2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
57 #define REG_DBG_PRINT(args...)
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
75 const struct ieee80211_regdomain *cfg80211_regdomain;
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
83 static DEFINE_MUTEX(reg_mutex);
85 static inline void assert_reg_lock(void)
87 lockdep_assert_held(®_mutex);
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
102 struct list_head list;
103 struct ieee80211_channel chan;
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN |
128 NL80211_RRF_NO_IBSS |
129 NL80211_RRF_NO_OFDM),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
153 static void reset_regdomains(void)
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain == cfg80211_world_regdom)
157 cfg80211_regdomain = NULL;
158 if (cfg80211_world_regdom == &world_regdom)
159 cfg80211_world_regdom = NULL;
160 if (cfg80211_regdomain == &world_regdom)
161 cfg80211_regdomain = NULL;
163 kfree(cfg80211_regdomain);
164 kfree(cfg80211_world_regdom);
166 cfg80211_world_regdom = &world_regdom;
167 cfg80211_regdomain = NULL;
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
176 BUG_ON(!last_request);
180 cfg80211_world_regdom = rd;
181 cfg80211_regdomain = rd;
184 bool is_world_regdom(const char *alpha2)
188 if (alpha2[0] == '0' && alpha2[1] == '0')
193 static bool is_alpha2_set(const char *alpha2)
197 if (alpha2[0] != 0 && alpha2[1] != 0)
202 static bool is_unknown_alpha2(const char *alpha2)
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
210 if (alpha2[0] == '9' && alpha2[1] == '9')
215 static bool is_intersected_alpha2(const char *alpha2)
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
224 if (alpha2[0] == '9' && alpha2[1] == '8')
229 static bool is_an_alpha2(const char *alpha2)
233 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
240 if (!alpha2_x || !alpha2_y)
242 if (alpha2_x[0] == alpha2_y[0] &&
243 alpha2_x[1] == alpha2_y[1])
248 static bool regdom_changes(const char *alpha2)
250 assert_cfg80211_lock();
252 if (!cfg80211_regdomain)
254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
264 static bool is_user_regdom_saved(void)
266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2) &&
271 !is_an_alpha2(user_alpha2)),
272 "Unexpected user alpha2: %c%c\n",
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 const struct ieee80211_regdomain *src_regd)
283 struct ieee80211_regdomain *regd;
284 int size_of_regd = 0;
287 size_of_regd = sizeof(struct ieee80211_regdomain) +
288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
290 regd = kzalloc(size_of_regd, GFP_KERNEL);
294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
296 for (i = 0; i < src_regd->n_reg_rules; i++)
297 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
298 sizeof(struct ieee80211_reg_rule));
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
307 struct list_head list;
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
313 static void reg_regdb_search(struct work_struct *work)
315 struct reg_regdb_search_request *request;
316 const struct ieee80211_regdomain *curdom, *regdom;
319 mutex_lock(®_regdb_search_mutex);
320 while (!list_empty(®_regdb_search_list)) {
321 request = list_first_entry(®_regdb_search_list,
322 struct reg_regdb_search_request,
324 list_del(&request->list);
326 for (i=0; i<reg_regdb_size; i++) {
327 curdom = reg_regdb[i];
329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 r = reg_copy_regd(®dom, curdom);
333 mutex_lock(&cfg80211_mutex);
335 mutex_unlock(&cfg80211_mutex);
342 mutex_unlock(®_regdb_search_mutex);
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
347 static void reg_regdb_query(const char *alpha2)
349 struct reg_regdb_search_request *request;
354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
358 memcpy(request->alpha2, alpha2, 2);
360 mutex_lock(®_regdb_search_mutex);
361 list_add_tail(&request->list, ®_regdb_search_list);
362 mutex_unlock(®_regdb_search_mutex);
364 schedule_work(®_regdb_work);
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
375 static int call_crda(const char *alpha2)
377 if (!is_world_regdom((char *) alpha2))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2[0], alpha2[1]);
381 pr_info("Calling CRDA to update world regulatory domain\n");
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2);
386 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE);
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
392 assert_cfg80211_lock();
397 return alpha2_equal(last_request->alpha2, alpha2);
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 const struct ieee80211_reg_rule *reg_rule = NULL;
426 if (!rd->n_reg_rules)
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
445 u32 start_freq_khz, end_freq_khz;
447 start_freq_khz = center_freq_khz - (bw_khz/2);
448 end_freq_khz = center_freq_khz + (bw_khz/2);
450 if (start_freq_khz >= freq_range->start_freq_khz &&
451 end_freq_khz <= freq_range->end_freq_khz)
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
479 #undef ONE_GHZ_IN_KHZ
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule *rule1,
488 const struct ieee80211_reg_rule *rule2,
489 struct ieee80211_reg_rule *intersected_rule)
491 const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 struct ieee80211_freq_range *freq_range;
493 const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 struct ieee80211_power_rule *power_rule;
497 freq_range1 = &rule1->freq_range;
498 freq_range2 = &rule2->freq_range;
499 freq_range = &intersected_rule->freq_range;
501 power_rule1 = &rule1->power_rule;
502 power_rule2 = &rule2->power_rule;
503 power_rule = &intersected_rule->power_rule;
