regulatory: simplify regulatory_hint_11d
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70         .initiator = NL80211_REGDOM_SET_BY_CORE,
71         .alpha2[0] = '0',
72         .alpha2[1] = '0',
73         .intersect = false,
74         .processed = true,
75         .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85         .uevent = reg_device_uevent,
86 };
87
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112         lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127         struct list_head list;
128         struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "00",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144                 /* IEEE 802.11b/g, channels 12..13. */
145                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
146                         NL80211_RRF_PASSIVE_SCAN |
147                         NL80211_RRF_NO_IBSS),
148                 /* IEEE 802.11 channel 14 - Only JP enables
149                  * this and for 802.11b only */
150                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
151                         NL80211_RRF_PASSIVE_SCAN |
152                         NL80211_RRF_NO_IBSS |
153                         NL80211_RRF_NO_OFDM),
154                 /* IEEE 802.11a, channel 36..48 */
155                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
156                         NL80211_RRF_PASSIVE_SCAN |
157                         NL80211_RRF_NO_IBSS),
158
159                 /* NB: 5260 MHz - 5700 MHz requies DFS */
160
161                 /* IEEE 802.11a, channel 149..165 */
162                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
163                         NL80211_RRF_PASSIVE_SCAN |
164                         NL80211_RRF_NO_IBSS),
165
166                 /* IEEE 802.11ad (60gHz), channels 1..3 */
167                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
168         }
169 };
170
171 static const struct ieee80211_regdomain *cfg80211_world_regdom =
172         &world_regdom;
173
174 static char *ieee80211_regdom = "00";
175 static char user_alpha2[2];
176
177 module_param(ieee80211_regdom, charp, 0444);
178 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
179
180 static void reset_regdomains(bool full_reset)
181 {
182         /* avoid freeing static information or freeing something twice */
183         if (cfg80211_regdomain == cfg80211_world_regdom)
184                 cfg80211_regdomain = NULL;
185         if (cfg80211_world_regdom == &world_regdom)
186                 cfg80211_world_regdom = NULL;
187         if (cfg80211_regdomain == &world_regdom)
188                 cfg80211_regdomain = NULL;
189
190         kfree(cfg80211_regdomain);
191         kfree(cfg80211_world_regdom);
192
193         cfg80211_world_regdom = &world_regdom;
194         cfg80211_regdomain = NULL;
195
196         if (!full_reset)
197                 return;
198
199         if (last_request != &core_request_world)
200                 kfree(last_request);
201         last_request = &core_request_world;
202 }
203
204 /*
205  * Dynamic world regulatory domain requested by the wireless
206  * core upon initialization
207  */
208 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
209 {
210         BUG_ON(!last_request);
211
212         reset_regdomains(false);
213
214         cfg80211_world_regdom = rd;
215         cfg80211_regdomain = rd;
216 }
217
218 bool is_world_regdom(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         if (alpha2[0] == '0' && alpha2[1] == '0')
223                 return true;
224         return false;
225 }
226
227 static bool is_alpha2_set(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (alpha2[0] != 0 && alpha2[1] != 0)
232                 return true;
233         return false;
234 }
235
236 static bool is_unknown_alpha2(const char *alpha2)
237 {
238         if (!alpha2)
239                 return false;
240         /*
241          * Special case where regulatory domain was built by driver
242          * but a specific alpha2 cannot be determined
243          */
244         if (alpha2[0] == '9' && alpha2[1] == '9')
245                 return true;
246         return false;
247 }
248
249 static bool is_intersected_alpha2(const char *alpha2)
250 {
251         if (!alpha2)
252                 return false;
253         /*
254          * Special case where regulatory domain is the
255          * result of an intersection between two regulatory domain
256          * structures
257          */
258         if (alpha2[0] == '9' && alpha2[1] == '8')
259                 return true;
260         return false;
261 }
262
263 static bool is_an_alpha2(const char *alpha2)
264 {
265         if (!alpha2)
266                 return false;
267         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
268                 return true;
269         return false;
270 }
271
272 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
273 {
274         if (!alpha2_x || !alpha2_y)
275                 return false;
276         if (alpha2_x[0] == alpha2_y[0] &&
277                 alpha2_x[1] == alpha2_y[1])
278                 return true;
279         return false;
280 }
281
282 static bool regdom_changes(const char *alpha2)
283 {
284         assert_cfg80211_lock();
285
286         if (!cfg80211_regdomain)
287                 return true;
288         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
289                 return false;
290         return true;
291 }
292
293 /*
294  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
295  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
296  * has ever been issued.
297  */
298 static bool is_user_regdom_saved(void)
299 {
300         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
301                 return false;
302
303         /* This would indicate a mistake on the design */
304         if (WARN((!is_world_regdom(user_alpha2) &&
305                   !is_an_alpha2(user_alpha2)),
306                  "Unexpected user alpha2: %c%c\n",
307                  user_alpha2[0],
308                  user_alpha2[1]))
309                 return false;
310
311         return true;
312 }
313
314 static const struct ieee80211_regdomain *
315 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
316 {
317         struct ieee80211_regdomain *regd;
318         int size_of_regd;
319         unsigned int i;
320
321         size_of_regd =
322                 sizeof(struct ieee80211_regdomain) +
323                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
324
325         regd = kzalloc(size_of_regd, GFP_KERNEL);
326         if (!regd)
327                 return ERR_PTR(-ENOMEM);
328
329         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331         for (i = 0; i < src_regd->n_reg_rules; i++)
332                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333                        sizeof(struct ieee80211_reg_rule));
334
335         return regd;
336 }
337
338 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
339 struct reg_regdb_search_request {
340         char alpha2[2];
341         struct list_head list;
342 };
343
344 static LIST_HEAD(reg_regdb_search_list);
345 static DEFINE_MUTEX(reg_regdb_search_mutex);
346
347 static void reg_regdb_search(struct work_struct *work)
348 {
349         struct reg_regdb_search_request *request;
350         const struct ieee80211_regdomain *curdom, *regdom = NULL;
351         int i;
352
353         mutex_lock(&cfg80211_mutex);
354
355         mutex_lock(&reg_regdb_search_mutex);
356         while (!list_empty(&reg_regdb_search_list)) {
357                 request = list_first_entry(&reg_regdb_search_list,
358                                            struct reg_regdb_search_request,
359                                            list);
360                 list_del(&request->list);
361
362                 for (i=0; i<reg_regdb_size; i++) {
363                         curdom = reg_regdb[i];
364
365                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
366                                 regdom = reg_copy_regd(curdom);
367                                 break;
368                         }
369                 }
370
371                 kfree(request);
372         }
373         mutex_unlock(&reg_regdb_search_mutex);
374
375         if (!IS_ERR_OR_NULL(regdom))
376                 set_regdom(regdom);
377
378         mutex_unlock(&cfg80211_mutex);
379 }
380
381 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
382
383 static void reg_regdb_query(const char *alpha2)
384 {
385         struct reg_regdb_search_request *request;
386
387         if (!alpha2)
388                 return;
389
390         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
391         if (!request)
392                 return;
393
394         memcpy(request->alpha2, alpha2, 2);
395
396         mutex_lock(&reg_regdb_search_mutex);
397         list_add_tail(&request->list, &reg_regdb_search_list);
398         mutex_unlock(&reg_regdb_search_mutex);
399
400         schedule_work(&reg_regdb_work);
401 }
402
403 /* Feel free to add any other sanity checks here */
404 static void reg_regdb_size_check(void)
405 {
406         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
407         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
408 }
409 #else
410 static inline void reg_regdb_size_check(void) {}
411 static inline void reg_regdb_query(const char *alpha2) {}
412 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
413
414 /*
415  * This lets us keep regulatory code which is updated on a regulatory
416  * basis in userspace. Country information is filled in by
417  * reg_device_uevent
418  */
419 static int call_crda(const char *alpha2)
420 {
421         if (!is_world_regdom((char *) alpha2))
422                 pr_info("Calling CRDA for country: %c%c\n",
423                         alpha2[0], alpha2[1]);
424         else
425                 pr_info("Calling CRDA to update world regulatory domain\n");
426
427         /* query internal regulatory database (if it exists) */
428         reg_regdb_query(alpha2);
429
430         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
431 }
432
433 /* Used by nl80211 before kmalloc'ing our regulatory domain */
434 bool reg_is_valid_request(const char *alpha2)
435 {
436         assert_cfg80211_lock();
437
438         if (!last_request)
439                 return false;
440
441         return alpha2_equal(last_request->alpha2, alpha2);
442 }
443
444 /* Sanity check on a regulatory rule */
445 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
446 {
447         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
448         u32 freq_diff;
449
450         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
451                 return false;
452
453         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
454                 return false;
455
456         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
457
458         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
459                         freq_range->max_bandwidth_khz > freq_diff)
460                 return false;
461
462         return true;
463 }
464
465 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
466 {
467         const struct ieee80211_reg_rule *reg_rule = NULL;
468         unsigned int i;
469
470         if (!rd->n_reg_rules)
471                 return false;
472
473         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
474                 return false;
475
476         for (i = 0; i < rd->n_reg_rules; i++) {
477                 reg_rule = &rd->reg_rules[i];
478                 if (!is_valid_reg_rule(reg_rule))
479                         return false;
480         }
481
482         return true;
483 }
484
485 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
486                             u32 center_freq_khz,
487                             u32 bw_khz)
488 {
489         u32 start_freq_khz, end_freq_khz;
490
491         start_freq_khz = center_freq_khz - (bw_khz/2);
492         end_freq_khz = center_freq_khz + (bw_khz/2);
493
494         if (start_freq_khz >= freq_range->start_freq_khz &&
495             end_freq_khz <= freq_range->end_freq_khz)
496                 return true;
497
498         return false;
499 }
500
501 /**
502  * freq_in_rule_band - tells us if a frequency is in a frequency band
503  * @freq_range: frequency rule we want to query
504  * @freq_khz: frequency we are inquiring about
505  *
506  * This lets us know if a specific frequency rule is or is not relevant to
507  * a specific frequency's band. Bands are device specific and artificial
508  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
509  * however it is safe for now to assume that a frequency rule should not be
510  * part of a frequency's band if the start freq or end freq are off by more
511  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
512  * 60 GHz band.
