neigh: Better handling of transition to NUD_PROBE state
[firefly-linux-kernel-4.4.55.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28
29 #define MAX_LSM_EVM_XATTR       2
30
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33         CONFIG_DEFAULT_SECURITY;
34
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37         .name   = "default",
38 };
39
40 static inline int __init verify(struct security_operations *ops)
41 {
42         /* verify the security_operations structure exists */
43         if (!ops)
44                 return -EINVAL;
45         security_fixup_ops(ops);
46         return 0;
47 }
48
49 static void __init do_security_initcalls(void)
50 {
51         initcall_t *call;
52         call = __security_initcall_start;
53         while (call < __security_initcall_end) {
54                 (*call) ();
55                 call++;
56         }
57 }
58
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66         printk(KERN_INFO "Security Framework initialized\n");
67
68         security_fixup_ops(&default_security_ops);
69         security_ops = &default_security_ops;
70         do_security_initcalls();
71
72         return 0;
73 }
74
75 void reset_security_ops(void)
76 {
77         security_ops = &default_security_ops;
78 }
79
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84         return 1;
85 }
86 __setup("security=", choose_lsm);
87
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *      -The passed LSM is the one chosen by user at boot time,
98  *      -or the passed LSM is configured as the default and the user did not
99  *       choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104         return !strcmp(ops->name, chosen_lsm);
105 }
106
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121         if (verify(ops)) {
122                 printk(KERN_DEBUG "%s could not verify "
123                        "security_operations structure.\n", __func__);
124                 return -EINVAL;
125         }
126
127         if (security_ops != &default_security_ops)
128                 return -EAGAIN;
129
130         security_ops = ops;
131
132         return 0;
133 }
134
135 /* Security operations */
136
137 int security_binder_set_context_mgr(struct task_struct *mgr)
138 {
139         return security_ops->binder_set_context_mgr(mgr);
140 }
141
142 int security_binder_transaction(struct task_struct *from, struct task_struct *to)
143 {
144         return security_ops->binder_transaction(from, to);
145 }
146
147 int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
148 {
149         return security_ops->binder_transfer_binder(from, to);
150 }
151
152 int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
153 {
154         return security_ops->binder_transfer_file(from, to, file);
155 }
156
157 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
158 {
159 #ifdef CONFIG_SECURITY_YAMA_STACKED
160         int rc;
161         rc = yama_ptrace_access_check(child, mode);
162         if (rc)
163                 return rc;
164 #endif
165         return security_ops->ptrace_access_check(child, mode);
166 }
167
168 int security_ptrace_traceme(struct task_struct *parent)
169 {
170 #ifdef CONFIG_SECURITY_YAMA_STACKED
171         int rc;
172         rc = yama_ptrace_traceme(parent);
173         if (rc)
174                 return rc;
175 #endif
176         return security_ops->ptrace_traceme(parent);
177 }
178
179 int security_capget(struct task_struct *target,
180                      kernel_cap_t *effective,
181                      kernel_cap_t *inheritable,
182                      kernel_cap_t *permitted)
183 {
184         return security_ops->capget(target, effective, inheritable, permitted);
185 }
186
187 int security_capset(struct cred *new, const struct cred *old,
188                     const kernel_cap_t *effective,
189                     const kernel_cap_t *inheritable,
190                     const kernel_cap_t *permitted)
191 {
192         return security_ops->capset(new, old,
193                                     effective, inheritable, permitted);
194 }
195
196 int security_capable(const struct cred *cred, struct user_namespace *ns,
197                      int cap)
198 {
199         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
200 }
201
202 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
203                              int cap)
204 {
205         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
206 }
207
208 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
209 {
210         return security_ops->quotactl(cmds, type, id, sb);
211 }
212
213 int security_quota_on(struct dentry *dentry)
214 {
215         return security_ops->quota_on(dentry);
216 }
217
218 int security_syslog(int type)
219 {
220         return security_ops->syslog(type);
221 }
222
223 int security_settime(const struct timespec *ts, const struct timezone *tz)
224 {
225         return security_ops->settime(ts, tz);
226 }
227
228 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
229 {
230         return security_ops->vm_enough_memory(mm, pages);
231 }
232
233 int security_bprm_set_creds(struct linux_binprm *bprm)
234 {
235         return security_ops->bprm_set_creds(bprm);
236 }
237
238 int security_bprm_check(struct linux_binprm *bprm)
239 {
240         int ret;
241
242         ret = security_ops->bprm_check_security(bprm);
243         if (ret)
244                 return ret;
245         return ima_bprm_check(bprm);
246 }
247
248 void security_bprm_committing_creds(struct linux_binprm *bprm)
249 {
