net/mlx4: Adapt code for N-Port VF
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89         (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static const struct device_type reg_device_type = {
95         .uevent = reg_device_uevent,
96 };
97
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115         return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120         return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125         switch (dfs_region) {
126         case NL80211_DFS_UNSET:
127                 return "unset";
128         case NL80211_DFS_FCC:
129                 return "FCC";
130         case NL80211_DFS_ETSI:
131                 return "ETSI";
132         case NL80211_DFS_JP:
133                 return "JP";
134         }
135         return "Unknown";
136 }
137
138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
139 {
140         const struct ieee80211_regdomain *regd = NULL;
141         const struct ieee80211_regdomain *wiphy_regd = NULL;
142
143         regd = get_cfg80211_regdom();
144         if (!wiphy)
145                 goto out;
146
147         wiphy_regd = get_wiphy_regdom(wiphy);
148         if (!wiphy_regd)
149                 goto out;
150
151         if (wiphy_regd->dfs_region == regd->dfs_region)
152                 goto out;
153
154         REG_DBG_PRINT("%s: device specific dfs_region "
155                       "(%s) disagrees with cfg80211's "
156                       "central dfs_region (%s)\n",
157                       dev_name(&wiphy->dev),
158                       reg_dfs_region_str(wiphy_regd->dfs_region),
159                       reg_dfs_region_str(regd->dfs_region));
160
161 out:
162         return regd->dfs_region;
163 }
164
165 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
166 {
167         if (!r)
168                 return;
169         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
170 }
171
172 static struct regulatory_request *get_last_request(void)
173 {
174         return rcu_dereference_rtnl(last_request);
175 }
176
177 /* Used to queue up regulatory hints */
178 static LIST_HEAD(reg_requests_list);
179 static spinlock_t reg_requests_lock;
180
181 /* Used to queue up beacon hints for review */
182 static LIST_HEAD(reg_pending_beacons);
183 static spinlock_t reg_pending_beacons_lock;
184
185 /* Used to keep track of processed beacon hints */
186 static LIST_HEAD(reg_beacon_list);
187
188 struct reg_beacon {
189         struct list_head list;
190         struct ieee80211_channel chan;
191 };
192
193 static void reg_todo(struct work_struct *work);
194 static DECLARE_WORK(reg_work, reg_todo);
195
196 static void reg_timeout_work(struct work_struct *work);
197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
198
199 /* We keep a static world regulatory domain in case of the absence of CRDA */
200 static const struct ieee80211_regdomain world_regdom = {
201         .n_reg_rules = 6,
202         .alpha2 =  "00",
203         .reg_rules = {
204                 /* IEEE 802.11b/g, channels 1..11 */
205                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
206                 /* IEEE 802.11b/g, channels 12..13. */
207                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
208                         NL80211_RRF_NO_IR),
209                 /* IEEE 802.11 channel 14 - Only JP enables
210                  * this and for 802.11b only */
211                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
212                         NL80211_RRF_NO_IR |
213                         NL80211_RRF_NO_OFDM),
214                 /* IEEE 802.11a, channel 36..48 */
215                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
216                         NL80211_RRF_NO_IR),
217
218                 /* IEEE 802.11a, channel 52..64 - DFS required */
219                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
220                         NL80211_RRF_NO_IR |
221                         NL80211_RRF_DFS),
222
223                 /* IEEE 802.11a, channel 100..144 - DFS required */
224                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
225                         NL80211_RRF_NO_IR |
226                         NL80211_RRF_DFS),
227
228                 /* IEEE 802.11a, channel 149..165 */
229                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
230                         NL80211_RRF_NO_IR),
231
232                 /* IEEE 802.11ad (60gHz), channels 1..3 */
233                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
234         }
235 };
236
237 /* protected by RTNL */
238 static const struct ieee80211_regdomain *cfg80211_world_regdom =
239         &world_regdom;
240
241 static char *ieee80211_regdom = "00";
242 static char user_alpha2[2];
243
244 module_param(ieee80211_regdom, charp, 0444);
245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
246
247 static void reg_kfree_last_request(void)
248 {
249         struct regulatory_request *lr;
250
251         lr = get_last_request();
252
253         if (lr != &core_request_world && lr)
254                 kfree_rcu(lr, rcu_head);
255 }
256
257 static void reg_update_last_request(struct regulatory_request *request)
258 {
259         reg_kfree_last_request();
260         rcu_assign_pointer(last_request, request);
261 }
262
263 static void reset_regdomains(bool full_reset,
264                              const struct ieee80211_regdomain *new_regdom)
265 {
266         const struct ieee80211_regdomain *r;
267
268         ASSERT_RTNL();
269
270         r = get_cfg80211_regdom();
271
272         /* avoid freeing static information or freeing something twice */
273         if (r == cfg80211_world_regdom)
274                 r = NULL;
275         if (cfg80211_world_regdom == &world_regdom)
276                 cfg80211_world_regdom = NULL;
277         if (r == &world_regdom)
278                 r = NULL;
279
280         rcu_free_regdom(r);
281         rcu_free_regdom(cfg80211_world_regdom);
282
283         cfg80211_world_regdom = &world_regdom;
284         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
285
286         if (!full_reset)
287                 return;
288
289         reg_update_last_request(&core_request_world);
290 }
291
292 /*
293  * Dynamic world regulatory domain requested by the wireless
294  * core upon initialization
295  */
296 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
297 {
298         struct regulatory_request *lr;
299
300         lr = get_last_request();
301
302         WARN_ON(!lr);
303
304         reset_regdomains(false, rd);
305
306         cfg80211_world_regdom = rd;
307 }
308
309 bool is_world_regdom(const char *alpha2)
310 {
311         if (!alpha2)
312                 return false;
313         return alpha2[0] == '0' && alpha2[1] == '0';
314 }
315
316 static bool is_alpha2_set(const char *alpha2)
317 {
318         if (!alpha2)
319                 return false;
320         return alpha2[0] && alpha2[1];
321 }
322
323 static bool is_unknown_alpha2(const char *alpha2)
324 {
325         if (!alpha2)
326                 return false;
327         /*
328          * Special case where regulatory domain was built by driver
329          * but a specific alpha2 cannot be determined
330          */
331         return alpha2[0] == '9' && alpha2[1] == '9';
332 }
333
334 static bool is_intersected_alpha2(const char *alpha2)
335 {
336         if (!alpha2)
337                 return false;
338         /*
339          * Special case where regulatory domain is the
340          * result of an intersection between two regulatory domain
341          * structures
342          */
343         return alpha2[0] == '9' && alpha2[1] == '8';
344 }
345
346 static bool is_an_alpha2(const char *alpha2)
347 {
348         if (!alpha2)
349                 return false;
350         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 }
352
353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
354 {
355         if (!alpha2_x || !alpha2_y)
356                 return false;
357         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 }
359
360 static bool regdom_changes(const char *alpha2)
361 {
362         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
363
364         if (!r)
365                 return true;
366         return !alpha2_equal(r->alpha2, alpha2);
367 }
368
369 /*
370  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
371  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
372  * has ever been issued.