513  * This resolution can be lowered and should be considered as we add
514  * regulatory rule support for other "bands".
515  **/
516 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
517         u32 freq_khz)
518 {
519 #define ONE_GHZ_IN_KHZ  1000000
520         /*
521          * From 802.11ad: directional multi-gigabit (DMG):
522          * Pertaining to operation in a frequency band containing a channel
523          * with the Channel starting frequency above 45 GHz.
524          */
525         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
526                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
527         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
528                 return true;
529         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
530                 return true;
531         return false;
532 #undef ONE_GHZ_IN_KHZ
533 }
534
535 /*
536  * Helper for regdom_intersect(), this does the real
537  * mathematical intersection fun
538  */
539 static int reg_rules_intersect(
540         const struct ieee80211_reg_rule *rule1,
541         const struct ieee80211_reg_rule *rule2,
542         struct ieee80211_reg_rule *intersected_rule)
543 {
544         const struct ieee80211_freq_range *freq_range1, *freq_range2;
545         struct ieee80211_freq_range *freq_range;
546         const struct ieee80211_power_rule *power_rule1, *power_rule2;
547         struct ieee80211_power_rule *power_rule;
548         u32 freq_diff;
549
550         freq_range1 = &rule1->freq_range;
551         freq_range2 = &rule2->freq_range;
552         freq_range = &intersected_rule->freq_range;
553
554         power_rule1 = &rule1->power_rule;
555         power_rule2 = &rule2->power_rule;
556         power_rule = &intersected_rule->power_rule;
557
558         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
559                 freq_range2->start_freq_khz);
560         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
561                 freq_range2->end_freq_khz);
562         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
563                 freq_range2->max_bandwidth_khz);
564
565         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
566         if (freq_range->max_bandwidth_khz > freq_diff)
567                 freq_range->max_bandwidth_khz = freq_diff;
568
569         power_rule->max_eirp = min(power_rule1->max_eirp,
570                 power_rule2->max_eirp);
571         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
572                 power_rule2->max_antenna_gain);
573
574         intersected_rule->flags = (rule1->flags | rule2->flags);
575
576         if (!is_valid_reg_rule(intersected_rule))
577                 return -EINVAL;
578
579         return 0;
580 }
581
582 /**
583  * regdom_intersect - do the intersection between two regulatory domains
584  * @rd1: first regulatory domain
585  * @rd2: second regulatory domain
586  *
587  * Use this function to get the intersection between two regulatory domains.
588  * Once completed we will mark the alpha2 for the rd as intersected, "98",
589  * as no one single alpha2 can represent this regulatory domain.
590  *
591  * Returns a pointer to the regulatory domain structure which will hold the
592  * resulting intersection of rules between rd1 and rd2. We will
593  * kzalloc() this structure for you.
594  */
595 static struct ieee80211_regdomain *regdom_intersect(
596         const struct ieee80211_regdomain *rd1,
597         const struct ieee80211_regdomain *rd2)
598 {
599         int r, size_of_regd;
600         unsigned int x, y;
601         unsigned int num_rules = 0, rule_idx = 0;
602         const struct ieee80211_reg_rule *rule1, *rule2;
603         struct ieee80211_reg_rule *intersected_rule;
604         struct ieee80211_regdomain *rd;
605         /* This is just a dummy holder to help us count */
606         struct ieee80211_reg_rule dummy_rule;
607
608         if (!rd1 || !rd2)
609                 return NULL;
610
611         /*
612          * First we get a count of the rules we'll need, then we actually
613          * build them. This is to so we can malloc() and free() a
614          * regdomain once. The reason we use reg_rules_intersect() here
615          * is it will return -EINVAL if the rule computed makes no sense.
616          * All rules that do check out OK are valid.
617          */
618
619         for (x = 0; x < rd1->n_reg_rules; x++) {
620                 rule1 = &rd1->reg_rules[x];
621                 for (y = 0; y < rd2->n_reg_rules; y++) {
622                         rule2 = &rd2->reg_rules[y];
623                         if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
624                                 num_rules++;
625                 }
626         }
627
628         if (!num_rules)
629                 return NULL;
630
631         size_of_regd = sizeof(struct ieee80211_regdomain) +
632                        num_rules * sizeof(struct ieee80211_reg_rule);
633
634         rd = kzalloc(size_of_regd, GFP_KERNEL);
635         if (!rd)
636                 return NULL;
637
638         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
639                 rule1 = &rd1->reg_rules[x];
640                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
641                         rule2 = &rd2->reg_rules[y];
642                         /*
643                          * This time around instead of using the stack lets
644                          * write to the target rule directly saving ourselves
645                          * a memcpy()
646                          */
647                         intersected_rule = &rd->reg_rules[rule_idx];
648                         r = reg_rules_intersect(rule1, rule2,
649                                 intersected_rule);
650                         /*
651                          * No need to memset here the intersected rule here as
652                          * we're not using the stack anymore
653                          */
654                         if (r)
655                                 continue;
656                         rule_idx++;
657                 }
658         }
659
660         if (rule_idx != num_rules) {
661                 kfree(rd);
662                 return NULL;
663         }
664
665         rd->n_reg_rules = num_rules;
666         rd->alpha2[0] = '9';
667         rd->alpha2[1] = '8';
668
669         return rd;
670 }
671
672 /*
673  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
674  * want to just have the channel structure use these
675  */
676 static u32 map_regdom_flags(u32 rd_flags)
677 {
678         u32 channel_flags = 0;
679         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
680                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
681         if (rd_flags & NL80211_RRF_NO_IBSS)
682                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
683         if (rd_flags & NL80211_RRF_DFS)
684                 channel_flags |= IEEE80211_CHAN_RADAR;
685         if (rd_flags & NL80211_RRF_NO_OFDM)
686                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
687         return channel_flags;
688 }
689
690 static int freq_reg_info_regd(struct wiphy *wiphy,
691                               u32 center_freq,
692                               u32 desired_bw_khz,
693                               const struct ieee80211_reg_rule **reg_rule,
694                               const struct ieee80211_regdomain *custom_regd)
695 {
696         int i;
697         bool band_rule_found = false;
698         const struct ieee80211_regdomain *regd;
699         bool bw_fits = false;
700
701         if (!desired_bw_khz)
702                 desired_bw_khz = MHZ_TO_KHZ(20);
703
704         regd = custom_regd ? custom_regd : cfg80211_regdomain;
705
706         /*
707          * Follow the driver's regulatory domain, if present, unless a country
708          * IE has been processed or a user wants to help complaince further
709          */
710         if (!custom_regd &&
711             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
712             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
713             wiphy->regd)
714                 regd = wiphy->regd;
715
716         if (!regd)
717                 return -EINVAL;
718
719         for (i = 0; i < regd->n_reg_rules; i++) {
720                 const struct ieee80211_reg_rule *rr;
721                 const struct ieee80211_freq_range *fr = NULL;
722
723                 rr = &regd->reg_rules[i];
724                 fr = &rr->freq_range;
725
726                 /*
727                  * We only need to know if one frequency rule was
728                  * was in center_freq's band, that's enough, so lets
729                  * not overwrite it once found
730                  */
731                 if (!band_rule_found)
732                         band_rule_found = freq_in_rule_band(fr, center_freq);
733
734                 bw_fits = reg_does_bw_fit(fr,
735                                           center_freq,
736                                           desired_bw_khz);
737
738                 if (band_rule_found && bw_fits) {
739                         *reg_rule = rr;
740                         return 0;
741                 }
742         }
743
744         if (!band_rule_found)
745                 return -ERANGE;
746
747         return -EINVAL;
748 }
749
750 int freq_reg_info(struct wiphy *wiphy,
751                   u32 center_freq,
752                   u32 desired_bw_khz,
753                   const struct ieee80211_reg_rule **reg_rule)
754 {
755         assert_cfg80211_lock();
756         return freq_reg_info_regd(wiphy,
757                                   center_freq,
758                                   desired_bw_khz,
759                                   reg_rule,
760                                   NULL);
761 }
762 EXPORT_SYMBOL(freq_reg_info);
763
764 #ifdef CONFIG_CFG80211_REG_DEBUG
765 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
766 {
767         switch (initiator) {
768         case NL80211_REGDOM_SET_BY_CORE:
769                 return "Set by core";
770         case NL80211_REGDOM_SET_BY_USER:
771                 return "Set by user";
772         case NL80211_REGDOM_SET_BY_DRIVER:
773                 return "Set by driver";
774         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
775                 return "Set by country IE";
776         default:
777                 WARN_ON(1);
778                 return "Set by bug";
779         }
780 }
781
782 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
783                                     u32 desired_bw_khz,
784                                     const struct ieee80211_reg_rule *reg_rule)
785 {
786         const struct ieee80211_power_rule *power_rule;
787         const struct ieee80211_freq_range *freq_range;
788         char max_antenna_gain[32];
789
790         power_rule = &reg_rule->power_rule;
791         freq_range = &reg_rule->freq_range;
792
793         if (!power_rule->max_antenna_gain)
794                 snprintf(max_antenna_gain, 32, "N/A");
795         else
796                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
797
798         REG_DBG_PRINT("Updating information on frequency %d MHz "
799                       "for a %d MHz width channel with regulatory rule:\n",
800                       chan->center_freq,
801                       KHZ_TO_MHZ(desired_bw_khz));
802
803         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
804                       freq_range->start_freq_khz,
805                       freq_range->end_freq_khz,
806                       freq_range->max_bandwidth_khz,
807                       max_antenna_gain,
808                       power_rule->max_eirp);
809 }
810 #else
811 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
812                                     u32 desired_bw_khz,
813                                     const struct ieee80211_reg_rule *reg_rule)
814 {
815         return;
816 }
817 #endif
818
819 /*
820  * Note that right now we assume the desired channel bandwidth
821  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
822  * per channel, the primary and the extension channel). To support
823  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
824  * new ieee80211_channel.target_bw and re run the regulatory check
825  * on the wiphy with the target_bw specified. Then we can simply use
826  * that below for the desired_bw_khz below.
