regulatory: simplify freq_reg_info_regd
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request *last_request = &core_request_world;
86
87 /* To trigger userspace events */
88 static struct platform_device *reg_pdev;
89
90 static struct device_type reg_device_type = {
91         .uevent = reg_device_uevent,
92 };
93
94 /*
95  * Central wireless core regulatory domains, we only need two,
96  * the current one and a world regulatory domain in case we have no
97  * information to give us an alpha2
98  */
99 const struct ieee80211_regdomain *cfg80211_regdomain;
100
101 /*
102  * Protects static reg.c components:
103  *     - cfg80211_world_regdom
104  *     - cfg80211_regdom
105  *     - last_request
106  *     - reg_num_devs_support_basehint
107  */
108 static DEFINE_MUTEX(reg_mutex);
109
110 /*
111  * Number of devices that registered to the core
112  * that support cellular base station regulatory hints
113  */
114 static int reg_num_devs_support_basehint;
115
116 static inline void assert_reg_lock(void)
117 {
118         lockdep_assert_held(&reg_mutex);
119 }
120
121 /* Used to queue up regulatory hints */
122 static LIST_HEAD(reg_requests_list);
123 static spinlock_t reg_requests_lock;
124
125 /* Used to queue up beacon hints for review */
126 static LIST_HEAD(reg_pending_beacons);
127 static spinlock_t reg_pending_beacons_lock;
128
129 /* Used to keep track of processed beacon hints */
130 static LIST_HEAD(reg_beacon_list);
131
132 struct reg_beacon {
133         struct list_head list;
134         struct ieee80211_channel chan;
135 };
136
137 static void reg_todo(struct work_struct *work);
138 static DECLARE_WORK(reg_work, reg_todo);
139
140 static void reg_timeout_work(struct work_struct *work);
141 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
142
143 /* We keep a static world regulatory domain in case of the absence of CRDA */
144 static const struct ieee80211_regdomain world_regdom = {
145         .n_reg_rules = 6,
146         .alpha2 =  "00",
147         .reg_rules = {
148                 /* IEEE 802.11b/g, channels 1..11 */
149                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
150                 /* IEEE 802.11b/g, channels 12..13. */
151                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
152                         NL80211_RRF_PASSIVE_SCAN |
153                         NL80211_RRF_NO_IBSS),
154                 /* IEEE 802.11 channel 14 - Only JP enables
155                  * this and for 802.11b only */
156                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS |
159                         NL80211_RRF_NO_OFDM),
160                 /* IEEE 802.11a, channel 36..48 */
161                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
162                         NL80211_RRF_PASSIVE_SCAN |
163                         NL80211_RRF_NO_IBSS),
164
165                 /* NB: 5260 MHz - 5700 MHz requies DFS */
166
167                 /* IEEE 802.11a, channel 149..165 */
168                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
169                         NL80211_RRF_PASSIVE_SCAN |
170                         NL80211_RRF_NO_IBSS),
171
172                 /* IEEE 802.11ad (60gHz), channels 1..3 */
173                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
174         }
175 };
176
177 static const struct ieee80211_regdomain *cfg80211_world_regdom =
178         &world_regdom;
179
180 static char *ieee80211_regdom = "00";
181 static char user_alpha2[2];
182
183 module_param(ieee80211_regdom, charp, 0444);
184 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
185
186 static void reset_regdomains(bool full_reset)
187 {
188         /* avoid freeing static information or freeing something twice */
189         if (cfg80211_regdomain == cfg80211_world_regdom)
190                 cfg80211_regdomain = NULL;
191         if (cfg80211_world_regdom == &world_regdom)
192                 cfg80211_world_regdom = NULL;
193         if (cfg80211_regdomain == &world_regdom)
194                 cfg80211_regdomain = NULL;
195
196         kfree(cfg80211_regdomain);
197         kfree(cfg80211_world_regdom);
198
199         cfg80211_world_regdom = &world_regdom;
200         cfg80211_regdomain = NULL;
201
202         if (!full_reset)
203                 return;
204
205         if (last_request != &core_request_world)
206                 kfree(last_request);
207         last_request = &core_request_world;
208 }
209
210 /*
211  * Dynamic world regulatory domain requested by the wireless
212  * core upon initialization
213  */
214 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
215 {
216         WARN_ON(!last_request);
217
218         reset_regdomains(false);
219
220         cfg80211_world_regdom = rd;
221         cfg80211_regdomain = rd;
222 }
223
224 bool is_world_regdom(const char *alpha2)
225 {
226         if (!alpha2)
227                 return false;
228         return alpha2[0] == '0' && alpha2[1] == '0';
229 }
230
231 static bool is_alpha2_set(const char *alpha2)
232 {
233         if (!alpha2)
234                 return false;
235         return alpha2[0] && alpha2[1];
236 }
237
238 static bool is_unknown_alpha2(const char *alpha2)
239 {
240         if (!alpha2)
241                 return false;
242         /*
243          * Special case where regulatory domain was built by driver
244          * but a specific alpha2 cannot be determined
245          */
246         return alpha2[0] == '9' && alpha2[1] == '9';
247 }
248
249 static bool is_intersected_alpha2(const char *alpha2)
250 {
251         if (!alpha2)
252                 return false;
253         /*
254          * Special case where regulatory domain is the
255          * result of an intersection between two regulatory domain
256          * structures
257          */
258         return alpha2[0] == '9' && alpha2[1] == '8';
259 }
260
261 static bool is_an_alpha2(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
266 }
267
268 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
269 {
270         if (!alpha2_x || !alpha2_y)
271                 return false;
272         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
273 }
274
275 static bool regdom_changes(const char *alpha2)
276 {
277         assert_cfg80211_lock();
278
279         if (!cfg80211_regdomain)
280                 return true;
281         return !alpha2_equal(cfg80211_regdomain->alpha2, alpha2);
282 }
283
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292                 return false;
293
294         /* This would indicate a mistake on the design */
295         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
296                  "Unexpected user alpha2: %c%c\n",
297                  user_alpha2[0], user_alpha2[1]))
298                 return false;
299
300         return true;
301 }
302
303 static const struct ieee80211_regdomain *
304 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
305 {
306         struct ieee80211_regdomain *regd;
307         int size_of_regd;
308         unsigned int i;
309
310         size_of_regd =
311                 sizeof(struct ieee80211_regdomain) +
312                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
313
314         regd = kzalloc(size_of_regd, GFP_KERNEL);
315         if (!regd)
316                 return ERR_PTR(-ENOMEM);
317
318         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
319
320         for (i = 0; i < src_regd->n_reg_rules; i++)
321                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
322                        sizeof(struct ieee80211_reg_rule));
323
324         return regd;
325 }
326
327 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
328 struct reg_regdb_search_request {
329         char alpha2[2];
330         struct list_head list;
331 };
332
333 static LIST_HEAD(reg_regdb_search_list);
334 static DEFINE_MUTEX(reg_regdb_search_mutex);
335
336 static void reg_regdb_search(struct work_struct *work)
337 {
338         struct reg_regdb_search_request *request;
339         const struct ieee80211_regdomain *curdom, *regdom = NULL;
340         int i;
341
342         mutex_lock(&cfg80211_mutex);
343
344         mutex_lock(&reg_regdb_search_mutex);
345         while (!list_empty(&reg_regdb_search_list)) {
346                 request = list_first_entry(&reg_regdb_search_list,
347                                            struct reg_regdb_search_request,
348                                            list);
349                 list_del(&request->list);
350
351                 for (i = 0; i < reg_regdb_size; i++) {
352                         curdom = reg_regdb[i];
353
354                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
355                                 regdom = reg_copy_regd(curdom);
356                                 break;
357                         }
358                 }
359
360                 kfree(request);
361         }
362         mutex_unlock(&reg_regdb_search_mutex);
363
364         if (!IS_ERR_OR_NULL(regdom))
365                 set_regdom(regdom);
366
367         mutex_unlock(&cfg80211_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374         struct reg_regdb_search_request *request;
375
376         if (!alpha2)
377                 return;
378
379         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380         if (!request)
381                 return;
382
383         memcpy(request->alpha2, alpha2, 2);
384
385         mutex_lock(&reg_regdb_search_mutex);
386         list_add_tail(&request->list, &reg_regdb_search_list);
387         mutex_unlock(&reg_regdb_search_mutex);
388
389         schedule_work(&reg_regdb_work);
390 }
391
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
396         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402
403 /*
404  * This lets us keep regulatory code which is updated on a regulatory
405  * basis in userspace. Country information is filled in by
406  * reg_device_uevent
407  */
408 static int call_crda(const char *alpha2)
409 {
410         if (!is_world_regdom((char *) alpha2))
411                 pr_info("Calling CRDA for country: %c%c\n",
412                         alpha2[0], alpha2[1]);
413         else
414                 pr_info("Calling CRDA to update world regulatory domain\n");
415
416         /* query internal regulatory database (if it exists) */
417         reg_regdb_query(alpha2);
418
419         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425         assert_cfg80211_lock();
426
427         if (!last_request)
428                 return false;
429
430         return alpha2_equal(last_request->alpha2, alpha2);
431 }
432
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437         u32 freq_diff;
438
439         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440                 return false;
441
442         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443                 return false;
444
445         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446
447         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448             freq_range->max_bandwidth_khz > freq_diff)
449                 return false;
450
451         return true;
452 }
453
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456         const struct ieee80211_reg_rule *reg_rule = NULL;
457         unsigned int i;
458
459         if (!rd->n_reg_rules)
460                 return false;
461
462         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463                 return false;
464
465         for (i = 0; i < rd->n_reg_rules; i++) {
466                 reg_rule = &rd->reg_rules[i];
467                 if (!is_valid_reg_rule(reg_rule))
468                         return false;
469         }
470
471         return true;
472 }
473
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475                             u32 center_freq_khz,
476                             u32 bw_khz)
477 {
478         u32 start_freq_khz, end_freq_khz;
479
480         start_freq_khz = center_freq_khz - (bw_khz/2);
481         end_freq_khz = center_freq_khz + (bw_khz/2);
482
483         if (start_freq_khz >= freq_range->start_freq_khz &&
484             end_freq_khz <= freq_range->end_freq_khz)
485                 return true;
486
487         return false;
488 }
489
490 /**
491  * freq_in_rule_band - tells us if a frequency is in a frequency band
492  * @freq_range: frequency rule we want to query
493  * @freq_khz: frequency we are inquiring about
494  *
495  * This lets us know if a specific frequency rule is or is not relevant to
496  * a specific frequency's band. Bands are device specific and artificial
497  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
498  * however it is safe for now to assume that a frequency rule should not be
499  * part of a frequency's band if the start freq or end freq are off by more
500  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
501  * 60 GHz band.
