
543 {
544 #define ONE_GHZ_IN_KHZ  1000000
545         /*
546          * From 802.11ad: directional multi-gigabit (DMG):
547          * Pertaining to operation in a frequency band containing a channel
548          * with the Channel starting frequency above 45 GHz.
549          */
550         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
551                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
552         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553                 return true;
554         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
555                 return true;
556         return false;
557 #undef ONE_GHZ_IN_KHZ
558 }
559
560 /*
561  * Helper for regdom_intersect(), this does the real
562  * mathematical intersection fun
563  */
564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
565                                const struct ieee80211_reg_rule *rule2,
566                                struct ieee80211_reg_rule *intersected_rule)
567 {
568         const struct ieee80211_freq_range *freq_range1, *freq_range2;
569         struct ieee80211_freq_range *freq_range;
570         const struct ieee80211_power_rule *power_rule1, *power_rule2;
571         struct ieee80211_power_rule *power_rule;
572         u32 freq_diff;
573
574         freq_range1 = &rule1->freq_range;
575         freq_range2 = &rule2->freq_range;
576         freq_range = &intersected_rule->freq_range;
577
578         power_rule1 = &rule1->power_rule;
579         power_rule2 = &rule2->power_rule;
580         power_rule = &intersected_rule->power_rule;
581
582         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
583                                          freq_range2->start_freq_khz);
584         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
585                                        freq_range2->end_freq_khz);
586         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
587                                             freq_range2->max_bandwidth_khz);
588
589         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
590         if (freq_range->max_bandwidth_khz > freq_diff)
591                 freq_range->max_bandwidth_khz = freq_diff;
592
593         power_rule->max_eirp = min(power_rule1->max_eirp,
594                 power_rule2->max_eirp);
595         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
596                 power_rule2->max_antenna_gain);
597
598         intersected_rule->flags = rule1->flags | rule2->flags;
599
600         if (!is_valid_reg_rule(intersected_rule))
601                 return -EINVAL;
602
603         return 0;
604 }
605
606 /**
607  * regdom_intersect - do the intersection between two regulatory domains
608  * @rd1: first regulatory domain
609  * @rd2: second regulatory domain
610  *
611  * Use this function to get the intersection between two regulatory domains.
612  * Once completed we will mark the alpha2 for the rd as intersected, "98",
613  * as no one single alpha2 can represent this regulatory domain.
614  *
615  * Returns a pointer to the regulatory domain structure which will hold the
616  * resulting intersection of rules between rd1 and rd2. We will
617  * kzalloc() this structure for you.
618  */
619 static struct ieee80211_regdomain *
620 regdom_intersect(const struct ieee80211_regdomain *rd1,
621                  const struct ieee80211_regdomain *rd2)
622 {
623         int r, size_of_regd;
624         unsigned int x, y;
625         unsigned int num_rules = 0, rule_idx = 0;
626         const struct ieee80211_reg_rule *rule1, *rule2;
627         struct ieee80211_reg_rule *intersected_rule;
628         struct ieee80211_regdomain *rd;
629         /* This is just a dummy holder to help us count */
630         struct ieee80211_reg_rule dummy_rule;
631
632         if (!rd1 || !rd2)
633                 return NULL;
634
635         /*
636          * First we get a count of the rules we'll need, then we actually
637          * build them. This is to so we can malloc() and free() a
638          * regdomain once. The reason we use reg_rules_intersect() here
639          * is it will return -EINVAL if the rule computed makes no sense.
640          * All rules that do check out OK are valid.
641          */
642
643         for (x = 0; x < rd1->n_reg_rules; x++) {
644                 rule1 = &rd1->reg_rules[x];
645                 for (y = 0; y < rd2->n_reg_rules; y++) {
646                         rule2 = &rd2->reg_rules[y];
647                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
648                                 num_rules++;
649                 }
650         }
651
652         if (!num_rules)
653                 return NULL;
654
655         size_of_regd = sizeof(struct ieee80211_regdomain) +
656                        num_rules * sizeof(struct ieee80211_reg_rule);
657
658         rd = kzalloc(size_of_regd, GFP_KERNEL);
659         if (!rd)
660                 return NULL;
661
662         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
663                 rule1 = &rd1->reg_rules[x];
664                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
665                         rule2 = &rd2->reg_rules[y];
666                         /*
667                          * This time around instead of using the stack lets
668                          * write to the target rule directly saving ourselves
669                          * a memcpy()
670                          */
671                         intersected_rule = &rd->reg_rules[rule_idx];
672                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
673                         /*
674                          * No need to memset here the intersected rule here as
675                          * we're not using the stack anymore
676                          */
677                         if (r)
678                                 continue;
679                         rule_idx++;
680                 }
681         }
682
683         if (rule_idx != num_rules) {
684                 kfree(rd);
685                 return NULL;
686         }
687
688         rd->n_reg_rules = num_rules;
689         rd->alpha2[0] = '9';
690         rd->alpha2[1] = '8';
691
692         return rd;
693 }
694
695 /*
696  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
697  * want to just have the channel structure use these
698  */
699 static u32 map_regdom_flags(u32 rd_flags)
700 {
701         u32 channel_flags = 0;
702         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
703                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
704         if (rd_flags & NL80211_RRF_NO_IBSS)
705                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
706         if (rd_flags & NL80211_RRF_DFS)
707                 channel_flags |= IEEE80211_CHAN_RADAR;
708         if (rd_flags & NL80211_RRF_NO_OFDM)
709                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
710         return channel_flags;
711 }
712
713 static int freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
714                               const struct ieee80211_reg_rule **reg_rule,
715                               const struct ieee80211_regdomain *regd)
716 {
717         int i;
718         bool band_rule_found = false;
719         bool bw_fits = false;
720
721         if (!regd)
722                 return -EINVAL;
723
724         for (i = 0; i < regd->n_reg_rules; i++) {
725                 const struct ieee80211_reg_rule *rr;
726                 const struct ieee80211_freq_range *fr = NULL;
727
728                 rr = &regd->reg_rules[i];
729                 fr = &rr->freq_range;
730
731                 /*
732                  * We only need to know if one frequency rule was
733                  * was in center_freq's band, that's enough, so lets
734                  * not overwrite it once found
735                  */
736                 if (!band_rule_found)
737                         band_rule_found = freq_in_rule_band(fr, center_freq);
738
739                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740
741                 if (band_rule_found && bw_fits) {
742                         *reg_rule = rr;
743                         return 0;
744                 }
745         }
746
747         if (!band_rule_found)
748                 return -ERANGE;
749
750         return -EINVAL;
751 }
752
753 int freq_reg_info(struct wiphy *wiphy, u32 center_freq,
754                   const struct ieee80211_reg_rule **reg_rule)
755 {
756         const struct ieee80211_regdomain *regd;
757         struct regulatory_request *lr = get_last_request();
758
759         /*
760          * Follow the driver's regulatory domain, if present, unless a country
761          * IE has been processed or a user wants to help complaince further
762          */
763         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
764             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
765             wiphy->regd)
766                 regd = get_wiphy_regdom(wiphy);
767         else
768                 regd = get_cfg80211_regdom();
769
770         return freq_reg_info_regd(wiphy, center_freq, reg_rule, regd);
771 }
772 EXPORT_SYMBOL(freq_reg_info);
773
774 #ifdef CONFIG_CFG80211_REG_DEBUG
775 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
776 {
777         switch (initiator) {
778         case NL80211_REGDOM_SET_BY_CORE:
779                 return "Set by core";
780         case NL80211_REGDOM_SET_BY_USER:
781                 return "Set by user";
782         case NL80211_REGDOM_SET_BY_DRIVER:
783                 return "Set by driver";
784         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
785                 return "Set by country IE";
786         default:
787                 WARN_ON(1);
788                 return "Set by bug";
789         }
790 }
791
792 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
793                                     const struct ieee80211_reg_rule *reg_rule)
794 {
795         const struct ieee80211_power_rule *power_rule;
796         const struct ieee80211_freq_range *freq_range;
797         char max_antenna_gain[32];
798
799         power_rule = &reg_rule->power_rule;
800         freq_range = &reg_rule->freq_range;
801
802         if (!power_rule->max_antenna_gain)
803                 snprintf(max_antenna_gain, 32, "N/A");
804         else
805                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
806
807         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
808                       chan->center_freq);
809
810         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
811                       freq_range->start_freq_khz, freq_range->end_freq_khz,
812                       freq_range->max_bandwidth_khz, max_antenna_gain,
813                       power_rule->max_eirp);
814 }
815 #else
816 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
817                                     const struct ieee80211_reg_rule *reg_rule)
818 {
819         return;
820 }
821 #endif
822
823 /*
824  * Note that right now we assume the desired channel bandwidth
825  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
826  * per channel, the primary and the extension channel).