827  */
828 static void handle_channel(struct wiphy *wiphy,
829                            enum nl80211_reg_initiator initiator,
830                            enum ieee80211_band band,
831                            unsigned int chan_idx)
832 {
833         int r;
834         u32 flags, bw_flags = 0;
835         u32 desired_bw_khz = MHZ_TO_KHZ(20);
836         const struct ieee80211_reg_rule *reg_rule = NULL;
837         const struct ieee80211_power_rule *power_rule = NULL;
838         const struct ieee80211_freq_range *freq_range = NULL;
839         struct ieee80211_supported_band *sband;
840         struct ieee80211_channel *chan;
841         struct wiphy *request_wiphy = NULL;
842
843         assert_cfg80211_lock();
844
845         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
846
847         sband = wiphy->bands[band];
848         BUG_ON(chan_idx >= sband->n_channels);
849         chan = &sband->channels[chan_idx];
850
851         flags = chan->orig_flags;
852
853         r = freq_reg_info(wiphy,
854                           MHZ_TO_KHZ(chan->center_freq),
855                           desired_bw_khz,
856                           &reg_rule);
857
858         if (r) {
859                 /*
860                  * We will disable all channels that do not match our
861                  * received regulatory rule unless the hint is coming
862                  * from a Country IE and the Country IE had no information
863                  * about a band. The IEEE 802.11 spec allows for an AP
864                  * to send only a subset of the regulatory rules allowed,
865                  * so an AP in the US that only supports 2.4 GHz may only send
866                  * a country IE with information for the 2.4 GHz band
867                  * while 5 GHz is still supported.
868                  */
869                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
870                     r == -ERANGE)
871                         return;
872
873                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
874                 chan->flags = IEEE80211_CHAN_DISABLED;
875                 return;
876         }
877
878         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
879
880         power_rule = &reg_rule->power_rule;
881         freq_range = &reg_rule->freq_range;
882
883         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
884                 bw_flags = IEEE80211_CHAN_NO_HT40;
885
886         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
887             request_wiphy && request_wiphy == wiphy &&
888             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
889                 /*
890                  * This guarantees the driver's requested regulatory domain
891                  * will always be used as a base for further regulatory
892                  * settings
893                  */
894                 chan->flags = chan->orig_flags =
895                         map_regdom_flags(reg_rule->flags) | bw_flags;
896                 chan->max_antenna_gain = chan->orig_mag =
897                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
898                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
899                         (int) MBM_TO_DBM(power_rule->max_eirp);
900                 return;
901         }
902
903         chan->beacon_found = false;
904         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
905         chan->max_antenna_gain = min(chan->orig_mag,
906                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
907         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
908         if (chan->orig_mpwr) {
909                 /*
910                  * Devices that have their own custom regulatory domain
911                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
912                  * passed country IE power settings.
913                  */
914                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
915                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
916                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
917                         chan->max_power = chan->max_reg_power;
918                 else
919                         chan->max_power = min(chan->orig_mpwr,
920                                               chan->max_reg_power);
921         } else
922                 chan->max_power = chan->max_reg_power;
923 }
924
925 static void handle_band(struct wiphy *wiphy,
926                         enum ieee80211_band band,
927                         enum nl80211_reg_initiator initiator)
928 {
929         unsigned int i;
930         struct ieee80211_supported_band *sband;
931
932         BUG_ON(!wiphy->bands[band]);
933         sband = wiphy->bands[band];
934
935         for (i = 0; i < sband->n_channels; i++)
936                 handle_channel(wiphy, initiator, band, i);
937 }
938
939 static bool reg_request_cell_base(struct regulatory_request *request)
940 {
941         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
942                 return false;
943         if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
944                 return false;
945         return true;
946 }
947
948 bool reg_last_request_cell_base(void)
949 {
950         bool val;
951         assert_cfg80211_lock();
952
953         mutex_lock(&reg_mutex);
954         val = reg_request_cell_base(last_request);
955         mutex_unlock(&reg_mutex);
956         return val;
957 }
958
959 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
960
961 /* Core specific check */
962 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
963 {
964         if (!reg_num_devs_support_basehint)
965                 return -EOPNOTSUPP;
966
967         if (reg_request_cell_base(last_request)) {
968                 if (!regdom_changes(pending_request->alpha2))
969                         return -EALREADY;
970                 return 0;
971         }
972         return 0;
973 }
974
975 /* Device specific check */
976 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
977 {
978         if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
979                 return true;
980         return false;
981 }
982 #else
983 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
984 {
985         return -EOPNOTSUPP;
986 }
987 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
988 {
989         return true;
990 }
991 #endif
992
993
994 static bool ignore_reg_update(struct wiphy *wiphy,
995                               enum nl80211_reg_initiator initiator)
996 {
997         if (!last_request) {
998                 REG_DBG_PRINT("Ignoring regulatory request %s since "
999                               "last_request is not set\n",
1000                               reg_initiator_name(initiator));
1001                 return true;
1002         }
1003
1004         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1005             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1006                 REG_DBG_PRINT("Ignoring regulatory request %s "
1007                               "since the driver uses its own custom "
1008                               "regulatory domain\n",
1009                               reg_initiator_name(initiator));
1010                 return true;
1011         }
1012
1013         /*
1014          * wiphy->regd will be set once the device has its own
1015          * desired regulatory domain set
1016          */
1017         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1018             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019             !is_world_regdom(last_request->alpha2)) {
1020                 REG_DBG_PRINT("Ignoring regulatory request %s "
1021                               "since the driver requires its own regulatory "
1022                               "domain to be set first\n",
1023                               reg_initiator_name(initiator));
1024                 return true;
1025         }
1026
1027         if (reg_request_cell_base(last_request))
1028                 return reg_dev_ignore_cell_hint(wiphy);
1029
1030         return false;
1031 }
1032
1033 static void handle_reg_beacon(struct wiphy *wiphy,
1034                               unsigned int chan_idx,
1035                               struct reg_beacon *reg_beacon)
1036 {
1037         struct ieee80211_supported_band *sband;
1038         struct ieee80211_channel *chan;
1039         bool channel_changed = false;
1040         struct ieee80211_channel chan_before;
1041
1042         assert_cfg80211_lock();
1043
1044         sband = wiphy->bands[reg_beacon->chan.band];
1045         chan = &sband->channels[chan_idx];
1046
1047         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1048                 return;
1049
1050         if (chan->beacon_found)
1051                 return;
1052
1053         chan->beacon_found = true;
1054
1055         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1056                 return;
1057
1058         chan_before.center_freq = chan->center_freq;
1059         chan_before.flags = chan->flags;
1060
1061         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1062                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1063                 channel_changed = true;
1064         }
1065
1066         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1067                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1068                 channel_changed = true;
1069         }
1070
1071         if (channel_changed)
1072                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1073 }
1074
1075 /*
1076  * Called when a scan on a wiphy finds a beacon on
1077  * new channel
1078  */
1079 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1080                                     struct reg_beacon *reg_beacon)
1081 {
1082         unsigned int i;
1083         struct ieee80211_supported_band *sband;
1084
1085         assert_cfg80211_lock();
1086
1087         if (!wiphy->bands[reg_beacon->chan.band])
1088                 return;
1089
1090         sband = wiphy->bands[reg_beacon->chan.band];
1091
1092         for (i = 0; i < sband->n_channels; i++)
1093                 handle_reg_beacon(wiphy, i, reg_beacon);
1094 }
1095
1096 /*
1097  * Called upon reg changes or a new wiphy is added
1098  */
1099 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1100 {
1101         unsigned int i;
1102         struct ieee80211_supported_band *sband;
1103         struct reg_beacon *reg_beacon;
1104
1105         assert_cfg80211_lock();
1106
1107         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1108                 if (!wiphy->bands[reg_beacon->chan.band])
1109                         continue;
1110                 sband = wiphy->bands[reg_beacon->chan.band];
1111                 for (i = 0; i < sband->n_channels; i++)
1112                         handle_reg_beacon(wiphy, i, reg_beacon);
1113         }
1114 }
1115
1116 static bool reg_is_world_roaming(struct wiphy *wiphy)
1117 {
1118         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1119             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1120                 return true;
1121         if (last_request &&
1122             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1123             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1124                 return true;
1125         return false;
1126 }
1127
1128 /* Reap the advantages of previously found beacons */
1129 static void reg_process_beacons(struct wiphy *wiphy)
1130 {
1131         /*
1132          * Means we are just firing up cfg80211, so no beacons would
1133          * have been processed yet.