502  * This resolution can be lowered and should be considered as we add
503  * regulatory rule support for other "bands".
504  **/
505 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
506                               u32 freq_khz)
507 {
508 #define ONE_GHZ_IN_KHZ  1000000
509         /*
510          * From 802.11ad: directional multi-gigabit (DMG):
511          * Pertaining to operation in a frequency band containing a channel
512          * with the Channel starting frequency above 45 GHz.
513          */
514         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
515                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
516         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
517                 return true;
518         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
519                 return true;
520         return false;
521 #undef ONE_GHZ_IN_KHZ
522 }
523
524 /*
525  * Helper for regdom_intersect(), this does the real
526  * mathematical intersection fun
527  */
528 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
529                                const struct ieee80211_reg_rule *rule2,
530                                struct ieee80211_reg_rule *intersected_rule)
531 {
532         const struct ieee80211_freq_range *freq_range1, *freq_range2;
533         struct ieee80211_freq_range *freq_range;
534         const struct ieee80211_power_rule *power_rule1, *power_rule2;
535         struct ieee80211_power_rule *power_rule;
536         u32 freq_diff;
537
538         freq_range1 = &rule1->freq_range;
539         freq_range2 = &rule2->freq_range;
540         freq_range = &intersected_rule->freq_range;
541
542         power_rule1 = &rule1->power_rule;
543         power_rule2 = &rule2->power_rule;
544         power_rule = &intersected_rule->power_rule;
545
546         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
547                                          freq_range2->start_freq_khz);
548         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
549                                        freq_range2->end_freq_khz);
550         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
551                                             freq_range2->max_bandwidth_khz);
552
553         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
554         if (freq_range->max_bandwidth_khz > freq_diff)
555                 freq_range->max_bandwidth_khz = freq_diff;
556
557         power_rule->max_eirp = min(power_rule1->max_eirp,
558                 power_rule2->max_eirp);
559         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
560                 power_rule2->max_antenna_gain);
561
562         intersected_rule->flags = rule1->flags | rule2->flags;
563
564         if (!is_valid_reg_rule(intersected_rule))
565                 return -EINVAL;
566
567         return 0;
568 }
569
570 /**
571  * regdom_intersect - do the intersection between two regulatory domains
572  * @rd1: first regulatory domain
573  * @rd2: second regulatory domain
574  *
575  * Use this function to get the intersection between two regulatory domains.
576  * Once completed we will mark the alpha2 for the rd as intersected, "98",
577  * as no one single alpha2 can represent this regulatory domain.
578  *
579  * Returns a pointer to the regulatory domain structure which will hold the
580  * resulting intersection of rules between rd1 and rd2. We will
581  * kzalloc() this structure for you.
582  */
583 static struct ieee80211_regdomain *
584 regdom_intersect(const struct ieee80211_regdomain *rd1,
585                  const struct ieee80211_regdomain *rd2)
586 {
587         int r, size_of_regd;
588         unsigned int x, y;
589         unsigned int num_rules = 0, rule_idx = 0;
590         const struct ieee80211_reg_rule *rule1, *rule2;
591         struct ieee80211_reg_rule *intersected_rule;
592         struct ieee80211_regdomain *rd;
593         /* This is just a dummy holder to help us count */
594         struct ieee80211_reg_rule dummy_rule;
595
596         if (!rd1 || !rd2)
597                 return NULL;
598
599         /*
600          * First we get a count of the rules we'll need, then we actually
601          * build them. This is to so we can malloc() and free() a
602          * regdomain once. The reason we use reg_rules_intersect() here
603          * is it will return -EINVAL if the rule computed makes no sense.
604          * All rules that do check out OK are valid.
