48baf28cc4b68608a93b22e08dcf579cebc94afa
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
46
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49         do { \
50                 printk(KERN_DEBUG format , ## args); \
51         } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
55
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
58
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
61
62 /*
63  * Central wireless core regulatory domains, we only need two,
64  * the current one and a world regulatory domain in case we have no
65  * information to give us an alpha2
66  */
67 const struct ieee80211_regdomain *cfg80211_regdomain;
68
69 /*
70  * Protects static reg.c components:
71  *     - cfg80211_world_regdom
72  *     - cfg80211_regdom
73  *     - last_request
74  */
75 static DEFINE_MUTEX(reg_mutex);
76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
77
78 /* Used to queue up regulatory hints */
79 static LIST_HEAD(reg_requests_list);
80 static spinlock_t reg_requests_lock;
81
82 /* Used to queue up beacon hints for review */
83 static LIST_HEAD(reg_pending_beacons);
84 static spinlock_t reg_pending_beacons_lock;
85
86 /* Used to keep track of processed beacon hints */
87 static LIST_HEAD(reg_beacon_list);
88
89 struct reg_beacon {
90         struct list_head list;
91         struct ieee80211_channel chan;
92 };
93
94 /* We keep a static world regulatory domain in case of the absence of CRDA */
95 static const struct ieee80211_regdomain world_regdom = {
96         .n_reg_rules = 5,
97         .alpha2 =  "00",
98         .reg_rules = {
99                 /* IEEE 802.11b/g, channels 1..11 */
100                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101                 /* IEEE 802.11b/g, channels 12..13. No HT40
102                  * channel fits here. */
103                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
104                         NL80211_RRF_PASSIVE_SCAN |
105                         NL80211_RRF_NO_IBSS),
106                 /* IEEE 802.11 channel 14 - Only JP enables
107                  * this and for 802.11b only */
108                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS |
111                         NL80211_RRF_NO_OFDM),
112                 /* IEEE 802.11a, channel 36..48 */
113                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS),
116
117                 /* NB: 5260 MHz - 5700 MHz requies DFS */
118
119                 /* IEEE 802.11a, channel 149..165 */
120                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
121                         NL80211_RRF_PASSIVE_SCAN |
122                         NL80211_RRF_NO_IBSS),
123         }
124 };
125
126 static const struct ieee80211_regdomain *cfg80211_world_regdom =
127         &world_regdom;
128
129 static char *ieee80211_regdom = "00";
130 static char user_alpha2[2];
131
132 module_param(ieee80211_regdom, charp, 0444);
133 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
134
135 static void reset_regdomains(void)
136 {
137         /* avoid freeing static information or freeing something twice */
138         if (cfg80211_regdomain == cfg80211_world_regdom)
139                 cfg80211_regdomain = NULL;
140         if (cfg80211_world_regdom == &world_regdom)
141                 cfg80211_world_regdom = NULL;
142         if (cfg80211_regdomain == &world_regdom)
143                 cfg80211_regdomain = NULL;
144
145         kfree(cfg80211_regdomain);
146         kfree(cfg80211_world_regdom);
147
148         cfg80211_world_regdom = &world_regdom;
149         cfg80211_regdomain = NULL;
150 }
151
152 /*
153  * Dynamic world regulatory domain requested by the wireless
154  * core upon initialization
155  */
156 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
157 {
158         BUG_ON(!last_request);
159
160         reset_regdomains();
161
162         cfg80211_world_regdom = rd;
163         cfg80211_regdomain = rd;
164 }
165
166 bool is_world_regdom(const char *alpha2)
167 {
168         if (!alpha2)
169                 return false;
170         if (alpha2[0] == '0' && alpha2[1] == '0')
171                 return true;
172         return false;
173 }
174
175 static bool is_alpha2_set(const char *alpha2)
176 {
177         if (!alpha2)
178                 return false;
179         if (alpha2[0] != 0 && alpha2[1] != 0)
180                 return true;
181         return false;
182 }
183
184 static bool is_alpha_upper(char letter)
185 {
186         /* ASCII A - Z */
187         if (letter >= 65 && letter <= 90)
188                 return true;
189         return false;
190 }
191
192 static bool is_unknown_alpha2(const char *alpha2)
193 {
194         if (!alpha2)
195                 return false;
196         /*
197          * Special case where regulatory domain was built by driver
198          * but a specific alpha2 cannot be determined
199          */
200         if (alpha2[0] == '9' && alpha2[1] == '9')
201                 return true;
202         return false;
203 }
204
205 static bool is_intersected_alpha2(const char *alpha2)
206 {
207         if (!alpha2)
208                 return false;
209         /*
210          * Special case where regulatory domain is the
211          * result of an intersection between two regulatory domain
212          * structures
213          */
214         if (alpha2[0] == '9' && alpha2[1] == '8')
215                 return true;
216         return false;
217 }
218
219 static bool is_an_alpha2(const char *alpha2)
220 {
221         if (!alpha2)
222                 return false;
223         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
224                 return true;
225         return false;
226 }
227
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 {
230         if (!alpha2_x || !alpha2_y)
231                 return false;
232         if (alpha2_x[0] == alpha2_y[0] &&
233                 alpha2_x[1] == alpha2_y[1])
234                 return true;
235         return false;
236 }
237
238 static bool regdom_changes(const char *alpha2)
239 {
240         assert_cfg80211_lock();
241
242         if (!cfg80211_regdomain)
243                 return true;
244         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245                 return false;
246         return true;
247 }
248
249 /*
250  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252  * has ever been issued.
253  */
254 static bool is_user_regdom_saved(void)
255 {
256         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257                 return false;
258
259         /* This would indicate a mistake on the design */
260         if (WARN((!is_world_regdom(user_alpha2) &&
261                   !is_an_alpha2(user_alpha2)),
262                  "Unexpected user alpha2: %c%c\n",
263                  user_alpha2[0],
264                  user_alpha2[1]))
265                 return false;
266
267         return true;
268 }
269
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271                          const struct ieee80211_regdomain *src_regd)
272 {
273         struct ieee80211_regdomain *regd;
274         int size_of_regd = 0;
275         unsigned int i;
276
277         size_of_regd = sizeof(struct ieee80211_regdomain) +
278           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
279
280         regd = kzalloc(size_of_regd, GFP_KERNEL);
281         if (!regd)
282                 return -ENOMEM;
283
284         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
285
286         for (i = 0; i < src_regd->n_reg_rules; i++)
287                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288                         sizeof(struct ieee80211_reg_rule));
289
290         *dst_regd = regd;
291         return 0;
292 }
293
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296         char alpha2[2];
297         struct list_head list;
298 };
299
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
302
303 static void reg_regdb_search(struct work_struct *work)
304 {
305         struct reg_regdb_search_request *request;
306         const struct ieee80211_regdomain *curdom, *regdom;
307         int i, r;
308
309         mutex_lock(&reg_regdb_search_mutex);
310         while (!list_empty(&reg_regdb_search_list)) {
311                 request = list_first_entry(&reg_regdb_search_list,
312                                            struct reg_regdb_search_request,
313                                            list);
314                 list_del(&request->list);
315
316                 for (i=0; i<reg_regdb_size; i++) {
317                         curdom = reg_regdb[i];
318
319                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320                                 r = reg_copy_regd(&regdom, curdom);
321                                 if (r)
322                                         break;
323                                 mutex_lock(&cfg80211_mutex);
324                                 set_regdom(regdom);
325                                 mutex_unlock(&cfg80211_mutex);
326                                 break;
327                         }
328                 }
329
330                 kfree(request);
331         }
332         mutex_unlock(&reg_regdb_search_mutex);
333 }
334
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
336
337 static void reg_regdb_query(const char *alpha2)
338 {
339         struct reg_regdb_search_request *request;
340
341         if (!alpha2)
342                 return;
343
344         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345         if (!request)
346                 return;
347
348         memcpy(request->alpha2, alpha2, 2);
349
350         mutex_lock(&reg_regdb_search_mutex);
351         list_add_tail(&request->list, &reg_regdb_search_list);
352         mutex_unlock(&reg_regdb_search_mutex);
353
354         schedule_work(&reg_regdb_work);
355 }
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
359
360 /*
361  * This lets us keep regulatory code which is updated on a regulatory
362  * basis in userspace.