1134          */
1135         if (!last_request)
1136                 return;
1137         if (!reg_is_world_roaming(wiphy))
1138                 return;
1139         wiphy_update_beacon_reg(wiphy);
1140 }
1141
1142 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1143 {
1144         if (!chan)
1145                 return true;
1146         if (chan->flags & IEEE80211_CHAN_DISABLED)
1147                 return true;
1148         /* This would happen when regulatory rules disallow HT40 completely */
1149         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1150                 return true;
1151         return false;
1152 }
1153
1154 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1155                                          enum ieee80211_band band,
1156                                          unsigned int chan_idx)
1157 {
1158         struct ieee80211_supported_band *sband;
1159         struct ieee80211_channel *channel;
1160         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1161         unsigned int i;
1162
1163         assert_cfg80211_lock();
1164
1165         sband = wiphy->bands[band];
1166         BUG_ON(chan_idx >= sband->n_channels);
1167         channel = &sband->channels[chan_idx];
1168
1169         if (is_ht40_not_allowed(channel)) {
1170                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1171                 return;
1172         }
1173
1174         /*
1175          * We need to ensure the extension channels exist to
1176          * be able to use HT40- or HT40+, this finds them (or not)
1177          */
1178         for (i = 0; i < sband->n_channels; i++) {
1179                 struct ieee80211_channel *c = &sband->channels[i];
1180                 if (c->center_freq == (channel->center_freq - 20))
1181                         channel_before = c;
1182                 if (c->center_freq == (channel->center_freq + 20))
1183                         channel_after = c;
1184         }
1185
1186         /*
1187          * Please note that this assumes target bandwidth is 20 MHz,
1188          * if that ever changes we also need to change the below logic
1189          * to include that as well.
1190          */
1191         if (is_ht40_not_allowed(channel_before))
1192                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1193         else
1194                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1195
1196         if (is_ht40_not_allowed(channel_after))
1197                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1198         else
1199                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1200 }
1201
1202 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1203                                       enum ieee80211_band band)
1204 {
1205         unsigned int i;
1206         struct ieee80211_supported_band *sband;
1207
1208         BUG_ON(!wiphy->bands[band]);
1209         sband = wiphy->bands[band];
1210
1211         for (i = 0; i < sband->n_channels; i++)
1212                 reg_process_ht_flags_channel(wiphy, band, i);
1213 }
1214
1215 static void reg_process_ht_flags(struct wiphy *wiphy)
1216 {
1217         enum ieee80211_band band;
1218
1219         if (!wiphy)
1220                 return;
1221
1222         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1223                 if (wiphy->bands[band])
1224                         reg_process_ht_flags_band(wiphy, band);
1225         }
1226
1227 }
1228
1229 static void wiphy_update_regulatory(struct wiphy *wiphy,
1230                                     enum nl80211_reg_initiator initiator)
1231 {
1232         enum ieee80211_band band;
1233
1234         assert_reg_lock();
1235
1236         if (ignore_reg_update(wiphy, initiator))
1237                 return;
1238
1239         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1240
1241         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1242                 if (wiphy->bands[band])
1243                         handle_band(wiphy, band, initiator);
1244         }
1245
1246         reg_process_beacons(wiphy);
1247         reg_process_ht_flags(wiphy);
1248         if (wiphy->reg_notifier)
1249                 wiphy->reg_notifier(wiphy, last_request);
1250 }
1251
1252 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1253 {
1254         struct cfg80211_registered_device *rdev;
1255         struct wiphy *wiphy;
1256
1257         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1258                 wiphy = &rdev->wiphy;
1259                 wiphy_update_regulatory(wiphy, initiator);
1260                 /*
1261                  * Regulatory updates set by CORE are ignored for custom
1262                  * regulatory cards. Let us notify the changes to the driver,
1263                  * as some drivers used this to restore its orig_* reg domain.
1264                  */
1265                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1266                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1267                     wiphy->reg_notifier)
1268                         wiphy->reg_notifier(wiphy, last_request);
1269         }
1270 }
1271
1272 static void handle_channel_custom(struct wiphy *wiphy,
1273                                   enum ieee80211_band band,
1274                                   unsigned int chan_idx,
1275                                   const struct ieee80211_regdomain *regd)
1276 {
1277         int r;
1278         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1279         u32 bw_flags = 0;
1280         const struct ieee80211_reg_rule *reg_rule = NULL;
1281         const struct ieee80211_power_rule *power_rule = NULL;
1282         const struct ieee80211_freq_range *freq_range = NULL;
1283         struct ieee80211_supported_band *sband;
1284         struct ieee80211_channel *chan;
1285
1286         assert_reg_lock();
1287
1288         sband = wiphy->bands[band];
1289         BUG_ON(chan_idx >= sband->n_channels);
1290         chan = &sband->channels[chan_idx];
1291
1292         r = freq_reg_info_regd(wiphy,
1293                                MHZ_TO_KHZ(chan->center_freq),
1294                                desired_bw_khz,
1295                                &reg_rule,
1296                                regd);
1297
1298         if (r) {
1299                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1300                               "regd has no rule that fits a %d MHz "
1301                               "wide channel\n",
1302                               chan->center_freq,
1303                               KHZ_TO_MHZ(desired_bw_khz));
1304                 chan->flags = IEEE80211_CHAN_DISABLED;
1305                 return;
1306         }
1307
1308         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1309
1310         power_rule = &reg_rule->power_rule;
1311         freq_range = &reg_rule->freq_range;
1312
1313         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1314                 bw_flags = IEEE80211_CHAN_NO_HT40;
1315
1316         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1317         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1318         chan->max_reg_power = chan->max_power =
1319                 (int) MBM_TO_DBM(power_rule->max_eirp);
1320 }
1321
1322 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1323                                const struct ieee80211_regdomain *regd)
1324 {
1325         unsigned int i;
1326         struct ieee80211_supported_band *sband;
1327
1328         BUG_ON(!wiphy->bands[band]);
1329         sband = wiphy->bands[band];
1330
1331         for (i = 0; i < sband->n_channels; i++)
1332                 handle_channel_custom(wiphy, band, i, regd);
1333 }
1334
1335 /* Used by drivers prior to wiphy registration */
1336 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1337                                    const struct ieee80211_regdomain *regd)
1338 {
1339         enum ieee80211_band band;
1340         unsigned int bands_set = 0;
1341
1342         mutex_lock(&reg_mutex);
1343         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1344                 if (!wiphy->bands[band])
1345                         continue;
1346                 handle_band_custom(wiphy, band, regd);
1347                 bands_set++;
1348         }
1349         mutex_unlock(&reg_mutex);
1350
1351         /*
1352          * no point in calling this if it won't have any effect
1353          * on your device's supportd bands.