373  */
374 static bool is_user_regdom_saved(void)
375 {
376         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
377                 return false;
378
379         /* This would indicate a mistake on the design */
380         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
381                  "Unexpected user alpha2: %c%c\n",
382                  user_alpha2[0], user_alpha2[1]))
383                 return false;
384
385         return true;
386 }
387
388 static const struct ieee80211_regdomain *
389 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
390 {
391         struct ieee80211_regdomain *regd;
392         int size_of_regd;
393         unsigned int i;
394
395         size_of_regd =
396                 sizeof(struct ieee80211_regdomain) +
397                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
398
399         regd = kzalloc(size_of_regd, GFP_KERNEL);
400         if (!regd)
401                 return ERR_PTR(-ENOMEM);
402
403         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
404
405         for (i = 0; i < src_regd->n_reg_rules; i++)
406                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
407                        sizeof(struct ieee80211_reg_rule));
408
409         return regd;
410 }
411
412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
413 struct reg_regdb_search_request {
414         char alpha2[2];
415         struct list_head list;
416 };
417
418 static LIST_HEAD(reg_regdb_search_list);
419 static DEFINE_MUTEX(reg_regdb_search_mutex);
420
421 static void reg_regdb_search(struct work_struct *work)
422 {
423         struct reg_regdb_search_request *request;
424         const struct ieee80211_regdomain *curdom, *regdom = NULL;
425         int i;
426
427         rtnl_lock();
428
429         mutex_lock(&reg_regdb_search_mutex);
430         while (!list_empty(&reg_regdb_search_list)) {
431                 request = list_first_entry(&reg_regdb_search_list,
432                                            struct reg_regdb_search_request,
433                                            list);
434                 list_del(&request->list);
435
436                 for (i = 0; i < reg_regdb_size; i++) {
437                         curdom = reg_regdb[i];
438
439                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
440                                 regdom = reg_copy_regd(curdom);
441                                 break;
442                         }
443                 }
444
445                 kfree(request);
446         }
447         mutex_unlock(&reg_regdb_search_mutex);
448
449         if (!IS_ERR_OR_NULL(regdom))
450                 set_regdom(regdom);
451
452         rtnl_unlock();
453 }
454
455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
456
457 static void reg_regdb_query(const char *alpha2)
458 {
459         struct reg_regdb_search_request *request;
460
461         if (!alpha2)
462                 return;
463
464         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
465         if (!request)
466                 return;
467
468         memcpy(request->alpha2, alpha2, 2);
469
470         mutex_lock(&reg_regdb_search_mutex);
471         list_add_tail(&request->list, &reg_regdb_search_list);
472         mutex_unlock(&reg_regdb_search_mutex);
473
474         schedule_work(&reg_regdb_work);
475 }
476
477 /* Feel free to add any other sanity checks here */
478 static void reg_regdb_size_check(void)
479 {
480         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
481         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
482 }
483 #else
484 static inline void reg_regdb_size_check(void) {}
485 static inline void reg_regdb_query(const char *alpha2) {}
486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487
488 /*
489  * This lets us keep regulatory code which is updated on a regulatory
490  * basis in userspace. Country information is filled in by
491  * reg_device_uevent
492  */
493 static int call_crda(const char *alpha2)
494 {
495         if (!is_world_regdom((char *) alpha2))
496                 pr_info("Calling CRDA for country: %c%c\n",
497                         alpha2[0], alpha2[1]);
498         else
499                 pr_info("Calling CRDA to update world regulatory domain\n");
500
501         /* query internal regulatory database (if it exists) */
502         reg_regdb_query(alpha2);
503
504         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
505 }
506
507 static enum reg_request_treatment
508 reg_call_crda(struct regulatory_request *request)
509 {
510         if (call_crda(request->alpha2))
511                 return REG_REQ_IGNORE;
512         return REG_REQ_OK;
513 }
514
515 bool reg_is_valid_request(const char *alpha2)
516 {
517         struct regulatory_request *lr = get_last_request();
518
519         if (!lr || lr->processed)
520                 return false;
521
522         return alpha2_equal(lr->alpha2, alpha2);
523 }
524
525 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
526 {
527         struct regulatory_request *lr = get_last_request();
528
529         /*
530          * Follow the driver's regulatory domain, if present, unless a country
531          * IE has been processed or a user wants to help complaince further
532          */
533         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
534             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
535             wiphy->regd)
536                 return get_wiphy_regdom(wiphy);
537
538         return get_cfg80211_regdom();
539 }
540
541 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
542                                    const struct ieee80211_reg_rule *rule)
543 {
544         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
545         const struct ieee80211_freq_range *freq_range_tmp;
546         const struct ieee80211_reg_rule *tmp;
547         u32 start_freq, end_freq, idx, no;
548
549         for (idx = 0; idx < rd->n_reg_rules; idx++)
550                 if (rule == &rd->reg_rules[idx])
551                         break;
552
553         if (idx == rd->n_reg_rules)
554                 return 0;
555
556         /* get start_freq */
557         no = idx;
558
559         while (no) {
560                 tmp = &rd->reg_rules[--no];
561                 freq_range_tmp = &tmp->freq_range;
562
563                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
564                         break;
565
566                 freq_range = freq_range_tmp;
567         }
568
569         start_freq = freq_range->start_freq_khz;
570
571         /* get end_freq */
572         freq_range = &rule->freq_range;
573         no = idx;
574
575         while (no < rd->n_reg_rules - 1) {
576                 tmp = &rd->reg_rules[++no];
577                 freq_range_tmp = &tmp->freq_range;
578
579                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
580                         break;
581
582                 freq_range = freq_range_tmp;
583         }
584
585         end_freq = freq_range->end_freq_khz;
586
587         return end_freq - start_freq;
588 }
589
590 /* Sanity check on a regulatory rule */
591 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
592 {
593         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
594         u32 freq_diff;
595
596         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
597                 return false;
598
599         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
600                 return false;
601
602         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
603
604         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
605             freq_range->max_bandwidth_khz > freq_diff)
606                 return false;
607
608         return true;
609 }
610
611 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
612 {
613         const struct ieee80211_reg_rule *reg_rule = NULL;
614         unsigned int i;
615
616         if (!rd->n_reg_rules)
617                 return false;
618
619         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
620                 return false;
621
622         for (i = 0; i < rd->n_reg_rules; i++) {
623                 reg_rule = &rd->reg_rules[i];
624                 if (!is_valid_reg_rule(reg_rule))
625                         return false;
626         }
627
628         return true;
629 }
630
631 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
632                             u32 center_freq_khz, u32 bw_khz)
633 {
634         u32 start_freq_khz, end_freq_khz;
635
636         start_freq_khz = center_freq_khz - (bw_khz/2);
637         end_freq_khz = center_freq_khz + (bw_khz/2);
638
639         if (start_freq_khz >= freq_range->start_freq_khz &&
640             end_freq_khz <= freq_range->end_freq_khz)
641                 return true;
642
643         return false;
644 }
645
646 /**
647  * freq_in_rule_band - tells us if a frequency is in a frequency band
648  * @freq_range: frequency rule we want to query
649  * @freq_khz: frequency we are inquiring about
650  *
651  * This lets us know if a specific frequency rule is or is not relevant to
652  * a specific frequency's band. Bands are device specific and artificial
653  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
654  * however it is safe for now to assume that a frequency rule should not be
655  * part of a frequency's band if the start freq or end freq are off by more
656  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
657  * 60 GHz band.
658  * This resolution can be lowered and should be considered as we add
659  * regulatory rule support for other "bands".
660  **/
661 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
662                               u32 freq_khz)
663 {
664 #define ONE_GHZ_IN_KHZ  1000000
665         /*
666          * From 802.11ad: directional multi-gigabit (DMG):
667          * Pertaining to operation in a frequency band containing a channel
668          * with the Channel starting frequency above 45 GHz.
669          */
670         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
671                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
672         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
673                 return true;
674         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
675                 return true;
676         return false;
677 #undef ONE_GHZ_IN_KHZ
678 }
679
680 /*
681  * Later on we can perhaps use the more restrictive DFS
682  * region but we don't have information for that yet so
683  * for now simply disallow conflicts.
684  */
685 static enum nl80211_dfs_regions
686 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
687                          const enum nl80211_dfs_regions dfs_region2)
688 {
689         if (dfs_region1 != dfs_region2)
690                 return NL80211_DFS_UNSET;
691         return dfs_region1;
692 }
693
694 /*
695  * Helper for regdom_intersect(), this does the real
696  * mathematical intersection fun
697  */
698 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
699                                const struct ieee80211_regdomain *rd2,
700                                const struct ieee80211_reg_rule *rule1,
701                                const struct ieee80211_reg_rule *rule2,
702                                struct ieee80211_reg_rule *intersected_rule)
703 {
704         const struct ieee80211_freq_range *freq_range1, *freq_range2;
705         struct ieee80211_freq_range *freq_range;
706         const struct ieee80211_power_rule *power_rule1, *power_rule2;
707         struct ieee80211_power_rule *power_rule;
708         u32 freq_diff, max_bandwidth1, max_bandwidth2;
709
710         freq_range1 = &rule1->freq_range;
711         freq_range2 = &rule2->freq_range;
712         freq_range = &intersected_rule->freq_range;
713
714         power_rule1 = &rule1->power_rule;
715         power_rule2 = &rule2->power_rule;
716         power_rule = &intersected_rule->power_rule;
717
718         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
719                                          freq_range2->start_freq_khz);
720         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
721                                        freq_range2->end_freq_khz);
722
723         max_bandwidth1 = freq_range1->max_bandwidth_khz;
724         max_bandwidth2 = freq_range2->max_bandwidth_khz;
725
726         if (rule1->flags & NL80211_RRF_AUTO_BW)
727                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
728         if (rule2->flags & NL80211_RRF_AUTO_BW)
729                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
730
731         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
732
733         intersected_rule->flags = rule1->flags | rule2->flags;
734
735         /*
736          * In case NL80211_RRF_AUTO_BW requested for both rules
737          * set AUTO_BW in intersected rule also. Next we will
738          * calculate BW correctly in handle_channel function.
739          * In other case remove AUTO_BW flag while we calculate
740          * maximum bandwidth correctly and auto calculation is
741          * not required.
742          */
743         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
744             (rule2->flags & NL80211_RRF_AUTO_BW))
745                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
746         else
747                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
748
749         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
750         if (freq_range->max_bandwidth_khz > freq_diff)
751                 freq_range->max_bandwidth_khz = freq_diff;
752
753         power_rule->max_eirp = min(power_rule1->max_eirp,
754                 power_rule2->max_eirp);
755         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
756                 power_rule2->max_antenna_gain);
757
758         if (!is_valid_reg_rule(intersected_rule))
759                 return -EINVAL;
760
761         return 0;
762 }
763
764 /**
765  * regdom_intersect - do the intersection between two regulatory domains
766  * @rd1: first regulatory domain
767  * @rd2: second regulatory domain
768  *
769  * Use this function to get the intersection between two regulatory domains.
770  * Once completed we will mark the alpha2 for the rd as intersected, "98",
771  * as no one single alpha2 can represent this regulatory domain.
772  *
773  * Returns a pointer to the regulatory domain structure which will hold the
774  * resulting intersection of rules between rd1 and rd2. We will
775  * kzalloc() this structure for you.