363  */
364 static int call_crda(const char *alpha2)
365 {
366         char country_env[9 + 2] = "COUNTRY=";
367         char *envp[] = {
368                 country_env,
369                 NULL
370         };
371
372         if (!is_world_regdom((char *) alpha2))
373                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374                         alpha2[0], alpha2[1]);
375         else
376                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377                         "regulatory domain\n");
378
379         /* query internal regulatory database (if it exists) */
380         reg_regdb_query(alpha2);
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Helper for regdom_intersect(), this does the real
483  * mathematical intersection fun
484  */
485 static int reg_rules_intersect(
486         const struct ieee80211_reg_rule *rule1,
487         const struct ieee80211_reg_rule *rule2,
488         struct ieee80211_reg_rule *intersected_rule)
489 {
490         const struct ieee80211_freq_range *freq_range1, *freq_range2;
491         struct ieee80211_freq_range *freq_range;
492         const struct ieee80211_power_rule *power_rule1, *power_rule2;
493         struct ieee80211_power_rule *power_rule;
494         u32 freq_diff;
495
496         freq_range1 = &rule1->freq_range;
497         freq_range2 = &rule2->freq_range;
498         freq_range = &intersected_rule->freq_range;
499
500         power_rule1 = &rule1->power_rule;
501         power_rule2 = &rule2->power_rule;
502         power_rule = &intersected_rule->power_rule;
503
504         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505                 freq_range2->start_freq_khz);
506         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507                 freq_range2->end_freq_khz);
508         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509                 freq_range2->max_bandwidth_khz);
510
511         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512         if (freq_range->max_bandwidth_khz > freq_diff)
513                 freq_range->max_bandwidth_khz = freq_diff;
514
515         power_rule->max_eirp = min(power_rule1->max_eirp,
516                 power_rule2->max_eirp);
517         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518                 power_rule2->max_antenna_gain);
519
520         intersected_rule->flags = (rule1->flags | rule2->flags);
521
522         if (!is_valid_reg_rule(intersected_rule))
523                 return -EINVAL;
524
525         return 0;
526 }
527
528 /**
529  * regdom_intersect - do the intersection between two regulatory domains
530  * @rd1: first regulatory domain
531  * @rd2: second regulatory domain
532  *
533  * Use this function to get the intersection between two regulatory domains.
534  * Once completed we will mark the alpha2 for the rd as intersected, "98",
535  * as no one single alpha2 can represent this regulatory domain.
536  *
537  * Returns a pointer to the regulatory domain structure which will hold the
538  * resulting intersection of rules between rd1 and rd2. We will
539  * kzalloc() this structure for you.
540  */
541 static struct ieee80211_regdomain *regdom_intersect(
542         const struct ieee80211_regdomain *rd1,
543         const struct ieee80211_regdomain *rd2)
544 {
545         int r, size_of_regd;
546         unsigned int x, y;
547         unsigned int num_rules = 0, rule_idx = 0;
548         const struct ieee80211_reg_rule *rule1, *rule2;
549         struct ieee80211_reg_rule *intersected_rule;
550         struct ieee80211_regdomain *rd;
551         /* This is just a dummy holder to help us count */
552         struct ieee80211_reg_rule irule;
553
554         /* Uses the stack temporarily for counter arithmetic */
555         intersected_rule = &irule;
556
557         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558
559         if (!rd1 || !rd2)
560                 return NULL;
561
562         /*
563          * First we get a count of the rules we'll need, then we actually
564          * build them. This is to so we can malloc() and free() a
565          * regdomain once. The reason we use reg_rules_intersect() here
566          * is it will return -EINVAL if the rule computed makes no sense.
567          * All rules that do check out OK are valid.
568          */
569
570         for (x = 0; x < rd1->n_reg_rules; x++) {
571                 rule1 = &rd1->reg_rules[x];
572                 for (y = 0; y < rd2->n_reg_rules; y++) {
573                         rule2 = &rd2->reg_rules[y];
574                         if (!reg_rules_intersect(rule1, rule2,
575                                         intersected_rule))
576                                 num_rules++;
577                         memset(intersected_rule, 0,
578                                         sizeof(struct ieee80211_reg_rule));
579                 }
580         }
581
582         if (!num_rules)
583                 return NULL;
584
585         size_of_regd = sizeof(struct ieee80211_regdomain) +
586                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587
588         rd = kzalloc(size_of_regd, GFP_KERNEL);
589         if (!rd)
590                 return NULL;
591
592         for (x = 0; x < rd1->n_reg_rules; x++) {
593                 rule1 = &rd1->reg_rules[x];
594                 for (y = 0; y < rd2->n_reg_rules; y++) {
595                         rule2 = &rd2->reg_rules[y];
596                         /*
597                          * This time around instead of using the stack lets
598                          * write to the target rule directly saving ourselves
599                          * a memcpy()
600                          */
601                         intersected_rule = &rd->reg_rules[rule_idx];
602                         r = reg_rules_intersect(rule1, rule2,
603                                 intersected_rule);
604                         /*
605                          * No need to memset here the intersected rule here as
606                          * we're not using the stack anymore
607                          */
608                         if (r)
609                                 continue;
610                         rule_idx++;
611                 }
612         }
613
614         if (rule_idx != num_rules) {
615                 kfree(rd);
616                 return NULL;
617         }
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = '9';
621         rd->alpha2[1] = '8';
622
623         return rd;
624 }
625
626 /*
627  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628  * want to just have the channel structure use these
629  */
630 static u32 map_regdom_flags(u32 rd_flags)
631 {
632         u32 channel_flags = 0;
633         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
634                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
635         if (rd_flags & NL80211_RRF_NO_IBSS)
636                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
637         if (rd_flags & NL80211_RRF_DFS)
638                 channel_flags |= IEEE80211_CHAN_RADAR;
639         return channel_flags;
640 }
641
642 static int freq_reg_info_regd(struct wiphy *wiphy,
643                               u32 center_freq,
644                               u32 desired_bw_khz,
645                               const struct ieee80211_reg_rule **reg_rule,
646                               const struct ieee80211_regdomain *custom_regd)
647 {
648         int i;
649         bool band_rule_found = false;
650         const struct ieee80211_regdomain *regd;
651         bool bw_fits = false;
652
653         if (!desired_bw_khz)
654                 desired_bw_khz = MHZ_TO_KHZ(20);
655
656         regd = custom_regd ? custom_regd : cfg80211_regdomain;
657
658         /*
659          * Follow the driver's regulatory domain, if present, unless a country
660          * IE has been processed or a user wants to help complaince further
661          */
662         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664             wiphy->regd)
665                 regd = wiphy->regd;
666
667         if (!regd)
668                 return -EINVAL;
669
670         for (i = 0; i < regd->n_reg_rules; i++) {
671                 const struct ieee80211_reg_rule *rr;
672                 const struct ieee80211_freq_range *fr = NULL;
673                 const struct ieee80211_power_rule *pr = NULL;
674
675                 rr = &regd->reg_rules[i];
676                 fr = &rr->freq_range;
677                 pr = &rr->power_rule;
678
679                 /*
680                  * We only need to know if one frequency rule was
681                  * was in center_freq's band, that's enough, so lets
682                  * not overwrite it once found
683                  */
684                 if (!band_rule_found)
685                         band_rule_found = freq_in_rule_band(fr, center_freq);
686
687                 bw_fits = reg_does_bw_fit(fr,
688                                           center_freq,
689                                           desired_bw_khz);
690
691                 if (band_rule_found && bw_fits) {
692                         *reg_rule = rr;
693                         return 0;
694                 }
695         }
696
697         if (!band_rule_found)
698                 return -ERANGE;
699
700         return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704                   u32 center_freq,
705                   u32 desired_bw_khz,
706                   const struct ieee80211_reg_rule **reg_rule)
707 {
708         assert_cfg80211_lock();
709         return freq_reg_info_regd(wiphy,
710                                   center_freq,
711                                   desired_bw_khz,
712                                   reg_rule,
713                                   NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 /*
718  * Note that right now we assume the desired channel bandwidth
719  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
720  * per channel, the primary and the extension channel). To support
721  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
722  * new ieee80211_channel.target_bw and re run the regulatory check
723  * on the wiphy with the target_bw specified. Then we can simply use
724  * that below for the desired_bw_khz below.