827  */
828 static void handle_channel(struct wiphy *wiphy,
829                            enum nl80211_reg_initiator initiator,
830                            struct ieee80211_channel *chan)
831 {
832         int r;
833         u32 flags, bw_flags = 0;
834         const struct ieee80211_reg_rule *reg_rule = NULL;
835         const struct ieee80211_power_rule *power_rule = NULL;
836         const struct ieee80211_freq_range *freq_range = NULL;
837         struct wiphy *request_wiphy = NULL;
838         struct regulatory_request *lr = get_last_request();
839
840         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
841
842         flags = chan->orig_flags;
843
844         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq), &reg_rule);
845         if (r) {
846                 /*
847                  * We will disable all channels that do not match our
848                  * received regulatory rule unless the hint is coming
849                  * from a Country IE and the Country IE had no information
850                  * about a band. The IEEE 802.11 spec allows for an AP
851                  * to send only a subset of the regulatory rules allowed,
852                  * so an AP in the US that only supports 2.4 GHz may only send
853                  * a country IE with information for the 2.4 GHz band
854                  * while 5 GHz is still supported.
855                  */
856                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
857                     r == -ERANGE)
858                         return;
859
860                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
861                 chan->flags = IEEE80211_CHAN_DISABLED;
862                 return;
863         }
864
865         chan_reg_rule_print_dbg(chan, reg_rule);
866
867         power_rule = &reg_rule->power_rule;
868         freq_range = &reg_rule->freq_range;
869
870         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
871                 bw_flags = IEEE80211_CHAN_NO_HT40;
872
873         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
874             request_wiphy && request_wiphy == wiphy &&
875             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
876                 /*
877                  * This guarantees the driver's requested regulatory domain
878                  * will always be used as a base for further regulatory
879                  * settings
880                  */
881                 chan->flags = chan->orig_flags =
882                         map_regdom_flags(reg_rule->flags) | bw_flags;
883                 chan->max_antenna_gain = chan->orig_mag =
884                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
885                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
886                         (int) MBM_TO_DBM(power_rule->max_eirp);
887                 return;
888         }
889
890         chan->beacon_found = false;
891         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
892         chan->max_antenna_gain =
893                 min_t(int, chan->orig_mag,
894                       MBI_TO_DBI(power_rule->max_antenna_gain));
895         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
896         if (chan->orig_mpwr) {
897                 /*
898                  * Devices that have their own custom regulatory domain
899                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
900                  * passed country IE power settings.
901                  */
902                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
904                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
905                         chan->max_power = chan->max_reg_power;
906                 else
907                         chan->max_power = min(chan->orig_mpwr,
908                                               chan->max_reg_power);
909         } else
910                 chan->max_power = chan->max_reg_power;
911 }
912
913 static void handle_band(struct wiphy *wiphy,
914                         enum nl80211_reg_initiator initiator,
915                         struct ieee80211_supported_band *sband)
916 {
917         unsigned int i;
918
919         if (!sband)
920                 return;
921
922         for (i = 0; i < sband->n_channels; i++)
923                 handle_channel(wiphy, initiator, &sband->channels[i]);
924 }
925
926 static bool reg_request_cell_base(struct regulatory_request *request)
927 {
928         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
929                 return false;
930         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
931 }
932
933 bool reg_last_request_cell_base(void)
934 {
935         bool val;
936
937         mutex_lock(&reg_mutex);
938         val = reg_request_cell_base(get_last_request());
939         mutex_unlock(&reg_mutex);
940
941         return val;
942 }
943
944 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
945 /* Core specific check */
946 static enum reg_request_treatment
947 reg_ignore_cell_hint(struct regulatory_request *pending_request)
948 {
949         struct regulatory_request *lr = get_last_request();
950
951         if (!reg_num_devs_support_basehint)
952                 return REG_REQ_IGNORE;
953
954         if (reg_request_cell_base(lr) &&
955             !regdom_changes(pending_request->alpha2))
956                 return REG_REQ_ALREADY_SET;
957
958         return REG_REQ_OK;
959 }
960
961 /* Device specific check */
962 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
963 {
964         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
965 }
966 #else
967 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
968 {
969         return REG_REQ_IGNORE;
970 }
971
972 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
973 {
974         return true;
975 }
976 #endif
977
978
979 static bool ignore_reg_update(struct wiphy *wiphy,
980                               enum nl80211_reg_initiator initiator)
981 {
982         struct regulatory_request *lr = get_last_request();
983
984         if (!lr) {
985                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
986                               reg_initiator_name(initiator));
987                 return true;
988         }
989
990         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
991             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
992                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
993                               reg_initiator_name(initiator));
994                 return true;
995         }
996
997         /*
998          * wiphy->regd will be set once the device has its own
999          * desired regulatory domain set
1000          */
1001         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1002             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1003             !is_world_regdom(lr->alpha2)) {
1004                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1005                               reg_initiator_name(initiator));
1006                 return true;
1007         }
1008
1009         if (reg_request_cell_base(lr))
1010                 return reg_dev_ignore_cell_hint(wiphy);
1011
1012         return false;
1013 }
1014
1015 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1016                               struct reg_beacon *reg_beacon)
1017 {
1018         struct ieee80211_supported_band *sband;
1019         struct ieee80211_channel *chan;
1020         bool channel_changed = false;
1021         struct ieee80211_channel chan_before;
1022
1023         sband = wiphy->bands[reg_beacon->chan.band];
1024         chan = &sband->channels[chan_idx];
1025
1026         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1027                 return;
1028
1029         if (chan->beacon_found)
1030                 return;
1031
1032         chan->beacon_found = true;
1033
1034         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1035                 return;
1036
1037         chan_before.center_freq = chan->center_freq;
1038         chan_before.flags = chan->flags;
1039
1040         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1041                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1042                 channel_changed = true;
1043         }
1044
1045         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1046                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1047                 channel_changed = true;
1048         }
1049
1050         if (channel_changed)
1051                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1052 }
1053
1054 /*
1055  * Called when a scan on a wiphy finds a beacon on
1056  * new channel
1057  */
1058 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1059                                     struct reg_beacon *reg_beacon)
1060 {
1061         unsigned int i;
1062         struct ieee80211_supported_band *sband;
1063
1064         if (!wiphy->bands[reg_beacon->chan.band])