250         security_ops->bprm_committing_creds(bprm);
251 }
252
253 void security_bprm_committed_creds(struct linux_binprm *bprm)
254 {
255         security_ops->bprm_committed_creds(bprm);
256 }
257
258 int security_bprm_secureexec(struct linux_binprm *bprm)
259 {
260         return security_ops->bprm_secureexec(bprm);
261 }
262
263 int security_sb_alloc(struct super_block *sb)
264 {
265         return security_ops->sb_alloc_security(sb);
266 }
267
268 void security_sb_free(struct super_block *sb)
269 {
270         security_ops->sb_free_security(sb);
271 }
272
273 int security_sb_copy_data(char *orig, char *copy)
274 {
275         return security_ops->sb_copy_data(orig, copy);
276 }
277 EXPORT_SYMBOL(security_sb_copy_data);
278
279 int security_sb_remount(struct super_block *sb, void *data)
280 {
281         return security_ops->sb_remount(sb, data);
282 }
283
284 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
285 {
286         return security_ops->sb_kern_mount(sb, flags, data);
287 }
288
289 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
290 {
291         return security_ops->sb_show_options(m, sb);
292 }
293
294 int security_sb_statfs(struct dentry *dentry)
295 {
296         return security_ops->sb_statfs(dentry);
297 }
298
299 int security_sb_mount(const char *dev_name, struct path *path,
300                        const char *type, unsigned long flags, void *data)
301 {
302         return security_ops->sb_mount(dev_name, path, type, flags, data);
303 }
304
305 int security_sb_umount(struct vfsmount *mnt, int flags)
306 {
307         return security_ops->sb_umount(mnt, flags);
308 }
309
310 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
311 {
312         return security_ops->sb_pivotroot(old_path, new_path);
313 }
314
315 int security_sb_set_mnt_opts(struct super_block *sb,
316                                 struct security_mnt_opts *opts)
317 {
318         return security_ops->sb_set_mnt_opts(sb, opts);
319 }
320 EXPORT_SYMBOL(security_sb_set_mnt_opts);
321
322 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
323                                 struct super_block *newsb)
324 {
325         return security_ops->sb_clone_mnt_opts(oldsb, newsb);
326 }
327 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
328
329 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
330 {
331         return security_ops->sb_parse_opts_str(options, opts);
332 }
333 EXPORT_SYMBOL(security_sb_parse_opts_str);
334
335 int security_inode_alloc(struct inode *inode)
336 {
337         inode->i_security = NULL;
338         return security_ops->inode_alloc_security(inode);
339 }
340
341 void security_inode_free(struct inode *inode)
342 {
343         integrity_inode_free(inode);
344         security_ops->inode_free_security(inode);
345 }
346
347 int security_inode_init_security(struct inode *inode, struct inode *dir,
348                                  const struct qstr *qstr,
349                                  const initxattrs initxattrs, void *fs_data)
350 {
351         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
352         struct xattr *lsm_xattr, *evm_xattr, *xattr;
353         int ret;
354
355         if (unlikely(IS_PRIVATE(inode)))
356                 return 0;
357
358         memset(new_xattrs, 0, sizeof new_xattrs);
359         if (!initxattrs)
360                 return security_ops->inode_init_security(inode, dir, qstr,
361                                                          NULL, NULL, NULL);
362         lsm_xattr = new_xattrs;
363         ret = security_ops->inode_init_security(inode, dir, qstr,
364                                                 &lsm_xattr->name,
365                                                 &lsm_xattr->value,
366                                                 &lsm_xattr->value_len);
367         if (ret)
368                 goto out;
369
370         evm_xattr = lsm_xattr + 1;
371         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
372         if (ret)
373                 goto out;
374         ret = initxattrs(inode, new_xattrs, fs_data);
375 out:
376         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
377                 kfree(xattr->name);
378                 kfree(xattr->value);
379         }
380         return (ret == -EOPNOTSUPP) ? 0 : ret;
381 }
382 EXPORT_SYMBOL(security_inode_init_security);
383
384 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
385                                      const struct qstr *qstr, char **name,
386                                      void **value, size_t *len)
387 {
388         if (unlikely(IS_PRIVATE(inode)))
389                 return -EOPNOTSUPP;
390         return security_ops->inode_init_security(inode, dir, qstr, name, value,
391                                                  len);
392 }
393 EXPORT_SYMBOL(security_old_inode_init_security);
394
395 #ifdef CONFIG_SECURITY_PATH
396 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
397                         unsigned int dev)
398 {
399         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400                 return 0;
401         return security_ops->path_mknod(dir, dentry, mode, dev);
402 }
403 EXPORT_SYMBOL(security_path_mknod);
404
405 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
406 {
407         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
408                 return 0;
409         return security_ops->path_mkdir(dir, dentry, mode);
410 }
411 EXPORT_SYMBOL(security_path_mkdir);
412
413 int security_path_rmdir(struct path *dir, struct dentry *dentry)
414 {