505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 freq_range2->start_freq_khz);
507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 freq_range2->end_freq_khz);
509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 freq_range2->max_bandwidth_khz);
512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 if (freq_range->max_bandwidth_khz > freq_diff)
514 freq_range->max_bandwidth_khz = freq_diff;
516 power_rule->max_eirp = min(power_rule1->max_eirp,
517 power_rule2->max_eirp);
518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 power_rule2->max_antenna_gain);
521 intersected_rule->flags = (rule1->flags | rule2->flags);
523 if (!is_valid_reg_rule(intersected_rule))
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
542 static struct ieee80211_regdomain *regdom_intersect(
543 const struct ieee80211_regdomain *rd1,
544 const struct ieee80211_regdomain *rd2)
548 unsigned int num_rules = 0, rule_idx = 0;
549 const struct ieee80211_reg_rule *rule1, *rule2;
550 struct ieee80211_reg_rule *intersected_rule;
551 struct ieee80211_regdomain *rd;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule;
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule = &irule;
558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
571 for (x = 0; x < rd1->n_reg_rules; x++) {
572 rule1 = &rd1->reg_rules[x];
573 for (y = 0; y < rd2->n_reg_rules; y++) {
574 rule2 = &rd2->reg_rules[y];
575 if (!reg_rules_intersect(rule1, rule2,
578 memset(intersected_rule, 0,
579 sizeof(struct ieee80211_reg_rule));
586 size_of_regd = sizeof(struct ieee80211_regdomain) +
587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
589 rd = kzalloc(size_of_regd, GFP_KERNEL);
593 for (x = 0; x < rd1->n_reg_rules; x++) {
594 rule1 = &rd1->reg_rules[x];
595 for (y = 0; y < rd2->n_reg_rules; y++) {
596 rule2 = &rd2->reg_rules[y];
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
602 intersected_rule = &rd->reg_rules[rule_idx];
603 r = reg_rules_intersect(rule1, rule2,
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
615 if (rule_idx != num_rules) {
620 rd->n_reg_rules = num_rules;
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
631 static u32 map_regdom_flags(u32 rd_flags)
633 u32 channel_flags = 0;
634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 if (rd_flags & NL80211_RRF_NO_IBSS)
637 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 if (rd_flags & NL80211_RRF_DFS)
639 channel_flags |= IEEE80211_CHAN_RADAR;
640 return channel_flags;
643 static int freq_reg_info_regd(struct wiphy *wiphy,
646 const struct ieee80211_reg_rule **reg_rule,
647 const struct ieee80211_regdomain *custom_regd)
650 bool band_rule_found = false;
651 const struct ieee80211_regdomain *regd;
652 bool bw_fits = false;
655 desired_bw_khz = MHZ_TO_KHZ(20);
657 regd = custom_regd ? custom_regd : cfg80211_regdomain;
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
672 for (i = 0; i < regd->n_reg_rules; i++) {
673 const struct ieee80211_reg_rule *rr;
674 const struct ieee80211_freq_range *fr = NULL;
676 rr = ®d->reg_rules[i];
677 fr = &rr->freq_range;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
687 bw_fits = reg_does_bw_fit(fr,
691 if (band_rule_found && bw_fits) {
697 if (!band_rule_found)
703 int freq_reg_info(struct wiphy *wiphy,
706 const struct ieee80211_reg_rule **reg_rule)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
715 EXPORT_SYMBOL(freq_reg_info);
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
737 const struct ieee80211_reg_rule *reg_rule)
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
743 power_rule = ®_rule->power_rule;
744 freq_range = ®_rule->freq_range;
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
754 KHZ_TO_MHZ(desired_bw_khz));
756 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 freq_range->max_bandwidth_khz,
761 power_rule->max_eirp);
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
766 const struct ieee80211_reg_rule *reg_rule)
773 * Note that right now we assume the desired channel bandwidth
774 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
775 * per channel, the primary and the extension channel). To support
776 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
777 * new ieee80211_channel.target_bw and re run the regulatory check
778 * on the wiphy with the target_bw specified. Then we can simply use
779 * that below for the desired_bw_khz below.
781 static void handle_channel(struct wiphy *wiphy,
782 enum nl80211_reg_initiator initiator,
783 enum ieee80211_band band,
784 unsigned int chan_idx)
787 u32 flags, bw_flags = 0;
788 u32 desired_bw_khz = MHZ_TO_KHZ(20);
789 const struct ieee80211_reg_rule *reg_rule = NULL;
790 const struct ieee80211_power_rule *power_rule = NULL;
791 const struct ieee80211_freq_range *freq_range = NULL;
792 struct ieee80211_supported_band *sband;
793 struct ieee80211_channel *chan;
794 struct wiphy *request_wiphy = NULL;
796 assert_cfg80211_lock();
798 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
800 sband = wiphy->bands[band];
801 BUG_ON(chan_idx >= sband->n_channels);
802 chan = &sband->channels[chan_idx];
804 flags = chan->orig_flags;
806 r = freq_reg_info(wiphy,
807 MHZ_TO_KHZ(chan->center_freq),
813 * We will disable all channels that do not match our
814 * received regulatory rule unless the hint is coming
815 * from a Country IE and the Country IE had no information
816 * about a band. The IEEE 802.11 spec allows for an AP
817 * to send only a subset of the regulatory rules allowed,
818 * so an AP in the US that only supports 2.4 GHz may only send
819 * a country IE with information for the 2.4 GHz band
820 * while 5 GHz is still supported.