776  */
777 static struct ieee80211_regdomain *
778 regdom_intersect(const struct ieee80211_regdomain *rd1,
779                  const struct ieee80211_regdomain *rd2)
780 {
781         int r, size_of_regd;
782         unsigned int x, y;
783         unsigned int num_rules = 0, rule_idx = 0;
784         const struct ieee80211_reg_rule *rule1, *rule2;
785         struct ieee80211_reg_rule *intersected_rule;
786         struct ieee80211_regdomain *rd;
787         /* This is just a dummy holder to help us count */
788         struct ieee80211_reg_rule dummy_rule;
789
790         if (!rd1 || !rd2)
791                 return NULL;
792
793         /*
794          * First we get a count of the rules we'll need, then we actually
795          * build them. This is to so we can malloc() and free() a
796          * regdomain once. The reason we use reg_rules_intersect() here
797          * is it will return -EINVAL if the rule computed makes no sense.
798          * All rules that do check out OK are valid.
799          */
800
801         for (x = 0; x < rd1->n_reg_rules; x++) {
802                 rule1 = &rd1->reg_rules[x];
803                 for (y = 0; y < rd2->n_reg_rules; y++) {
804                         rule2 = &rd2->reg_rules[y];
805                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
806                                                  &dummy_rule))
807                                 num_rules++;
808                 }
809         }
810
811         if (!num_rules)
812                 return NULL;
813
814         size_of_regd = sizeof(struct ieee80211_regdomain) +
815                        num_rules * sizeof(struct ieee80211_reg_rule);
816
817         rd = kzalloc(size_of_regd, GFP_KERNEL);
818         if (!rd)
819                 return NULL;
820
821         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
822                 rule1 = &rd1->reg_rules[x];
823                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
824                         rule2 = &rd2->reg_rules[y];
825                         /*
826                          * This time around instead of using the stack lets
827                          * write to the target rule directly saving ourselves
828                          * a memcpy()
829                          */
830                         intersected_rule = &rd->reg_rules[rule_idx];
831                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
832                                                 intersected_rule);
833                         /*
834                          * No need to memset here the intersected rule here as
835                          * we're not using the stack anymore
836                          */
837                         if (r)
838                                 continue;
839                         rule_idx++;
840                 }
841         }
842
843         if (rule_idx != num_rules) {
844                 kfree(rd);
845                 return NULL;
846         }
847
848         rd->n_reg_rules = num_rules;
849         rd->alpha2[0] = '9';
850         rd->alpha2[1] = '8';
851         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
852                                                   rd2->dfs_region);
853
854         return rd;
855 }
856
857 /*
858  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
859  * want to just have the channel structure use these
860  */
861 static u32 map_regdom_flags(u32 rd_flags)
862 {
863         u32 channel_flags = 0;
864         if (rd_flags & NL80211_RRF_NO_IR_ALL)
865                 channel_flags |= IEEE80211_CHAN_NO_IR;
866         if (rd_flags & NL80211_RRF_DFS)
867                 channel_flags |= IEEE80211_CHAN_RADAR;
868         if (rd_flags & NL80211_RRF_NO_OFDM)
869                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
870         return channel_flags;
871 }
872
873 static const struct ieee80211_reg_rule *
874 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
875                    const struct ieee80211_regdomain *regd)
876 {
877         int i;
878         bool band_rule_found = false;
879         bool bw_fits = false;
880
881         if (!regd)
882                 return ERR_PTR(-EINVAL);
883
884         for (i = 0; i < regd->n_reg_rules; i++) {
885                 const struct ieee80211_reg_rule *rr;
886                 const struct ieee80211_freq_range *fr = NULL;
887
888                 rr = &regd->reg_rules[i];
889                 fr = &rr->freq_range;
890
891                 /*
892                  * We only need to know if one frequency rule was
893                  * was in center_freq's band, that's enough, so lets
894                  * not overwrite it once found
895                  */
896                 if (!band_rule_found)
897                         band_rule_found = freq_in_rule_band(fr, center_freq);
898
899                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
900
901                 if (band_rule_found && bw_fits)
902                         return rr;
903         }
904
905         if (!band_rule_found)
906                 return ERR_PTR(-ERANGE);
907
908         return ERR_PTR(-EINVAL);
909 }
910
911 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
912                                                u32 center_freq)
913 {
914         const struct ieee80211_regdomain *regd;
915
916         regd = reg_get_regdomain(wiphy);
917
918         return freq_reg_info_regd(wiphy, center_freq, regd);
919 }
920 EXPORT_SYMBOL(freq_reg_info);
921
922 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
923 {
924         switch (initiator) {
925         case NL80211_REGDOM_SET_BY_CORE:
926                 return "core";
927         case NL80211_REGDOM_SET_BY_USER:
928                 return "user";
929         case NL80211_REGDOM_SET_BY_DRIVER:
930                 return "driver";
931         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
932                 return "country IE";
933         default:
934                 WARN_ON(1);
935                 return "bug";
936         }
937 }
938 EXPORT_SYMBOL(reg_initiator_name);
939
940 #ifdef CONFIG_CFG80211_REG_DEBUG
941 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
942                                     struct ieee80211_channel *chan,
943                                     const struct ieee80211_reg_rule *reg_rule)
944 {
945         const struct ieee80211_power_rule *power_rule;
946         const struct ieee80211_freq_range *freq_range;
947         char max_antenna_gain[32], bw[32];
948
949         power_rule = &reg_rule->power_rule;
950         freq_range = &reg_rule->freq_range;
951
952         if (!power_rule->max_antenna_gain)
953                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
954         else
955                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
956                          power_rule->max_antenna_gain);
957
958         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
959                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
960                          freq_range->max_bandwidth_khz,
961                          reg_get_max_bandwidth(regd, reg_rule));
962         else
963                 snprintf(bw, sizeof(bw), "%d KHz",
964                          freq_range->max_bandwidth_khz);
965
966         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
967                       chan->center_freq);
968
969         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
970                       freq_range->start_freq_khz, freq_range->end_freq_khz,
971                       bw, max_antenna_gain,
972                       power_rule->max_eirp);
973 }
974 #else
975 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
976                                     struct ieee80211_channel *chan,
977                                     const struct ieee80211_reg_rule *reg_rule)
978 {
979         return;
980 }
981 #endif
982
983 /*
984  * Note that right now we assume the desired channel bandwidth
985  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
986  * per channel, the primary and the extension channel).
987  */
988 static void handle_channel(struct wiphy *wiphy,
989                            enum nl80211_reg_initiator initiator,
990                            struct ieee80211_channel *chan)
991 {
992         u32 flags, bw_flags = 0;
993         const struct ieee80211_reg_rule *reg_rule = NULL;
994         const struct ieee80211_power_rule *power_rule = NULL;
995         const struct ieee80211_freq_range *freq_range = NULL;
996         struct wiphy *request_wiphy = NULL;
997         struct regulatory_request *lr = get_last_request();
998         const struct ieee80211_regdomain *regd;
999         u32 max_bandwidth_khz;
1000
1001         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1002
1003         flags = chan->orig_flags;
1004
1005         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1006         if (IS_ERR(reg_rule)) {
1007                 /*
1008                  * We will disable all channels that do not match our
1009                  * received regulatory rule unless the hint is coming
1010                  * from a Country IE and the Country IE had no information
1011                  * about a band. The IEEE 802.11 spec allows for an AP
1012                  * to send only a subset of the regulatory rules allowed,
1013                  * so an AP in the US that only supports 2.4 GHz may only send
1014                  * a country IE with information for the 2.4 GHz band
1015                  * while 5 GHz is still supported.
1016                  */
1017                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1018                     PTR_ERR(reg_rule) == -ERANGE)
1019                         return;
1020
1021                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1022                     request_wiphy && request_wiphy == wiphy &&
1023                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1024                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1025                                       chan->center_freq);
1026                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1027                         chan->flags = chan->orig_flags;
1028                 } else {
1029                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1030                                       chan->center_freq);
1031                         chan->flags |= IEEE80211_CHAN_DISABLED;
1032                 }
1033                 return;
1034         }
1035
1036         regd = reg_get_regdomain(wiphy);
1037         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1038
1039         power_rule = &reg_rule->power_rule;
1040         freq_range = &reg_rule->freq_range;
1041
1042         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1043         /* Check if auto calculation requested */
1044         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1045                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1046
1047         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1048                 bw_flags = IEEE80211_CHAN_NO_HT40;
1049         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1050                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1051         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1052                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1053
1054         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1055             request_wiphy && request_wiphy == wiphy &&
1056             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1057                 /*
1058                  * This guarantees the driver's requested regulatory domain
1059                  * will always be used as a base for further regulatory
1060                  * settings
1061                  */
1062                 chan->flags = chan->orig_flags =
1063                         map_regdom_flags(reg_rule->flags) | bw_flags;
1064                 chan->max_antenna_gain = chan->orig_mag =
1065                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1066                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1067                         (int) MBM_TO_DBM(power_rule->max_eirp);
1068                 return;
1069         }
1070
1071         chan->dfs_state = NL80211_DFS_USABLE;
1072         chan->dfs_state_entered = jiffies;
1073
1074         chan->beacon_found = false;
1075         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1076         chan->max_antenna_gain =
1077                 min_t(int, chan->orig_mag,
1078                       MBI_TO_DBI(power_rule->max_antenna_gain));
1079         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1080         if (chan->orig_mpwr) {
1081                 /*
1082                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1083                  * will always follow the passed country IE power settings.