1065                 return;
1066
1067         sband = wiphy->bands[reg_beacon->chan.band];
1068
1069         for (i = 0; i < sband->n_channels; i++)
1070                 handle_reg_beacon(wiphy, i, reg_beacon);
1071 }
1072
1073 /*
1074  * Called upon reg changes or a new wiphy is added
1075  */
1076 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1077 {
1078         unsigned int i;
1079         struct ieee80211_supported_band *sband;
1080         struct reg_beacon *reg_beacon;
1081
1082         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1083                 if (!wiphy->bands[reg_beacon->chan.band])
1084                         continue;
1085                 sband = wiphy->bands[reg_beacon->chan.band];
1086                 for (i = 0; i < sband->n_channels; i++)
1087                         handle_reg_beacon(wiphy, i, reg_beacon);
1088         }
1089 }
1090
1091 static bool reg_is_world_roaming(struct wiphy *wiphy)
1092 {
1093         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1094         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1095         struct regulatory_request *lr = get_last_request();
1096
1097         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1098                 return true;
1099
1100         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1101             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1102                 return true;
1103
1104         return false;
1105 }
1106
1107 /* Reap the advantages of previously found beacons */
1108 static void reg_process_beacons(struct wiphy *wiphy)
1109 {
1110         /*
1111          * Means we are just firing up cfg80211, so no beacons would
1112          * have been processed yet.
1113          */
1114         if (!last_request)
1115                 return;
1116         if (!reg_is_world_roaming(wiphy))
1117                 return;
1118         wiphy_update_beacon_reg(wiphy);
1119 }
1120
1121 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1122 {
1123         if (!chan)
1124                 return false;
1125         if (chan->flags & IEEE80211_CHAN_DISABLED)
1126                 return false;
1127         /* This would happen when regulatory rules disallow HT40 completely */
1128         return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1129 }
1130
1131 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1132                                          struct ieee80211_channel *channel)
1133 {
1134         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1135         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1136         unsigned int i;
1137
1138         if (!is_ht40_allowed(channel)) {
1139                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1140                 return;
1141         }
1142
1143         /*
1144          * We need to ensure the extension channels exist to
1145          * be able to use HT40- or HT40+, this finds them (or not)
1146          */
1147         for (i = 0; i < sband->n_channels; i++) {
1148                 struct ieee80211_channel *c = &sband->channels[i];
1149
1150                 if (c->center_freq == (channel->center_freq - 20))
1151                         channel_before = c;
1152                 if (c->center_freq == (channel->center_freq + 20))
1153                         channel_after = c;
1154         }
1155
1156         /*
1157          * Please note that this assumes target bandwidth is 20 MHz,
1158          * if that ever changes we also need to change the below logic
1159          * to include that as well.
1160          */
1161         if (!is_ht40_allowed(channel_before))
1162                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1163         else
1164                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1165
1166         if (!is_ht40_allowed(channel_after))
1167                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1168         else
1169                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1170 }
1171
1172 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1173                                       struct ieee80211_supported_band *sband)
1174 {
1175         unsigned int i;
1176
1177         if (!sband)
1178                 return;
1179
1180         for (i = 0; i < sband->n_channels; i++)
1181                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1182 }
1183
1184 static void reg_process_ht_flags(struct wiphy *wiphy)
1185 {
1186         enum ieee80211_band band;
1187
1188         if (!wiphy)
1189                 return;
1190
1191         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1192                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1193 }
1194
1195 static void wiphy_update_regulatory(struct wiphy *wiphy,
1196                                     enum nl80211_reg_initiator initiator)
1197 {
1198         enum ieee80211_band band;
1199         struct regulatory_request *lr = get_last_request();
1200
1201         if (ignore_reg_update(wiphy, initiator))
1202                 return;
1203
1204         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1205
1206         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1207                 handle_band(wiphy, initiator, wiphy->bands[band]);
1208
1209         reg_process_beacons(wiphy);
1210         reg_process_ht_flags(wiphy);
1211
1212         if (wiphy->reg_notifier)
1213                 wiphy->reg_notifier(wiphy, lr);
1214 }
1215
1216 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1217 {
1218         struct cfg80211_registered_device *rdev;
1219         struct wiphy *wiphy;
1220
1221         assert_cfg80211_lock();
1222
1223         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1224                 wiphy = &rdev->wiphy;
1225                 wiphy_update_regulatory(wiphy, initiator);
1226                 /*
1227                  * Regulatory updates set by CORE are ignored for custom
1228                  * regulatory cards. Let us notify the changes to the driver,
1229                  * as some drivers used this to restore its orig_* reg domain.
1230                  */
1231                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1232                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1233                     wiphy->reg_notifier)
1234                         wiphy->reg_notifier(wiphy, get_last_request());
1235         }
1236 }
1237
1238 static void handle_channel_custom(struct wiphy *wiphy,
1239                                   struct ieee80211_channel *chan,
1240                                   const struct ieee80211_regdomain *regd)
1241 {
1242         int r;
1243         u32 bw_flags = 0;
1244         const struct ieee80211_reg_rule *reg_rule = NULL;
1245         const struct ieee80211_power_rule *power_rule = NULL;
1246         const struct ieee80211_freq_range *freq_range = NULL;
1247
1248         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1249                                &reg_rule, regd);
1250
1251         if (r) {
1252                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1253                               chan->center_freq);
1254                 chan->flags = IEEE80211_CHAN_DISABLED;
1255                 return;
1256         }
1257
1258         chan_reg_rule_print_dbg(chan, reg_rule);
1259
1260         power_rule = &reg_rule->power_rule;
1261         freq_range = &reg_rule->freq_range;
1262
1263         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1264                 bw_flags = IEEE80211_CHAN_NO_HT40;
1265
1266         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1267         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1268         chan->max_reg_power = chan->max_power =
1269                 (int) MBM_TO_DBM(power_rule->max_eirp);
1270 }
1271
1272 static void handle_band_custom(struct wiphy *wiphy,
1273                                struct ieee80211_supported_band *sband,
1274                                const struct ieee80211_regdomain *regd)
1275 {
1276         unsigned int i;
1277
1278         if (!sband)
1279                 return;
1280
1281         for (i = 0; i < sband->n_channels; i++)
1282                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1283 }
1284
1285 /* Used by drivers prior to wiphy registration */
1286 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1287                                    const struct ieee80211_regdomain *regd)
1288 {
1289         enum ieee80211_band band;
1290         unsigned int bands_set = 0;
1291
1292         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1293                 if (!wiphy->bands[band])
1294                         continue;
1295                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1296                 bands_set++;
1297         }
1298
1299         /*
1300          * no point in calling this if it won't have any effect
1301          * on your device's supported bands.