822 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
826 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
827 chan->flags = IEEE80211_CHAN_DISABLED;
831 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
833 power_rule = ®_rule->power_rule;
834 freq_range = ®_rule->freq_range;
836 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
837 bw_flags = IEEE80211_CHAN_NO_HT40;
839 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
840 request_wiphy && request_wiphy == wiphy &&
841 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
843 * This guarantees the driver's requested regulatory domain
844 * will always be used as a base for further regulatory
847 chan->flags = chan->orig_flags =
848 map_regdom_flags(reg_rule->flags) | bw_flags;
849 chan->max_antenna_gain = chan->orig_mag =
850 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
851 chan->max_power = chan->orig_mpwr =
852 (int) MBM_TO_DBM(power_rule->max_eirp);
856 chan->beacon_found = false;
857 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858 chan->max_antenna_gain = min(chan->orig_mag,
859 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
861 chan->max_power = min(chan->orig_mpwr,
862 (int) MBM_TO_DBM(power_rule->max_eirp));
864 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
867 static void handle_band(struct wiphy *wiphy,
868 enum ieee80211_band band,
869 enum nl80211_reg_initiator initiator)
872 struct ieee80211_supported_band *sband;
874 BUG_ON(!wiphy->bands[band]);
875 sband = wiphy->bands[band];
877 for (i = 0; i < sband->n_channels; i++)
878 handle_channel(wiphy, initiator, band, i);
881 static bool ignore_reg_update(struct wiphy *wiphy,
882 enum nl80211_reg_initiator initiator)
885 REG_DBG_PRINT("Ignoring regulatory request %s since "
886 "last_request is not set\n",
887 reg_initiator_name(initiator));
891 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893 REG_DBG_PRINT("Ignoring regulatory request %s "
894 "since the driver uses its own custom "
895 "regulatory domain\n",
896 reg_initiator_name(initiator));
901 * wiphy->regd will be set once the device has its own
902 * desired regulatory domain set
904 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 !is_world_regdom(last_request->alpha2)) {
907 REG_DBG_PRINT("Ignoring regulatory request %s "
908 "since the driver requires its own regulatory "
909 "domain to be set first\n",
910 reg_initiator_name(initiator));
917 static void handle_reg_beacon(struct wiphy *wiphy,
918 unsigned int chan_idx,
919 struct reg_beacon *reg_beacon)
921 struct ieee80211_supported_band *sband;
922 struct ieee80211_channel *chan;
923 bool channel_changed = false;
924 struct ieee80211_channel chan_before;
926 assert_cfg80211_lock();
928 sband = wiphy->bands[reg_beacon->chan.band];
929 chan = &sband->channels[chan_idx];
931 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
934 if (chan->beacon_found)
937 chan->beacon_found = true;
939 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
942 chan_before.center_freq = chan->center_freq;
943 chan_before.flags = chan->flags;
945 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
946 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
947 channel_changed = true;
950 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
951 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
952 channel_changed = true;
956 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
960 * Called when a scan on a wiphy finds a beacon on
963 static void wiphy_update_new_beacon(struct wiphy *wiphy,
964 struct reg_beacon *reg_beacon)
967 struct ieee80211_supported_band *sband;
969 assert_cfg80211_lock();
971 if (!wiphy->bands[reg_beacon->chan.band])
974 sband = wiphy->bands[reg_beacon->chan.band];
976 for (i = 0; i < sband->n_channels; i++)
977 handle_reg_beacon(wiphy, i, reg_beacon);
981 * Called upon reg changes or a new wiphy is added
983 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
986 struct ieee80211_supported_band *sband;
987 struct reg_beacon *reg_beacon;
989 assert_cfg80211_lock();
991 if (list_empty(®_beacon_list))
994 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
995 if (!wiphy->bands[reg_beacon->chan.band])
997 sband = wiphy->bands[reg_beacon->chan.band];
998 for (i = 0; i < sband->n_channels; i++)
999 handle_reg_beacon(wiphy, i, reg_beacon);
1003 static bool reg_is_world_roaming(struct wiphy *wiphy)
1005 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1006 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1009 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1010 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1015 /* Reap the advantages of previously found beacons */
1016 static void reg_process_beacons(struct wiphy *wiphy)
1019 * Means we are just firing up cfg80211, so no beacons would
1020 * have been processed yet.
1024 if (!reg_is_world_roaming(wiphy))
1026 wiphy_update_beacon_reg(wiphy);
1029 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1033 if (chan->flags & IEEE80211_CHAN_DISABLED)
1035 /* This would happen when regulatory rules disallow HT40 completely */
1036 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1041 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1042 enum ieee80211_band band,
1043 unsigned int chan_idx)
1045 struct ieee80211_supported_band *sband;
1046 struct ieee80211_channel *channel;
1047 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1050 assert_cfg80211_lock();
1052 sband = wiphy->bands[band];
1053 BUG_ON(chan_idx >= sband->n_channels);
1054 channel = &sband->channels[chan_idx];
1056 if (is_ht40_not_allowed(channel)) {
1057 channel->flags |= IEEE80211_CHAN_NO_HT40;
1062 * We need to ensure the extension channels exist to
1063 * be able to use HT40- or HT40+, this finds them (or not)
1065 for (i = 0; i < sband->n_channels; i++) {
1066 struct ieee80211_channel *c = &sband->channels[i];
1067 if (c->center_freq == (channel->center_freq - 20))
1069 if (c->center_freq == (channel->center_freq + 20))
1074 * Please note that this assumes target bandwidth is 20 MHz,
1075 * if that ever changes we also need to change the below logic
1076 * to include that as well.