605          */
606
607         for (x = 0; x < rd1->n_reg_rules; x++) {
608                 rule1 = &rd1->reg_rules[x];
609                 for (y = 0; y < rd2->n_reg_rules; y++) {
610                         rule2 = &rd2->reg_rules[y];
611                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
612                                 num_rules++;
613                 }
614         }
615
616         if (!num_rules)
617                 return NULL;
618
619         size_of_regd = sizeof(struct ieee80211_regdomain) +
620                        num_rules * sizeof(struct ieee80211_reg_rule);
621
622         rd = kzalloc(size_of_regd, GFP_KERNEL);
623         if (!rd)
624                 return NULL;
625
626         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
627                 rule1 = &rd1->reg_rules[x];
628                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
629                         rule2 = &rd2->reg_rules[y];
630                         /*
631                          * This time around instead of using the stack lets
632                          * write to the target rule directly saving ourselves
633                          * a memcpy()
634                          */
635                         intersected_rule = &rd->reg_rules[rule_idx];
636                         r = reg_rules_intersect(rule1, rule2, intersected_rule);
637                         /*
638                          * No need to memset here the intersected rule here as
639                          * we're not using the stack anymore
640                          */
641                         if (r)
642                                 continue;
643                         rule_idx++;
644                 }
645         }
646
647         if (rule_idx != num_rules) {
648                 kfree(rd);
649                 return NULL;
650         }
651
652         rd->n_reg_rules = num_rules;
653         rd->alpha2[0] = '9';
654         rd->alpha2[1] = '8';
655
656         return rd;
657 }
658
659 /*
660  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
661  * want to just have the channel structure use these
662  */
663 static u32 map_regdom_flags(u32 rd_flags)
664 {
665         u32 channel_flags = 0;
666         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
667                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
668         if (rd_flags & NL80211_RRF_NO_IBSS)
669                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
670         if (rd_flags & NL80211_RRF_DFS)
671                 channel_flags |= IEEE80211_CHAN_RADAR;
672         if (rd_flags & NL80211_RRF_NO_OFDM)
673                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
674         return channel_flags;
675 }
676
677 static int freq_reg_info_regd(struct wiphy *wiphy,
678                               u32 center_freq,
679                               u32 desired_bw_khz,
680                               const struct ieee80211_reg_rule **reg_rule,
681                               const struct ieee80211_regdomain *regd)
682 {
683         int i;
684         bool band_rule_found = false;
685         bool bw_fits = false;
686
687         if (!desired_bw_khz)
688                 desired_bw_khz = MHZ_TO_KHZ(20);
689
690         if (!regd)
691                 return -EINVAL;
692
693         for (i = 0; i < regd->n_reg_rules; i++) {
694                 const struct ieee80211_reg_rule *rr;
695                 const struct ieee80211_freq_range *fr = NULL;
696
697                 rr = &regd->reg_rules[i];
698                 fr = &rr->freq_range;
699
700                 /*
701                  * We only need to know if one frequency rule was
702                  * was in center_freq's band, that's enough, so lets
703                  * not overwrite it once found
704                  */
705                 if (!band_rule_found)
706                         band_rule_found = freq_in_rule_band(fr, center_freq);
707
708                 bw_fits = reg_does_bw_fit(fr, center_freq, desired_bw_khz);
709
710                 if (band_rule_found && bw_fits) {
711                         *reg_rule = rr;
712                         return 0;
713                 }
714         }
715
716         if (!band_rule_found)
717                 return -ERANGE;
718
719         return -EINVAL;
720 }
721
722 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 desired_bw_khz,
723                   const struct ieee80211_reg_rule **reg_rule)
724 {
725         const struct ieee80211_regdomain *regd;
726
727         assert_reg_lock();
728         assert_cfg80211_lock();
729
730         /*
731          * Follow the driver's regulatory domain, if present, unless a country
732          * IE has been processed or a user wants to help complaince further
733          */
734         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
735             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
736             wiphy->regd)
737                 regd = wiphy->regd;
738         else
739                 regd = cfg80211_regdomain;
740
741         return freq_reg_info_regd(wiphy, center_freq, desired_bw_khz,
742                                   reg_rule, regd);
743 }
744 EXPORT_SYMBOL(freq_reg_info);
745
746 #ifdef CONFIG_CFG80211_REG_DEBUG
747 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
748 {
749         switch (initiator) {
750         case NL80211_REGDOM_SET_BY_CORE:
751                 return "Set by core";
752         case NL80211_REGDOM_SET_BY_USER:
753                 return "Set by user";
754         case NL80211_REGDOM_SET_BY_DRIVER:
755                 return "Set by driver";
756         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
757                 return "Set by country IE";
758         default:
759                 WARN_ON(1);
760                 return "Set by bug";
761         }
762 }
763
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
765                                     u32 desired_bw_khz,
766                                     const struct ieee80211_reg_rule *reg_rule)
767 {
768         const struct ieee80211_power_rule *power_rule;
769         const struct ieee80211_freq_range *freq_range;
770         char max_antenna_gain[32];
771
772         power_rule = &reg_rule->power_rule;
773         freq_range = &reg_rule->freq_range;
774
775         if (!power_rule->max_antenna_gain)
776                 snprintf(max_antenna_gain, 32, "N/A");
777         else
778                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
779
780         REG_DBG_PRINT("Updating information on frequency %d MHz for a %d MHz width channel with regulatory rule:\n",
781                       chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
782
783         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
784                       freq_range->start_freq_khz, freq_range->end_freq_khz,
785                       freq_range->max_bandwidth_khz, max_antenna_gain,
786                       power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790                                     u32 desired_bw_khz,
791                                     const struct ieee80211_reg_rule *reg_rule)
792 {
793         return;
794 }
795 #endif
796
797 /*
798  * Note that right now we assume the desired channel bandwidth
799  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800  * per channel, the primary and the extension channel). To support
801  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802  * new ieee80211_channel.target_bw and re run the regulatory check
803  * on the wiphy with the target_bw specified. Then we can simply use
804  * that below for the desired_bw_khz below.
805  */
806 static void handle_channel(struct wiphy *wiphy,
807                            enum nl80211_reg_initiator initiator,
808                            struct ieee80211_channel *chan)
809 {
810         int r;
811         u32 flags, bw_flags = 0;
812         u32 desired_bw_khz = MHZ_TO_KHZ(20);
813         const struct ieee80211_reg_rule *reg_rule = NULL;
814         const struct ieee80211_power_rule *power_rule = NULL;
815         const struct ieee80211_freq_range *freq_range = NULL;
816         struct wiphy *request_wiphy = NULL;
817
818         assert_cfg80211_lock();
819
820         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
821
822         flags = chan->orig_flags;
823
824         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
825                           desired_bw_khz, &reg_rule);
826         if (r) {
827                 /*
828                  * We will disable all channels that do not match our
829                  * received regulatory rule unless the hint is coming
830                  * from a Country IE and the Country IE had no information
831                  * about a band. The IEEE 802.11 spec allows for an AP
832                  * to send only a subset of the regulatory rules allowed,
833                  * so an AP in the US that only supports 2.4 GHz may only send
834                  * a country IE with information for the 2.4 GHz band
835                  * while 5 GHz is still supported.
836                  */
837                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
838                     r == -ERANGE)
839                         return;
840
841                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
842                 chan->flags = IEEE80211_CHAN_DISABLED;
843                 return;
844         }
845
846         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
847
848         power_rule = &reg_rule->power_rule;
849         freq_range = &reg_rule->freq_range;
850
851         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
852                 bw_flags = IEEE80211_CHAN_NO_HT40;
853
854         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
855             request_wiphy && request_wiphy == wiphy &&
856             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
857                 /*
858                  * This guarantees the driver's requested regulatory domain
859                  * will always be used as a base for further regulatory
860                  * settings
861                  */
862                 chan->flags = chan->orig_flags =
863                         map_regdom_flags(reg_rule->flags) | bw_flags;
864                 chan->max_antenna_gain = chan->orig_mag =
865                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
866                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
867                         (int) MBM_TO_DBM(power_rule->max_eirp);
868                 return;
869         }
870
871         chan->beacon_found = false;
872         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
873         chan->max_antenna_gain =
874                 min_t(int, chan->orig_mag,
875                       MBI_TO_DBI(power_rule->max_antenna_gain));
876         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
877         if (chan->orig_mpwr) {
878                 /*
879                  * Devices that have their own custom regulatory domain
880                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
881                  * passed country IE power settings.