1084                  */
1085                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1086                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1087                         chan->max_power = chan->max_reg_power;
1088                 else
1089                         chan->max_power = min(chan->orig_mpwr,
1090                                               chan->max_reg_power);
1091         } else
1092                 chan->max_power = chan->max_reg_power;
1093 }
1094
1095 static void handle_band(struct wiphy *wiphy,
1096                         enum nl80211_reg_initiator initiator,
1097                         struct ieee80211_supported_band *sband)
1098 {
1099         unsigned int i;
1100
1101         if (!sband)
1102                 return;
1103
1104         for (i = 0; i < sband->n_channels; i++)
1105                 handle_channel(wiphy, initiator, &sband->channels[i]);
1106 }
1107
1108 static bool reg_request_cell_base(struct regulatory_request *request)
1109 {
1110         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1111                 return false;
1112         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1113 }
1114
1115 bool reg_last_request_cell_base(void)
1116 {
1117         return reg_request_cell_base(get_last_request());
1118 }
1119
1120 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1121 /* Core specific check */
1122 static enum reg_request_treatment
1123 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1124 {
1125         struct regulatory_request *lr = get_last_request();
1126
1127         if (!reg_num_devs_support_basehint)
1128                 return REG_REQ_IGNORE;
1129
1130         if (reg_request_cell_base(lr) &&
1131             !regdom_changes(pending_request->alpha2))
1132                 return REG_REQ_ALREADY_SET;
1133
1134         return REG_REQ_OK;
1135 }
1136
1137 /* Device specific check */
1138 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1139 {
1140         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1141 }
1142 #else
1143 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1144 {
1145         return REG_REQ_IGNORE;
1146 }
1147
1148 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1149 {
1150         return true;
1151 }
1152 #endif
1153
1154 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1155 {
1156         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1157             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1158                 return true;
1159         return false;
1160 }
1161
1162 static bool ignore_reg_update(struct wiphy *wiphy,
1163                               enum nl80211_reg_initiator initiator)
1164 {
1165         struct regulatory_request *lr = get_last_request();
1166
1167         if (!lr) {
1168                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1169                               "since last_request is not set\n",
1170                               reg_initiator_name(initiator));
1171                 return true;
1172         }
1173
1174         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1175             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1176                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1177                               "since the driver uses its own custom "
1178                               "regulatory domain\n",
1179                               reg_initiator_name(initiator));
1180                 return true;
1181         }
1182
1183         /*
1184          * wiphy->regd will be set once the device has its own
1185          * desired regulatory domain set
1186          */
1187         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1188             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189             !is_world_regdom(lr->alpha2)) {
1190                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1191                               "since the driver requires its own regulatory "
1192                               "domain to be set first\n",
1193                               reg_initiator_name(initiator));
1194                 return true;
1195         }
1196
1197         if (reg_request_cell_base(lr))
1198                 return reg_dev_ignore_cell_hint(wiphy);
1199
1200         return false;
1201 }
1202
1203 static bool reg_is_world_roaming(struct wiphy *wiphy)
1204 {
1205         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1206         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1207         struct regulatory_request *lr = get_last_request();
1208
1209         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1210                 return true;
1211
1212         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1213             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1214                 return true;
1215
1216         return false;
1217 }
1218
1219 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1220                               struct reg_beacon *reg_beacon)
1221 {
1222         struct ieee80211_supported_band *sband;
1223         struct ieee80211_channel *chan;
1224         bool channel_changed = false;
1225         struct ieee80211_channel chan_before;
1226
1227         sband = wiphy->bands[reg_beacon->chan.band];
1228         chan = &sband->channels[chan_idx];
1229
1230         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1231                 return;
1232
1233         if (chan->beacon_found)
1234                 return;
1235
1236         chan->beacon_found = true;
1237
1238         if (!reg_is_world_roaming(wiphy))
1239                 return;
1240
1241         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1242                 return;
1243
1244         chan_before.center_freq = chan->center_freq;
1245         chan_before.flags = chan->flags;
1246
1247         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1248                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1249                 channel_changed = true;
1250         }
1251
1252         if (channel_changed)
1253                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1254 }
1255
1256 /*
1257  * Called when a scan on a wiphy finds a beacon on
1258  * new channel
1259  */
1260 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1261                                     struct reg_beacon *reg_beacon)
1262 {
1263         unsigned int i;
1264         struct ieee80211_supported_band *sband;
1265
1266         if (!wiphy->bands[reg_beacon->chan.band])
1267                 return;
1268
1269         sband = wiphy->bands[reg_beacon->chan.band];
1270
1271         for (i = 0; i < sband->n_channels; i++)
1272                 handle_reg_beacon(wiphy, i, reg_beacon);
1273 }
1274
1275 /*
1276  * Called upon reg changes or a new wiphy is added
1277  */
1278 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1279 {
1280         unsigned int i;
1281         struct ieee80211_supported_band *sband;
1282         struct reg_beacon *reg_beacon;
1283
1284         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1285                 if (!wiphy->bands[reg_beacon->chan.band])
1286                         continue;
1287                 sband = wiphy->bands[reg_beacon->chan.band];
1288                 for (i = 0; i < sband->n_channels; i++)
1289                         handle_reg_beacon(wiphy, i, reg_beacon);
1290         }
1291 }
1292
1293 /* Reap the advantages of previously found beacons */
1294 static void reg_process_beacons(struct wiphy *wiphy)
1295 {
1296         /*
1297          * Means we are just firing up cfg80211, so no beacons would
1298          * have been processed yet.
1299          */
1300         if (!last_request)
1301                 return;
1302         wiphy_update_beacon_reg(wiphy);
1303 }
1304
1305 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1306 {
1307         if (!chan)
1308                 return false;
1309         if (chan->flags & IEEE80211_CHAN_DISABLED)
1310                 return false;
1311         /* This would happen when regulatory rules disallow HT40 completely */
1312         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1313                 return false;
1314         return true;
1315 }
1316
1317 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1318                                          struct ieee80211_channel *channel)
1319 {
1320         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1321         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1322         unsigned int i;
1323
1324         if (!is_ht40_allowed(channel)) {
1325                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1326                 return;
1327         }
1328
1329         /*
1330          * We need to ensure the extension channels exist to
1331          * be able to use HT40- or HT40+, this finds them (or not)
1332          */
1333         for (i = 0; i < sband->n_channels; i++) {
1334                 struct ieee80211_channel *c = &sband->channels[i];
1335
1336                 if (c->center_freq == (channel->center_freq - 20))
1337                         channel_before = c;
1338                 if (c->center_freq == (channel->center_freq + 20))
1339                         channel_after = c;
1340         }
1341
1342         /*
1343          * Please note that this assumes target bandwidth is 20 MHz,
1344          * if that ever changes we also need to change the below logic
1345          * to include that as well.
1346          */
1347         if (!is_ht40_allowed(channel_before))
1348                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1349         else
1350                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1351
1352         if (!is_ht40_allowed(channel_after))
1353                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1354         else
1355                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1356 }
1357
1358 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1359                                       struct ieee80211_supported_band *sband)
1360 {
1361         unsigned int i;
1362
1363         if (!sband)
1364                 return;
1365
1366         for (i = 0; i < sband->n_channels; i++)
1367                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1368 }
1369
1370 static void reg_process_ht_flags(struct wiphy *wiphy)
1371 {
1372         enum ieee80211_band band;
1373
1374         if (!wiphy)
1375                 return;
1376
1377         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1378                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1379 }
1380
1381 static void reg_call_notifier(struct wiphy *wiphy,
1382                               struct regulatory_request *request)
1383 {
1384         if (wiphy->reg_notifier)
1385                 wiphy->reg_notifier(wiphy, request);
1386 }
1387
1388 static void wiphy_update_regulatory(struct wiphy *wiphy,
1389                                     enum nl80211_reg_initiator initiator)
1390 {
1391         enum ieee80211_band band;
1392         struct regulatory_request *lr = get_last_request();
1393
1394         if (ignore_reg_update(wiphy, initiator)) {
1395                 /*
1396                  * Regulatory updates set by CORE are ignored for custom
1397                  * regulatory cards. Let us notify the changes to the driver,
1398                  * as some drivers used this to restore its orig_* reg domain.
1399                  */
1400                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1401                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1402                         reg_call_notifier(wiphy, lr);
1403                 return;
1404         }
1405
1406         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1407
1408         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1409                 handle_band(wiphy, initiator, wiphy->bands[band]);
1410
1411         reg_process_beacons(wiphy);
1412         reg_process_ht_flags(wiphy);
1413         reg_call_notifier(wiphy, lr);
1414 }
1415
1416 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1417 {
1418         struct cfg80211_registered_device *rdev;
1419         struct wiphy *wiphy;
1420
1421         ASSERT_RTNL();
1422
1423         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1424                 wiphy = &rdev->wiphy;
1425                 wiphy_update_regulatory(wiphy, initiator);
1426         }
1427 }
1428
1429 static void handle_channel_custom(struct wiphy *wiphy,
1430                                   struct ieee80211_channel *chan,
1431                                   const struct ieee80211_regdomain *regd)
1432 {
1433         u32 bw_flags = 0;
1434         const struct ieee80211_reg_rule *reg_rule = NULL;
1435         const struct ieee80211_power_rule *power_rule = NULL;
1436         const struct ieee80211_freq_range *freq_range = NULL;
1437         u32 max_bandwidth_khz;
1438
1439         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1440                                       regd);
1441
1442         if (IS_ERR(reg_rule)) {
1443                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1444                               chan->center_freq);
1445                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1446                 chan->flags = chan->orig_flags;
1447                 return;
1448         }
1449
1450         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1451
1452         power_rule = &reg_rule->power_rule;
1453         freq_range = &reg_rule->freq_range;
1454
1455         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1456         /* Check if auto calculation requested */
1457         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1458                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1459
1460         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1461                 bw_flags = IEEE80211_CHAN_NO_HT40;
1462         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1463                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1464         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1465                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1466
1467         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1468         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1469         chan->max_reg_power = chan->max_power =
1470                 (int) MBM_TO_DBM(power_rule->max_eirp);
1471 }
1472
1473 static void handle_band_custom(struct wiphy *wiphy,
1474                                struct ieee80211_supported_band *sband,
1475                                const struct ieee80211_regdomain *regd)
1476 {
1477         unsigned int i;
1478
1479         if (!sband)
1480                 return;
1481
1482         for (i = 0; i < sband->n_channels; i++)
1483                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1484 }
1485
1486 /* Used by drivers prior to wiphy registration */
1487 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1488                                    const struct ieee80211_regdomain *regd)
1489 {
1490         enum ieee80211_band band;
1491         unsigned int bands_set = 0;
1492
1493         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1494              "wiphy should have REGULATORY_CUSTOM_REG\n");
1495         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1496
1497         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1498                 if (!wiphy->bands[band])
1499                         continue;
1500                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1501                 bands_set++;
1502         }
1503
1504         /*
1505          * no point in calling this if it won't have any effect
1506          * on your device's supported bands.