1354          */
1355         WARN_ON(!bands_set);
1356 }
1357 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1358
1359 /*
1360  * Return value which can be used by ignore_request() to indicate
1361  * it has been determined we should intersect two regulatory domains
1362  */
1363 #define REG_INTERSECT   1
1364
1365 /* This has the logic which determines when a new request
1366  * should be ignored. */
1367 static int ignore_request(struct wiphy *wiphy,
1368                           struct regulatory_request *pending_request)
1369 {
1370         struct wiphy *last_wiphy = NULL;
1371
1372         assert_cfg80211_lock();
1373
1374         /* All initial requests are respected */
1375         if (!last_request)
1376                 return 0;
1377
1378         switch (pending_request->initiator) {
1379         case NL80211_REGDOM_SET_BY_CORE:
1380                 return 0;
1381         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1382
1383                 if (reg_request_cell_base(last_request)) {
1384                         /* Trust a Cell base station over the AP's country IE */
1385                         if (regdom_changes(pending_request->alpha2))
1386                                 return -EOPNOTSUPP;
1387                         return -EALREADY;
1388                 }
1389
1390                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1391
1392                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1393                         return -EINVAL;
1394                 if (last_request->initiator ==
1395                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1396                         if (last_wiphy != wiphy) {
1397                                 /*
1398                                  * Two cards with two APs claiming different
1399                                  * Country IE alpha2s. We could
1400                                  * intersect them, but that seems unlikely
1401                                  * to be correct. Reject second one for now.
1402                                  */
1403                                 if (regdom_changes(pending_request->alpha2))
1404                                         return -EOPNOTSUPP;
1405                                 return -EALREADY;
1406                         }
1407                         /*
1408                          * Two consecutive Country IE hints on the same wiphy.
1409                          * This should be picked up early by the driver/stack
1410                          */
1411                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1412                                 return 0;
1413                         return -EALREADY;
1414                 }
1415                 return 0;
1416         case NL80211_REGDOM_SET_BY_DRIVER:
1417                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1418                         if (regdom_changes(pending_request->alpha2))
1419                                 return 0;
1420                         return -EALREADY;
1421                 }
1422
1423                 /*
1424                  * This would happen if you unplug and plug your card
1425                  * back in or if you add a new device for which the previously
1426                  * loaded card also agrees on the regulatory domain.
1427                  */
1428                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1429                     !regdom_changes(pending_request->alpha2))
1430                         return -EALREADY;
1431
1432                 return REG_INTERSECT;
1433         case NL80211_REGDOM_SET_BY_USER:
1434                 if (reg_request_cell_base(pending_request))
1435                         return reg_ignore_cell_hint(pending_request);
1436
1437                 if (reg_request_cell_base(last_request))
1438                         return -EOPNOTSUPP;
1439
1440                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441                         return REG_INTERSECT;
1442                 /*
1443                  * If the user knows better the user should set the regdom
1444                  * to their country before the IE is picked up
1445                  */
1446                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447                           last_request->intersect)
1448                         return -EOPNOTSUPP;
1449                 /*
1450                  * Process user requests only after previous user/driver/core
1451                  * requests have been processed
1452                  */
1453                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1454                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1455                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456                         if (regdom_changes(last_request->alpha2))
1457                                 return -EAGAIN;
1458                 }
1459
1460                 if (!regdom_changes(pending_request->alpha2))
1461                         return -EALREADY;
1462
1463                 return 0;
1464         }
1465
1466         return -EINVAL;
1467 }
1468
1469 static void reg_set_request_processed(void)
1470 {
1471         bool need_more_processing = false;
1472
1473         last_request->processed = true;
1474
1475         spin_lock(&reg_requests_lock);
1476         if (!list_empty(&reg_requests_list))
1477                 need_more_processing = true;
1478         spin_unlock(&reg_requests_lock);
1479
1480         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1481                 cancel_delayed_work(&reg_timeout);
1482
1483         if (need_more_processing)
1484                 schedule_work(&reg_work);
1485 }
1486
1487 /**
1488  * __regulatory_hint - hint to the wireless core a regulatory domain
1489  * @wiphy: if the hint comes from country information from an AP, this
1490  *      is required to be set to the wiphy that received the information
1491  * @pending_request: the regulatory request currently being processed
1492  *
1493  * The Wireless subsystem can use this function to hint to the wireless core
1494  * what it believes should be the current regulatory domain.
1495  *
1496  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1497  * already been set or other standard error codes.
1498  *
1499  * Caller must hold &cfg80211_mutex and &reg_mutex
1500  */
1501 static int __regulatory_hint(struct wiphy *wiphy,
1502                              struct regulatory_request *pending_request)
1503 {
1504         const struct ieee80211_regdomain *regd;
1505         bool intersect = false;
1506         int r = 0;
1507
1508         assert_cfg80211_lock();
1509
1510         r = ignore_request(wiphy, pending_request);
1511
1512         if (r == REG_INTERSECT) {
1513                 if (pending_request->initiator ==
1514                     NL80211_REGDOM_SET_BY_DRIVER) {
1515                         regd = reg_copy_regd(cfg80211_regdomain);
1516                         if (IS_ERR(regd)) {
1517                                 kfree(pending_request);
1518                                 return PTR_ERR(regd);
1519                         }
1520                         wiphy->regd = regd;
1521                 }
1522                 intersect = true;
1523         } else if (r) {
1524                 /*
1525                  * If the regulatory domain being requested by the
1526                  * driver has already been set just copy it to the
1527                  * wiphy
1528                  */
1529                 if (r == -EALREADY &&
1530                     pending_request->initiator ==
1531                     NL80211_REGDOM_SET_BY_DRIVER) {
1532                         regd = reg_copy_regd(cfg80211_regdomain);
1533                         if (IS_ERR(regd)) {
1534                                 kfree(pending_request);
1535                                 return PTR_ERR(regd);
1536                         }
1537                         r = -EALREADY;
1538                         wiphy->regd = regd;
1539                         goto new_request;
1540                 }
1541                 kfree(pending_request);
1542                 return r;
1543         }
1544
1545 new_request:
1546         if (last_request != &core_request_world)
1547                 kfree(last_request);
1548
1549         last_request = pending_request;
1550         last_request->intersect = intersect;
1551
1552         pending_request = NULL;
1553
1554         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1555                 user_alpha2[0] = last_request->alpha2[0];
1556                 user_alpha2[1] = last_request->alpha2[1];
1557         }
1558
1559         /* When r == REG_INTERSECT we do need to call CRDA */
1560         if (r < 0) {
1561                 /*
1562                  * Since CRDA will not be called in this case as we already
1563                  * have applied the requested regulatory domain before we just
1564                  * inform userspace we have processed the request
1565                  */
1566                 if (r == -EALREADY) {
1567                         nl80211_send_reg_change_event(last_request);
1568                         reg_set_request_processed();
1569                 }
1570                 return r;
1571         }
1572
1573         return call_crda(last_request->alpha2);
1574 }
1575
1576 /* This processes *all* regulatory hints */
1577 static void reg_process_hint(struct regulatory_request *reg_request,
1578                              enum nl80211_reg_initiator reg_initiator)
1579 {
1580         int r = 0;
1581         struct wiphy *wiphy = NULL;
1582
1583         BUG_ON(!reg_request->alpha2);
1584
1585         if (wiphy_idx_valid(reg_request->wiphy_idx))
1586                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1587
1588         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1589             !wiphy) {
1590                 kfree(reg_request);
1591                 return;
1592         }
1593
1594         r = __regulatory_hint(wiphy, reg_request);
1595         /* This is required so that the orig_* parameters are saved */
1596         if (r == -EALREADY && wiphy &&
1597             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1598                 wiphy_update_regulatory(wiphy, reg_initiator);
1599                 return;
1600         }
1601
1602         /*
1603          * We only time out user hints, given that they should be the only
1604          * source of bogus requests.
1605          */
1606         if (r != -EALREADY &&
1607             reg_initiator == NL80211_REGDOM_SET_BY_USER)
1608                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1609 }
1610
1611 /*
1612  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1613  * Regulatory hints come on a first come first serve basis and we
1614  * must process each one atomically.
1615  */
1616 static void reg_process_pending_hints(void)
1617 {
1618         struct regulatory_request *reg_request;
1619
1620         mutex_lock(&cfg80211_mutex);
1621         mutex_lock(&reg_mutex);
1622
1623         /* When last_request->processed becomes true this will be rescheduled */
1624         if (last_request && !last_request->processed) {
1625                 REG_DBG_PRINT("Pending regulatory request, waiting "
1626                               "for it to be processed...\n");
1627                 goto out;
1628         }
1629
1630         spin_lock(&reg_requests_lock);
1631
1632         if (list_empty(&reg_requests_list)) {
1633                 spin_unlock(&reg_requests_lock);
1634                 goto out;
1635         }
1636
1637         reg_request = list_first_entry(&reg_requests_list,
1638                                        struct regulatory_request,
1639                                        list);
1640         list_del_init(&reg_request->list);
1641
1642         spin_unlock(&reg_requests_lock);
1643
1644         reg_process_hint(reg_request, reg_request->initiator);
1645
1646 out:
1647         mutex_unlock(&reg_mutex);
1648         mutex_unlock(&cfg80211_mutex);
1649 }
1650
1651 /* Processes beacon hints -- this has nothing to do with country IEs */
1652 static void reg_process_pending_beacon_hints(void)
1653 {
1654         struct cfg80211_registered_device *rdev;
1655         struct reg_beacon *pending_beacon, *tmp;
1656
1657         /*
1658          * No need to hold the reg_mutex here as we just touch wiphys
1659          * and do not read or access regulatory variables.