1302          */
1303         WARN_ON(!bands_set);
1304 }
1305 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1306
1307 /* This has the logic which determines when a new request
1308  * should be ignored. */
1309 static enum reg_request_treatment
1310 get_reg_request_treatment(struct wiphy *wiphy,
1311                           struct regulatory_request *pending_request)
1312 {
1313         struct wiphy *last_wiphy = NULL;
1314         struct regulatory_request *lr = get_last_request();
1315
1316         /* All initial requests are respected */
1317         if (!lr)
1318                 return REG_REQ_OK;
1319
1320         switch (pending_request->initiator) {
1321         case NL80211_REGDOM_SET_BY_CORE:
1322                 return REG_REQ_OK;
1323         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1324                 if (reg_request_cell_base(lr)) {
1325                         /* Trust a Cell base station over the AP's country IE */
1326                         if (regdom_changes(pending_request->alpha2))
1327                                 return REG_REQ_IGNORE;
1328                         return REG_REQ_ALREADY_SET;
1329                 }
1330
1331                 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1332
1333                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1334                         return -EINVAL;
1335                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1336                         if (last_wiphy != wiphy) {
1337                                 /*
1338                                  * Two cards with two APs claiming different
1339                                  * Country IE alpha2s. We could
1340                                  * intersect them, but that seems unlikely
1341                                  * to be correct. Reject second one for now.
1342                                  */
1343                                 if (regdom_changes(pending_request->alpha2))
1344                                         return REG_REQ_IGNORE;
1345                                 return REG_REQ_ALREADY_SET;
1346                         }
1347                         /*
1348                          * Two consecutive Country IE hints on the same wiphy.
1349                          * This should be picked up early by the driver/stack
1350                          */
1351                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1352                                 return REG_REQ_OK;
1353                         return REG_REQ_ALREADY_SET;
1354                 }
1355                 return 0;
1356         case NL80211_REGDOM_SET_BY_DRIVER:
1357                 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1358                         if (regdom_changes(pending_request->alpha2))
1359                                 return REG_REQ_OK;
1360                         return REG_REQ_ALREADY_SET;
1361                 }
1362
1363                 /*
1364                  * This would happen if you unplug and plug your card
1365                  * back in or if you add a new device for which the previously
1366                  * loaded card also agrees on the regulatory domain.
1367                  */
1368                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1369                     !regdom_changes(pending_request->alpha2))
1370                         return REG_REQ_ALREADY_SET;
1371
1372                 return REG_REQ_INTERSECT;
1373         case NL80211_REGDOM_SET_BY_USER:
1374                 if (reg_request_cell_base(pending_request))
1375                         return reg_ignore_cell_hint(pending_request);
1376
1377                 if (reg_request_cell_base(lr))
1378                         return REG_REQ_IGNORE;
1379
1380                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1381                         return REG_REQ_INTERSECT;
1382                 /*
1383                  * If the user knows better the user should set the regdom
1384                  * to their country before the IE is picked up
1385                  */
1386                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1387                     lr->intersect)
1388                         return REG_REQ_IGNORE;
1389                 /*
1390                  * Process user requests only after previous user/driver/core
1391                  * requests have been processed
1392                  */
1393                 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1394                      lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1395                      lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1396                     regdom_changes(lr->alpha2))
1397                         return REG_REQ_IGNORE;
1398
1399                 if (!regdom_changes(pending_request->alpha2))
1400                         return REG_REQ_ALREADY_SET;
1401
1402                 return REG_REQ_OK;
1403         }
1404
1405         return REG_REQ_IGNORE;
1406 }
1407
1408 static void reg_set_request_processed(void)
1409 {
1410         bool need_more_processing = false;
1411         struct regulatory_request *lr = get_last_request();
1412
1413         lr->processed = true;
1414
1415         spin_lock(&reg_requests_lock);
1416         if (!list_empty(&reg_requests_list))
1417                 need_more_processing = true;
1418         spin_unlock(&reg_requests_lock);
1419
1420         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1421                 cancel_delayed_work(&reg_timeout);
1422
1423         if (need_more_processing)
1424                 schedule_work(&reg_work);
1425 }
1426
1427 /**
1428  * __regulatory_hint - hint to the wireless core a regulatory domain
1429  * @wiphy: if the hint comes from country information from an AP, this
1430  *      is required to be set to the wiphy that received the information
1431  * @pending_request: the regulatory request currently being processed
1432  *
1433  * The Wireless subsystem can use this function to hint to the wireless core
1434  * what it believes should be the current regulatory domain.
1435  *
1436  * Returns one of the different reg request treatment values.