1078 if (is_ht40_not_allowed(channel_before))
1079 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1081 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1083 if (is_ht40_not_allowed(channel_after))
1084 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1090 enum ieee80211_band band)
1093 struct ieee80211_supported_band *sband;
1095 BUG_ON(!wiphy->bands[band]);
1096 sband = wiphy->bands[band];
1098 for (i = 0; i < sband->n_channels; i++)
1099 reg_process_ht_flags_channel(wiphy, band, i);
1102 static void reg_process_ht_flags(struct wiphy *wiphy)
1104 enum ieee80211_band band;
1109 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 if (wiphy->bands[band])
1111 reg_process_ht_flags_band(wiphy, band);
1116 static void wiphy_update_regulatory(struct wiphy *wiphy,
1117 enum nl80211_reg_initiator initiator)
1119 enum ieee80211_band band;
1123 if (ignore_reg_update(wiphy, initiator))
1126 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127 if (wiphy->bands[band])
1128 handle_band(wiphy, band, initiator);
1131 reg_process_beacons(wiphy);
1132 reg_process_ht_flags(wiphy);
1133 if (wiphy->reg_notifier)
1134 wiphy->reg_notifier(wiphy, last_request);
1137 void regulatory_update(struct wiphy *wiphy,
1138 enum nl80211_reg_initiator setby)
1140 mutex_lock(®_mutex);
1141 wiphy_update_regulatory(wiphy, setby);
1142 mutex_unlock(®_mutex);
1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1147 struct cfg80211_registered_device *rdev;
1149 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1150 wiphy_update_regulatory(&rdev->wiphy, initiator);
1153 static void handle_channel_custom(struct wiphy *wiphy,
1154 enum ieee80211_band band,
1155 unsigned int chan_idx,
1156 const struct ieee80211_regdomain *regd)
1159 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1161 const struct ieee80211_reg_rule *reg_rule = NULL;
1162 const struct ieee80211_power_rule *power_rule = NULL;
1163 const struct ieee80211_freq_range *freq_range = NULL;
1164 struct ieee80211_supported_band *sband;
1165 struct ieee80211_channel *chan;
1169 sband = wiphy->bands[band];
1170 BUG_ON(chan_idx >= sband->n_channels);
1171 chan = &sband->channels[chan_idx];
1173 r = freq_reg_info_regd(wiphy,
1174 MHZ_TO_KHZ(chan->center_freq),
1180 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181 "regd has no rule that fits a %d MHz "
1184 KHZ_TO_MHZ(desired_bw_khz));
1185 chan->flags = IEEE80211_CHAN_DISABLED;
1189 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1191 power_rule = ®_rule->power_rule;
1192 freq_range = ®_rule->freq_range;
1194 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1195 bw_flags = IEEE80211_CHAN_NO_HT40;
1197 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1199 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1203 const struct ieee80211_regdomain *regd)
1206 struct ieee80211_supported_band *sband;
1208 BUG_ON(!wiphy->bands[band]);
1209 sband = wiphy->bands[band];
1211 for (i = 0; i < sband->n_channels; i++)
1212 handle_channel_custom(wiphy, band, i, regd);
1215 /* Used by drivers prior to wiphy registration */
1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1217 const struct ieee80211_regdomain *regd)
1219 enum ieee80211_band band;
1220 unsigned int bands_set = 0;
1222 mutex_lock(®_mutex);
1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 if (!wiphy->bands[band])
1226 handle_band_custom(wiphy, band, regd);
1229 mutex_unlock(®_mutex);
1232 * no point in calling this if it won't have any effect
1233 * on your device's supportd bands.
1235 WARN_ON(!bands_set);
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1240 * Return value which can be used by ignore_request() to indicate
1241 * it has been determined we should intersect two regulatory domains
1243 #define REG_INTERSECT 1
1245 /* This has the logic which determines when a new request
1246 * should be ignored. */
1247 static int ignore_request(struct wiphy *wiphy,
1248 struct regulatory_request *pending_request)
1250 struct wiphy *last_wiphy = NULL;
1252 assert_cfg80211_lock();
1254 /* All initial requests are respected */
1258 switch (pending_request->initiator) {
1259 case NL80211_REGDOM_SET_BY_CORE:
1261 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1263 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1265 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1267 if (last_request->initiator ==
1268 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269 if (last_wiphy != wiphy) {
1271 * Two cards with two APs claiming different
1272 * Country IE alpha2s. We could
1273 * intersect them, but that seems unlikely
1274 * to be correct. Reject second one for now.
1276 if (regdom_changes(pending_request->alpha2))
1281 * Two consecutive Country IE hints on the same wiphy.
1282 * This should be picked up early by the driver/stack
1284 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1289 case NL80211_REGDOM_SET_BY_DRIVER:
1290 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291 if (regdom_changes(pending_request->alpha2))
1297 * This would happen if you unplug and plug your card
1298 * back in or if you add a new device for which the previously
1299 * loaded card also agrees on the regulatory domain.
1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302 !regdom_changes(pending_request->alpha2))
1305 return REG_INTERSECT;
1306 case NL80211_REGDOM_SET_BY_USER:
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308 return REG_INTERSECT;
1310 * If the user knows better the user should set the regdom
1311 * to their country before the IE is picked up
1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314 last_request->intersect)
1317 * Process user requests only after previous user/driver/core
1318 * requests have been processed
1320 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1321 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1322 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323 if (regdom_changes(last_request->alpha2))
1327 if (!regdom_changes(pending_request->alpha2))
1336 static void reg_set_request_processed(void)
1338 bool need_more_processing = false;
1340 last_request->processed = true;
1342 spin_lock(®_requests_lock);
1343 if (!list_empty(®_requests_list))
1344 need_more_processing = true;
1345 spin_unlock(®_requests_lock);
1347 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1348 cancel_delayed_work_sync(®_timeout);
1350 if (need_more_processing)
1351 schedule_work(®_work);
1355 * __regulatory_hint - hint to the wireless core a regulatory domain
1356 * @wiphy: if the hint comes from country information from an AP, this
1357 * is required to be set to the wiphy that received the information
1358 * @pending_request: the regulatory request currently being processed
1360 * The Wireless subsystem can use this function to hint to the wireless core
1361 * what it believes should be the current regulatory domain.