1660          */
1661         mutex_lock(&cfg80211_mutex);
1662
1663         /* This goes through the _pending_ beacon list */
1664         spin_lock_bh(&reg_pending_beacons_lock);
1665
1666         list_for_each_entry_safe(pending_beacon, tmp,
1667                                  &reg_pending_beacons, list) {
1668
1669                 list_del_init(&pending_beacon->list);
1670
1671                 /* Applies the beacon hint to current wiphys */
1672                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1673                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1674
1675                 /* Remembers the beacon hint for new wiphys or reg changes */
1676                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1677         }
1678
1679         spin_unlock_bh(&reg_pending_beacons_lock);
1680         mutex_unlock(&cfg80211_mutex);
1681 }
1682
1683 static void reg_todo(struct work_struct *work)
1684 {
1685         reg_process_pending_hints();
1686         reg_process_pending_beacon_hints();
1687 }
1688
1689 static void queue_regulatory_request(struct regulatory_request *request)
1690 {
1691         if (isalpha(request->alpha2[0]))
1692                 request->alpha2[0] = toupper(request->alpha2[0]);
1693         if (isalpha(request->alpha2[1]))
1694                 request->alpha2[1] = toupper(request->alpha2[1]);
1695
1696         spin_lock(&reg_requests_lock);
1697         list_add_tail(&request->list, &reg_requests_list);
1698         spin_unlock(&reg_requests_lock);
1699
1700         schedule_work(&reg_work);
1701 }
1702
1703 /*
1704  * Core regulatory hint -- happens during cfg80211_init()
1705  * and when we restore regulatory settings.
1706  */
1707 static int regulatory_hint_core(const char *alpha2)
1708 {
1709         struct regulatory_request *request;
1710
1711         request = kzalloc(sizeof(struct regulatory_request),
1712                           GFP_KERNEL);
1713         if (!request)
1714                 return -ENOMEM;
1715
1716         request->alpha2[0] = alpha2[0];
1717         request->alpha2[1] = alpha2[1];
1718         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1719
1720         queue_regulatory_request(request);
1721
1722         return 0;
1723 }
1724
1725 /* User hints */
1726 int regulatory_hint_user(const char *alpha2,
1727                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1728 {
1729         struct regulatory_request *request;
1730
1731         BUG_ON(!alpha2);
1732
1733         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1734         if (!request)
1735                 return -ENOMEM;
1736
1737         request->wiphy_idx = WIPHY_IDX_STALE;
1738         request->alpha2[0] = alpha2[0];
1739         request->alpha2[1] = alpha2[1];
1740         request->initiator = NL80211_REGDOM_SET_BY_USER;
1741         request->user_reg_hint_type = user_reg_hint_type;
1742
1743         queue_regulatory_request(request);
1744
1745         return 0;
1746 }
1747
1748 /* Driver hints */
1749 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1750 {
1751         struct regulatory_request *request;
1752
1753         BUG_ON(!alpha2);
1754         BUG_ON(!wiphy);
1755
1756         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1757         if (!request)
1758                 return -ENOMEM;
1759
1760         request->wiphy_idx = get_wiphy_idx(wiphy);
1761
1762         /* Must have registered wiphy first */
1763         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1764
1765         request->alpha2[0] = alpha2[0];
1766         request->alpha2[1] = alpha2[1];
1767         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1768
1769         queue_regulatory_request(request);
1770
1771         return 0;
1772 }
1773 EXPORT_SYMBOL(regulatory_hint);
1774
1775 /*
1776  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1777  * therefore cannot iterate over the rdev list here.
1778  */
1779 void regulatory_hint_11d(struct wiphy *wiphy,
1780                          enum ieee80211_band band,
1781                          const u8 *country_ie,
1782                          u8 country_ie_len)
1783 {
1784         char alpha2[2];
1785         enum environment_cap env = ENVIRON_ANY;
1786         struct regulatory_request *request;
1787
1788         mutex_lock(&reg_mutex);
1789
1790         if (unlikely(!last_request))
1791                 goto out;
1792
1793         /* IE len must be evenly divisible by 2 */
1794         if (country_ie_len & 0x01)
1795                 goto out;
1796
1797         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1798                 goto out;
1799
1800         alpha2[0] = country_ie[0];
1801         alpha2[1] = country_ie[1];
1802
1803         if (country_ie[2] == 'I')
1804                 env = ENVIRON_INDOOR;
1805         else if (country_ie[2] == 'O')
1806                 env = ENVIRON_OUTDOOR;
1807
1808         /*
1809          * We will run this only upon a successful connection on cfg80211.
1810          * We leave conflict resolution to the workqueue, where can hold
1811          * cfg80211_mutex.
1812          */
1813         if (likely(last_request->initiator ==
1814             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1815             wiphy_idx_valid(last_request->wiphy_idx)))
1816                 goto out;
1817
1818         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1819         if (!request)
1820                 goto out;
1821
1822         request->wiphy_idx = get_wiphy_idx(wiphy);
1823         request->alpha2[0] = alpha2[0];
1824         request->alpha2[1] = alpha2[1];
1825         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1826         request->country_ie_env = env;
1827
1828         queue_regulatory_request(request);
1829 out:
1830         mutex_unlock(&reg_mutex);
1831 }
1832
1833 static void restore_alpha2(char *alpha2, bool reset_user)
1834 {
1835         /* indicates there is no alpha2 to consider for restoration */
1836         alpha2[0] = '9';
1837         alpha2[1] = '7';
1838
1839         /* The user setting has precedence over the module parameter */
1840         if (is_user_regdom_saved()) {
1841                 /* Unless we're asked to ignore it and reset it */
1842                 if (reset_user) {
1843                         REG_DBG_PRINT("Restoring regulatory settings "
1844                                "including user preference\n");
1845                         user_alpha2[0] = '9';
1846                         user_alpha2[1] = '7';
1847
1848                         /*
1849                          * If we're ignoring user settings, we still need to
1850                          * check the module parameter to ensure we put things
1851                          * back as they were for a full restore.
1852                          */
1853                         if (!is_world_regdom(ieee80211_regdom)) {
1854                                 REG_DBG_PRINT("Keeping preference on "
1855                                        "module parameter ieee80211_regdom: %c%c\n",
1856                                        ieee80211_regdom[0],
1857                                        ieee80211_regdom[1]);
1858                                 alpha2[0] = ieee80211_regdom[0];
1859                                 alpha2[1] = ieee80211_regdom[1];
1860                         }
1861                 } else {
1862                         REG_DBG_PRINT("Restoring regulatory settings "
1863                                "while preserving user preference for: %c%c\n",
1864                                user_alpha2[0],
1865                                user_alpha2[1]);
1866                         alpha2[0] = user_alpha2[0];
1867                         alpha2[1] = user_alpha2[1];
1868                 }
1869         } else if (!is_world_regdom(ieee80211_regdom)) {
1870                 REG_DBG_PRINT("Keeping preference on "
1871                        "module parameter ieee80211_regdom: %c%c\n",
1872                        ieee80211_regdom[0],
1873                        ieee80211_regdom[1]);
1874                 alpha2[0] = ieee80211_regdom[0];
1875                 alpha2[1] = ieee80211_regdom[1];
1876         } else
1877                 REG_DBG_PRINT("Restoring regulatory settings\n");
1878 }
1879
1880 static void restore_custom_reg_settings(struct wiphy *wiphy)
1881 {
1882         struct ieee80211_supported_band *sband;
1883         enum ieee80211_band band;
1884         struct ieee80211_channel *chan;
1885         int i;
1886
1887         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1888                 sband = wiphy->bands[band];
1889                 if (!sband)
1890                         continue;
1891                 for (i = 0; i < sband->n_channels; i++) {
1892                         chan = &sband->channels[i];
1893                         chan->flags = chan->orig_flags;
1894                         chan->max_antenna_gain = chan->orig_mag;
1895                         chan->max_power = chan->orig_mpwr;
1896                         chan->beacon_found = false;
1897                 }
1898         }
1899 }
1900
1901 /*
1902  * Restoring regulatory settings involves ingoring any
1903  * possibly stale country IE information and user regulatory
1904  * settings if so desired, this includes any beacon hints
1905  * learned as we could have traveled outside to another country
1906  * after disconnection. To restore regulatory settings we do
1907  * exactly what we did at bootup:
1908  *
1909  *   - send a core regulatory hint
1910  *   - send a user regulatory hint if applicable
1911  *
1912  * Device drivers that send a regulatory hint for a specific country
1913  * keep their own regulatory domain on wiphy->regd so that does does
1914  * not need to be remembered.