725  */
726 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
727                            unsigned int chan_idx)
728 {
729         int r;
730         u32 flags, bw_flags = 0;
731         u32 desired_bw_khz = MHZ_TO_KHZ(20);
732         const struct ieee80211_reg_rule *reg_rule = NULL;
733         const struct ieee80211_power_rule *power_rule = NULL;
734         const struct ieee80211_freq_range *freq_range = NULL;
735         struct ieee80211_supported_band *sband;
736         struct ieee80211_channel *chan;
737         struct wiphy *request_wiphy = NULL;
738
739         assert_cfg80211_lock();
740
741         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
742
743         sband = wiphy->bands[band];
744         BUG_ON(chan_idx >= sband->n_channels);
745         chan = &sband->channels[chan_idx];
746
747         flags = chan->orig_flags;
748
749         r = freq_reg_info(wiphy,
750                           MHZ_TO_KHZ(chan->center_freq),
751                           desired_bw_khz,
752                           &reg_rule);
753
754         if (r)
755                 return;
756
757         power_rule = &reg_rule->power_rule;
758         freq_range = &reg_rule->freq_range;
759
760         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
761                 bw_flags = IEEE80211_CHAN_NO_HT40;
762
763         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
764             request_wiphy && request_wiphy == wiphy &&
765             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
766                 /*
767                  * This gaurantees the driver's requested regulatory domain
768                  * will always be used as a base for further regulatory
769                  * settings
770                  */
771                 chan->flags = chan->orig_flags =
772                         map_regdom_flags(reg_rule->flags) | bw_flags;
773                 chan->max_antenna_gain = chan->orig_mag =
774                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
775                 chan->max_power = chan->orig_mpwr =
776                         (int) MBM_TO_DBM(power_rule->max_eirp);
777                 return;
778         }
779
780         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
781         chan->max_antenna_gain = min(chan->orig_mag,
782                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
783         if (chan->orig_mpwr)
784                 chan->max_power = min(chan->orig_mpwr,
785                         (int) MBM_TO_DBM(power_rule->max_eirp));
786         else
787                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
788 }
789
790 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
791 {
792         unsigned int i;
793         struct ieee80211_supported_band *sband;
794
795         BUG_ON(!wiphy->bands[band]);
796         sband = wiphy->bands[band];
797
798         for (i = 0; i < sband->n_channels; i++)
799                 handle_channel(wiphy, band, i);
800 }
801
802 static bool ignore_reg_update(struct wiphy *wiphy,
803                               enum nl80211_reg_initiator initiator)
804 {
805         if (!last_request)
806                 return true;
807         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
808             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
809                 return true;
810         /*
811          * wiphy->regd will be set once the device has its own
812          * desired regulatory domain set
813          */
814         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
815             !is_world_regdom(last_request->alpha2))
816                 return true;
817         return false;
818 }
819
820 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
821 {
822         struct cfg80211_registered_device *rdev;
823
824         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
825                 wiphy_update_regulatory(&rdev->wiphy, initiator);
826 }
827
828 static void handle_reg_beacon(struct wiphy *wiphy,
829                               unsigned int chan_idx,
830                               struct reg_beacon *reg_beacon)
831 {
832         struct ieee80211_supported_band *sband;
833         struct ieee80211_channel *chan;
834         bool channel_changed = false;
835         struct ieee80211_channel chan_before;
836
837         assert_cfg80211_lock();
838
839         sband = wiphy->bands[reg_beacon->chan.band];
840         chan = &sband->channels[chan_idx];
841
842         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
843                 return;
844
845         if (chan->beacon_found)
846                 return;
847
848         chan->beacon_found = true;
849
850         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
851                 return;
852
853         chan_before.center_freq = chan->center_freq;
854         chan_before.flags = chan->flags;
855
856         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
857                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
858                 channel_changed = true;
859         }
860
861         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
862                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
863                 channel_changed = true;
864         }
865
866         if (channel_changed)
867                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
868 }
869
870 /*
871  * Called when a scan on a wiphy finds a beacon on
872  * new channel
873  */
874 static void wiphy_update_new_beacon(struct wiphy *wiphy,
875                                     struct reg_beacon *reg_beacon)
876 {
877         unsigned int i;
878         struct ieee80211_supported_band *sband;
879
880         assert_cfg80211_lock();
881
882         if (!wiphy->bands[reg_beacon->chan.band])
883                 return;
884
885         sband = wiphy->bands[reg_beacon->chan.band];
886
887         for (i = 0; i < sband->n_channels; i++)
888                 handle_reg_beacon(wiphy, i, reg_beacon);
889 }
890
891 /*
892  * Called upon reg changes or a new wiphy is added
893  */
894 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
895 {
896         unsigned int i;
897         struct ieee80211_supported_band *sband;
898         struct reg_beacon *reg_beacon;
899
900         assert_cfg80211_lock();
901
902         if (list_empty(&reg_beacon_list))
903                 return;
904
905         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
906                 if (!wiphy->bands[reg_beacon->chan.band])
907                         continue;
908                 sband = wiphy->bands[reg_beacon->chan.band];
909                 for (i = 0; i < sband->n_channels; i++)
910                         handle_reg_beacon(wiphy, i, reg_beacon);
911         }
912 }
913
914 static bool reg_is_world_roaming(struct wiphy *wiphy)
915 {
916         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
917             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
918                 return true;
919         if (last_request &&
920             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
921             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
922                 return true;
923         return false;
924 }
925
926 /* Reap the advantages of previously found beacons */
927 static void reg_process_beacons(struct wiphy *wiphy)
928 {
929         /*
930          * Means we are just firing up cfg80211, so no beacons would
931          * have been processed yet.