1363 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1364 * already been set or other standard error codes.
1366 * Caller must hold &cfg80211_mutex and ®_mutex
1368 static int __regulatory_hint(struct wiphy *wiphy,
1369 struct regulatory_request *pending_request)
1371 bool intersect = false;
1374 assert_cfg80211_lock();
1376 r = ignore_request(wiphy, pending_request);
1378 if (r == REG_INTERSECT) {
1379 if (pending_request->initiator ==
1380 NL80211_REGDOM_SET_BY_DRIVER) {
1381 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1383 kfree(pending_request);
1390 * If the regulatory domain being requested by the
1391 * driver has already been set just copy it to the
1394 if (r == -EALREADY &&
1395 pending_request->initiator ==
1396 NL80211_REGDOM_SET_BY_DRIVER) {
1397 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1399 kfree(pending_request);
1405 kfree(pending_request);
1410 kfree(last_request);
1412 last_request = pending_request;
1413 last_request->intersect = intersect;
1415 pending_request = NULL;
1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1418 user_alpha2[0] = last_request->alpha2[0];
1419 user_alpha2[1] = last_request->alpha2[1];
1422 /* When r == REG_INTERSECT we do need to call CRDA */
1425 * Since CRDA will not be called in this case as we already
1426 * have applied the requested regulatory domain before we just
1427 * inform userspace we have processed the request
1429 if (r == -EALREADY) {
1430 nl80211_send_reg_change_event(last_request);
1431 reg_set_request_processed();
1436 return call_crda(last_request->alpha2);
1439 /* This processes *all* regulatory hints */
1440 static void reg_process_hint(struct regulatory_request *reg_request)
1443 struct wiphy *wiphy = NULL;
1444 enum nl80211_reg_initiator initiator = reg_request->initiator;
1446 BUG_ON(!reg_request->alpha2);
1448 if (wiphy_idx_valid(reg_request->wiphy_idx))
1449 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1451 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1457 r = __regulatory_hint(wiphy, reg_request);
1458 /* This is required so that the orig_* parameters are saved */
1459 if (r == -EALREADY && wiphy &&
1460 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461 wiphy_update_regulatory(wiphy, initiator);
1466 * We only time out user hints, given that they should be the only
1467 * source of bogus requests.
1469 if (r != -EALREADY &&
1470 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142));
1475 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1476 * Regulatory hints come on a first come first serve basis and we
1477 * must process each one atomically.
1479 static void reg_process_pending_hints(void)
1481 struct regulatory_request *reg_request;
1483 mutex_lock(&cfg80211_mutex);
1484 mutex_lock(®_mutex);
1486 /* When last_request->processed becomes true this will be rescheduled */
1487 if (last_request && !last_request->processed) {
1488 REG_DBG_PRINT("Pending regulatory request, waiting "
1489 "for it to be processed...\n");
1493 spin_lock(®_requests_lock);
1495 if (list_empty(®_requests_list)) {
1496 spin_unlock(®_requests_lock);
1500 reg_request = list_first_entry(®_requests_list,
1501 struct regulatory_request,
1503 list_del_init(®_request->list);
1505 spin_unlock(®_requests_lock);
1507 reg_process_hint(reg_request);
1510 mutex_unlock(®_mutex);
1511 mutex_unlock(&cfg80211_mutex);
1514 /* Processes beacon hints -- this has nothing to do with country IEs */
1515 static void reg_process_pending_beacon_hints(void)
1517 struct cfg80211_registered_device *rdev;
1518 struct reg_beacon *pending_beacon, *tmp;
1521 * No need to hold the reg_mutex here as we just touch wiphys
1522 * and do not read or access regulatory variables.
1524 mutex_lock(&cfg80211_mutex);
1526 /* This goes through the _pending_ beacon list */
1527 spin_lock_bh(®_pending_beacons_lock);
1529 if (list_empty(®_pending_beacons)) {
1530 spin_unlock_bh(®_pending_beacons_lock);
1534 list_for_each_entry_safe(pending_beacon, tmp,
1535 ®_pending_beacons, list) {
1537 list_del_init(&pending_beacon->list);
1539 /* Applies the beacon hint to current wiphys */
1540 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1541 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1543 /* Remembers the beacon hint for new wiphys or reg changes */
1544 list_add_tail(&pending_beacon->list, ®_beacon_list);
1547 spin_unlock_bh(®_pending_beacons_lock);
1549 mutex_unlock(&cfg80211_mutex);
1552 static void reg_todo(struct work_struct *work)
1554 reg_process_pending_hints();
1555 reg_process_pending_beacon_hints();
1558 static void queue_regulatory_request(struct regulatory_request *request)
1560 if (isalpha(request->alpha2[0]))
1561 request->alpha2[0] = toupper(request->alpha2[0]);
1562 if (isalpha(request->alpha2[1]))
1563 request->alpha2[1] = toupper(request->alpha2[1]);
1565 spin_lock(®_requests_lock);
1566 list_add_tail(&request->list, ®_requests_list);
1567 spin_unlock(®_requests_lock);
1569 schedule_work(®_work);
1573 * Core regulatory hint -- happens during cfg80211_init()
1574 * and when we restore regulatory settings.