1507          */
1508         WARN_ON(!bands_set);
1509 }
1510 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1511
1512 static void reg_set_request_processed(void)
1513 {
1514         bool need_more_processing = false;
1515         struct regulatory_request *lr = get_last_request();
1516
1517         lr->processed = true;
1518
1519         spin_lock(&reg_requests_lock);
1520         if (!list_empty(&reg_requests_list))
1521                 need_more_processing = true;
1522         spin_unlock(&reg_requests_lock);
1523
1524         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1525                 cancel_delayed_work(&reg_timeout);
1526
1527         if (need_more_processing)
1528                 schedule_work(&reg_work);
1529 }
1530
1531 /**
1532  * reg_process_hint_core - process core regulatory requests
1533  * @pending_request: a pending core regulatory request
1534  *
1535  * The wireless subsystem can use this function to process
1536  * a regulatory request issued by the regulatory core.
1537  *
1538  * Returns one of the different reg request treatment values.
1539  */
1540 static enum reg_request_treatment
1541 reg_process_hint_core(struct regulatory_request *core_request)
1542 {
1543
1544         core_request->intersect = false;
1545         core_request->processed = false;
1546
1547         reg_update_last_request(core_request);
1548
1549         return reg_call_crda(core_request);
1550 }
1551
1552 static enum reg_request_treatment
1553 __reg_process_hint_user(struct regulatory_request *user_request)
1554 {
1555         struct regulatory_request *lr = get_last_request();
1556
1557         if (reg_request_cell_base(user_request))
1558                 return reg_ignore_cell_hint(user_request);
1559
1560         if (reg_request_cell_base(lr))
1561                 return REG_REQ_IGNORE;
1562
1563         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1564                 return REG_REQ_INTERSECT;
1565         /*
1566          * If the user knows better the user should set the regdom
1567          * to their country before the IE is picked up
1568          */
1569         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1570             lr->intersect)
1571                 return REG_REQ_IGNORE;
1572         /*
1573          * Process user requests only after previous user/driver/core
1574          * requests have been processed
1575          */
1576         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1577              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1578              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1579             regdom_changes(lr->alpha2))
1580                 return REG_REQ_IGNORE;
1581
1582         if (!regdom_changes(user_request->alpha2))
1583                 return REG_REQ_ALREADY_SET;
1584
1585         return REG_REQ_OK;
1586 }
1587
1588 /**
1589  * reg_process_hint_user - process user regulatory requests
1590  * @user_request: a pending user regulatory request
1591  *
1592  * The wireless subsystem can use this function to process
1593  * a regulatory request initiated by userspace.
1594  *
1595  * Returns one of the different reg request treatment values.
1596  */
1597 static enum reg_request_treatment
1598 reg_process_hint_user(struct regulatory_request *user_request)
1599 {
1600         enum reg_request_treatment treatment;
1601
1602         treatment = __reg_process_hint_user(user_request);
1603         if (treatment == REG_REQ_IGNORE ||
1604             treatment == REG_REQ_ALREADY_SET) {
1605                 kfree(user_request);
1606                 return treatment;
1607         }
1608
1609         user_request->intersect = treatment == REG_REQ_INTERSECT;
1610         user_request->processed = false;
1611
1612         reg_update_last_request(user_request);
1613
1614         user_alpha2[0] = user_request->alpha2[0];
1615         user_alpha2[1] = user_request->alpha2[1];
1616
1617         return reg_call_crda(user_request);
1618 }
1619
1620 static enum reg_request_treatment
1621 __reg_process_hint_driver(struct regulatory_request *driver_request)
1622 {
1623         struct regulatory_request *lr = get_last_request();
1624
1625         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1626                 if (regdom_changes(driver_request->alpha2))
1627                         return REG_REQ_OK;
1628                 return REG_REQ_ALREADY_SET;
1629         }
1630
1631         /*
1632          * This would happen if you unplug and plug your card
1633          * back in or if you add a new device for which the previously
1634          * loaded card also agrees on the regulatory domain.
1635          */
1636         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1637             !regdom_changes(driver_request->alpha2))
1638                 return REG_REQ_ALREADY_SET;
1639
1640         return REG_REQ_INTERSECT;
1641 }
1642
1643 /**
1644  * reg_process_hint_driver - process driver regulatory requests
1645  * @driver_request: a pending driver regulatory request
1646  *
1647  * The wireless subsystem can use this function to process
1648  * a regulatory request issued by an 802.11 driver.
1649  *
1650  * Returns one of the different reg request treatment values.
1651  */
1652 static enum reg_request_treatment
1653 reg_process_hint_driver(struct wiphy *wiphy,
1654                         struct regulatory_request *driver_request)
1655 {
1656         const struct ieee80211_regdomain *regd;
1657         enum reg_request_treatment treatment;
1658
1659         treatment = __reg_process_hint_driver(driver_request);
1660
1661         switch (treatment) {
1662         case REG_REQ_OK:
1663                 break;
1664         case REG_REQ_IGNORE:
1665                 kfree(driver_request);
1666                 return treatment;
1667         case REG_REQ_INTERSECT:
1668                 /* fall through */
1669         case REG_REQ_ALREADY_SET:
1670                 regd = reg_copy_regd(get_cfg80211_regdom());
1671                 if (IS_ERR(regd)) {
1672                         kfree(driver_request);
1673                         return REG_REQ_IGNORE;
1674                 }
1675                 rcu_assign_pointer(wiphy->regd, regd);
1676         }
1677
1678
1679         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1680         driver_request->processed = false;
1681
1682         reg_update_last_request(driver_request);
1683
1684         /*
1685          * Since CRDA will not be called in this case as we already
1686          * have applied the requested regulatory domain before we just
1687          * inform userspace we have processed the request
1688          */
1689         if (treatment == REG_REQ_ALREADY_SET) {
1690                 nl80211_send_reg_change_event(driver_request);
1691                 reg_set_request_processed();
1692                 return treatment;
1693         }
1694
1695         return reg_call_crda(driver_request);
1696 }
1697
1698 static enum reg_request_treatment
1699 __reg_process_hint_country_ie(struct wiphy *wiphy,
1700                               struct regulatory_request *country_ie_request)
1701 {
1702         struct wiphy *last_wiphy = NULL;
1703         struct regulatory_request *lr = get_last_request();
1704
1705         if (reg_request_cell_base(lr)) {
1706                 /* Trust a Cell base station over the AP's country IE */
1707                 if (regdom_changes(country_ie_request->alpha2))
1708                         return REG_REQ_IGNORE;
1709                 return REG_REQ_ALREADY_SET;
1710         } else {
1711                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1712                         return REG_REQ_IGNORE;
1713         }
1714
1715         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1716                 return -EINVAL;
1717
1718         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1719                 return REG_REQ_OK;
1720
1721         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1722
1723         if (last_wiphy != wiphy) {
1724                 /*
1725                  * Two cards with two APs claiming different
1726                  * Country IE alpha2s. We could
1727                  * intersect them, but that seems unlikely
1728                  * to be correct. Reject second one for now.
1729                  */
1730                 if (regdom_changes(country_ie_request->alpha2))
1731                         return REG_REQ_IGNORE;
1732                 return REG_REQ_ALREADY_SET;
1733         }
1734         /*
1735          * Two consecutive Country IE hints on the same wiphy.
1736          * This should be picked up early by the driver/stack
1737          */
1738         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1739                 return REG_REQ_OK;
1740         return REG_REQ_ALREADY_SET;
1741 }
1742
1743 /**
1744  * reg_process_hint_country_ie - process regulatory requests from country IEs
1745  * @country_ie_request: a regulatory request from a country IE
1746  *
1747  * The wireless subsystem can use this function to process
1748  * a regulatory request issued by a country Information Element.
1749  *
1750  * Returns one of the different reg request treatment values.