882                  */
883                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
884                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
885                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
886                         chan->max_power = chan->max_reg_power;
887                 else
888                         chan->max_power = min(chan->orig_mpwr,
889                                               chan->max_reg_power);
890         } else
891                 chan->max_power = chan->max_reg_power;
892 }
893
894 static void handle_band(struct wiphy *wiphy,
895                         enum nl80211_reg_initiator initiator,
896                         struct ieee80211_supported_band *sband)
897 {
898         unsigned int i;
899
900         if (!sband)
901                 return;
902
903         for (i = 0; i < sband->n_channels; i++)
904                 handle_channel(wiphy, initiator, &sband->channels[i]);
905 }
906
907 static bool reg_request_cell_base(struct regulatory_request *request)
908 {
909         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
910                 return false;
911         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
912 }
913
914 bool reg_last_request_cell_base(void)
915 {
916         bool val;
917
918         assert_cfg80211_lock();
919
920         mutex_lock(&reg_mutex);
921         val = reg_request_cell_base(last_request);
922         mutex_unlock(&reg_mutex);
923
924         return val;
925 }
926
927 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
928 /* Core specific check */
929 static enum reg_request_treatment
930 reg_ignore_cell_hint(struct regulatory_request *pending_request)
931 {
932         if (!reg_num_devs_support_basehint)
933                 return REG_REQ_IGNORE;
934
935         if (reg_request_cell_base(last_request) &&
936             !regdom_changes(pending_request->alpha2))
937                 return REG_REQ_ALREADY_SET;
938
939         return REG_REQ_OK;
940 }
941
942 /* Device specific check */
943 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
944 {
945         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
946 }
947 #else
948 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
949 {
950         return REG_REQ_IGNORE;
951 }
952
953 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
954 {
955         return true;
956 }
957 #endif
958
959
960 static bool ignore_reg_update(struct wiphy *wiphy,
961                               enum nl80211_reg_initiator initiator)
962 {
963         if (!last_request) {
964                 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
965                               reg_initiator_name(initiator));
966                 return true;
967         }
968
969         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
970             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
971                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
972                               reg_initiator_name(initiator));
973                 return true;
974         }
975
976         /*
977          * wiphy->regd will be set once the device has its own
978          * desired regulatory domain set
979          */
980         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
981             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
982             !is_world_regdom(last_request->alpha2)) {
983                 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
984                               reg_initiator_name(initiator));
985                 return true;
986         }
987
988         if (reg_request_cell_base(last_request))
989                 return reg_dev_ignore_cell_hint(wiphy);
990
991         return false;
992 }
993
994 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
995                               struct reg_beacon *reg_beacon)
996 {
997         struct ieee80211_supported_band *sband;
998         struct ieee80211_channel *chan;
999         bool channel_changed = false;
1000         struct ieee80211_channel chan_before;
1001
1002         assert_cfg80211_lock();
1003
1004         sband = wiphy->bands[reg_beacon->chan.band];
1005         chan = &sband->channels[chan_idx];
1006
1007         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1008                 return;
1009
1010         if (chan->beacon_found)
1011                 return;
1012
1013         chan->beacon_found = true;
1014
1015         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1016                 return;
1017
1018         chan_before.center_freq = chan->center_freq;
1019         chan_before.flags = chan->flags;
1020
1021         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1022                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1023                 channel_changed = true;
1024         }
1025
1026         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1027                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1028                 channel_changed = true;
1029         }
1030
1031         if (channel_changed)
1032                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1033 }
1034
1035 /*
1036  * Called when a scan on a wiphy finds a beacon on
1037  * new channel
1038  */
1039 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1040                                     struct reg_beacon *reg_beacon)
1041 {
1042         unsigned int i;
1043         struct ieee80211_supported_band *sband;
1044
1045         assert_cfg80211_lock();
1046
1047         if (!wiphy->bands[reg_beacon->chan.band])
1048                 return;
1049
1050         sband = wiphy->bands[reg_beacon->chan.band];
1051
1052         for (i = 0; i < sband->n_channels; i++)
1053                 handle_reg_beacon(wiphy, i, reg_beacon);
1054 }
1055
1056 /*
1057  * Called upon reg changes or a new wiphy is added
1058  */
1059 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1060 {
1061         unsigned int i;
1062         struct ieee80211_supported_band *sband;
1063         struct reg_beacon *reg_beacon;
1064
1065         assert_cfg80211_lock();
1066
1067         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1068                 if (!wiphy->bands[reg_beacon->chan.band])
1069                         continue;
1070                 sband = wiphy->bands[reg_beacon->chan.band];
1071                 for (i = 0; i < sband->n_channels; i++)
1072                         handle_reg_beacon(wiphy, i, reg_beacon);
1073         }
1074 }
1075
1076 static bool reg_is_world_roaming(struct wiphy *wiphy)
1077 {
1078         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1079             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1080                 return true;
1081         if (last_request &&
1082             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1083             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1084                 return true;
1085         return false;
1086 }
1087
1088 /* Reap the advantages of previously found beacons */
1089 static void reg_process_beacons(struct wiphy *wiphy)
1090 {
1091         /*
1092          * Means we are just firing up cfg80211, so no beacons would
1093          * have been processed yet.
1094          */
1095         if (!last_request)
1096                 return;
1097         if (!reg_is_world_roaming(wiphy))
1098                 return;
1099         wiphy_update_beacon_reg(wiphy);
1100 }
1101
1102 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1103 {
1104         if (!chan)
1105                 return false;
1106         if (chan->flags & IEEE80211_CHAN_DISABLED)
1107                 return false;
1108         /* This would happen when regulatory rules disallow HT40 completely */
1109         return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1110 }
1111
1112 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1113                                          struct ieee80211_channel *channel)
1114 {
1115         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1116         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1117         unsigned int i;
1118
1119         assert_cfg80211_lock();
1120
1121         if (!is_ht40_allowed(channel)) {
1122                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1123                 return;
1124         }
1125
1126         /*
1127          * We need to ensure the extension channels exist to
1128          * be able to use HT40- or HT40+, this finds them (or not)
1129          */
1130         for (i = 0; i < sband->n_channels; i++) {
1131                 struct ieee80211_channel *c = &sband->channels[i];
1132
1133                 if (c->center_freq == (channel->center_freq - 20))
1134                         channel_before = c;
1135                 if (c->center_freq == (channel->center_freq + 20))
1136                         channel_after = c;
1137         }
1138
1139         /*
1140          * Please note that this assumes target bandwidth is 20 MHz,
1141          * if that ever changes we also need to change the below logic
1142          * to include that as well.
1143          */
1144         if (!is_ht40_allowed(channel_before))
1145                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1146         else
1147                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1148
1149         if (!is_ht40_allowed(channel_after))
1150                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1151         else
1152                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1153 }
1154
1155 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1156                                       struct ieee80211_supported_band *sband)
1157 {
1158         unsigned int i;
1159
1160         if (!sband)
1161                 return;
1162
1163         for (i = 0; i < sband->n_channels; i++)
1164                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1165 }
1166
1167 static void reg_process_ht_flags(struct wiphy *wiphy)
1168 {
1169         enum ieee80211_band band;
1170
1171         if (!wiphy)
1172                 return;
1173
1174         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1175                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1176 }
1177
1178 static void wiphy_update_regulatory(struct wiphy *wiphy,
1179                                     enum nl80211_reg_initiator initiator)
1180 {
1181         enum ieee80211_band band;
1182
1183         assert_reg_lock();
1184
1185         if (ignore_reg_update(wiphy, initiator))
1186                 return;
1187
1188         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1189
1190         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1191                 handle_band(wiphy, initiator, wiphy->bands[band]);
1192
1193         reg_process_beacons(wiphy);
1194         reg_process_ht_flags(wiphy);
1195
1196         if (wiphy->reg_notifier)
1197                 wiphy->reg_notifier(wiphy, last_request);
1198 }
1199
1200 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1201 {
1202         struct cfg80211_registered_device *rdev;
1203         struct wiphy *wiphy;
1204
1205         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1206                 wiphy = &rdev->wiphy;
1207                 wiphy_update_regulatory(wiphy, initiator);
1208                 /*
1209                  * Regulatory updates set by CORE are ignored for custom
1210                  * regulatory cards. Let us notify the changes to the driver,
1211                  * as some drivers used this to restore its orig_* reg domain.
1212                  */
1213                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1214                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1215                     wiphy->reg_notifier)
1216                         wiphy->reg_notifier(wiphy, last_request);
1217         }
1218 }
1219
1220 static void handle_channel_custom(struct wiphy *wiphy,
1221                                   struct ieee80211_channel *chan,
1222                                   const struct ieee80211_regdomain *regd)
1223 {
1224         int r;
1225         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1226         u32 bw_flags = 0;
1227         const struct ieee80211_reg_rule *reg_rule = NULL;
1228         const struct ieee80211_power_rule *power_rule = NULL;
1229         const struct ieee80211_freq_range *freq_range = NULL;
1230
1231         assert_reg_lock();
1232
1233         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1234                                desired_bw_khz, &reg_rule, regd);
1235
1236         if (r) {
1237                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits a %d MHz wide channel\n",
1238                               chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
1239                 chan->flags = IEEE80211_CHAN_DISABLED;
1240                 return;
1241         }
1242
1243         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1244
1245         power_rule = &reg_rule->power_rule;
1246         freq_range = &reg_rule->freq_range;
1247
1248         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1249                 bw_flags = IEEE80211_CHAN_NO_HT40;
1250
1251         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1252         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1253         chan->max_reg_power = chan->max_power =
1254                 (int) MBM_TO_DBM(power_rule->max_eirp);
1255 }
1256
1257 static void handle_band_custom(struct wiphy *wiphy,
1258                                struct ieee80211_supported_band *sband,
1259                                const struct ieee80211_regdomain *regd)
1260 {
1261         unsigned int i;
1262
1263         if (!sband)
1264                 return;
1265
1266         for (i = 0; i < sband->n_channels; i++)
1267                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1268 }
1269
1270 /* Used by drivers prior to wiphy registration */
1271 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1272                                    const struct ieee80211_regdomain *regd)
1273 {
1274         enum ieee80211_band band;
1275         unsigned int bands_set = 0;
1276
1277         mutex_lock(&reg_mutex);
1278         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1279                 if (!wiphy->bands[band])
1280                         continue;
1281                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1282                 bands_set++;
1283         }
1284         mutex_unlock(&reg_mutex);
1285
1286         /*
1287          * no point in calling this if it won't have any effect
1288          * on your device's supported bands.