1437  *
1438  * Caller must hold &reg_mutex
1439  */
1440 static enum reg_request_treatment
1441 __regulatory_hint(struct wiphy *wiphy,
1442                   struct regulatory_request *pending_request)
1443 {
1444         const struct ieee80211_regdomain *regd;
1445         bool intersect = false;
1446         enum reg_request_treatment treatment;
1447         struct regulatory_request *lr;
1448
1449         treatment = get_reg_request_treatment(wiphy, pending_request);
1450
1451         switch (treatment) {
1452         case REG_REQ_INTERSECT:
1453                 if (pending_request->initiator ==
1454                     NL80211_REGDOM_SET_BY_DRIVER) {
1455                         regd = reg_copy_regd(get_cfg80211_regdom());
1456                         if (IS_ERR(regd)) {
1457                                 kfree(pending_request);
1458                                 return PTR_ERR(regd);
1459                         }
1460                         rcu_assign_pointer(wiphy->regd, regd);
1461                 }
1462                 intersect = true;
1463                 break;
1464         case REG_REQ_OK:
1465                 break;
1466         default:
1467                 /*
1468                  * If the regulatory domain being requested by the
1469                  * driver has already been set just copy it to the
1470                  * wiphy
1471                  */
1472                 if (treatment == REG_REQ_ALREADY_SET &&
1473                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1474                         regd = reg_copy_regd(get_cfg80211_regdom());
1475                         if (IS_ERR(regd)) {
1476                                 kfree(pending_request);
1477                                 return REG_REQ_IGNORE;
1478                         }
1479                         treatment = REG_REQ_ALREADY_SET;
1480                         rcu_assign_pointer(wiphy->regd, regd);
1481                         goto new_request;
1482                 }
1483                 kfree(pending_request);
1484                 return treatment;
1485         }
1486
1487 new_request:
1488         lr = get_last_request();
1489         if (lr != &core_request_world && lr)
1490                 kfree_rcu(lr, rcu_head);
1491
1492         pending_request->intersect = intersect;
1493         pending_request->processed = false;
1494         rcu_assign_pointer(last_request, pending_request);
1495         lr = pending_request;
1496
1497         pending_request = NULL;
1498
1499         if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1500                 user_alpha2[0] = lr->alpha2[0];
1501                 user_alpha2[1] = lr->alpha2[1];
1502         }
1503
1504         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1505         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1506                 /*
1507                  * Since CRDA will not be called in this case as we already
1508                  * have applied the requested regulatory domain before we just
1509                  * inform userspace we have processed the request
1510                  */
1511                 if (treatment == REG_REQ_ALREADY_SET) {
1512                         nl80211_send_reg_change_event(lr);
1513                         reg_set_request_processed();
1514                 }
1515                 return treatment;
1516         }
1517
1518         if (call_crda(lr->alpha2))
1519                 return REG_REQ_IGNORE;
1520         return REG_REQ_OK;
1521 }
1522
1523 /* This processes *all* regulatory hints */
1524 static void reg_process_hint(struct regulatory_request *reg_request,
1525                              enum nl80211_reg_initiator reg_initiator)
1526 {
1527         struct wiphy *wiphy = NULL;
1528
1529         if (WARN_ON(!reg_request->alpha2))
1530                 return;
1531
1532         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1533                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1534
1535         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1536                 kfree(reg_request);
1537                 return;
1538         }
1539
1540         switch (__regulatory_hint(wiphy, reg_request)) {
1541         case REG_REQ_ALREADY_SET:
1542                 /* This is required so that the orig_* parameters are saved */
1543                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1544                         wiphy_update_regulatory(wiphy, reg_initiator);
1545                 break;
1546         default:
1547                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1548                         schedule_delayed_work(&reg_timeout,
1549                                               msecs_to_jiffies(3142));
1550                 break;
1551         }
1552 }
1553
1554 /*
1555  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1556  * Regulatory hints come on a first come first serve basis and we
1557  * must process each one atomically.
1558  */
1559 static void reg_process_pending_hints(void)
1560 {
1561         struct regulatory_request *reg_request, *lr;
1562
1563         mutex_lock(&cfg80211_mutex);
1564         mutex_lock(&reg_mutex);
1565         lr = get_last_request();
1566
1567         /* When last_request->processed becomes true this will be rescheduled */
1568         if (lr && !lr->processed) {
1569                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1570                 goto out;
1571         }
1572
1573         spin_lock(&reg_requests_lock);
1574
1575         if (list_empty(&reg_requests_list)) {
1576                 spin_unlock(&reg_requests_lock);
1577                 goto out;
1578         }
1579
1580         reg_request = list_first_entry(&reg_requests_list,
1581                                        struct regulatory_request,
1582                                        list);
1583         list_del_init(&reg_request->list);
1584
1585         spin_unlock(&reg_requests_lock);
1586
1587         reg_process_hint(reg_request, reg_request->initiator);
1588
1589 out:
1590         mutex_unlock(&reg_mutex);
1591         mutex_unlock(&cfg80211_mutex);
1592 }
1593
1594 /* Processes beacon hints -- this has nothing to do with country IEs */
1595 static void reg_process_pending_beacon_hints(void)
1596 {
1597         struct cfg80211_registered_device *rdev;
1598         struct reg_beacon *pending_beacon, *tmp;
1599
1600         /*
1601          * No need to hold the reg_mutex here as we just touch wiphys
1602          * and do not read or access regulatory variables.
1603          */
1604         mutex_lock(&cfg80211_mutex);
1605
1606         /* This goes through the _pending_ beacon list */
1607         spin_lock_bh(&reg_pending_beacons_lock);
1608
1609         list_for_each_entry_safe(pending_beacon, tmp,
1610                                  &reg_pending_beacons, list) {
1611                 list_del_init(&pending_beacon->list);
1612
1613                 /* Applies the beacon hint to current wiphys */
1614                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1615                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1616
1617                 /* Remembers the beacon hint for new wiphys or reg changes */
1618                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1619         }
1620
1621         spin_unlock_bh(&reg_pending_beacons_lock);
1622         mutex_unlock(&cfg80211_mutex);
1623 }
1624
1625 static void reg_todo(struct work_struct *work)
1626 {
1627         reg_process_pending_hints();
1628         reg_process_pending_beacon_hints();
1629 }
1630
1631 static void queue_regulatory_request(struct regulatory_request *request)
1632 {
1633         request->alpha2[0] = toupper(request->alpha2[0]);
1634         request->alpha2[1] = toupper(request->alpha2[1]);
1635
1636         spin_lock(&reg_requests_lock);
1637         list_add_tail(&request->list, &reg_requests_list);
1638         spin_unlock(&reg_requests_lock);
1639
1640         schedule_work(&reg_work);
1641 }
1642
1643 /*
1644  * Core regulatory hint -- happens during cfg80211_init()
1645  * and when we restore regulatory settings.
1646  */
1647 static int regulatory_hint_core(const char *alpha2)
1648 {
1649         struct regulatory_request *request;
1650
1651         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1652         if (!request)
1653                 return -ENOMEM;
1654
1655         request->alpha2[0] = alpha2[0];
1656         request->alpha2[1] = alpha2[1];
1657         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1658
1659         queue_regulatory_request(request);
1660
1661         return 0;
1662 }
1663
1664 /* User hints */
1665 int regulatory_hint_user(const char *alpha2,
1666                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1667 {
1668         struct regulatory_request *request;
1669
1670         if (WARN_ON(!alpha2))
1671                 return -EINVAL;
1672
1673         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1674         if (!request)
1675                 return -ENOMEM;
1676
1677         request->wiphy_idx = WIPHY_IDX_INVALID;
1678         request->alpha2[0] = alpha2[0];
1679         request->alpha2[1] = alpha2[1];
1680         request->initiator = NL80211_REGDOM_SET_BY_USER;
1681         request->user_reg_hint_type = user_reg_hint_type;
1682
1683         queue_regulatory_request(request);
1684
1685         return 0;
1686 }
1687
1688 /* Driver hints */
1689 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1690 {
1691         struct regulatory_request *request;
1692
1693         if (WARN_ON(!alpha2 || !wiphy))
1694                 return -EINVAL;
1695
1696         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1697         if (!request)
1698                 return -ENOMEM;
1699
1700         request->wiphy_idx = get_wiphy_idx(wiphy);
1701
1702         request->alpha2[0] = alpha2[0];
1703         request->alpha2[1] = alpha2[1];
1704         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1705
1706         queue_regulatory_request(request);
1707
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(regulatory_hint);
1711
1712 /*
1713  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1714  * therefore cannot iterate over the rdev list here.