1751  */
1752 static enum reg_request_treatment
1753 reg_process_hint_country_ie(struct wiphy *wiphy,
1754                             struct regulatory_request *country_ie_request)
1755 {
1756         enum reg_request_treatment treatment;
1757
1758         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1759
1760         switch (treatment) {
1761         case REG_REQ_OK:
1762                 break;
1763         case REG_REQ_IGNORE:
1764                 /* fall through */
1765         case REG_REQ_ALREADY_SET:
1766                 kfree(country_ie_request);
1767                 return treatment;
1768         case REG_REQ_INTERSECT:
1769                 kfree(country_ie_request);
1770                 /*
1771                  * This doesn't happen yet, not sure we
1772                  * ever want to support it for this case.
1773                  */
1774                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1775                 return REG_REQ_IGNORE;
1776         }
1777
1778         country_ie_request->intersect = false;
1779         country_ie_request->processed = false;
1780
1781         reg_update_last_request(country_ie_request);
1782
1783         return reg_call_crda(country_ie_request);
1784 }
1785
1786 /* This processes *all* regulatory hints */
1787 static void reg_process_hint(struct regulatory_request *reg_request)
1788 {
1789         struct wiphy *wiphy = NULL;
1790         enum reg_request_treatment treatment;
1791
1792         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1793                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1794
1795         switch (reg_request->initiator) {
1796         case NL80211_REGDOM_SET_BY_CORE:
1797                 reg_process_hint_core(reg_request);
1798                 return;
1799         case NL80211_REGDOM_SET_BY_USER:
1800                 treatment = reg_process_hint_user(reg_request);
1801                 if (treatment == REG_REQ_IGNORE ||
1802                     treatment == REG_REQ_ALREADY_SET)
1803                         return;
1804                 queue_delayed_work(system_power_efficient_wq,
1805                                    &reg_timeout, msecs_to_jiffies(3142));
1806                 return;
1807         case NL80211_REGDOM_SET_BY_DRIVER:
1808                 if (!wiphy)
1809                         goto out_free;
1810                 treatment = reg_process_hint_driver(wiphy, reg_request);
1811                 break;
1812         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1813                 if (!wiphy)
1814                         goto out_free;
1815                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1816                 break;
1817         default:
1818                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1819                 goto out_free;
1820         }
1821
1822         /* This is required so that the orig_* parameters are saved */
1823         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1824             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1825                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1826
1827         return;
1828
1829 out_free:
1830         kfree(reg_request);
1831 }
1832
1833 /*
1834  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1835  * Regulatory hints come on a first come first serve basis and we
1836  * must process each one atomically.
1837  */
1838 static void reg_process_pending_hints(void)
1839 {
1840         struct regulatory_request *reg_request, *lr;
1841
1842         lr = get_last_request();
1843
1844         /* When last_request->processed becomes true this will be rescheduled */
1845         if (lr && !lr->processed) {
1846                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1847                 return;
1848         }
1849
1850         spin_lock(&reg_requests_lock);
1851
1852         if (list_empty(&reg_requests_list)) {
1853                 spin_unlock(&reg_requests_lock);
1854                 return;
1855         }
1856
1857         reg_request = list_first_entry(&reg_requests_list,
1858                                        struct regulatory_request,
1859                                        list);
1860         list_del_init(&reg_request->list);
1861
1862         spin_unlock(&reg_requests_lock);
1863
1864         reg_process_hint(reg_request);
1865 }
1866
1867 /* Processes beacon hints -- this has nothing to do with country IEs */
1868 static void reg_process_pending_beacon_hints(void)
1869 {
1870         struct cfg80211_registered_device *rdev;
1871         struct reg_beacon *pending_beacon, *tmp;
1872
1873         /* This goes through the _pending_ beacon list */
1874         spin_lock_bh(&reg_pending_beacons_lock);
1875
1876         list_for_each_entry_safe(pending_beacon, tmp,
1877                                  &reg_pending_beacons, list) {
1878                 list_del_init(&pending_beacon->list);
1879
1880                 /* Applies the beacon hint to current wiphys */
1881                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1882                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1883
1884                 /* Remembers the beacon hint for new wiphys or reg changes */
1885                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1886         }
1887
1888         spin_unlock_bh(&reg_pending_beacons_lock);
1889 }
1890
1891 static void reg_todo(struct work_struct *work)
1892 {
1893         rtnl_lock();
1894         reg_process_pending_hints();
1895         reg_process_pending_beacon_hints();
1896         rtnl_unlock();
1897 }
1898
1899 static void queue_regulatory_request(struct regulatory_request *request)
1900 {
1901         request->alpha2[0] = toupper(request->alpha2[0]);
1902         request->alpha2[1] = toupper(request->alpha2[1]);
1903
1904         spin_lock(&reg_requests_lock);
1905         list_add_tail(&request->list, &reg_requests_list);
1906         spin_unlock(&reg_requests_lock);
1907
1908         schedule_work(&reg_work);
1909 }
1910
1911 /*
1912  * Core regulatory hint -- happens during cfg80211_init()
1913  * and when we restore regulatory settings.
1914  */
1915 static int regulatory_hint_core(const char *alpha2)
1916 {
1917         struct regulatory_request *request;
1918
1919         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1920         if (!request)
1921                 return -ENOMEM;
1922
1923         request->alpha2[0] = alpha2[0];
1924         request->alpha2[1] = alpha2[1];
1925         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1926
1927         queue_regulatory_request(request);
1928
1929         return 0;
1930 }
1931
1932 /* User hints */
1933 int regulatory_hint_user(const char *alpha2,
1934                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1935 {
1936         struct regulatory_request *request;
1937
1938         if (WARN_ON(!alpha2))
1939                 return -EINVAL;
1940
1941         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1942         if (!request)
1943                 return -ENOMEM;
1944
1945         request->wiphy_idx = WIPHY_IDX_INVALID;
1946         request->alpha2[0] = alpha2[0];
1947         request->alpha2[1] = alpha2[1];
1948         request->initiator = NL80211_REGDOM_SET_BY_USER;
1949         request->user_reg_hint_type = user_reg_hint_type;
1950
1951         queue_regulatory_request(request);
1952
1953         return 0;
1954 }
1955
1956 /* Driver hints */
1957 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1958 {
1959         struct regulatory_request *request;
1960
1961         if (WARN_ON(!alpha2 || !wiphy))
1962                 return -EINVAL;
1963
1964         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1965
1966         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1967         if (!request)
1968                 return -ENOMEM;
1969
1970         request->wiphy_idx = get_wiphy_idx(wiphy);
1971
1972         request->alpha2[0] = alpha2[0];
1973         request->alpha2[1] = alpha2[1];
1974         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1975
1976         queue_regulatory_request(request);
1977
1978         return 0;
1979 }
1980 EXPORT_SYMBOL(regulatory_hint);
1981
1982 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1983                                 const u8 *country_ie, u8 country_ie_len)
1984 {
1985         char alpha2[2];
1986         enum environment_cap env = ENVIRON_ANY;
1987         struct regulatory_request *request = NULL, *lr;
1988
1989         /* IE len must be evenly divisible by 2 */
1990         if (country_ie_len & 0x01)
1991                 return;
1992
1993         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1994                 return;
1995
1996         request = kzalloc(sizeof(*request), GFP_KERNEL);
1997         if (!request)
1998                 return;
1999
2000         alpha2[0] = country_ie[0];
2001         alpha2[1] = country_ie[1];
2002
2003         if (country_ie[2] == 'I')
2004                 env = ENVIRON_INDOOR;
2005         else if (country_ie[2] == 'O')
2006                 env = ENVIRON_OUTDOOR;
2007
2008         rcu_read_lock();
2009         lr = get_last_request();
2010
2011         if (unlikely(!lr))
2012                 goto out;
2013
2014         /*
2015          * We will run this only upon a successful connection on cfg80211.
2016          * We leave conflict resolution to the workqueue, where can hold
2017          * the RTNL.
2018          */
2019         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2020             lr->wiphy_idx != WIPHY_IDX_INVALID)
2021                 goto out;
2022
2023         request->wiphy_idx = get_wiphy_idx(wiphy);
2024         request->alpha2[0] = alpha2[0];
2025         request->alpha2[1] = alpha2[1];
2026         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2027         request->country_ie_env = env;
2028
2029         queue_regulatory_request(request);
2030         request = NULL;
2031 out:
2032         kfree(request);
2033         rcu_read_unlock();
2034 }
2035
2036 static void restore_alpha2(char *alpha2, bool reset_user)
2037 {
2038         /* indicates there is no alpha2 to consider for restoration */
2039         alpha2[0] = '9';
2040         alpha2[1] = '7';
2041
2042         /* The user setting has precedence over the module parameter */
2043         if (is_user_regdom_saved()) {
2044                 /* Unless we're asked to ignore it and reset it */
2045                 if (reset_user) {
2046                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2047                         user_alpha2[0] = '9';
2048                         user_alpha2[1] = '7';
2049
2050                         /*
2051                          * If we're ignoring user settings, we still need to
2052                          * check the module parameter to ensure we put things
2053                          * back as they were for a full restore.