932          */
933         if (!last_request)
934                 return;
935         if (!reg_is_world_roaming(wiphy))
936                 return;
937         wiphy_update_beacon_reg(wiphy);
938 }
939
940 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
941 {
942         if (!chan)
943                 return true;
944         if (chan->flags & IEEE80211_CHAN_DISABLED)
945                 return true;
946         /* This would happen when regulatory rules disallow HT40 completely */
947         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
948                 return true;
949         return false;
950 }
951
952 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
953                                          enum ieee80211_band band,
954                                          unsigned int chan_idx)
955 {
956         struct ieee80211_supported_band *sband;
957         struct ieee80211_channel *channel;
958         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
959         unsigned int i;
960
961         assert_cfg80211_lock();
962
963         sband = wiphy->bands[band];
964         BUG_ON(chan_idx >= sband->n_channels);
965         channel = &sband->channels[chan_idx];
966
967         if (is_ht40_not_allowed(channel)) {
968                 channel->flags |= IEEE80211_CHAN_NO_HT40;
969                 return;
970         }
971
972         /*
973          * We need to ensure the extension channels exist to
974          * be able to use HT40- or HT40+, this finds them (or not)
975          */
976         for (i = 0; i < sband->n_channels; i++) {
977                 struct ieee80211_channel *c = &sband->channels[i];
978                 if (c->center_freq == (channel->center_freq - 20))
979                         channel_before = c;
980                 if (c->center_freq == (channel->center_freq + 20))
981                         channel_after = c;
982         }
983
984         /*
985          * Please note that this assumes target bandwidth is 20 MHz,
986          * if that ever changes we also need to change the below logic
987          * to include that as well.
988          */
989         if (is_ht40_not_allowed(channel_before))
990                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
991         else
992                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
993
994         if (is_ht40_not_allowed(channel_after))
995                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
996         else
997                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
998 }
999
1000 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1001                                       enum ieee80211_band band)
1002 {
1003         unsigned int i;
1004         struct ieee80211_supported_band *sband;
1005
1006         BUG_ON(!wiphy->bands[band]);
1007         sband = wiphy->bands[band];
1008
1009         for (i = 0; i < sband->n_channels; i++)
1010                 reg_process_ht_flags_channel(wiphy, band, i);
1011 }
1012
1013 static void reg_process_ht_flags(struct wiphy *wiphy)
1014 {
1015         enum ieee80211_band band;
1016
1017         if (!wiphy)
1018                 return;
1019
1020         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1021                 if (wiphy->bands[band])
1022                         reg_process_ht_flags_band(wiphy, band);
1023         }
1024
1025 }
1026
1027 void wiphy_update_regulatory(struct wiphy *wiphy,
1028                              enum nl80211_reg_initiator initiator)
1029 {
1030         enum ieee80211_band band;
1031
1032         if (ignore_reg_update(wiphy, initiator))
1033                 goto out;
1034         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1035                 if (wiphy->bands[band])
1036                         handle_band(wiphy, band);
1037         }
1038 out:
1039         reg_process_beacons(wiphy);
1040         reg_process_ht_flags(wiphy);
1041         if (wiphy->reg_notifier)
1042                 wiphy->reg_notifier(wiphy, last_request);
1043 }
1044
1045 static void handle_channel_custom(struct wiphy *wiphy,
1046                                   enum ieee80211_band band,
1047                                   unsigned int chan_idx,
1048                                   const struct ieee80211_regdomain *regd)
1049 {
1050         int r;
1051         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1052         u32 bw_flags = 0;
1053         const struct ieee80211_reg_rule *reg_rule = NULL;
1054         const struct ieee80211_power_rule *power_rule = NULL;
1055         const struct ieee80211_freq_range *freq_range = NULL;
1056         struct ieee80211_supported_band *sband;
1057         struct ieee80211_channel *chan;
1058
1059         assert_reg_lock();
1060
1061         sband = wiphy->bands[band];
1062         BUG_ON(chan_idx >= sband->n_channels);
1063         chan = &sband->channels[chan_idx];
1064
1065         r = freq_reg_info_regd(wiphy,
1066                                MHZ_TO_KHZ(chan->center_freq),
1067                                desired_bw_khz,
1068                                &reg_rule,
1069                                regd);
1070
1071         if (r) {
1072                 chan->flags = IEEE80211_CHAN_DISABLED;
1073                 return;
1074         }
1075
1076         power_rule = &reg_rule->power_rule;
1077         freq_range = &reg_rule->freq_range;
1078
1079         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1080                 bw_flags = IEEE80211_CHAN_NO_HT40;
1081
1082         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1083         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1084         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1085 }
1086
1087 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1088                                const struct ieee80211_regdomain *regd)
1089 {
1090         unsigned int i;
1091         struct ieee80211_supported_band *sband;
1092
1093         BUG_ON(!wiphy->bands[band]);
1094         sband = wiphy->bands[band];
1095
1096         for (i = 0; i < sband->n_channels; i++)
1097                 handle_channel_custom(wiphy, band, i, regd);
1098 }
1099
1100 /* Used by drivers prior to wiphy registration */
1101 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1102                                    const struct ieee80211_regdomain *regd)
1103 {
1104         enum ieee80211_band band;
1105         unsigned int bands_set = 0;
1106
1107         mutex_lock(&reg_mutex);
1108         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1109                 if (!wiphy->bands[band])
1110                         continue;
1111                 handle_band_custom(wiphy, band, regd);
1112                 bands_set++;
1113         }
1114         mutex_unlock(&reg_mutex);
1115
1116         /*
1117          * no point in calling this if it won't have any effect
1118          * on your device's supportd bands.
1119          */
1120         WARN_ON(!bands_set);
1121 }
1122 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1123
1124 /*
1125  * Return value which can be used by ignore_request() to indicate
1126  * it has been determined we should intersect two regulatory domains
1127  */
1128 #define REG_INTERSECT   1
1129
1130 /* This has the logic which determines when a new request
1131  * should be ignored. */
1132 static int ignore_request(struct wiphy *wiphy,
1133                           struct regulatory_request *pending_request)
1134 {
1135         struct wiphy *last_wiphy = NULL;
1136
1137         assert_cfg80211_lock();
1138
1139         /* All initial requests are respected */
1140         if (!last_request)
1141                 return 0;
1142
1143         switch (pending_request->initiator) {
1144         case NL80211_REGDOM_SET_BY_CORE:
1145                 return 0;
1146         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1147
1148                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1149
1150                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1151                         return -EINVAL;
1152                 if (last_request->initiator ==
1153                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1154                         if (last_wiphy != wiphy) {
1155                                 /*
1156                                  * Two cards with two APs claiming different
1157                                  * Country IE alpha2s. We could
1158                                  * intersect them, but that seems unlikely
1159                                  * to be correct. Reject second one for now.
1160                                  */
1161                                 if (regdom_changes(pending_request->alpha2))
1162                                         return -EOPNOTSUPP;
1163                                 return -EALREADY;
1164                         }
1165                         /*
1166                          * Two consecutive Country IE hints on the same wiphy.