1715  */
1716 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1717                          const u8 *country_ie, u8 country_ie_len)
1718 {
1719         char alpha2[2];
1720         enum environment_cap env = ENVIRON_ANY;
1721         struct regulatory_request *request, *lr;
1722
1723         mutex_lock(&reg_mutex);
1724         lr = get_last_request();
1725
1726         if (unlikely(!lr))
1727                 goto out;
1728
1729         /* IE len must be evenly divisible by 2 */
1730         if (country_ie_len & 0x01)
1731                 goto out;
1732
1733         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1734                 goto out;
1735
1736         alpha2[0] = country_ie[0];
1737         alpha2[1] = country_ie[1];
1738
1739         if (country_ie[2] == 'I')
1740                 env = ENVIRON_INDOOR;
1741         else if (country_ie[2] == 'O')
1742                 env = ENVIRON_OUTDOOR;
1743
1744         /*
1745          * We will run this only upon a successful connection on cfg80211.
1746          * We leave conflict resolution to the workqueue, where can hold
1747          * cfg80211_mutex.
1748          */
1749         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1750             lr->wiphy_idx != WIPHY_IDX_INVALID)
1751                 goto out;
1752
1753         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1754         if (!request)
1755                 goto out;
1756
1757         request->wiphy_idx = get_wiphy_idx(wiphy);
1758         request->alpha2[0] = alpha2[0];
1759         request->alpha2[1] = alpha2[1];
1760         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1761         request->country_ie_env = env;
1762
1763         queue_regulatory_request(request);
1764 out:
1765         mutex_unlock(&reg_mutex);
1766 }
1767
1768 static void restore_alpha2(char *alpha2, bool reset_user)
1769 {
1770         /* indicates there is no alpha2 to consider for restoration */
1771         alpha2[0] = '9';
1772         alpha2[1] = '7';
1773
1774         /* The user setting has precedence over the module parameter */
1775         if (is_user_regdom_saved()) {
1776                 /* Unless we're asked to ignore it and reset it */
1777                 if (reset_user) {
1778                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1779                         user_alpha2[0] = '9';
1780                         user_alpha2[1] = '7';
1781
1782                         /*
1783                          * If we're ignoring user settings, we still need to
1784                          * check the module parameter to ensure we put things
1785                          * back as they were for a full restore.
1786                          */
1787                         if (!is_world_regdom(ieee80211_regdom)) {
1788                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1789                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1790                                 alpha2[0] = ieee80211_regdom[0];
1791                                 alpha2[1] = ieee80211_regdom[1];
1792                         }
1793                 } else {
1794                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1795                                       user_alpha2[0], user_alpha2[1]);
1796                         alpha2[0] = user_alpha2[0];
1797                         alpha2[1] = user_alpha2[1];
1798                 }
1799         } else if (!is_world_regdom(ieee80211_regdom)) {
1800                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1801                               ieee80211_regdom[0], ieee80211_regdom[1]);
1802                 alpha2[0] = ieee80211_regdom[0];
1803                 alpha2[1] = ieee80211_regdom[1];
1804         } else
1805                 REG_DBG_PRINT("Restoring regulatory settings\n");
1806 }
1807
1808 static void restore_custom_reg_settings(struct wiphy *wiphy)
1809 {
1810         struct ieee80211_supported_band *sband;
1811         enum ieee80211_band band;
1812         struct ieee80211_channel *chan;
1813         int i;
1814
1815         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1816                 sband = wiphy->bands[band];
1817                 if (!sband)
1818                         continue;
1819                 for (i = 0; i < sband->n_channels; i++) {
1820                         chan = &sband->channels[i];
1821                         chan->flags = chan->orig_flags;
1822                         chan->max_antenna_gain = chan->orig_mag;
1823                         chan->max_power = chan->orig_mpwr;
1824                         chan->beacon_found = false;
1825                 }
1826         }
1827 }
1828
1829 /*
1830  * Restoring regulatory settings involves ingoring any
1831  * possibly stale country IE information and user regulatory
1832  * settings if so desired, this includes any beacon hints
1833  * learned as we could have traveled outside to another country
1834  * after disconnection. To restore regulatory settings we do
1835  * exactly what we did at bootup:
1836  *
1837  *   - send a core regulatory hint
1838  *   - send a user regulatory hint if applicable
1839  *
1840  * Device drivers that send a regulatory hint for a specific country
1841  * keep their own regulatory domain on wiphy->regd so that does does
1842  * not need to be remembered.
1843  */
1844 static void restore_regulatory_settings(bool reset_user)
1845 {
1846         char alpha2[2];
1847         char world_alpha2[2];
1848         struct reg_beacon *reg_beacon, *btmp;
1849         struct regulatory_request *reg_request, *tmp;
1850         LIST_HEAD(tmp_reg_req_list);
1851         struct cfg80211_registered_device *rdev;
1852
1853         mutex_lock(&cfg80211_mutex);
1854         mutex_lock(&reg_mutex);
1855
1856         reset_regdomains(true, cfg80211_world_regdom);
1857         restore_alpha2(alpha2, reset_user);
1858
1859         /*
1860          * If there's any pending requests we simply
1861          * stash them to a temporary pending queue and
1862          * add then after we've restored regulatory
1863          * settings.
1864          */
1865         spin_lock(&reg_requests_lock);
1866         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1867                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1868                         continue;
1869                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1870         }
1871         spin_unlock(&reg_requests_lock);
1872
1873         /* Clear beacon hints */
1874         spin_lock_bh(&reg_pending_beacons_lock);
1875         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1876                 list_del(&reg_beacon->list);
1877                 kfree(reg_beacon);
1878         }
1879         spin_unlock_bh(&reg_pending_beacons_lock);
1880
1881         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1882                 list_del(&reg_beacon->list);
1883                 kfree(reg_beacon);
1884         }
1885
1886         /* First restore to the basic regulatory settings */
1887         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1888         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1889
1890         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892                         restore_custom_reg_settings(&rdev->wiphy);
1893         }
1894
1895         regulatory_hint_core(world_alpha2);
1896
1897         /*
1898          * This restores the ieee80211_regdom module parameter
1899          * preference or the last user requested regulatory
1900          * settings, user regulatory settings takes precedence.