1915  */
1916 static void restore_regulatory_settings(bool reset_user)
1917 {
1918         char alpha2[2];
1919         char world_alpha2[2];
1920         struct reg_beacon *reg_beacon, *btmp;
1921         struct regulatory_request *reg_request, *tmp;
1922         LIST_HEAD(tmp_reg_req_list);
1923         struct cfg80211_registered_device *rdev;
1924
1925         mutex_lock(&cfg80211_mutex);
1926         mutex_lock(&reg_mutex);
1927
1928         reset_regdomains(true);
1929         restore_alpha2(alpha2, reset_user);
1930
1931         /*
1932          * If there's any pending requests we simply
1933          * stash them to a temporary pending queue and
1934          * add then after we've restored regulatory
1935          * settings.
1936          */
1937         spin_lock(&reg_requests_lock);
1938         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1939                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1940                         continue;
1941                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1942         }
1943         spin_unlock(&reg_requests_lock);
1944
1945         /* Clear beacon hints */
1946         spin_lock_bh(&reg_pending_beacons_lock);
1947         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1948                 list_del(&reg_beacon->list);
1949                 kfree(reg_beacon);
1950         }
1951         spin_unlock_bh(&reg_pending_beacons_lock);
1952
1953         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1954                 list_del(&reg_beacon->list);
1955                 kfree(reg_beacon);
1956         }
1957
1958         /* First restore to the basic regulatory settings */
1959         cfg80211_regdomain = cfg80211_world_regdom;
1960         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1961         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1962
1963         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1964                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1965                         restore_custom_reg_settings(&rdev->wiphy);
1966         }
1967
1968         mutex_unlock(&reg_mutex);
1969         mutex_unlock(&cfg80211_mutex);
1970
1971         regulatory_hint_core(world_alpha2);
1972
1973         /*
1974          * This restores the ieee80211_regdom module parameter
1975          * preference or the last user requested regulatory
1976          * settings, user regulatory settings takes precedence.
1977          */
1978         if (is_an_alpha2(alpha2))
1979                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1980
1981         if (list_empty(&tmp_reg_req_list))
1982                 return;
1983
1984         mutex_lock(&cfg80211_mutex);
1985         mutex_lock(&reg_mutex);
1986
1987         spin_lock(&reg_requests_lock);
1988         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1989                 REG_DBG_PRINT("Adding request for country %c%c back "
1990                               "into the queue\n",
1991                               reg_request->alpha2[0],
1992                               reg_request->alpha2[1]);
1993                 list_move_tail(&reg_request->list, &reg_requests_list);
1994         }
1995         spin_unlock(&reg_requests_lock);
1996
1997         mutex_unlock(&reg_mutex);
1998         mutex_unlock(&cfg80211_mutex);
1999
2000         REG_DBG_PRINT("Kicking the queue\n");
2001
2002         schedule_work(&reg_work);
2003 }
2004
2005 void regulatory_hint_disconnect(void)
2006 {
2007         REG_DBG_PRINT("All devices are disconnected, going to "
2008                       "restore regulatory settings\n");
2009         restore_regulatory_settings(false);
2010 }
2011
2012 static bool freq_is_chan_12_13_14(u16 freq)
2013 {
2014         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2015             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2016             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2017                 return true;
2018         return false;
2019 }
2020
2021 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2022                                  struct ieee80211_channel *beacon_chan,
2023                                  gfp_t gfp)
2024 {
2025         struct reg_beacon *reg_beacon;
2026
2027         if (likely((beacon_chan->beacon_found ||
2028             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2029             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2030              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2031                 return 0;
2032
2033         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2034         if (!reg_beacon)
2035                 return -ENOMEM;
2036
2037         REG_DBG_PRINT("Found new beacon on "
2038                       "frequency: %d MHz (Ch %d) on %s\n",
2039                       beacon_chan->center_freq,
2040                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2041                       wiphy_name(wiphy));
2042
2043         memcpy(&reg_beacon->chan, beacon_chan,
2044                 sizeof(struct ieee80211_channel));
2045
2046
2047         /*
2048          * Since we can be called from BH or and non-BH context
2049          * we must use spin_lock_bh()
2050          */
2051         spin_lock_bh(&reg_pending_beacons_lock);
2052         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2053         spin_unlock_bh(&reg_pending_beacons_lock);
2054
2055         schedule_work(&reg_work);
2056
2057         return 0;
2058 }
2059
2060 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2061 {
2062         unsigned int i;
2063         const struct ieee80211_reg_rule *reg_rule = NULL;
2064         const struct ieee80211_freq_range *freq_range = NULL;
2065         const struct ieee80211_power_rule *power_rule = NULL;
2066
2067         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2068
2069         for (i = 0; i < rd->n_reg_rules; i++) {
2070                 reg_rule = &rd->reg_rules[i];
2071                 freq_range = &reg_rule->freq_range;
2072                 power_rule = &reg_rule->power_rule;
2073
2074                 /*
2075                  * There may not be documentation for max antenna gain
2076                  * in certain regions
2077                  */
2078                 if (power_rule->max_antenna_gain)
2079                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2080                                 freq_range->start_freq_khz,
2081                                 freq_range->end_freq_khz,
2082                                 freq_range->max_bandwidth_khz,
2083                                 power_rule->max_antenna_gain,
2084                                 power_rule->max_eirp);
2085                 else
2086                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2087                                 freq_range->start_freq_khz,
2088                                 freq_range->end_freq_khz,
2089                                 freq_range->max_bandwidth_khz,
2090                                 power_rule->max_eirp);
2091         }
2092 }
2093
2094 bool reg_supported_dfs_region(u8 dfs_region)
2095 {
2096         switch (dfs_region) {
2097         case NL80211_DFS_UNSET:
2098         case NL80211_DFS_FCC:
2099         case NL80211_DFS_ETSI:
2100         case NL80211_DFS_JP:
2101                 return true;
2102         default:
2103                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2104                               dfs_region);
2105                 return false;
2106         }
2107 }
2108
2109 static void print_dfs_region(u8 dfs_region)
2110 {
2111         if (!dfs_region)
2112                 return;
2113
2114         switch (dfs_region) {
2115         case NL80211_DFS_FCC:
2116                 pr_info(" DFS Master region FCC");
2117                 break;
2118         case NL80211_DFS_ETSI:
2119                 pr_info(" DFS Master region ETSI");
2120                 break;
2121         case NL80211_DFS_JP:
2122                 pr_info(" DFS Master region JP");
2123                 break;
2124         default:
2125                 pr_info(" DFS Master region Uknown");
2126                 break;
2127         }
2128 }
2129
2130 static void print_regdomain(const struct ieee80211_regdomain *rd)
2131 {
2132
2133         if (is_intersected_alpha2(rd->alpha2)) {
2134
2135                 if (last_request->initiator ==
2136                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2137                         struct cfg80211_registered_device *rdev;
2138                         rdev = cfg80211_rdev_by_wiphy_idx(
2139                                 last_request->wiphy_idx);
2140                         if (rdev) {
2141                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2142                                         rdev->country_ie_alpha2[0],
2143                                         rdev->country_ie_alpha2[1]);
2144                         } else
2145                                 pr_info("Current regulatory domain intersected:\n");
2146                 } else
2147                         pr_info("Current regulatory domain intersected:\n");
2148         } else if (is_world_regdom(rd->alpha2))
2149                 pr_info("World regulatory domain updated:\n");
2150         else {
2151                 if (is_unknown_alpha2(rd->alpha2))
2152                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2153                 else {
2154                         if (reg_request_cell_base(last_request))
2155                                 pr_info("Regulatory domain changed "
2156                                         "to country: %c%c by Cell Station\n",
2157                                         rd->alpha2[0], rd->alpha2[1]);
2158                         else
2159                                 pr_info("Regulatory domain changed "
2160                                         "to country: %c%c\n",
2161                                         rd->alpha2[0], rd->alpha2[1]);
2162                 }
2163         }
2164         print_dfs_region(rd->dfs_region);
2165         print_rd_rules(rd);
2166 }
2167
2168 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2169 {
2170         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2171         print_rd_rules(rd);
2172 }
2173
2174 /* Takes ownership of rd only if it doesn't fail */
2175 static int __set_regdom(const struct ieee80211_regdomain *rd)
2176 {
2177         const struct ieee80211_regdomain *regd;
2178         const struct ieee80211_regdomain *intersected_rd = NULL;
2179         struct wiphy *request_wiphy;
2180         /* Some basic sanity checks first */
2181
2182         if (is_world_regdom(rd->alpha2)) {
2183                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2184                         return -EINVAL;
2185                 update_world_regdomain(rd);
2186                 return 0;
2187         }
2188
2189         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2190                         !is_unknown_alpha2(rd->alpha2))
2191                 return -EINVAL;
2192
2193         if (!last_request)
2194                 return -EINVAL;
2195
2196         /*
2197          * Lets only bother proceeding on the same alpha2 if the current
2198          * rd is non static (it means CRDA was present and was used last)
2199          * and the pending request came in from a country IE
2200          */
2201         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2202                 /*
2203                  * If someone else asked us to change the rd lets only bother
2204                  * checking if the alpha2 changes if CRDA was already called
2205                  */
2206                 if (!regdom_changes(rd->alpha2))
2207                         return -EALREADY;
2208         }
2209
2210         /*
2211          * Now lets set the regulatory domain, update all driver channels
2212          * and finally inform them of what we have done, in case they want
2213          * to review or adjust their own settings based on their own
2214          * internal EEPROM data
2215          */
2216
2217         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2218                 return -EINVAL;
2219
2220         if (!is_valid_rd(rd)) {
2221                 pr_err("Invalid regulatory domain detected:\n");
2222                 print_regdomain_info(rd);
2223                 return -EINVAL;
2224         }
2225
2226         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2227         if (!request_wiphy &&
2228             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2229              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2230                 schedule_delayed_work(&reg_timeout, 0);
2231                 return -ENODEV;
2232         }
2233
2234         if (!last_request->intersect) {
2235                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2236                         reset_regdomains(false);
2237                         cfg80211_regdomain = rd;
2238                         return 0;
2239                 }
2240
2241                 /*
2242                  * For a driver hint, lets copy the regulatory domain the
2243                  * driver wanted to the wiphy to deal with conflicts
2244                  */
2245
2246                 /*
2247                  * Userspace could have sent two replies with only
2248                  * one kernel request.