2054                          */
2055                         if (!is_world_regdom(ieee80211_regdom)) {
2056                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2057                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2058                                 alpha2[0] = ieee80211_regdom[0];
2059                                 alpha2[1] = ieee80211_regdom[1];
2060                         }
2061                 } else {
2062                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2063                                       user_alpha2[0], user_alpha2[1]);
2064                         alpha2[0] = user_alpha2[0];
2065                         alpha2[1] = user_alpha2[1];
2066                 }
2067         } else if (!is_world_regdom(ieee80211_regdom)) {
2068                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2069                               ieee80211_regdom[0], ieee80211_regdom[1]);
2070                 alpha2[0] = ieee80211_regdom[0];
2071                 alpha2[1] = ieee80211_regdom[1];
2072         } else
2073                 REG_DBG_PRINT("Restoring regulatory settings\n");
2074 }
2075
2076 static void restore_custom_reg_settings(struct wiphy *wiphy)
2077 {
2078         struct ieee80211_supported_band *sband;
2079         enum ieee80211_band band;
2080         struct ieee80211_channel *chan;
2081         int i;
2082
2083         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2084                 sband = wiphy->bands[band];
2085                 if (!sband)
2086                         continue;
2087                 for (i = 0; i < sband->n_channels; i++) {
2088                         chan = &sband->channels[i];
2089                         chan->flags = chan->orig_flags;
2090                         chan->max_antenna_gain = chan->orig_mag;
2091                         chan->max_power = chan->orig_mpwr;
2092                         chan->beacon_found = false;
2093                 }
2094         }
2095 }
2096
2097 /*
2098  * Restoring regulatory settings involves ingoring any
2099  * possibly stale country IE information and user regulatory
2100  * settings if so desired, this includes any beacon hints
2101  * learned as we could have traveled outside to another country
2102  * after disconnection. To restore regulatory settings we do
2103  * exactly what we did at bootup:
2104  *
2105  *   - send a core regulatory hint
2106  *   - send a user regulatory hint if applicable
2107  *
2108  * Device drivers that send a regulatory hint for a specific country
2109  * keep their own regulatory domain on wiphy->regd so that does does
2110  * not need to be remembered.
2111  */
2112 static void restore_regulatory_settings(bool reset_user)
2113 {
2114         char alpha2[2];
2115         char world_alpha2[2];
2116         struct reg_beacon *reg_beacon, *btmp;
2117         struct regulatory_request *reg_request, *tmp;
2118         LIST_HEAD(tmp_reg_req_list);
2119         struct cfg80211_registered_device *rdev;
2120
2121         ASSERT_RTNL();
2122
2123         reset_regdomains(true, &world_regdom);
2124         restore_alpha2(alpha2, reset_user);
2125
2126         /*
2127          * If there's any pending requests we simply
2128          * stash them to a temporary pending queue and
2129          * add then after we've restored regulatory
2130          * settings.
2131          */
2132         spin_lock(&reg_requests_lock);
2133         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2134                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2135                         continue;
2136                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2137         }
2138         spin_unlock(&reg_requests_lock);
2139
2140         /* Clear beacon hints */
2141         spin_lock_bh(&reg_pending_beacons_lock);
2142         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2143                 list_del(&reg_beacon->list);
2144                 kfree(reg_beacon);
2145         }
2146         spin_unlock_bh(&reg_pending_beacons_lock);
2147
2148         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2149                 list_del(&reg_beacon->list);
2150                 kfree(reg_beacon);
2151         }
2152
2153         /* First restore to the basic regulatory settings */
2154         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2155         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2156
2157         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2158                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2159                         restore_custom_reg_settings(&rdev->wiphy);
2160         }
2161
2162         regulatory_hint_core(world_alpha2);
2163
2164         /*
2165          * This restores the ieee80211_regdom module parameter
2166          * preference or the last user requested regulatory
2167          * settings, user regulatory settings takes precedence.
2168          */
2169         if (is_an_alpha2(alpha2))
2170                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2171
2172         spin_lock(&reg_requests_lock);
2173         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2174         spin_unlock(&reg_requests_lock);
2175
2176         REG_DBG_PRINT("Kicking the queue\n");
2177
2178         schedule_work(&reg_work);
2179 }
2180
2181 void regulatory_hint_disconnect(void)
2182 {
2183         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2184         restore_regulatory_settings(false);
2185 }
2186
2187 static bool freq_is_chan_12_13_14(u16 freq)
2188 {
2189         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2190             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2191             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2192                 return true;
2193         return false;
2194 }
2195
2196 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2197 {
2198         struct reg_beacon *pending_beacon;
2199
2200         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2201                 if (beacon_chan->center_freq ==
2202                     pending_beacon->chan.center_freq)
2203                         return true;
2204         return false;
2205 }
2206
2207 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2208                                  struct ieee80211_channel *beacon_chan,
2209                                  gfp_t gfp)
2210 {
2211         struct reg_beacon *reg_beacon;
2212         bool processing;
2213
2214         if (beacon_chan->beacon_found ||
2215             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2216             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2217              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2218                 return 0;
2219
2220         spin_lock_bh(&reg_pending_beacons_lock);
2221         processing = pending_reg_beacon(beacon_chan);
2222         spin_unlock_bh(&reg_pending_beacons_lock);
2223
2224         if (processing)
2225                 return 0;
2226
2227         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2228         if (!reg_beacon)
2229                 return -ENOMEM;
2230
2231         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2232                       beacon_chan->center_freq,
2233                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2234                       wiphy_name(wiphy));
2235
2236         memcpy(&reg_beacon->chan, beacon_chan,
2237                sizeof(struct ieee80211_channel));
2238
2239         /*
2240          * Since we can be called from BH or and non-BH context
2241          * we must use spin_lock_bh()
2242          */
2243         spin_lock_bh(&reg_pending_beacons_lock);
2244         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2245         spin_unlock_bh(&reg_pending_beacons_lock);
2246
2247         schedule_work(&reg_work);
2248
2249         return 0;
2250 }
2251
2252 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2253 {
2254         unsigned int i;
2255         const struct ieee80211_reg_rule *reg_rule = NULL;
2256         const struct ieee80211_freq_range *freq_range = NULL;
2257         const struct ieee80211_power_rule *power_rule = NULL;
2258         char bw[32];
2259
2260         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2261
2262         for (i = 0; i < rd->n_reg_rules; i++) {
2263                 reg_rule = &rd->reg_rules[i];
2264                 freq_range = &reg_rule->freq_range;
2265                 power_rule = &reg_rule->power_rule;
2266
2267                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2268                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2269                                  freq_range->max_bandwidth_khz,
2270                                  reg_get_max_bandwidth(rd, reg_rule));
2271                 else
2272                         snprintf(bw, sizeof(bw), "%d KHz",
2273                                  freq_range->max_bandwidth_khz);
2274
2275                 /*
2276                  * There may not be documentation for max antenna gain
2277                  * in certain regions
2278                  */
2279                 if (power_rule->max_antenna_gain)
2280                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm)\n",
2281                                 freq_range->start_freq_khz,
2282                                 freq_range->end_freq_khz,
2283                                 bw,
2284                                 power_rule->max_antenna_gain,
2285                                 power_rule->max_eirp);
2286                 else
2287                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm)\n",
2288                                 freq_range->start_freq_khz,
2289                                 freq_range->end_freq_khz,
2290                                 bw,
2291                                 power_rule->max_eirp);
2292         }
2293 }
2294
2295 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2296 {
2297         switch (dfs_region) {
2298         case NL80211_DFS_UNSET:
2299         case NL80211_DFS_FCC:
2300         case NL80211_DFS_ETSI:
2301         case NL80211_DFS_JP:
2302                 return true;
2303         default:
2304                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2305                               dfs_region);
2306                 return false;
2307         }
2308 }
2309
2310 static void print_regdomain(const struct ieee80211_regdomain *rd)
2311 {
2312         struct regulatory_request *lr = get_last_request();
2313
2314         if (is_intersected_alpha2(rd->alpha2)) {
2315                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2316                         struct cfg80211_registered_device *rdev;
2317                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2318                         if (rdev) {
2319                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2320                                         rdev->country_ie_alpha2[0],
2321                                         rdev->country_ie_alpha2[1]);
2322                         } else
2323                                 pr_info("Current regulatory domain intersected:\n");
2324                 } else
2325                         pr_info("Current regulatory domain intersected:\n");
2326         } else if (is_world_regdom(rd->alpha2)) {
2327                 pr_info("World regulatory domain updated:\n");
2328         } else {
2329                 if (is_unknown_alpha2(rd->alpha2))
2330                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2331                 else {
2332                         if (reg_request_cell_base(lr))
2333                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2334                                         rd->alpha2[0], rd->alpha2[1]);
2335                         else
2336                                 pr_info("Regulatory domain changed to country: %c%c\n",
2337                                         rd->alpha2[0], rd->alpha2[1]);
2338                 }
2339         }
2340
2341         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2342         print_rd_rules(rd);
2343 }
2344
2345 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2346 {
2347         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2348         print_rd_rules(rd);
2349 }
2350
2351 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2352 {
2353         if (!is_world_regdom(rd->alpha2))
2354                 return -EINVAL;
2355         update_world_regdomain(rd);
2356         return 0;
2357 }
2358
2359 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2360                            struct regulatory_request *user_request)
2361 {
2362         const struct ieee80211_regdomain *intersected_rd = NULL;
2363
2364         if (is_world_regdom(rd->alpha2))
2365                 return -EINVAL;
2366
2367         if (!regdom_changes(rd->alpha2))
2368                 return -EALREADY;
2369
2370         if (!is_valid_rd(rd)) {
2371                 pr_err("Invalid regulatory domain detected:\n");
2372                 print_regdomain_info(rd);
2373                 return -EINVAL;
2374         }
2375
2376         if (!user_request->intersect) {
2377                 reset_regdomains(false, rd);
2378                 return 0;
2379         }
2380
2381         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2382         if (!intersected_rd)
2383                 return -EINVAL;
2384
2385         kfree(rd);
2386         rd = NULL;
2387         reset_regdomains(false, intersected_rd);
2388
2389         return 0;
2390 }
2391
2392 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2393                              struct regulatory_request *driver_request)
2394 {
2395         const struct ieee80211_regdomain *regd;
2396         const struct ieee80211_regdomain *intersected_rd = NULL;
2397         const struct ieee80211_regdomain *tmp;
2398         struct wiphy *request_wiphy;
2399
2400         if (is_world_regdom(rd->alpha2))
2401                 return -EINVAL;
2402
2403         if (!regdom_changes(rd->alpha2))
2404                 return -EALREADY;
2405
2406         if (!is_valid_rd(rd)) {
2407                 pr_err("Invalid regulatory domain detected:\n");
2408                 print_regdomain_info(rd);
2409                 return -EINVAL;
2410         }
2411
2412         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2413         if (!request_wiphy) {
2414                 queue_delayed_work(system_power_efficient_wq,
2415                                    &reg_timeout, 0);
2416                 return -ENODEV;
2417         }
2418
2419         if (!driver_request->intersect) {
2420                 if (request_wiphy->regd)
2421                         return -EALREADY;
2422
2423                 regd = reg_copy_regd(rd);
2424                 if (IS_ERR(regd))
2425                         return PTR_ERR(regd);
2426
2427                 rcu_assign_pointer(request_wiphy->regd, regd);
2428                 reset_regdomains(false, rd);
2429                 return 0;
2430         }
2431
2432         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2433         if (!intersected_rd)
2434                 return -EINVAL;
2435
2436         /*
2437          * We can trash what CRDA provided now.