1901          */
1902         if (is_an_alpha2(alpha2))
1903                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1904
1905         spin_lock(&reg_requests_lock);
1906         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1907         spin_unlock(&reg_requests_lock);
1908
1909         mutex_unlock(&reg_mutex);
1910         mutex_unlock(&cfg80211_mutex);
1911
1912         REG_DBG_PRINT("Kicking the queue\n");
1913
1914         schedule_work(&reg_work);
1915 }
1916
1917 void regulatory_hint_disconnect(void)
1918 {
1919         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1920         restore_regulatory_settings(false);
1921 }
1922
1923 static bool freq_is_chan_12_13_14(u16 freq)
1924 {
1925         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1926             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1927             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1928                 return true;
1929         return false;
1930 }
1931
1932 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1933                                  struct ieee80211_channel *beacon_chan,
1934                                  gfp_t gfp)
1935 {
1936         struct reg_beacon *reg_beacon;
1937
1938         if (beacon_chan->beacon_found ||
1939             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1940             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1941              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1942                 return 0;
1943
1944         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1945         if (!reg_beacon)
1946                 return -ENOMEM;
1947
1948         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1949                       beacon_chan->center_freq,
1950                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1951                       wiphy_name(wiphy));
1952
1953         memcpy(&reg_beacon->chan, beacon_chan,
1954                sizeof(struct ieee80211_channel));
1955
1956         /*
1957          * Since we can be called from BH or and non-BH context
1958          * we must use spin_lock_bh()
1959          */
1960         spin_lock_bh(&reg_pending_beacons_lock);
1961         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1962         spin_unlock_bh(&reg_pending_beacons_lock);
1963
1964         schedule_work(&reg_work);
1965
1966         return 0;
1967 }
1968
1969 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1970 {
1971         unsigned int i;
1972         const struct ieee80211_reg_rule *reg_rule = NULL;
1973         const struct ieee80211_freq_range *freq_range = NULL;
1974         const struct ieee80211_power_rule *power_rule = NULL;
1975
1976         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1977
1978         for (i = 0; i < rd->n_reg_rules; i++) {
1979                 reg_rule = &rd->reg_rules[i];
1980                 freq_range = &reg_rule->freq_range;
1981                 power_rule = &reg_rule->power_rule;
1982
1983                 /*
1984                  * There may not be documentation for max antenna gain
1985                  * in certain regions
1986                  */
1987                 if (power_rule->max_antenna_gain)
1988                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1989                                 freq_range->start_freq_khz,
1990                                 freq_range->end_freq_khz,
1991                                 freq_range->max_bandwidth_khz,
1992                                 power_rule->max_antenna_gain,
1993                                 power_rule->max_eirp);
1994                 else
1995                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1996                                 freq_range->start_freq_khz,
1997                                 freq_range->end_freq_khz,
1998                                 freq_range->max_bandwidth_khz,
1999                                 power_rule->max_eirp);
2000         }
2001 }
2002
2003 bool reg_supported_dfs_region(u8 dfs_region)
2004 {
2005         switch (dfs_region) {
2006         case NL80211_DFS_UNSET:
2007         case NL80211_DFS_FCC:
2008         case NL80211_DFS_ETSI:
2009         case NL80211_DFS_JP:
2010                 return true;
2011         default:
2012                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2013                               dfs_region);
2014                 return false;
2015         }
2016 }
2017
2018 static void print_dfs_region(u8 dfs_region)
2019 {
2020         if (!dfs_region)
2021                 return;
2022
2023         switch (dfs_region) {
2024         case NL80211_DFS_FCC:
2025                 pr_info(" DFS Master region FCC");
2026                 break;
2027         case NL80211_DFS_ETSI:
2028                 pr_info(" DFS Master region ETSI");
2029                 break;
2030         case NL80211_DFS_JP:
2031                 pr_info(" DFS Master region JP");
2032                 break;
2033         default:
2034                 pr_info(" DFS Master region Unknown");
2035                 break;
2036         }
2037 }
2038
2039 static void print_regdomain(const struct ieee80211_regdomain *rd)
2040 {
2041         struct regulatory_request *lr = get_last_request();
2042
2043         if (is_intersected_alpha2(rd->alpha2)) {
2044                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2045                         struct cfg80211_registered_device *rdev;
2046                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2047                         if (rdev) {
2048                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2049                                         rdev->country_ie_alpha2[0],
2050                                         rdev->country_ie_alpha2[1]);
2051                         } else
2052                                 pr_info("Current regulatory domain intersected:\n");
2053                 } else
2054                         pr_info("Current regulatory domain intersected:\n");
2055         } else if (is_world_regdom(rd->alpha2)) {
2056                 pr_info("World regulatory domain updated:\n");
2057         } else {
2058                 if (is_unknown_alpha2(rd->alpha2))
2059                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2060                 else {
2061                         if (reg_request_cell_base(lr))
2062                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2063                                         rd->alpha2[0], rd->alpha2[1]);
2064                         else
2065                                 pr_info("Regulatory domain changed to country: %c%c\n",
2066                                         rd->alpha2[0], rd->alpha2[1]);
2067                 }
2068         }
2069
2070         print_dfs_region(rd->dfs_region);
2071         print_rd_rules(rd);
2072 }
2073
2074 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2075 {
2076         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2077         print_rd_rules(rd);
2078 }
2079
2080 /* Takes ownership of rd only if it doesn't fail */
2081 static int __set_regdom(const struct ieee80211_regdomain *rd)
2082 {
2083         const struct ieee80211_regdomain *regd;
2084         const struct ieee80211_regdomain *intersected_rd = NULL;
2085         struct wiphy *request_wiphy;
2086         struct regulatory_request *lr = get_last_request();
2087
2088         /* Some basic sanity checks first */
2089
2090         if (!reg_is_valid_request(rd->alpha2))
2091                 return -EINVAL;
2092
2093         if (is_world_regdom(rd->alpha2)) {
2094                 update_world_regdomain(rd);
2095                 return 0;
2096         }
2097
2098         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2099             !is_unknown_alpha2(rd->alpha2))
2100                 return -EINVAL;
2101
2102         /*
2103          * Lets only bother proceeding on the same alpha2 if the current
2104          * rd is non static (it means CRDA was present and was used last)
2105          * and the pending request came in from a country IE
2106          */
2107         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2108                 /*
2109                  * If someone else asked us to change the rd lets only bother
2110                  * checking if the alpha2 changes if CRDA was already called
2111                  */
2112                 if (!regdom_changes(rd->alpha2))
2113                         return -EALREADY;
2114         }
2115
2116         /*
2117          * Now lets set the regulatory domain, update all driver channels
2118          * and finally inform them of what we have done, in case they want
2119          * to review or adjust their own settings based on their own
2120          * internal EEPROM data
2121          */
2122
2123         if (!is_valid_rd(rd)) {
2124                 pr_err("Invalid regulatory domain detected:\n");
2125                 print_regdomain_info(rd);
2126                 return -EINVAL;
2127         }
2128
2129         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2130         if (!request_wiphy &&
2131             (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2132              lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2133                 schedule_delayed_work(&reg_timeout, 0);
2134                 return -ENODEV;
2135         }
2136
2137         if (!lr->intersect) {
2138                 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2139                         reset_regdomains(false, rd);
2140                         return 0;
2141                 }
2142
2143                 /*
2144                  * For a driver hint, lets copy the regulatory domain the
2145                  * driver wanted to the wiphy to deal with conflicts
2146                  */
2147
2148                 /*
2149                  * Userspace could have sent two replies with only
2150                  * one kernel request.