2249                  */
2250                 if (request_wiphy->regd)
2251                         return -EALREADY;
2252
2253                 regd = reg_copy_regd(rd);
2254                 if (IS_ERR(regd))
2255                         return PTR_ERR(regd);
2256
2257                 request_wiphy->regd = regd;
2258                 reset_regdomains(false);
2259                 cfg80211_regdomain = rd;
2260                 return 0;
2261         }
2262
2263         /* Intersection requires a bit more work */
2264
2265         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2266
2267                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2268                 if (!intersected_rd)
2269                         return -EINVAL;
2270
2271                 /*
2272                  * We can trash what CRDA provided now.
2273                  * However if a driver requested this specific regulatory
2274                  * domain we keep it for its private use
2275                  */
2276                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2277                         request_wiphy->regd = rd;
2278                 else
2279                         kfree(rd);
2280
2281                 rd = NULL;
2282
2283                 reset_regdomains(false);
2284                 cfg80211_regdomain = intersected_rd;
2285
2286                 return 0;
2287         }
2288
2289         return -EINVAL;
2290 }
2291
2292
2293 /*
2294  * Use this call to set the current regulatory domain. Conflicts with
2295  * multiple drivers can be ironed out later. Caller must've already
2296  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2297  */
2298 int set_regdom(const struct ieee80211_regdomain *rd)
2299 {
2300         int r;
2301
2302         assert_cfg80211_lock();
2303
2304         mutex_lock(&reg_mutex);
2305
2306         /* Note that this doesn't update the wiphys, this is done below */
2307         r = __set_regdom(rd);
2308         if (r) {
2309                 if (r == -EALREADY)
2310                         reg_set_request_processed();
2311
2312                 kfree(rd);
2313                 mutex_unlock(&reg_mutex);
2314                 return r;
2315         }
2316
2317         /* This would make this whole thing pointless */
2318         if (!last_request->intersect)
2319                 BUG_ON(rd != cfg80211_regdomain);
2320
2321         /* update all wiphys now with the new established regulatory domain */
2322         update_all_wiphy_regulatory(last_request->initiator);
2323
2324         print_regdomain(cfg80211_regdomain);
2325
2326         nl80211_send_reg_change_event(last_request);
2327
2328         reg_set_request_processed();
2329
2330         mutex_unlock(&reg_mutex);
2331
2332         return r;
2333 }
2334
2335 #ifdef CONFIG_HOTPLUG
2336 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2337 {
2338         if (last_request && !last_request->processed) {
2339                 if (add_uevent_var(env, "COUNTRY=%c%c",
2340                                    last_request->alpha2[0],
2341                                    last_request->alpha2[1]))
2342                         return -ENOMEM;
2343         }
2344
2345         return 0;
2346 }
2347 #else
2348 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2349 {
2350         return -ENODEV;
2351 }
2352 #endif /* CONFIG_HOTPLUG */
2353
2354 void wiphy_regulatory_register(struct wiphy *wiphy)
2355 {
2356         assert_cfg80211_lock();
2357
2358         mutex_lock(&reg_mutex);
2359
2360         if (!reg_dev_ignore_cell_hint(wiphy))
2361                 reg_num_devs_support_basehint++;
2362
2363         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2364
2365         mutex_unlock(&reg_mutex);
2366 }
2367
2368 /* Caller must hold cfg80211_mutex */
2369 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2370 {
2371         struct wiphy *request_wiphy = NULL;
2372
2373         assert_cfg80211_lock();
2374
2375         mutex_lock(&reg_mutex);
2376
2377         if (!reg_dev_ignore_cell_hint(wiphy))
2378                 reg_num_devs_support_basehint--;
2379
2380         kfree(wiphy->regd);
2381
2382         if (last_request)
2383                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2384
2385         if (!request_wiphy || request_wiphy != wiphy)
2386                 goto out;
2387
2388         last_request->wiphy_idx = WIPHY_IDX_STALE;
2389         last_request->country_ie_env = ENVIRON_ANY;
2390 out:
2391         mutex_unlock(&reg_mutex);
2392 }
2393
2394 static void reg_timeout_work(struct work_struct *work)
2395 {
2396         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2397                       "restoring regulatory settings\n");
2398         restore_regulatory_settings(true);
2399 }
2400
2401 int __init regulatory_init(void)
2402 {
2403         int err = 0;
2404
2405         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2406         if (IS_ERR(reg_pdev))
2407                 return PTR_ERR(reg_pdev);
2408
2409         reg_pdev->dev.type = &reg_device_type;
2410
2411         spin_lock_init(&reg_requests_lock);
2412         spin_lock_init(&reg_pending_beacons_lock);
2413
2414         reg_regdb_size_check();
2415
2416         cfg80211_regdomain = cfg80211_world_regdom;
2417
2418         user_alpha2[0] = '9';
2419         user_alpha2[1] = '7';
2420
2421         /* We always try to get an update for the static regdomain */
2422         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2423         if (err) {
2424                 if (err == -ENOMEM)
2425                         return err;
2426                 /*
2427                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2428                  * memory which is handled and propagated appropriately above
2429                  * but it can also fail during a netlink_broadcast() or during
2430                  * early boot for call_usermodehelper(). For now treat these
2431                  * errors as non-fatal.
2432                  */
2433                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2434 #ifdef CONFIG_CFG80211_REG_DEBUG
2435                 /* We want to find out exactly why when debugging */
2436                 WARN_ON(err);
2437 #endif
2438         }
2439
2440         /*
2441          * Finally, if the user set the module parameter treat it
2442          * as a user hint.
2443          */
2444         if (!is_world_regdom(ieee80211_regdom))
2445                 regulatory_hint_user(ieee80211_regdom,
2446                                      NL80211_USER_REG_HINT_USER);
2447
2448         return 0;
2449 }
2450
2451 void /* __init_or_exit */ regulatory_exit(void)
2452 {
2453         struct regulatory_request *reg_request, *tmp;
2454         struct reg_beacon *reg_beacon, *btmp;
2455
2456         cancel_work_sync(&reg_work);
2457         cancel_delayed_work_sync(&reg_timeout);
2458
2459         mutex_lock(&cfg80211_mutex);
2460         mutex_lock(&reg_mutex);
2461
2462         reset_regdomains(true);
2463
2464         dev_set_uevent_suppress(&reg_pdev->dev, true);
2465
2466         platform_device_unregister(reg_pdev);
2467
2468         spin_lock_bh(&reg_pending_beacons_lock);
2469         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2470                 list_del(&reg_beacon->list);
2471                 kfree(reg_beacon);
2472         }
2473         spin_unlock_bh(&reg_pending_beacons_lock);
2474
2475         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2476                 list_del(&reg_beacon->list);
2477                 kfree(reg_beacon);
2478         }
2479
2480         spin_lock(&reg_requests_lock);
2481         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2482                 list_del(&reg_request->list);
2483                 kfree(reg_request);
2484         }
2485         spin_unlock(&reg_requests_lock);
2486
2487         mutex_unlock(&reg_mutex);
2488         mutex_unlock(&cfg80211_mutex);
2489 }