1167                          * This should be picked up early by the driver/stack
1168                          */
1169                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1170                                 return 0;
1171                         return -EALREADY;
1172                 }
1173                 return REG_INTERSECT;
1174         case NL80211_REGDOM_SET_BY_DRIVER:
1175                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1176                         if (regdom_changes(pending_request->alpha2))
1177                                 return 0;
1178                         return -EALREADY;
1179                 }
1180
1181                 /*
1182                  * This would happen if you unplug and plug your card
1183                  * back in or if you add a new device for which the previously
1184                  * loaded card also agrees on the regulatory domain.
1185                  */
1186                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187                     !regdom_changes(pending_request->alpha2))
1188                         return -EALREADY;
1189
1190                 return REG_INTERSECT;
1191         case NL80211_REGDOM_SET_BY_USER:
1192                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1193                         return REG_INTERSECT;
1194                 /*
1195                  * If the user knows better the user should set the regdom
1196                  * to their country before the IE is picked up
1197                  */
1198                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1199                           last_request->intersect)
1200                         return -EOPNOTSUPP;
1201                 /*
1202                  * Process user requests only after previous user/driver/core
1203                  * requests have been processed
1204                  */
1205                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1206                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1207                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1208                         if (regdom_changes(last_request->alpha2))
1209                                 return -EAGAIN;
1210                 }
1211
1212                 if (!regdom_changes(pending_request->alpha2))
1213                         return -EALREADY;
1214
1215                 return 0;
1216         }
1217
1218         return -EINVAL;
1219 }
1220
1221 /**
1222  * __regulatory_hint - hint to the wireless core a regulatory domain
1223  * @wiphy: if the hint comes from country information from an AP, this
1224  *      is required to be set to the wiphy that received the information
1225  * @pending_request: the regulatory request currently being processed
1226  *
1227  * The Wireless subsystem can use this function to hint to the wireless core
1228  * what it believes should be the current regulatory domain.
1229  *
1230  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1231  * already been set or other standard error codes.
1232  *
1233  * Caller must hold &cfg80211_mutex and &reg_mutex
1234  */
1235 static int __regulatory_hint(struct wiphy *wiphy,
1236                              struct regulatory_request *pending_request)
1237 {
1238         bool intersect = false;
1239         int r = 0;
1240
1241         assert_cfg80211_lock();
1242
1243         r = ignore_request(wiphy, pending_request);
1244
1245         if (r == REG_INTERSECT) {
1246                 if (pending_request->initiator ==
1247                     NL80211_REGDOM_SET_BY_DRIVER) {
1248                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1249                         if (r) {
1250                                 kfree(pending_request);
1251                                 return r;
1252                         }
1253                 }
1254                 intersect = true;
1255         } else if (r) {
1256                 /*
1257                  * If the regulatory domain being requested by the
1258                  * driver has already been set just copy it to the
1259                  * wiphy
1260                  */
1261                 if (r == -EALREADY &&
1262                     pending_request->initiator ==
1263                     NL80211_REGDOM_SET_BY_DRIVER) {
1264                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1265                         if (r) {
1266                                 kfree(pending_request);
1267                                 return r;
1268                         }
1269                         r = -EALREADY;
1270                         goto new_request;
1271                 }
1272                 kfree(pending_request);
1273                 return r;
1274         }
1275
1276 new_request:
1277         kfree(last_request);
1278
1279         last_request = pending_request;
1280         last_request->intersect = intersect;
1281
1282         pending_request = NULL;
1283
1284         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1285                 user_alpha2[0] = last_request->alpha2[0];
1286                 user_alpha2[1] = last_request->alpha2[1];
1287         }
1288
1289         /* When r == REG_INTERSECT we do need to call CRDA */
1290         if (r < 0) {
1291                 /*
1292                  * Since CRDA will not be called in this case as we already
1293                  * have applied the requested regulatory domain before we just
1294                  * inform userspace we have processed the request
1295                  */
1296                 if (r == -EALREADY)
1297                         nl80211_send_reg_change_event(last_request);
1298                 return r;
1299         }
1300
1301         return call_crda(last_request->alpha2);
1302 }
1303
1304 /* This processes *all* regulatory hints */
1305 static void reg_process_hint(struct regulatory_request *reg_request)
1306 {
1307         int r = 0;
1308         struct wiphy *wiphy = NULL;
1309
1310         BUG_ON(!reg_request->alpha2);
1311
1312         mutex_lock(&cfg80211_mutex);
1313         mutex_lock(&reg_mutex);
1314
1315         if (wiphy_idx_valid(reg_request->wiphy_idx))
1316                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1317
1318         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1319             !wiphy) {
1320                 kfree(reg_request);
1321                 goto out;
1322         }
1323
1324         r = __regulatory_hint(wiphy, reg_request);
1325         /* This is required so that the orig_* parameters are saved */
1326         if (r == -EALREADY && wiphy &&
1327             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1328                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1329 out:
1330         mutex_unlock(&reg_mutex);
1331         mutex_unlock(&cfg80211_mutex);
1332 }
1333
1334 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1335 static void reg_process_pending_hints(void)
1336         {
1337         struct regulatory_request *reg_request;
1338
1339         spin_lock(&reg_requests_lock);
1340         while (!list_empty(&reg_requests_list)) {
1341                 reg_request = list_first_entry(&reg_requests_list,
1342                                                struct regulatory_request,
1343                                                list);
1344                 list_del_init(&reg_request->list);
1345
1346                 spin_unlock(&reg_requests_lock);
1347                 reg_process_hint(reg_request);
1348                 spin_lock(&reg_requests_lock);
1349         }
1350         spin_unlock(&reg_requests_lock);
1351 }
1352
1353 /* Processes beacon hints -- this has nothing to do with country IEs */
1354 static void reg_process_pending_beacon_hints(void)
1355 {
1356         struct cfg80211_registered_device *rdev;
1357         struct reg_beacon *pending_beacon, *tmp;
1358
1359         /*
1360          * No need to hold the reg_mutex here as we just touch wiphys
1361          * and do not read or access regulatory variables.
1362          */
1363         mutex_lock(&cfg80211_mutex);
1364
1365         /* This goes through the _pending_ beacon list */
1366         spin_lock_bh(&reg_pending_beacons_lock);
1367
1368         if (list_empty(&reg_pending_beacons)) {
1369                 spin_unlock_bh(&reg_pending_beacons_lock);
1370                 goto out;
1371         }
1372
1373         list_for_each_entry_safe(pending_beacon, tmp,
1374                                  &reg_pending_beacons, list) {
1375
1376                 list_del_init(&pending_beacon->list);
1377
1378                 /* Applies the beacon hint to current wiphys */
1379                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1380                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1381
1382                 /* Remembers the beacon hint for new wiphys or reg changes */
1383                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1384         }
1385
1386         spin_unlock_bh(&reg_pending_beacons_lock);
1387 out:
1388         mutex_unlock(&cfg80211_mutex);
1389 }
1390
1391 static void reg_todo(struct work_struct *work)
1392 {
1393         reg_process_pending_hints();
1394         reg_process_pending_beacon_hints();
1395 }
1396
1397 static DECLARE_WORK(reg_work, reg_todo);
1398
1399 static void queue_regulatory_request(struct regulatory_request *request)
1400 {
1401         spin_lock(&reg_requests_lock);
1402         list_add_tail(&request->list, &reg_requests_list);
1403         spin_unlock(&reg_requests_lock);
1404
1405         schedule_work(&reg_work);
1406 }
1407
1408 /*
1409  * Core regulatory hint -- happens during cfg80211_init()
1410  * and when we restore regulatory settings.