1289          */
1290         WARN_ON(!bands_set);
1291 }
1292 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1293
1294 /* This has the logic which determines when a new request
1295  * should be ignored. */
1296 static enum reg_request_treatment
1297 get_reg_request_treatment(struct wiphy *wiphy,
1298                           struct regulatory_request *pending_request)
1299 {
1300         struct wiphy *last_wiphy = NULL;
1301
1302         assert_cfg80211_lock();
1303
1304         /* All initial requests are respected */
1305         if (!last_request)
1306                 return REG_REQ_OK;
1307
1308         switch (pending_request->initiator) {
1309         case NL80211_REGDOM_SET_BY_CORE:
1310                 return REG_REQ_OK;
1311         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1312                 if (reg_request_cell_base(last_request)) {
1313                         /* Trust a Cell base station over the AP's country IE */
1314                         if (regdom_changes(pending_request->alpha2))
1315                                 return REG_REQ_IGNORE;
1316                         return REG_REQ_ALREADY_SET;
1317                 }
1318
1319                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1320
1321                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1322                         return -EINVAL;
1323                 if (last_request->initiator ==
1324                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1325                         if (last_wiphy != wiphy) {
1326                                 /*
1327                                  * Two cards with two APs claiming different
1328                                  * Country IE alpha2s. We could
1329                                  * intersect them, but that seems unlikely
1330                                  * to be correct. Reject second one for now.
1331                                  */
1332                                 if (regdom_changes(pending_request->alpha2))
1333                                         return REG_REQ_IGNORE;
1334                                 return REG_REQ_ALREADY_SET;
1335                         }
1336                         /*
1337                          * Two consecutive Country IE hints on the same wiphy.
1338                          * This should be picked up early by the driver/stack
1339                          */
1340                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1341                                 return REG_REQ_OK;
1342                         return REG_REQ_ALREADY_SET;
1343                 }
1344                 return 0;
1345         case NL80211_REGDOM_SET_BY_DRIVER:
1346                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1347                         if (regdom_changes(pending_request->alpha2))
1348                                 return REG_REQ_OK;
1349                         return REG_REQ_ALREADY_SET;
1350                 }
1351
1352                 /*
1353                  * This would happen if you unplug and plug your card
1354                  * back in or if you add a new device for which the previously
1355                  * loaded card also agrees on the regulatory domain.
1356                  */
1357                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1358                     !regdom_changes(pending_request->alpha2))
1359                         return REG_REQ_ALREADY_SET;
1360
1361                 return REG_REQ_INTERSECT;
1362         case NL80211_REGDOM_SET_BY_USER:
1363                 if (reg_request_cell_base(pending_request))
1364                         return reg_ignore_cell_hint(pending_request);
1365
1366                 if (reg_request_cell_base(last_request))
1367                         return REG_REQ_IGNORE;
1368
1369                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1370                         return REG_REQ_INTERSECT;
1371                 /*
1372                  * If the user knows better the user should set the regdom
1373                  * to their country before the IE is picked up
1374                  */
1375                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1376                     last_request->intersect)
1377                         return REG_REQ_IGNORE;
1378                 /*
1379                  * Process user requests only after previous user/driver/core
1380                  * requests have been processed
1381                  */
1382                 if ((last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1383                      last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1384                      last_request->initiator == NL80211_REGDOM_SET_BY_USER) &&
1385                     regdom_changes(last_request->alpha2))
1386                         return REG_REQ_IGNORE;
1387
1388                 if (!regdom_changes(pending_request->alpha2))
1389                         return REG_REQ_ALREADY_SET;
1390
1391                 return REG_REQ_OK;
1392         }
1393
1394         return REG_REQ_IGNORE;
1395 }
1396
1397 static void reg_set_request_processed(void)
1398 {
1399         bool need_more_processing = false;
1400
1401         last_request->processed = true;
1402
1403         spin_lock(&reg_requests_lock);
1404         if (!list_empty(&reg_requests_list))
1405                 need_more_processing = true;
1406         spin_unlock(&reg_requests_lock);
1407
1408         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1409                 cancel_delayed_work(&reg_timeout);
1410
1411         if (need_more_processing)
1412                 schedule_work(&reg_work);
1413 }
1414
1415 /**
1416  * __regulatory_hint - hint to the wireless core a regulatory domain
1417  * @wiphy: if the hint comes from country information from an AP, this
1418  *      is required to be set to the wiphy that received the information
1419  * @pending_request: the regulatory request currently being processed
1420  *
1421  * The Wireless subsystem can use this function to hint to the wireless core
1422  * what it believes should be the current regulatory domain.
1423  *
1424  * Returns one of the different reg request treatment values.
1425  *
1426  * Caller must hold &cfg80211_mutex and &reg_mutex
1427  */
1428 static enum reg_request_treatment
1429 __regulatory_hint(struct wiphy *wiphy,
1430                   struct regulatory_request *pending_request)
1431 {
1432         const struct ieee80211_regdomain *regd;
1433         bool intersect = false;
1434         enum reg_request_treatment treatment;
1435
1436         assert_cfg80211_lock();
1437
1438         treatment = get_reg_request_treatment(wiphy, pending_request);
1439
1440         switch (treatment) {
1441         case REG_REQ_INTERSECT:
1442                 if (pending_request->initiator ==
1443                     NL80211_REGDOM_SET_BY_DRIVER) {
1444                         regd = reg_copy_regd(cfg80211_regdomain);
1445                         if (IS_ERR(regd)) {
1446                                 kfree(pending_request);
1447                                 return PTR_ERR(regd);
1448                         }
1449                         wiphy->regd = regd;
1450                 }
1451                 intersect = true;
1452                 break;
1453         case REG_REQ_OK:
1454                 break;
1455         default:
1456                 /*
1457                  * If the regulatory domain being requested by the
1458                  * driver has already been set just copy it to the
1459                  * wiphy
1460                  */
1461                 if (treatment == REG_REQ_ALREADY_SET &&
1462                     pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1463                         regd = reg_copy_regd(cfg80211_regdomain);
1464                         if (IS_ERR(regd)) {
1465                                 kfree(pending_request);
1466                                 return REG_REQ_IGNORE;
1467                         }
1468                         treatment = REG_REQ_ALREADY_SET;
1469                         wiphy->regd = regd;
1470                         goto new_request;
1471                 }
1472                 kfree(pending_request);
1473                 return treatment;
1474         }
1475
1476 new_request:
1477         if (last_request != &core_request_world)
1478                 kfree(last_request);
1479
1480         last_request = pending_request;
1481         last_request->intersect = intersect;
1482
1483         pending_request = NULL;
1484
1485         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1486                 user_alpha2[0] = last_request->alpha2[0];
1487                 user_alpha2[1] = last_request->alpha2[1];
1488         }
1489
1490         /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1491         if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1492                 /*
1493                  * Since CRDA will not be called in this case as we already
1494                  * have applied the requested regulatory domain before we just
1495                  * inform userspace we have processed the request
1496                  */
1497                 if (treatment == REG_REQ_ALREADY_SET) {
1498                         nl80211_send_reg_change_event(last_request);
1499                         reg_set_request_processed();
1500                 }
1501                 return treatment;
1502         }
1503
1504         if (call_crda(last_request->alpha2))
1505                 return REG_REQ_IGNORE;
1506         return REG_REQ_OK;
1507 }
1508
1509 /* This processes *all* regulatory hints */
1510 static void reg_process_hint(struct regulatory_request *reg_request,
1511                              enum nl80211_reg_initiator reg_initiator)
1512 {
1513         struct wiphy *wiphy = NULL;
1514
1515         if (WARN_ON(!reg_request->alpha2))
1516                 return;
1517
1518         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1519                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1520
1521         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1522                 kfree(reg_request);
1523                 return;
1524         }
1525
1526         switch (__regulatory_hint(wiphy, reg_request)) {
1527         case REG_REQ_ALREADY_SET:
1528                 /* This is required so that the orig_* parameters are saved */
1529                 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1530                         wiphy_update_regulatory(wiphy, reg_initiator);
1531                 break;
1532         default:
1533                 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1534                         schedule_delayed_work(&reg_timeout,
1535                                               msecs_to_jiffies(3142));
1536                 break;
1537         }
1538 }
1539
1540 /*
1541  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1542  * Regulatory hints come on a first come first serve basis and we
1543  * must process each one atomically.