2151                  */
2152                 if (request_wiphy->regd)
2153                         return -EALREADY;
2154
2155                 regd = reg_copy_regd(rd);
2156                 if (IS_ERR(regd))
2157                         return PTR_ERR(regd);
2158
2159                 rcu_assign_pointer(request_wiphy->regd, regd);
2160                 reset_regdomains(false, rd);
2161                 return 0;
2162         }
2163
2164         /* Intersection requires a bit more work */
2165
2166         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2167                 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2168                 if (!intersected_rd)
2169                         return -EINVAL;
2170
2171                 /*
2172                  * We can trash what CRDA provided now.
2173                  * However if a driver requested this specific regulatory
2174                  * domain we keep it for its private use
2175                  */
2176                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2177                         rcu_assign_pointer(request_wiphy->regd, rd);
2178                 else
2179                         kfree(rd);
2180
2181                 rd = NULL;
2182
2183                 reset_regdomains(false, intersected_rd);
2184
2185                 return 0;
2186         }
2187
2188         return -EINVAL;
2189 }
2190
2191
2192 /*
2193  * Use this call to set the current regulatory domain. Conflicts with
2194  * multiple drivers can be ironed out later. Caller must've already
2195  * kmalloc'd the rd structure.
2196  */
2197 int set_regdom(const struct ieee80211_regdomain *rd)
2198 {
2199         struct regulatory_request *lr;
2200         int r;
2201
2202         mutex_lock(&reg_mutex);
2203         lr = get_last_request();
2204
2205         /* Note that this doesn't update the wiphys, this is done below */
2206         r = __set_regdom(rd);
2207         if (r) {
2208                 if (r == -EALREADY)
2209                         reg_set_request_processed();
2210
2211                 kfree(rd);
2212                 goto out;
2213         }
2214
2215         /* This would make this whole thing pointless */
2216         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) {
2217                 r = -EINVAL;
2218                 goto out;
2219         }
2220
2221         /* update all wiphys now with the new established regulatory domain */
2222         update_all_wiphy_regulatory(lr->initiator);
2223
2224         print_regdomain(get_cfg80211_regdom());
2225
2226         nl80211_send_reg_change_event(lr);
2227
2228         reg_set_request_processed();
2229
2230  out:
2231         mutex_unlock(&reg_mutex);
2232
2233         return r;
2234 }
2235
2236 #ifdef CONFIG_HOTPLUG
2237 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2238 {
2239         struct regulatory_request *lr = get_last_request();
2240
2241         if (lr && !lr->processed) {
2242                 if (add_uevent_var(env, "COUNTRY=%c%c",
2243                                    lr->alpha2[0], lr->alpha2[1]))
2244                         return -ENOMEM;
2245         }
2246
2247         return 0;
2248 }
2249 #else
2250 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2251 {
2252         return -ENODEV;
2253 }
2254 #endif /* CONFIG_HOTPLUG */
2255
2256 void wiphy_regulatory_register(struct wiphy *wiphy)
2257 {
2258         mutex_lock(&reg_mutex);
2259
2260         if (!reg_dev_ignore_cell_hint(wiphy))
2261                 reg_num_devs_support_basehint++;
2262
2263         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2264
2265         mutex_unlock(&reg_mutex);
2266 }
2267
2268 /* Caller must hold cfg80211_mutex */
2269 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2270 {
2271         struct wiphy *request_wiphy = NULL;
2272         struct regulatory_request *lr;
2273
2274         mutex_lock(&reg_mutex);
2275         lr = get_last_request();
2276
2277         if (!reg_dev_ignore_cell_hint(wiphy))
2278                 reg_num_devs_support_basehint--;
2279
2280         rcu_free_regdom(get_wiphy_regdom(wiphy));
2281         rcu_assign_pointer(wiphy->regd, NULL);
2282
2283         if (lr)
2284                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2285
2286         if (!request_wiphy || request_wiphy != wiphy)
2287                 goto out;
2288
2289         lr->wiphy_idx = WIPHY_IDX_INVALID;
2290         lr->country_ie_env = ENVIRON_ANY;
2291 out:
2292         mutex_unlock(&reg_mutex);
2293 }
2294
2295 static void reg_timeout_work(struct work_struct *work)
2296 {
2297         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2298         restore_regulatory_settings(true);
2299 }
2300
2301 int __init regulatory_init(void)
2302 {
2303         int err = 0;
2304
2305         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2306         if (IS_ERR(reg_pdev))
2307                 return PTR_ERR(reg_pdev);
2308
2309         reg_pdev->dev.type = &reg_device_type;
2310
2311         spin_lock_init(&reg_requests_lock);
2312         spin_lock_init(&reg_pending_beacons_lock);
2313
2314         reg_regdb_size_check();
2315
2316         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2317
2318         user_alpha2[0] = '9';
2319         user_alpha2[1] = '7';
2320
2321         /* We always try to get an update for the static regdomain */
2322         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2323         if (err) {
2324                 if (err == -ENOMEM)
2325                         return err;
2326                 /*
2327                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2328                  * memory which is handled and propagated appropriately above
2329                  * but it can also fail during a netlink_broadcast() or during
2330                  * early boot for call_usermodehelper(). For now treat these
2331                  * errors as non-fatal.
2332                  */
2333                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2334         }
2335
2336         /*
2337          * Finally, if the user set the module parameter treat it
2338          * as a user hint.
2339          */
2340         if (!is_world_regdom(ieee80211_regdom))
2341                 regulatory_hint_user(ieee80211_regdom,
2342                                      NL80211_USER_REG_HINT_USER);
2343
2344         return 0;
2345 }
2346
2347 void regulatory_exit(void)
2348 {
2349         struct regulatory_request *reg_request, *tmp;
2350         struct reg_beacon *reg_beacon, *btmp;
2351
2352         cancel_work_sync(&reg_work);
2353         cancel_delayed_work_sync(&reg_timeout);
2354
2355         /* Lock to suppress warnings */
2356         mutex_lock(&reg_mutex);
2357         reset_regdomains(true, NULL);
2358         mutex_unlock(&reg_mutex);
2359
2360         dev_set_uevent_suppress(&reg_pdev->dev, true);
2361
2362         platform_device_unregister(reg_pdev);
2363
2364         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2365                 list_del(&reg_beacon->list);
2366                 kfree(reg_beacon);
2367         }
2368
2369         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2370                 list_del(&reg_beacon->list);
2371                 kfree(reg_beacon);
2372         }
2373
2374         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2375                 list_del(&reg_request->list);
2376                 kfree(reg_request);
2377         }
2378 }