1411  */
1412 static int regulatory_hint_core(const char *alpha2)
1413 {
1414         struct regulatory_request *request;
1415
1416         kfree(last_request);
1417         last_request = NULL;
1418
1419         request = kzalloc(sizeof(struct regulatory_request),
1420                           GFP_KERNEL);
1421         if (!request)
1422                 return -ENOMEM;
1423
1424         request->alpha2[0] = alpha2[0];
1425         request->alpha2[1] = alpha2[1];
1426         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1427
1428         /*
1429          * This ensures last_request is populated once modules
1430          * come swinging in and calling regulatory hints and
1431          * wiphy_apply_custom_regulatory().
1432          */
1433         reg_process_hint(request);
1434
1435         return 0;
1436 }
1437
1438 /* User hints */
1439 int regulatory_hint_user(const char *alpha2)
1440 {
1441         struct regulatory_request *request;
1442
1443         BUG_ON(!alpha2);
1444
1445         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1446         if (!request)
1447                 return -ENOMEM;
1448
1449         request->wiphy_idx = WIPHY_IDX_STALE;
1450         request->alpha2[0] = alpha2[0];
1451         request->alpha2[1] = alpha2[1];
1452         request->initiator = NL80211_REGDOM_SET_BY_USER;
1453
1454         queue_regulatory_request(request);
1455
1456         return 0;
1457 }
1458
1459 /* Driver hints */
1460 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1461 {
1462         struct regulatory_request *request;
1463
1464         BUG_ON(!alpha2);
1465         BUG_ON(!wiphy);
1466
1467         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1468         if (!request)
1469                 return -ENOMEM;
1470
1471         request->wiphy_idx = get_wiphy_idx(wiphy);
1472
1473         /* Must have registered wiphy first */
1474         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1475
1476         request->alpha2[0] = alpha2[0];
1477         request->alpha2[1] = alpha2[1];
1478         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1479
1480         queue_regulatory_request(request);
1481
1482         return 0;
1483 }
1484 EXPORT_SYMBOL(regulatory_hint);
1485
1486 /*
1487  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1488  * therefore cannot iterate over the rdev list here.
1489  */
1490 void regulatory_hint_11d(struct wiphy *wiphy,
1491                          enum ieee80211_band band,
1492                          u8 *country_ie,
1493                          u8 country_ie_len)
1494 {
1495         struct ieee80211_regdomain *rd = NULL;
1496         char alpha2[2];
1497         enum environment_cap env = ENVIRON_ANY;
1498         struct regulatory_request *request;
1499
1500         mutex_lock(&reg_mutex);
1501
1502         if (unlikely(!last_request))
1503                 goto out;
1504
1505         /* IE len must be evenly divisible by 2 */
1506         if (country_ie_len & 0x01)
1507                 goto out;
1508
1509         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1510                 goto out;
1511
1512         alpha2[0] = country_ie[0];
1513         alpha2[1] = country_ie[1];
1514
1515         if (country_ie[2] == 'I')
1516                 env = ENVIRON_INDOOR;
1517         else if (country_ie[2] == 'O')
1518                 env = ENVIRON_OUTDOOR;
1519
1520         /*
1521          * We will run this only upon a successful connection on cfg80211.
1522          * We leave conflict resolution to the workqueue, where can hold
1523          * cfg80211_mutex.
1524          */
1525         if (likely(last_request->initiator ==
1526             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1527             wiphy_idx_valid(last_request->wiphy_idx)))
1528                 goto out;
1529
1530         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1531         if (!request)
1532                 goto free_rd_out;
1533
1534         request->wiphy_idx = get_wiphy_idx(wiphy);
1535         request->alpha2[0] = alpha2[0];
1536         request->alpha2[1] = alpha2[1];
1537         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1538         request->country_ie_env = env;
1539
1540         mutex_unlock(&reg_mutex);
1541
1542         queue_regulatory_request(request);
1543
1544         return;
1545
1546 free_rd_out:
1547         kfree(rd);
1548 out:
1549         mutex_unlock(&reg_mutex);
1550 }
1551
1552 static void restore_alpha2(char *alpha2, bool reset_user)
1553 {
1554         /* indicates there is no alpha2 to consider for restoration */
1555         alpha2[0] = '9';
1556         alpha2[1] = '7';
1557
1558         /* The user setting has precedence over the module parameter */
1559         if (is_user_regdom_saved()) {
1560                 /* Unless we're asked to ignore it and reset it */
1561                 if (reset_user) {
1562                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1563                                "including user preference\n");
1564                         user_alpha2[0] = '9';
1565                         user_alpha2[1] = '7';
1566
1567                         /*
1568                          * If we're ignoring user settings, we still need to
1569                          * check the module parameter to ensure we put things
1570                          * back as they were for a full restore.
1571                          */
1572                         if (!is_world_regdom(ieee80211_regdom)) {
1573                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1574                                        "module parameter ieee80211_regdom: %c%c\n",
1575                                        ieee80211_regdom[0],
1576                                        ieee80211_regdom[1]);
1577                                 alpha2[0] = ieee80211_regdom[0];
1578                                 alpha2[1] = ieee80211_regdom[1];
1579                         }
1580                 } else {
1581                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1582                                "while preserving user preference for: %c%c\n",
1583                                user_alpha2[0],
1584                                user_alpha2[1]);
1585                         alpha2[0] = user_alpha2[0];
1586                         alpha2[1] = user_alpha2[1];
1587                 }
1588         } else if (!is_world_regdom(ieee80211_regdom)) {
1589                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1590                        "module parameter ieee80211_regdom: %c%c\n",
1591                        ieee80211_regdom[0],
1592                        ieee80211_regdom[1]);
1593                 alpha2[0] = ieee80211_regdom[0];
1594                 alpha2[1] = ieee80211_regdom[1];
1595         } else
1596                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1597 }
1598
1599 /*
1600  * Restoring regulatory settings involves ingoring any
1601  * possibly stale country IE information and user regulatory
1602  * settings if so desired, this includes any beacon hints
1603  * learned as we could have traveled outside to another country
1604  * after disconnection. To restore regulatory settings we do
1605  * exactly what we did at bootup:
1606  *
1607  *   - send a core regulatory hint
1608  *   - send a user regulatory hint if applicable
1609  *
1610  * Device drivers that send a regulatory hint for a specific country
1611  * keep their own regulatory domain on wiphy->regd so that does does
1612  * not need to be remembered.