1544  */
1545 static void reg_process_pending_hints(void)
1546 {
1547         struct regulatory_request *reg_request;
1548
1549         mutex_lock(&cfg80211_mutex);
1550         mutex_lock(&reg_mutex);
1551
1552         /* When last_request->processed becomes true this will be rescheduled */
1553         if (last_request && !last_request->processed) {
1554                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1555                 goto out;
1556         }
1557
1558         spin_lock(&reg_requests_lock);
1559
1560         if (list_empty(&reg_requests_list)) {
1561                 spin_unlock(&reg_requests_lock);
1562                 goto out;
1563         }
1564
1565         reg_request = list_first_entry(&reg_requests_list,
1566                                        struct regulatory_request,
1567                                        list);
1568         list_del_init(&reg_request->list);
1569
1570         spin_unlock(&reg_requests_lock);
1571
1572         reg_process_hint(reg_request, reg_request->initiator);
1573
1574 out:
1575         mutex_unlock(&reg_mutex);
1576         mutex_unlock(&cfg80211_mutex);
1577 }
1578
1579 /* Processes beacon hints -- this has nothing to do with country IEs */
1580 static void reg_process_pending_beacon_hints(void)
1581 {
1582         struct cfg80211_registered_device *rdev;
1583         struct reg_beacon *pending_beacon, *tmp;
1584
1585         /*
1586          * No need to hold the reg_mutex here as we just touch wiphys
1587          * and do not read or access regulatory variables.
1588          */
1589         mutex_lock(&cfg80211_mutex);
1590
1591         /* This goes through the _pending_ beacon list */
1592         spin_lock_bh(&reg_pending_beacons_lock);
1593
1594         list_for_each_entry_safe(pending_beacon, tmp,
1595                                  &reg_pending_beacons, list) {
1596                 list_del_init(&pending_beacon->list);
1597
1598                 /* Applies the beacon hint to current wiphys */
1599                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1600                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1601
1602                 /* Remembers the beacon hint for new wiphys or reg changes */
1603                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1604         }
1605
1606         spin_unlock_bh(&reg_pending_beacons_lock);
1607         mutex_unlock(&cfg80211_mutex);
1608 }
1609
1610 static void reg_todo(struct work_struct *work)
1611 {
1612         reg_process_pending_hints();
1613         reg_process_pending_beacon_hints();
1614 }
1615
1616 static void queue_regulatory_request(struct regulatory_request *request)
1617 {
1618         request->alpha2[0] = toupper(request->alpha2[0]);
1619         request->alpha2[1] = toupper(request->alpha2[1]);
1620
1621         spin_lock(&reg_requests_lock);
1622         list_add_tail(&request->list, &reg_requests_list);
1623         spin_unlock(&reg_requests_lock);
1624
1625         schedule_work(&reg_work);
1626 }
1627
1628 /*
1629  * Core regulatory hint -- happens during cfg80211_init()
1630  * and when we restore regulatory settings.
1631  */
1632 static int regulatory_hint_core(const char *alpha2)
1633 {
1634         struct regulatory_request *request;
1635
1636         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1637         if (!request)
1638                 return -ENOMEM;
1639
1640         request->alpha2[0] = alpha2[0];
1641         request->alpha2[1] = alpha2[1];
1642         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1643
1644         queue_regulatory_request(request);
1645
1646         return 0;
1647 }
1648
1649 /* User hints */
1650 int regulatory_hint_user(const char *alpha2,
1651                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1652 {
1653         struct regulatory_request *request;
1654
1655         if (WARN_ON(!alpha2))
1656                 return -EINVAL;
1657
1658         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1659         if (!request)
1660                 return -ENOMEM;
1661
1662         request->wiphy_idx = WIPHY_IDX_INVALID;
1663         request->alpha2[0] = alpha2[0];
1664         request->alpha2[1] = alpha2[1];
1665         request->initiator = NL80211_REGDOM_SET_BY_USER;
1666         request->user_reg_hint_type = user_reg_hint_type;
1667
1668         queue_regulatory_request(request);
1669
1670         return 0;
1671 }
1672
1673 /* Driver hints */
1674 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1675 {
1676         struct regulatory_request *request;
1677
1678         if (WARN_ON(!alpha2 || !wiphy))
1679                 return -EINVAL;
1680
1681         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1682         if (!request)
1683                 return -ENOMEM;
1684
1685         request->wiphy_idx = get_wiphy_idx(wiphy);
1686
1687         request->alpha2[0] = alpha2[0];
1688         request->alpha2[1] = alpha2[1];
1689         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1690
1691         queue_regulatory_request(request);
1692
1693         return 0;
1694 }
1695 EXPORT_SYMBOL(regulatory_hint);
1696
1697 /*
1698  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1699  * therefore cannot iterate over the rdev list here.
1700  */
1701 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1702                          const u8 *country_ie, u8 country_ie_len)
1703 {
1704         char alpha2[2];
1705         enum environment_cap env = ENVIRON_ANY;
1706         struct regulatory_request *request;
1707
1708         mutex_lock(&reg_mutex);
1709
1710         if (unlikely(!last_request))
1711                 goto out;
1712
1713         /* IE len must be evenly divisible by 2 */
1714         if (country_ie_len & 0x01)
1715                 goto out;
1716
1717         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1718                 goto out;
1719
1720         alpha2[0] = country_ie[0];
1721         alpha2[1] = country_ie[1];
1722
1723         if (country_ie[2] == 'I')
1724                 env = ENVIRON_INDOOR;
1725         else if (country_ie[2] == 'O')
1726                 env = ENVIRON_OUTDOOR;
1727
1728         /*
1729          * We will run this only upon a successful connection on cfg80211.
1730          * We leave conflict resolution to the workqueue, where can hold
1731          * cfg80211_mutex.
1732          */
1733         if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734             last_request->wiphy_idx != WIPHY_IDX_INVALID)
1735                 goto out;
1736
1737         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1738         if (!request)
1739                 goto out;
1740
1741         request->wiphy_idx = get_wiphy_idx(wiphy);
1742         request->alpha2[0] = alpha2[0];
1743         request->alpha2[1] = alpha2[1];
1744         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1745         request->country_ie_env = env;
1746
1747         queue_regulatory_request(request);
1748 out:
1749         mutex_unlock(&reg_mutex);
1750 }
1751
1752 static void restore_alpha2(char *alpha2, bool reset_user)
1753 {
1754         /* indicates there is no alpha2 to consider for restoration */
1755         alpha2[0] = '9';
1756         alpha2[1] = '7';
1757
1758         /* The user setting has precedence over the module parameter */
1759         if (is_user_regdom_saved()) {
1760                 /* Unless we're asked to ignore it and reset it */
1761                 if (reset_user) {
1762                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1763                         user_alpha2[0] = '9';
1764                         user_alpha2[1] = '7';
1765
1766                         /*
1767                          * If we're ignoring user settings, we still need to
1768                          * check the module parameter to ensure we put things
1769                          * back as they were for a full restore.
1770                          */
1771                         if (!is_world_regdom(ieee80211_regdom)) {
1772                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1773                                               ieee80211_regdom[0], ieee80211_regdom[1]);
1774                                 alpha2[0] = ieee80211_regdom[0];
1775                                 alpha2[1] = ieee80211_regdom[1];
1776                         }
1777                 } else {
1778                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1779                                       user_alpha2[0], user_alpha2[1]);
1780                         alpha2[0] = user_alpha2[0];
1781                         alpha2[1] = user_alpha2[1];
1782                 }
1783         } else if (!is_world_regdom(ieee80211_regdom)) {
1784                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1785                               ieee80211_regdom[0], ieee80211_regdom[1]);
1786                 alpha2[0] = ieee80211_regdom[0];
1787                 alpha2[1] = ieee80211_regdom[1];
1788         } else
1789                 REG_DBG_PRINT("Restoring regulatory settings\n");
1790 }
1791
1792 static void restore_custom_reg_settings(struct wiphy *wiphy)
1793 {
1794         struct ieee80211_supported_band *sband;
1795         enum ieee80211_band band;
1796         struct ieee80211_channel *chan;
1797         int i;
1798
1799         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1800                 sband = wiphy->bands[band];
1801                 if (!sband)
1802                         continue;
1803                 for (i = 0; i < sband->n_channels; i++) {
1804                         chan = &sband->channels[i];
1805                         chan->flags = chan->orig_flags;
1806                         chan->max_antenna_gain = chan->orig_mag;
1807                         chan->max_power = chan->orig_mpwr;
1808                         chan->beacon_found = false;
1809                 }
1810         }
1811 }
1812
1813 /*
1814  * Restoring regulatory settings involves ingoring any
1815  * possibly stale country IE information and user regulatory
1816  * settings if so desired, this includes any beacon hints
1817  * learned as we could have traveled outside to another country
1818  * after disconnection. To restore regulatory settings we do
1819  * exactly what we did at bootup:
1820  *
1821  *   - send a core regulatory hint
1822  *   - send a user regulatory hint if applicable
1823  *
1824  * Device drivers that send a regulatory hint for a specific country
1825  * keep their own regulatory domain on wiphy->regd so that does does
1826  * not need to be remembered.