1576 static int regulatory_hint_core(const char *alpha2)
1578 struct regulatory_request *request;
1580 kfree(last_request);
1581 last_request = NULL;
1583 request = kzalloc(sizeof(struct regulatory_request),
1588 request->alpha2[0] = alpha2[0];
1589 request->alpha2[1] = alpha2[1];
1590 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1592 queue_regulatory_request(request);
1598 int regulatory_hint_user(const char *alpha2)
1600 struct regulatory_request *request;
1604 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1608 request->wiphy_idx = WIPHY_IDX_STALE;
1609 request->alpha2[0] = alpha2[0];
1610 request->alpha2[1] = alpha2[1];
1611 request->initiator = NL80211_REGDOM_SET_BY_USER;
1613 queue_regulatory_request(request);
1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1621 struct regulatory_request *request;
1626 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1630 request->wiphy_idx = get_wiphy_idx(wiphy);
1632 /* Must have registered wiphy first */
1633 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1635 request->alpha2[0] = alpha2[0];
1636 request->alpha2[1] = alpha2[1];
1637 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1639 queue_regulatory_request(request);
1643 EXPORT_SYMBOL(regulatory_hint);
1646 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1647 * therefore cannot iterate over the rdev list here.
1649 void regulatory_hint_11d(struct wiphy *wiphy,
1650 enum ieee80211_band band,
1655 enum environment_cap env = ENVIRON_ANY;
1656 struct regulatory_request *request;
1658 mutex_lock(®_mutex);
1660 if (unlikely(!last_request))
1663 /* IE len must be evenly divisible by 2 */
1664 if (country_ie_len & 0x01)
1667 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1670 alpha2[0] = country_ie[0];
1671 alpha2[1] = country_ie[1];
1673 if (country_ie[2] == 'I')
1674 env = ENVIRON_INDOOR;
1675 else if (country_ie[2] == 'O')
1676 env = ENVIRON_OUTDOOR;
1679 * We will run this only upon a successful connection on cfg80211.
1680 * We leave conflict resolution to the workqueue, where can hold
1683 if (likely(last_request->initiator ==
1684 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685 wiphy_idx_valid(last_request->wiphy_idx)))
1688 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1692 request->wiphy_idx = get_wiphy_idx(wiphy);
1693 request->alpha2[0] = alpha2[0];
1694 request->alpha2[1] = alpha2[1];
1695 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696 request->country_ie_env = env;
1698 mutex_unlock(®_mutex);
1700 queue_regulatory_request(request);
1705 mutex_unlock(®_mutex);
1708 static void restore_alpha2(char *alpha2, bool reset_user)
1710 /* indicates there is no alpha2 to consider for restoration */
1714 /* The user setting has precedence over the module parameter */
1715 if (is_user_regdom_saved()) {
1716 /* Unless we're asked to ignore it and reset it */
1718 REG_DBG_PRINT("Restoring regulatory settings "
1719 "including user preference\n");
1720 user_alpha2[0] = '9';
1721 user_alpha2[1] = '7';
1724 * If we're ignoring user settings, we still need to
1725 * check the module parameter to ensure we put things
1726 * back as they were for a full restore.
1728 if (!is_world_regdom(ieee80211_regdom)) {
1729 REG_DBG_PRINT("Keeping preference on "
1730 "module parameter ieee80211_regdom: %c%c\n",
1731 ieee80211_regdom[0],
1732 ieee80211_regdom[1]);
1733 alpha2[0] = ieee80211_regdom[0];
1734 alpha2[1] = ieee80211_regdom[1];
1737 REG_DBG_PRINT("Restoring regulatory settings "
1738 "while preserving user preference for: %c%c\n",
1741 alpha2[0] = user_alpha2[0];
1742 alpha2[1] = user_alpha2[1];
1744 } else if (!is_world_regdom(ieee80211_regdom)) {
1745 REG_DBG_PRINT("Keeping preference on "
1746 "module parameter ieee80211_regdom: %c%c\n",
1747 ieee80211_regdom[0],
1748 ieee80211_regdom[1]);
1749 alpha2[0] = ieee80211_regdom[0];
1750 alpha2[1] = ieee80211_regdom[1];
1752 REG_DBG_PRINT("Restoring regulatory settings\n");
1756 * Restoring regulatory settings involves ingoring any
1757 * possibly stale country IE information and user regulatory
1758 * settings if so desired, this includes any beacon hints
1759 * learned as we could have traveled outside to another country
1760 * after disconnection. To restore regulatory settings we do
1761 * exactly what we did at bootup:
1763 * - send a core regulatory hint
1764 * - send a user regulatory hint if applicable
1766 * Device drivers that send a regulatory hint for a specific country
1767 * keep their own regulatory domain on wiphy->regd so that does does
1768 * not need to be remembered.
1770 static void restore_regulatory_settings(bool reset_user)
1773 struct reg_beacon *reg_beacon, *btmp;
1774 struct regulatory_request *reg_request, *tmp;
1775 LIST_HEAD(tmp_reg_req_list);
1777 mutex_lock(&cfg80211_mutex);
1778 mutex_lock(®_mutex);
1781 restore_alpha2(alpha2, reset_user);
1784 * If there's any pending requests we simply
1785 * stash them to a temporary pending queue and
1786 * add then after we've restored regulatory
1789 spin_lock(®_requests_lock);
1790 if (!list_empty(®_requests_list)) {
1791 list_for_each_entry_safe(reg_request, tmp,
1792 ®_requests_list, list) {
1793 if (reg_request->initiator !=
1794 NL80211_REGDOM_SET_BY_USER)
1796 list_del(®_request->list);
1797 list_add_tail(®_request->list, &tmp_reg_req_list);
1800 spin_unlock(®_requests_lock);
1802 /* Clear beacon hints */
1803 spin_lock_bh(®_pending_beacons_lock);
1804 if (!list_empty(®_pending_beacons)) {
1805 list_for_each_entry_safe(reg_beacon, btmp,
1806 ®_pending_beacons, list) {
1807 list_del(®_beacon->list);
1811 spin_unlock_bh(®_pending_beacons_lock);
1813 if (!list_empty(®_beacon_list)) {
1814 list_for_each_entry_safe(reg_beacon, btmp,
1815 ®_beacon_list, list) {
1816 list_del(®_beacon->list);
1821 /* First restore to the basic regulatory settings */
1822 cfg80211_regdomain = cfg80211_world_regdom;
1824 mutex_unlock(®_mutex);
1825 mutex_unlock(&cfg80211_mutex);
1827 regulatory_hint_core(cfg80211_regdomain->alpha2);
1830 * This restores the ieee80211_regdom module parameter
1831 * preference or the last user requested regulatory
1832 * settings, user regulatory settings takes precedence.