1613  */
1614 static void restore_regulatory_settings(bool reset_user)
1615 {
1616         char alpha2[2];
1617         struct reg_beacon *reg_beacon, *btmp;
1618
1619         mutex_lock(&cfg80211_mutex);
1620         mutex_lock(&reg_mutex);
1621
1622         reset_regdomains();
1623         restore_alpha2(alpha2, reset_user);
1624
1625         /* Clear beacon hints */
1626         spin_lock_bh(&reg_pending_beacons_lock);
1627         if (!list_empty(&reg_pending_beacons)) {
1628                 list_for_each_entry_safe(reg_beacon, btmp,
1629                                          &reg_pending_beacons, list) {
1630                         list_del(&reg_beacon->list);
1631                         kfree(reg_beacon);
1632                 }
1633         }
1634         spin_unlock_bh(&reg_pending_beacons_lock);
1635
1636         if (!list_empty(&reg_beacon_list)) {
1637                 list_for_each_entry_safe(reg_beacon, btmp,
1638                                          &reg_beacon_list, list) {
1639                         list_del(&reg_beacon->list);
1640                         kfree(reg_beacon);
1641                 }
1642         }
1643
1644         /* First restore to the basic regulatory settings */
1645         cfg80211_regdomain = cfg80211_world_regdom;
1646
1647         mutex_unlock(&reg_mutex);
1648         mutex_unlock(&cfg80211_mutex);
1649
1650         regulatory_hint_core(cfg80211_regdomain->alpha2);
1651
1652         /*
1653          * This restores the ieee80211_regdom module parameter
1654          * preference or the last user requested regulatory
1655          * settings, user regulatory settings takes precedence.
1656          */
1657         if (is_an_alpha2(alpha2))
1658                 regulatory_hint_user(user_alpha2);
1659 }
1660
1661
1662 void regulatory_hint_disconnect(void)
1663 {
1664         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1665                       "restore regulatory settings\n");
1666         restore_regulatory_settings(false);
1667 }
1668
1669 static bool freq_is_chan_12_13_14(u16 freq)
1670 {
1671         if (freq == ieee80211_channel_to_frequency(12) ||
1672             freq == ieee80211_channel_to_frequency(13) ||
1673             freq == ieee80211_channel_to_frequency(14))
1674                 return true;
1675         return false;
1676 }
1677
1678 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1679                                  struct ieee80211_channel *beacon_chan,
1680                                  gfp_t gfp)
1681 {
1682         struct reg_beacon *reg_beacon;
1683
1684         if (likely((beacon_chan->beacon_found ||
1685             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1686             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1687              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1688                 return 0;
1689
1690         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1691         if (!reg_beacon)
1692                 return -ENOMEM;
1693
1694         REG_DBG_PRINT("cfg80211: Found new beacon on "
1695                       "frequency: %d MHz (Ch %d) on %s\n",
1696                       beacon_chan->center_freq,
1697                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1698                       wiphy_name(wiphy));
1699
1700         memcpy(&reg_beacon->chan, beacon_chan,
1701                 sizeof(struct ieee80211_channel));
1702
1703
1704         /*
1705          * Since we can be called from BH or and non-BH context
1706          * we must use spin_lock_bh()
1707          */
1708         spin_lock_bh(&reg_pending_beacons_lock);
1709         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1710         spin_unlock_bh(&reg_pending_beacons_lock);
1711
1712         schedule_work(&reg_work);
1713
1714         return 0;
1715 }
1716
1717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1718 {
1719         unsigned int i;
1720         const struct ieee80211_reg_rule *reg_rule = NULL;
1721         const struct ieee80211_freq_range *freq_range = NULL;
1722         const struct ieee80211_power_rule *power_rule = NULL;
1723
1724         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1725                 "(max_antenna_gain, max_eirp)\n");
1726
1727         for (i = 0; i < rd->n_reg_rules; i++) {
1728                 reg_rule = &rd->reg_rules[i];
1729                 freq_range = &reg_rule->freq_range;
1730                 power_rule = &reg_rule->power_rule;
1731
1732                 /*
1733                  * There may not be documentation for max antenna gain
1734                  * in certain regions
1735                  */
1736                 if (power_rule->max_antenna_gain)
1737                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1738                                 "(%d mBi, %d mBm)\n",
1739                                 freq_range->start_freq_khz,
1740                                 freq_range->end_freq_khz,
1741                                 freq_range->max_bandwidth_khz,
1742                                 power_rule->max_antenna_gain,
1743                                 power_rule->max_eirp);
1744                 else
1745                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1746                                 "(N/A, %d mBm)\n",
1747                                 freq_range->start_freq_khz,
1748                                 freq_range->end_freq_khz,
1749                                 freq_range->max_bandwidth_khz,
1750                                 power_rule->max_eirp);
1751         }
1752 }
1753
1754 static void print_regdomain(const struct ieee80211_regdomain *rd)
1755 {
1756
1757         if (is_intersected_alpha2(rd->alpha2)) {
1758
1759                 if (last_request->initiator ==
1760                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1761                         struct cfg80211_registered_device *rdev;
1762                         rdev = cfg80211_rdev_by_wiphy_idx(
1763                                 last_request->wiphy_idx);
1764                         if (rdev) {
1765                                 printk(KERN_INFO "cfg80211: Current regulatory "
1766                                         "domain updated by AP to: %c%c\n",
1767                                         rdev->country_ie_alpha2[0],
1768                                         rdev->country_ie_alpha2[1]);
1769                         } else
1770                                 printk(KERN_INFO "cfg80211: Current regulatory "
1771                                         "domain intersected:\n");
1772                 } else
1773                         printk(KERN_INFO "cfg80211: Current regulatory "
1774                                 "domain intersected:\n");
1775         } else if (is_world_regdom(rd->alpha2))
1776                 printk(KERN_INFO "cfg80211: World regulatory "
1777                         "domain updated:\n");
1778         else {
1779                 if (is_unknown_alpha2(rd->alpha2))
1780                         printk(KERN_INFO "cfg80211: Regulatory domain "
1781                                 "changed to driver built-in settings "
1782                                 "(unknown country)\n");
1783                 else
1784                         printk(KERN_INFO "cfg80211: Regulatory domain "
1785                                 "changed to country: %c%c\n",
1786                                 rd->alpha2[0], rd->alpha2[1]);
1787         }
1788         print_rd_rules(rd);
1789 }
1790
1791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1792 {
1793         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1794                 rd->alpha2[0], rd->alpha2[1]);
1795         print_rd_rules(rd);
1796 }
1797
1798 /* Takes ownership of rd only if it doesn't fail */
1799 static int __set_regdom(const struct ieee80211_regdomain *rd)
1800 {
1801         const struct ieee80211_regdomain *intersected_rd = NULL;
1802         struct cfg80211_registered_device *rdev = NULL;
1803         struct wiphy *request_wiphy;
1804         /* Some basic sanity checks first */
1805
1806         if (is_world_regdom(rd->alpha2)) {
1807                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1808                         return -EINVAL;
1809                 update_world_regdomain(rd);
1810                 return 0;
1811         }
1812
1813         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1814                         !is_unknown_alpha2(rd->alpha2))
1815                 return -EINVAL;
1816
1817         if (!last_request)
1818                 return -EINVAL;
1819
1820         /*
1821          * Lets only bother proceeding on the same alpha2 if the current
1822          * rd is non static (it means CRDA was present and was used last)
1823          * and the pending request came in from a country IE
1824          */
1825         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1826                 /*
1827                  * If someone else asked us to change the rd lets only bother
1828                  * checking if the alpha2 changes if CRDA was already called
1829                  */
1830                 if (!regdom_changes(rd->alpha2))
1831                         return -EINVAL;
1832         }
1833
1834         /*
1835          * Now lets set the regulatory domain, update all driver channels
1836          * and finally inform them of what we have done, in case they want
1837          * to review or adjust their own settings based on their own
1838          * internal EEPROM data
1839          */
1840
1841         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1842                 return -EINVAL;
1843
1844         if (!is_valid_rd(rd)) {
1845                 printk(KERN_ERR "cfg80211: Invalid "
1846                         "regulatory domain detected:\n");
1847                 print_regdomain_info(rd);
1848                 return -EINVAL;
1849         }
1850
1851         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1852
1853         if (!last_request->intersect) {
1854                 int r;
1855
1856                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1857                         reset_regdomains();
1858                         cfg80211_regdomain = rd;
1859                         return 0;
1860                 }
1861
1862                 /*
1863                  * For a driver hint, lets copy the regulatory domain the
1864                  * driver wanted to the wiphy to deal with conflicts
1865                  */
1866
1867                 /*
1868                  * Userspace could have sent two replies with only
1869                  * one kernel request.