2438          * However if a driver requested this specific regulatory
2439          * domain we keep it for its private use
2440          */
2441         tmp = get_wiphy_regdom(request_wiphy);
2442         rcu_assign_pointer(request_wiphy->regd, rd);
2443         rcu_free_regdom(tmp);
2444
2445         rd = NULL;
2446
2447         reset_regdomains(false, intersected_rd);
2448
2449         return 0;
2450 }
2451
2452 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2453                                  struct regulatory_request *country_ie_request)
2454 {
2455         struct wiphy *request_wiphy;
2456
2457         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2458             !is_unknown_alpha2(rd->alpha2))
2459                 return -EINVAL;
2460
2461         /*
2462          * Lets only bother proceeding on the same alpha2 if the current
2463          * rd is non static (it means CRDA was present and was used last)
2464          * and the pending request came in from a country IE
2465          */
2466
2467         if (!is_valid_rd(rd)) {
2468                 pr_err("Invalid regulatory domain detected:\n");
2469                 print_regdomain_info(rd);
2470                 return -EINVAL;
2471         }
2472
2473         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2474         if (!request_wiphy) {
2475                 queue_delayed_work(system_power_efficient_wq,
2476                                    &reg_timeout, 0);
2477                 return -ENODEV;
2478         }
2479
2480         if (country_ie_request->intersect)
2481                 return -EINVAL;
2482
2483         reset_regdomains(false, rd);
2484         return 0;
2485 }
2486
2487 /*
2488  * Use this call to set the current regulatory domain. Conflicts with
2489  * multiple drivers can be ironed out later. Caller must've already
2490  * kmalloc'd the rd structure.
2491  */
2492 int set_regdom(const struct ieee80211_regdomain *rd)
2493 {
2494         struct regulatory_request *lr;
2495         bool user_reset = false;
2496         int r;
2497
2498         if (!reg_is_valid_request(rd->alpha2)) {
2499                 kfree(rd);
2500                 return -EINVAL;
2501         }
2502
2503         lr = get_last_request();
2504
2505         /* Note that this doesn't update the wiphys, this is done below */
2506         switch (lr->initiator) {
2507         case NL80211_REGDOM_SET_BY_CORE:
2508                 r = reg_set_rd_core(rd);
2509                 break;
2510         case NL80211_REGDOM_SET_BY_USER:
2511                 r = reg_set_rd_user(rd, lr);
2512                 user_reset = true;
2513                 break;
2514         case NL80211_REGDOM_SET_BY_DRIVER:
2515                 r = reg_set_rd_driver(rd, lr);
2516                 break;
2517         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2518                 r = reg_set_rd_country_ie(rd, lr);
2519                 break;
2520         default:
2521                 WARN(1, "invalid initiator %d\n", lr->initiator);
2522                 return -EINVAL;
2523         }
2524
2525         if (r) {
2526                 switch (r) {
2527                 case -EALREADY:
2528                         reg_set_request_processed();
2529                         break;
2530                 default:
2531                         /* Back to world regulatory in case of errors */
2532                         restore_regulatory_settings(user_reset);
2533                 }
2534
2535                 kfree(rd);
2536                 return r;
2537         }
2538
2539         /* This would make this whole thing pointless */
2540         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2541                 return -EINVAL;
2542
2543         /* update all wiphys now with the new established regulatory domain */
2544         update_all_wiphy_regulatory(lr->initiator);
2545
2546         print_regdomain(get_cfg80211_regdom());
2547
2548         nl80211_send_reg_change_event(lr);
2549
2550         reg_set_request_processed();
2551
2552         return 0;
2553 }
2554
2555 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2556 {
2557         struct regulatory_request *lr;
2558         u8 alpha2[2];
2559         bool add = false;
2560
2561         rcu_read_lock();
2562         lr = get_last_request();
2563         if (lr && !lr->processed) {
2564                 memcpy(alpha2, lr->alpha2, 2);
2565                 add = true;
2566         }
2567         rcu_read_unlock();
2568
2569         if (add)
2570                 return add_uevent_var(env, "COUNTRY=%c%c",
2571                                       alpha2[0], alpha2[1]);
2572         return 0;
2573 }
2574
2575 void wiphy_regulatory_register(struct wiphy *wiphy)
2576 {
2577         struct regulatory_request *lr;
2578
2579         if (!reg_dev_ignore_cell_hint(wiphy))
2580                 reg_num_devs_support_basehint++;
2581
2582         lr = get_last_request();
2583         wiphy_update_regulatory(wiphy, lr->initiator);
2584 }
2585
2586 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2587 {
2588         struct wiphy *request_wiphy = NULL;
2589         struct regulatory_request *lr;
2590
2591         lr = get_last_request();
2592
2593         if (!reg_dev_ignore_cell_hint(wiphy))
2594                 reg_num_devs_support_basehint--;
2595
2596         rcu_free_regdom(get_wiphy_regdom(wiphy));
2597         rcu_assign_pointer(wiphy->regd, NULL);
2598
2599         if (lr)
2600                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2601
2602         if (!request_wiphy || request_wiphy != wiphy)
2603                 return;
2604
2605         lr->wiphy_idx = WIPHY_IDX_INVALID;
2606         lr->country_ie_env = ENVIRON_ANY;
2607 }
2608
2609 static void reg_timeout_work(struct work_struct *work)
2610 {
2611         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2612         rtnl_lock();
2613         restore_regulatory_settings(true);
2614         rtnl_unlock();
2615 }
2616
2617 int __init regulatory_init(void)
2618 {
2619         int err = 0;
2620
2621         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2622         if (IS_ERR(reg_pdev))
2623                 return PTR_ERR(reg_pdev);
2624
2625         reg_pdev->dev.type = &reg_device_type;
2626
2627         spin_lock_init(&reg_requests_lock);
2628         spin_lock_init(&reg_pending_beacons_lock);
2629
2630         reg_regdb_size_check();
2631
2632         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2633
2634         user_alpha2[0] = '9';
2635         user_alpha2[1] = '7';
2636
2637         /* We always try to get an update for the static regdomain */
2638         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2639         if (err) {
2640                 if (err == -ENOMEM)
2641                         return err;
2642                 /*
2643                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2644                  * memory which is handled and propagated appropriately above
2645                  * but it can also fail during a netlink_broadcast() or during
2646                  * early boot for call_usermodehelper(). For now treat these
2647                  * errors as non-fatal.
2648                  */
2649                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2650         }
2651
2652         /*
2653          * Finally, if the user set the module parameter treat it
2654          * as a user hint.
2655          */
2656         if (!is_world_regdom(ieee80211_regdom))
2657                 regulatory_hint_user(ieee80211_regdom,
2658                                      NL80211_USER_REG_HINT_USER);
2659
2660         return 0;
2661 }
2662
2663 void regulatory_exit(void)
2664 {
2665         struct regulatory_request *reg_request, *tmp;
2666         struct reg_beacon *reg_beacon, *btmp;
2667
2668         cancel_work_sync(&reg_work);
2669         cancel_delayed_work_sync(&reg_timeout);
2670
2671         /* Lock to suppress warnings */
2672         rtnl_lock();
2673         reset_regdomains(true, NULL);
2674         rtnl_unlock();
2675
2676         dev_set_uevent_suppress(&reg_pdev->dev, true);
2677
2678         platform_device_unregister(reg_pdev);
2679
2680         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2681                 list_del(&reg_beacon->list);
2682                 kfree(reg_beacon);
2683         }
2684
2685         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2686                 list_del(&reg_beacon->list);
2687                 kfree(reg_beacon);
2688         }
2689
2690         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2691                 list_del(&reg_request->list);
2692                 kfree(reg_request);
2693         }
2694 }