1827  */
1828 static void restore_regulatory_settings(bool reset_user)
1829 {
1830         char alpha2[2];
1831         char world_alpha2[2];
1832         struct reg_beacon *reg_beacon, *btmp;
1833         struct regulatory_request *reg_request, *tmp;
1834         LIST_HEAD(tmp_reg_req_list);
1835         struct cfg80211_registered_device *rdev;
1836
1837         mutex_lock(&cfg80211_mutex);
1838         mutex_lock(&reg_mutex);
1839
1840         reset_regdomains(true);
1841         restore_alpha2(alpha2, reset_user);
1842
1843         /*
1844          * If there's any pending requests we simply
1845          * stash them to a temporary pending queue and
1846          * add then after we've restored regulatory
1847          * settings.
1848          */
1849         spin_lock(&reg_requests_lock);
1850         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1851                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1852                         continue;
1853                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1854         }
1855         spin_unlock(&reg_requests_lock);
1856
1857         /* Clear beacon hints */
1858         spin_lock_bh(&reg_pending_beacons_lock);
1859         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1860                 list_del(&reg_beacon->list);
1861                 kfree(reg_beacon);
1862         }
1863         spin_unlock_bh(&reg_pending_beacons_lock);
1864
1865         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1866                 list_del(&reg_beacon->list);
1867                 kfree(reg_beacon);
1868         }
1869
1870         /* First restore to the basic regulatory settings */
1871         cfg80211_regdomain = cfg80211_world_regdom;
1872         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1873         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1874
1875         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1876                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1877                         restore_custom_reg_settings(&rdev->wiphy);
1878         }
1879
1880         regulatory_hint_core(world_alpha2);
1881
1882         /*
1883          * This restores the ieee80211_regdom module parameter
1884          * preference or the last user requested regulatory
1885          * settings, user regulatory settings takes precedence.
1886          */
1887         if (is_an_alpha2(alpha2))
1888                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1889
1890         spin_lock(&reg_requests_lock);
1891         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1892         spin_unlock(&reg_requests_lock);
1893
1894         mutex_unlock(&reg_mutex);
1895         mutex_unlock(&cfg80211_mutex);
1896
1897         REG_DBG_PRINT("Kicking the queue\n");
1898
1899         schedule_work(&reg_work);
1900 }
1901
1902 void regulatory_hint_disconnect(void)
1903 {
1904         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1905         restore_regulatory_settings(false);
1906 }
1907
1908 static bool freq_is_chan_12_13_14(u16 freq)
1909 {
1910         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1911             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1912             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1913                 return true;
1914         return false;
1915 }
1916
1917 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1918                                  struct ieee80211_channel *beacon_chan,
1919                                  gfp_t gfp)
1920 {
1921         struct reg_beacon *reg_beacon;
1922
1923         if (beacon_chan->beacon_found ||
1924             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1925             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1926              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1927                 return 0;
1928
1929         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1930         if (!reg_beacon)
1931                 return -ENOMEM;
1932
1933         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1934                       beacon_chan->center_freq,
1935                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1936                       wiphy_name(wiphy));
1937
1938         memcpy(&reg_beacon->chan, beacon_chan,
1939                sizeof(struct ieee80211_channel));
1940
1941         /*
1942          * Since we can be called from BH or and non-BH context
1943          * we must use spin_lock_bh()
1944          */
1945         spin_lock_bh(&reg_pending_beacons_lock);
1946         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1947         spin_unlock_bh(&reg_pending_beacons_lock);
1948
1949         schedule_work(&reg_work);
1950
1951         return 0;
1952 }
1953
1954 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1955 {
1956         unsigned int i;
1957         const struct ieee80211_reg_rule *reg_rule = NULL;
1958         const struct ieee80211_freq_range *freq_range = NULL;
1959         const struct ieee80211_power_rule *power_rule = NULL;
1960
1961         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1962
1963         for (i = 0; i < rd->n_reg_rules; i++) {
1964                 reg_rule = &rd->reg_rules[i];
1965                 freq_range = &reg_rule->freq_range;
1966                 power_rule = &reg_rule->power_rule;
1967
1968                 /*
1969                  * There may not be documentation for max antenna gain
1970                  * in certain regions
1971                  */
1972                 if (power_rule->max_antenna_gain)
1973                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1974                                 freq_range->start_freq_khz,
1975                                 freq_range->end_freq_khz,
1976                                 freq_range->max_bandwidth_khz,
1977                                 power_rule->max_antenna_gain,
1978                                 power_rule->max_eirp);
1979                 else
1980                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1981                                 freq_range->start_freq_khz,
1982                                 freq_range->end_freq_khz,
1983                                 freq_range->max_bandwidth_khz,
1984                                 power_rule->max_eirp);
1985         }
1986 }
1987
1988 bool reg_supported_dfs_region(u8 dfs_region)
1989 {
1990         switch (dfs_region) {
1991         case NL80211_DFS_UNSET:
1992         case NL80211_DFS_FCC:
1993         case NL80211_DFS_ETSI:
1994         case NL80211_DFS_JP:
1995                 return true;
1996         default:
1997                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1998                               dfs_region);
1999                 return false;
2000         }
2001 }
2002
2003 static void print_dfs_region(u8 dfs_region)
2004 {
2005         if (!dfs_region)
2006                 return;
2007
2008         switch (dfs_region) {
2009         case NL80211_DFS_FCC:
2010                 pr_info(" DFS Master region FCC");
2011                 break;
2012         case NL80211_DFS_ETSI:
2013                 pr_info(" DFS Master region ETSI");
2014                 break;
2015         case NL80211_DFS_JP:
2016                 pr_info(" DFS Master region JP");
2017                 break;
2018         default:
2019                 pr_info(" DFS Master region Unknown");
2020                 break;
2021         }
2022 }
2023
2024 static void print_regdomain(const struct ieee80211_regdomain *rd)
2025 {
2026
2027         if (is_intersected_alpha2(rd->alpha2)) {
2028                 if (last_request->initiator ==
2029                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2030                         struct cfg80211_registered_device *rdev;
2031                         rdev = cfg80211_rdev_by_wiphy_idx(
2032                                 last_request->wiphy_idx);
2033                         if (rdev) {
2034                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2035                                         rdev->country_ie_alpha2[0],
2036                                         rdev->country_ie_alpha2[1]);
2037                         } else
2038                                 pr_info("Current regulatory domain intersected:\n");
2039                 } else
2040                         pr_info("Current regulatory domain intersected:\n");
2041         } else if (is_world_regdom(rd->alpha2)) {
2042                 pr_info("World regulatory domain updated:\n");
2043         } else {
2044                 if (is_unknown_alpha2(rd->alpha2))
2045                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2046                 else {
2047                         if (reg_request_cell_base(last_request))
2048                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2049                                         rd->alpha2[0], rd->alpha2[1]);
2050                         else
2051                                 pr_info("Regulatory domain changed to country: %c%c\n",
2052                                         rd->alpha2[0], rd->alpha2[1]);
2053                 }
2054         }
2055
2056         print_dfs_region(rd->dfs_region);
2057         print_rd_rules(rd);
2058 }
2059
2060 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2061 {
2062         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2063         print_rd_rules(rd);
2064 }
2065
2066 /* Takes ownership of rd only if it doesn't fail */
2067 static int __set_regdom(const struct ieee80211_regdomain *rd)
2068 {
2069         const struct ieee80211_regdomain *regd;
2070         const struct ieee80211_regdomain *intersected_rd = NULL;
2071         struct wiphy *request_wiphy;
2072         /* Some basic sanity checks first */
2073
2074         if (is_world_regdom(rd->alpha2)) {
2075                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2076                         return -EINVAL;
2077                 update_world_regdomain(rd);
2078                 return 0;
2079         }
2080
2081         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2082             !is_unknown_alpha2(rd->alpha2))
2083                 return -EINVAL;
2084
2085         if (!last_request)
2086                 return -EINVAL;
2087
2088         /*
2089          * Lets only bother proceeding on the same alpha2 if the current
2090          * rd is non static (it means CRDA was present and was used last)
2091          * and the pending request came in from a country IE
2092          */
2093         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2094                 /*
2095                  * If someone else asked us to change the rd lets only bother
2096                  * checking if the alpha2 changes if CRDA was already called
2097                  */
2098                 if (!regdom_changes(rd->alpha2))
2099                         return -EALREADY;
2100         }
2101
2102         /*
2103          * Now lets set the regulatory domain, update all driver channels
2104          * and finally inform them of what we have done, in case they want
2105          * to review or adjust their own settings based on their own
2106          * internal EEPROM data
2107          */
2108
2109         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2110                 return -EINVAL;
2111
2112         if (!is_valid_rd(rd)) {
2113                 pr_err("Invalid regulatory domain detected:\n");
2114                 print_regdomain_info(rd);
2115                 return -EINVAL;
2116         }
2117
2118         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2119         if (!request_wiphy &&
2120             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2121              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2122                 schedule_delayed_work(&reg_timeout, 0);
2123                 return -ENODEV;
2124         }
2125
2126         if (!last_request->intersect) {
2127                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2128                         reset_regdomains(false);
2129                         cfg80211_regdomain = rd;
2130                         return 0;
2131                 }
2132
2133                 /*
2134                  * For a driver hint, lets copy the regulatory domain the
2135                  * driver wanted to the wiphy to deal with conflicts
2136                  */
2137
2138                 /*
2139                  * Userspace could have sent two replies with only
2140                  * one kernel request.