1870                  */
1871                 if (request_wiphy->regd)
1872                         return -EALREADY;
1873
1874                 r = reg_copy_regd(&request_wiphy->regd, rd);
1875                 if (r)
1876                         return r;
1877
1878                 reset_regdomains();
1879                 cfg80211_regdomain = rd;
1880                 return 0;
1881         }
1882
1883         /* Intersection requires a bit more work */
1884
1885         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1886
1887                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1888                 if (!intersected_rd)
1889                         return -EINVAL;
1890
1891                 /*
1892                  * We can trash what CRDA provided now.
1893                  * However if a driver requested this specific regulatory
1894                  * domain we keep it for its private use
1895                  */
1896                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1897                         request_wiphy->regd = rd;
1898                 else
1899                         kfree(rd);
1900
1901                 rd = NULL;
1902
1903                 reset_regdomains();
1904                 cfg80211_regdomain = intersected_rd;
1905
1906                 return 0;
1907         }
1908
1909         if (!intersected_rd)
1910                 return -EINVAL;
1911
1912         rdev = wiphy_to_dev(request_wiphy);
1913
1914         rdev->country_ie_alpha2[0] = rd->alpha2[0];
1915         rdev->country_ie_alpha2[1] = rd->alpha2[1];
1916         rdev->env = last_request->country_ie_env;
1917
1918         BUG_ON(intersected_rd == rd);
1919
1920         kfree(rd);
1921         rd = NULL;
1922
1923         reset_regdomains();
1924         cfg80211_regdomain = intersected_rd;
1925
1926         return 0;
1927 }
1928
1929
1930 /*
1931  * Use this call to set the current regulatory domain. Conflicts with
1932  * multiple drivers can be ironed out later. Caller must've already
1933  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1934  */
1935 int set_regdom(const struct ieee80211_regdomain *rd)
1936 {
1937         int r;
1938
1939         assert_cfg80211_lock();
1940
1941         mutex_lock(&reg_mutex);
1942
1943         /* Note that this doesn't update the wiphys, this is done below */
1944         r = __set_regdom(rd);
1945         if (r) {
1946                 kfree(rd);
1947                 mutex_unlock(&reg_mutex);
1948                 return r;
1949         }
1950
1951         /* This would make this whole thing pointless */
1952         if (!last_request->intersect)
1953                 BUG_ON(rd != cfg80211_regdomain);
1954
1955         /* update all wiphys now with the new established regulatory domain */
1956         update_all_wiphy_regulatory(last_request->initiator);
1957
1958         print_regdomain(cfg80211_regdomain);
1959
1960         nl80211_send_reg_change_event(last_request);
1961
1962         mutex_unlock(&reg_mutex);
1963
1964         return r;
1965 }
1966
1967 /* Caller must hold cfg80211_mutex */
1968 void reg_device_remove(struct wiphy *wiphy)
1969 {
1970         struct wiphy *request_wiphy = NULL;
1971
1972         assert_cfg80211_lock();
1973
1974         mutex_lock(&reg_mutex);
1975
1976         kfree(wiphy->regd);
1977
1978         if (last_request)
1979                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1980
1981         if (!request_wiphy || request_wiphy != wiphy)
1982                 goto out;
1983
1984         last_request->wiphy_idx = WIPHY_IDX_STALE;
1985         last_request->country_ie_env = ENVIRON_ANY;
1986 out:
1987         mutex_unlock(&reg_mutex);
1988 }
1989
1990 int __init regulatory_init(void)
1991 {
1992         int err = 0;
1993
1994         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1995         if (IS_ERR(reg_pdev))
1996                 return PTR_ERR(reg_pdev);
1997
1998         spin_lock_init(&reg_requests_lock);
1999         spin_lock_init(&reg_pending_beacons_lock);
2000
2001         cfg80211_regdomain = cfg80211_world_regdom;
2002
2003         user_alpha2[0] = '9';
2004         user_alpha2[1] = '7';
2005
2006         /* We always try to get an update for the static regdomain */
2007         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2008         if (err) {
2009                 if (err == -ENOMEM)
2010                         return err;
2011                 /*
2012                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2013                  * memory which is handled and propagated appropriately above
2014                  * but it can also fail during a netlink_broadcast() or during
2015                  * early boot for call_usermodehelper(). For now treat these
2016                  * errors as non-fatal.
2017                  */
2018                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2019                         "to call CRDA during init");
2020 #ifdef CONFIG_CFG80211_REG_DEBUG
2021                 /* We want to find out exactly why when debugging */
2022                 WARN_ON(err);
2023 #endif
2024         }
2025
2026         /*
2027          * Finally, if the user set the module parameter treat it
2028          * as a user hint.
2029          */
2030         if (!is_world_regdom(ieee80211_regdom))
2031                 regulatory_hint_user(ieee80211_regdom);
2032
2033         return 0;
2034 }
2035
2036 void /* __init_or_exit */ regulatory_exit(void)
2037 {
2038         struct regulatory_request *reg_request, *tmp;
2039         struct reg_beacon *reg_beacon, *btmp;
2040
2041         cancel_work_sync(&reg_work);
2042
2043         mutex_lock(&cfg80211_mutex);
2044         mutex_lock(&reg_mutex);
2045
2046         reset_regdomains();
2047
2048         kfree(last_request);
2049
2050         platform_device_unregister(reg_pdev);
2051
2052         spin_lock_bh(&reg_pending_beacons_lock);
2053         if (!list_empty(&reg_pending_beacons)) {
2054                 list_for_each_entry_safe(reg_beacon, btmp,
2055                                          &reg_pending_beacons, list) {
2056                         list_del(&reg_beacon->list);
2057                         kfree(reg_beacon);
2058                 }
2059         }
2060         spin_unlock_bh(&reg_pending_beacons_lock);
2061
2062         if (!list_empty(&reg_beacon_list)) {
2063                 list_for_each_entry_safe(reg_beacon, btmp,
2064                                          &reg_beacon_list, list) {
2065                         list_del(&reg_beacon->list);
2066                         kfree(reg_beacon);
2067                 }
2068         }
2069
2070         spin_lock(&reg_requests_lock);
2071         if (!list_empty(&reg_requests_list)) {
2072                 list_for_each_entry_safe(reg_request, tmp,
2073                                          &reg_requests_list, list) {
2074                         list_del(&reg_request->list);
2075                         kfree(reg_request);
2076                 }
2077         }
2078         spin_unlock(&reg_requests_lock);
2079
2080         mutex_unlock(&reg_mutex);
2081         mutex_unlock(&cfg80211_mutex);
2082 }