1834 if (is_an_alpha2(alpha2))
1835 regulatory_hint_user(user_alpha2);
1837 if (list_empty(&tmp_reg_req_list))
1840 mutex_lock(&cfg80211_mutex);
1841 mutex_lock(®_mutex);
1843 spin_lock(®_requests_lock);
1844 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1845 REG_DBG_PRINT("Adding request for country %c%c back "
1847 reg_request->alpha2[0],
1848 reg_request->alpha2[1]);
1849 list_del(®_request->list);
1850 list_add_tail(®_request->list, ®_requests_list);
1852 spin_unlock(®_requests_lock);
1854 mutex_unlock(®_mutex);
1855 mutex_unlock(&cfg80211_mutex);
1857 REG_DBG_PRINT("Kicking the queue\n");
1859 schedule_work(®_work);
1862 void regulatory_hint_disconnect(void)
1864 REG_DBG_PRINT("All devices are disconnected, going to "
1865 "restore regulatory settings\n");
1866 restore_regulatory_settings(false);
1869 static bool freq_is_chan_12_13_14(u16 freq)
1871 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1872 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1873 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1878 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1879 struct ieee80211_channel *beacon_chan,
1882 struct reg_beacon *reg_beacon;
1884 if (likely((beacon_chan->beacon_found ||
1885 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1886 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1887 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1890 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1894 REG_DBG_PRINT("Found new beacon on "
1895 "frequency: %d MHz (Ch %d) on %s\n",
1896 beacon_chan->center_freq,
1897 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1900 memcpy(®_beacon->chan, beacon_chan,
1901 sizeof(struct ieee80211_channel));
1905 * Since we can be called from BH or and non-BH context
1906 * we must use spin_lock_bh()
1908 spin_lock_bh(®_pending_beacons_lock);
1909 list_add_tail(®_beacon->list, ®_pending_beacons);
1910 spin_unlock_bh(®_pending_beacons_lock);
1912 schedule_work(®_work);
1917 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1920 const struct ieee80211_reg_rule *reg_rule = NULL;
1921 const struct ieee80211_freq_range *freq_range = NULL;
1922 const struct ieee80211_power_rule *power_rule = NULL;
1924 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1926 for (i = 0; i < rd->n_reg_rules; i++) {
1927 reg_rule = &rd->reg_rules[i];
1928 freq_range = ®_rule->freq_range;
1929 power_rule = ®_rule->power_rule;
1932 * There may not be documentation for max antenna gain
1933 * in certain regions
1935 if (power_rule->max_antenna_gain)
1936 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937 freq_range->start_freq_khz,
1938 freq_range->end_freq_khz,
1939 freq_range->max_bandwidth_khz,
1940 power_rule->max_antenna_gain,
1941 power_rule->max_eirp);
1943 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944 freq_range->start_freq_khz,
1945 freq_range->end_freq_khz,
1946 freq_range->max_bandwidth_khz,
1947 power_rule->max_eirp);
1951 static void print_regdomain(const struct ieee80211_regdomain *rd)
1954 if (is_intersected_alpha2(rd->alpha2)) {
1956 if (last_request->initiator ==
1957 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1958 struct cfg80211_registered_device *rdev;
1959 rdev = cfg80211_rdev_by_wiphy_idx(
1960 last_request->wiphy_idx);
1962 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1963 rdev->country_ie_alpha2[0],
1964 rdev->country_ie_alpha2[1]);
1966 pr_info("Current regulatory domain intersected:\n");
1968 pr_info("Current regulatory domain intersected:\n");
1969 } else if (is_world_regdom(rd->alpha2))
1970 pr_info("World regulatory domain updated:\n");
1972 if (is_unknown_alpha2(rd->alpha2))
1973 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1975 pr_info("Regulatory domain changed to country: %c%c\n",
1976 rd->alpha2[0], rd->alpha2[1]);
1981 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1983 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1987 /* Takes ownership of rd only if it doesn't fail */
1988 static int __set_regdom(const struct ieee80211_regdomain *rd)
1990 const struct ieee80211_regdomain *intersected_rd = NULL;
1991 struct cfg80211_registered_device *rdev = NULL;
1992 struct wiphy *request_wiphy;
1993 /* Some basic sanity checks first */
1995 if (is_world_regdom(rd->alpha2)) {
1996 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1998 update_world_regdomain(rd);
2002 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2003 !is_unknown_alpha2(rd->alpha2))
2010 * Lets only bother proceeding on the same alpha2 if the current
2011 * rd is non static (it means CRDA was present and was used last)
2012 * and the pending request came in from a country IE
2014 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2016 * If someone else asked us to change the rd lets only bother
2017 * checking if the alpha2 changes if CRDA was already called
2019 if (!regdom_changes(rd->alpha2))
2024 * Now lets set the regulatory domain, update all driver channels
2025 * and finally inform them of what we have done, in case they want
2026 * to review or adjust their own settings based on their own
2027 * internal EEPROM data
2030 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2033 if (!is_valid_rd(rd)) {
2034 pr_err("Invalid regulatory domain detected:\n");
2035 print_regdomain_info(rd);
2039 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2041 if (!last_request->intersect) {
2044 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2046 cfg80211_regdomain = rd;
2051 * For a driver hint, lets copy the regulatory domain the
2052 * driver wanted to the wiphy to deal with conflicts
2056 * Userspace could have sent two replies with only
2057 * one kernel request.