2141                  */
2142                 if (request_wiphy->regd)
2143                         return -EALREADY;
2144
2145                 regd = reg_copy_regd(rd);
2146                 if (IS_ERR(regd))
2147                         return PTR_ERR(regd);
2148
2149                 request_wiphy->regd = regd;
2150                 reset_regdomains(false);
2151                 cfg80211_regdomain = rd;
2152                 return 0;
2153         }
2154
2155         /* Intersection requires a bit more work */
2156
2157         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2158                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2159                 if (!intersected_rd)
2160                         return -EINVAL;
2161
2162                 /*
2163                  * We can trash what CRDA provided now.
2164                  * However if a driver requested this specific regulatory
2165                  * domain we keep it for its private use
2166                  */
2167                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2168                         request_wiphy->regd = rd;
2169                 else
2170                         kfree(rd);
2171
2172                 rd = NULL;
2173
2174                 reset_regdomains(false);
2175                 cfg80211_regdomain = intersected_rd;
2176
2177                 return 0;
2178         }
2179
2180         return -EINVAL;
2181 }
2182
2183
2184 /*
2185  * Use this call to set the current regulatory domain. Conflicts with
2186  * multiple drivers can be ironed out later. Caller must've already
2187  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2188  */
2189 int set_regdom(const struct ieee80211_regdomain *rd)
2190 {
2191         int r;
2192
2193         assert_cfg80211_lock();
2194
2195         mutex_lock(&reg_mutex);
2196
2197         /* Note that this doesn't update the wiphys, this is done below */
2198         r = __set_regdom(rd);
2199         if (r) {
2200                 if (r == -EALREADY)
2201                         reg_set_request_processed();
2202
2203                 kfree(rd);
2204                 goto out;
2205         }
2206
2207         /* This would make this whole thing pointless */
2208         if (WARN_ON(!last_request->intersect && rd != cfg80211_regdomain)) {
2209                 r = -EINVAL;
2210                 goto out;
2211         }
2212
2213         /* update all wiphys now with the new established regulatory domain */
2214         update_all_wiphy_regulatory(last_request->initiator);
2215
2216         print_regdomain(cfg80211_regdomain);
2217
2218         nl80211_send_reg_change_event(last_request);
2219
2220         reg_set_request_processed();
2221
2222  out:
2223         mutex_unlock(&reg_mutex);
2224
2225         return r;
2226 }
2227
2228 #ifdef CONFIG_HOTPLUG
2229 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2230 {
2231         if (last_request && !last_request->processed) {
2232                 if (add_uevent_var(env, "COUNTRY=%c%c",
2233                                    last_request->alpha2[0],
2234                                    last_request->alpha2[1]))
2235                         return -ENOMEM;
2236         }
2237
2238         return 0;
2239 }
2240 #else
2241 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2242 {
2243         return -ENODEV;
2244 }
2245 #endif /* CONFIG_HOTPLUG */
2246
2247 void wiphy_regulatory_register(struct wiphy *wiphy)
2248 {
2249         assert_cfg80211_lock();
2250
2251         mutex_lock(&reg_mutex);
2252
2253         if (!reg_dev_ignore_cell_hint(wiphy))
2254                 reg_num_devs_support_basehint++;
2255
2256         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2257
2258         mutex_unlock(&reg_mutex);
2259 }
2260
2261 /* Caller must hold cfg80211_mutex */
2262 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2263 {
2264         struct wiphy *request_wiphy = NULL;
2265
2266         assert_cfg80211_lock();
2267
2268         mutex_lock(&reg_mutex);
2269
2270         if (!reg_dev_ignore_cell_hint(wiphy))
2271                 reg_num_devs_support_basehint--;
2272
2273         kfree(wiphy->regd);
2274
2275         if (last_request)
2276                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2277
2278         if (!request_wiphy || request_wiphy != wiphy)
2279                 goto out;
2280
2281         last_request->wiphy_idx = WIPHY_IDX_INVALID;
2282         last_request->country_ie_env = ENVIRON_ANY;
2283 out:
2284         mutex_unlock(&reg_mutex);
2285 }
2286
2287 static void reg_timeout_work(struct work_struct *work)
2288 {
2289         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2290         restore_regulatory_settings(true);
2291 }
2292
2293 int __init regulatory_init(void)
2294 {
2295         int err = 0;
2296
2297         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2298         if (IS_ERR(reg_pdev))
2299                 return PTR_ERR(reg_pdev);
2300
2301         reg_pdev->dev.type = &reg_device_type;
2302
2303         spin_lock_init(&reg_requests_lock);
2304         spin_lock_init(&reg_pending_beacons_lock);
2305
2306         reg_regdb_size_check();
2307
2308         cfg80211_regdomain = cfg80211_world_regdom;
2309
2310         user_alpha2[0] = '9';
2311         user_alpha2[1] = '7';
2312
2313         /* We always try to get an update for the static regdomain */
2314         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2315         if (err) {
2316                 if (err == -ENOMEM)
2317                         return err;
2318                 /*
2319                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2320                  * memory which is handled and propagated appropriately above
2321                  * but it can also fail during a netlink_broadcast() or during
2322                  * early boot for call_usermodehelper(). For now treat these
2323                  * errors as non-fatal.
2324                  */
2325                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2326         }
2327
2328         /*
2329          * Finally, if the user set the module parameter treat it
2330          * as a user hint.
2331          */
2332         if (!is_world_regdom(ieee80211_regdom))
2333                 regulatory_hint_user(ieee80211_regdom,
2334                                      NL80211_USER_REG_HINT_USER);
2335
2336         return 0;
2337 }
2338
2339 void regulatory_exit(void)
2340 {
2341         struct regulatory_request *reg_request, *tmp;
2342         struct reg_beacon *reg_beacon, *btmp;
2343
2344         cancel_work_sync(&reg_work);
2345         cancel_delayed_work_sync(&reg_timeout);
2346
2347         /* Lock to suppress warnings */
2348         mutex_lock(&cfg80211_mutex);
2349         mutex_lock(&reg_mutex);
2350         reset_regdomains(true);
2351         mutex_unlock(&cfg80211_mutex);
2352         mutex_unlock(&reg_mutex);
2353
2354         dev_set_uevent_suppress(&reg_pdev->dev, true);
2355
2356         platform_device_unregister(reg_pdev);
2357
2358         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2359                 list_del(&reg_beacon->list);
2360                 kfree(reg_beacon);
2361         }
2362
2363         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2364                 list_del(&reg_beacon->list);
2365                 kfree(reg_beacon);
2366         }
2367
2368         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2369                 list_del(&reg_request->list);
2370                 kfree(reg_request);
2371         }
2372 }