2059 if (request_wiphy->regd)
2062 r = reg_copy_regd(&request_wiphy->regd, rd);
2067 cfg80211_regdomain = rd;
2071 /* Intersection requires a bit more work */
2073 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2075 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2076 if (!intersected_rd)
2080 * We can trash what CRDA provided now.
2081 * However if a driver requested this specific regulatory
2082 * domain we keep it for its private use
2084 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2085 request_wiphy->regd = rd;
2092 cfg80211_regdomain = intersected_rd;
2097 if (!intersected_rd)
2100 rdev = wiphy_to_dev(request_wiphy);
2102 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2103 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2104 rdev->env = last_request->country_ie_env;
2106 BUG_ON(intersected_rd == rd);
2112 cfg80211_regdomain = intersected_rd;
2119 * Use this call to set the current regulatory domain. Conflicts with
2120 * multiple drivers can be ironed out later. Caller must've already
2121 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2123 int set_regdom(const struct ieee80211_regdomain *rd)
2127 assert_cfg80211_lock();
2129 mutex_lock(®_mutex);
2131 /* Note that this doesn't update the wiphys, this is done below */
2132 r = __set_regdom(rd);
2135 mutex_unlock(®_mutex);
2139 /* This would make this whole thing pointless */
2140 if (!last_request->intersect)
2141 BUG_ON(rd != cfg80211_regdomain);
2143 /* update all wiphys now with the new established regulatory domain */
2144 update_all_wiphy_regulatory(last_request->initiator);
2146 print_regdomain(cfg80211_regdomain);
2148 nl80211_send_reg_change_event(last_request);
2150 reg_set_request_processed();
2152 mutex_unlock(®_mutex);
2157 #ifdef CONFIG_HOTPLUG
2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2160 if (last_request && !last_request->processed) {
2161 if (add_uevent_var(env, "COUNTRY=%c%c",
2162 last_request->alpha2[0],
2163 last_request->alpha2[1]))
2170 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2174 #endif /* CONFIG_HOTPLUG */
2176 /* Caller must hold cfg80211_mutex */
2177 void reg_device_remove(struct wiphy *wiphy)
2179 struct wiphy *request_wiphy = NULL;
2181 assert_cfg80211_lock();
2183 mutex_lock(®_mutex);
2188 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2190 if (!request_wiphy || request_wiphy != wiphy)
2193 last_request->wiphy_idx = WIPHY_IDX_STALE;
2194 last_request->country_ie_env = ENVIRON_ANY;
2196 mutex_unlock(®_mutex);
2199 static void reg_timeout_work(struct work_struct *work)
2201 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2202 "restoring regulatory settings\n");
2203 restore_regulatory_settings(true);
2206 int __init regulatory_init(void)
2210 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2211 if (IS_ERR(reg_pdev))
2212 return PTR_ERR(reg_pdev);
2214 reg_pdev->dev.type = ®_device_type;
2216 spin_lock_init(®_requests_lock);
2217 spin_lock_init(®_pending_beacons_lock);
2219 cfg80211_regdomain = cfg80211_world_regdom;
2221 user_alpha2[0] = '9';
2222 user_alpha2[1] = '7';
2224 /* We always try to get an update for the static regdomain */
2225 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2230 * N.B. kobject_uevent_env() can fail mainly for when we're out
2231 * memory which is handled and propagated appropriately above
2232 * but it can also fail during a netlink_broadcast() or during
2233 * early boot for call_usermodehelper(). For now treat these
2234 * errors as non-fatal.
2236 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2237 #ifdef CONFIG_CFG80211_REG_DEBUG
2238 /* We want to find out exactly why when debugging */
2244 * Finally, if the user set the module parameter treat it
2247 if (!is_world_regdom(ieee80211_regdom))
2248 regulatory_hint_user(ieee80211_regdom);
2253 void /* __init_or_exit */ regulatory_exit(void)
2255 struct regulatory_request *reg_request, *tmp;
2256 struct reg_beacon *reg_beacon, *btmp;
2258 cancel_work_sync(®_work);
2259 cancel_delayed_work_sync(®_timeout);
2261 mutex_lock(&cfg80211_mutex);
2262 mutex_lock(®_mutex);
2266 kfree(last_request);
2268 platform_device_unregister(reg_pdev);
2270 spin_lock_bh(®_pending_beacons_lock);
2271 if (!list_empty(®_pending_beacons)) {
2272 list_for_each_entry_safe(reg_beacon, btmp,
2273 ®_pending_beacons, list) {
2274 list_del(®_beacon->list);
2278 spin_unlock_bh(®_pending_beacons_lock);
2280 if (!list_empty(®_beacon_list)) {
2281 list_for_each_entry_safe(reg_beacon, btmp,
2282 ®_beacon_list, list) {
2283 list_del(®_beacon->list);
2288 spin_lock(®_requests_lock);
2289 if (!list_empty(®_requests_list)) {
2290 list_for_each_entry_safe(reg_request, tmp,
2291 ®_requests_list, list) {
2292 list_del(®_request->list);
2296 spin_unlock(®_requests_lock);
2298 mutex_unlock(®_mutex);
2299 mutex_unlock(&cfg80211_mutex);