415         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416                 return 0;
417         return security_ops->path_rmdir(dir, dentry);
418 }
419
420 int security_path_unlink(struct path *dir, struct dentry *dentry)
421 {
422         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423                 return 0;
424         return security_ops->path_unlink(dir, dentry);
425 }
426 EXPORT_SYMBOL(security_path_unlink);
427
428 int security_path_symlink(struct path *dir, struct dentry *dentry,
429                           const char *old_name)
430 {
431         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
432                 return 0;
433         return security_ops->path_symlink(dir, dentry, old_name);
434 }
435
436 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
437                        struct dentry *new_dentry)
438 {
439         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
440                 return 0;
441         return security_ops->path_link(old_dentry, new_dir, new_dentry);
442 }
443
444 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
445                          struct path *new_dir, struct dentry *new_dentry)
446 {
447         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
448                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
449                 return 0;
450         return security_ops->path_rename(old_dir, old_dentry, new_dir,
451                                          new_dentry);
452 }
453 EXPORT_SYMBOL(security_path_rename);
454
455 int security_path_truncate(struct path *path)
456 {
457         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458                 return 0;
459         return security_ops->path_truncate(path);
460 }
461
462 int security_path_chmod(struct path *path, umode_t mode)
463 {
464         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465                 return 0;
466         return security_ops->path_chmod(path, mode);
467 }
468
469 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
470 {
471         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
472                 return 0;
473         return security_ops->path_chown(path, uid, gid);
474 }
475
476 int security_path_chroot(struct path *path)
477 {
478         return security_ops->path_chroot(path);
479 }
480 #endif
481
482 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
483 {
484         if (unlikely(IS_PRIVATE(dir)))
485                 return 0;
486         return security_ops->inode_create(dir, dentry, mode);
487 }
488 EXPORT_SYMBOL_GPL(security_inode_create);
489
490 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
491                          struct dentry *new_dentry)
492 {
493         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
494                 return 0;
495         return security_ops->inode_link(old_dentry, dir, new_dentry);
496 }
497
498 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
499 {
500         if (unlikely(IS_PRIVATE(dentry->d_inode)))
501                 return 0;
502         return security_ops->inode_unlink(dir, dentry);
503 }
504
505 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
506                             const char *old_name)
507 {
508         if (unlikely(IS_PRIVATE(dir)))
509                 return 0;
510         return security_ops->inode_symlink(dir, dentry, old_name);
511 }
512
513 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
514 {
515         if (unlikely(IS_PRIVATE(dir)))
516                 return 0;
517         return security_ops->inode_mkdir(dir, dentry, mode);
518 }
519 EXPORT_SYMBOL_GPL(security_inode_mkdir);
520
521 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
522 {
523         if (unlikely(IS_PRIVATE(dentry->d_inode)))
524                 return 0;
525         return security_ops->inode_rmdir(dir, dentry);
526 }
527
528 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
529 {
530         if (unlikely(IS_PRIVATE(dir)))
531                 return 0;
532         return security_ops->inode_mknod(dir, dentry, mode, dev);
533 }
534
535 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
536                            struct inode *new_dir, struct dentry *new_dentry)
537 {
538         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
539             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
540                 return 0;
541         return security_ops->inode_rename(old_dir, old_dentry,
542                                            new_dir, new_dentry);
543 }
544
545 int security_inode_readlink(struct dentry *dentry)
546 {
547         if (unlikely(IS_PRIVATE(dentry->d_inode)))
548                 return 0;
549         return security_ops->inode_readlink(dentry);
550 }
551
552 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
553 {
554         if (unlikely(IS_PRIVATE(dentry->d_inode)))
555                 return 0;
556         return security_ops->inode_follow_link(dentry, nd);
557 }
558
559 int security_inode_permission(struct inode *inode, int mask)
560 {
561         if (unlikely(IS_PRIVATE(inode)))
562                 return 0;
563         return security_ops->inode_permission(inode, mask);
564 }
565
566 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568         int ret;
569
570         if (unlikely(IS_PRIVATE(dentry->d_inode)))
571                 return 0;
572         ret = security_ops->inode_setattr(dentry, attr);
573         if (ret)
574                 return ret;
575         return evm_inode_setattr(dentry, attr);
576 }
577 EXPORT_SYMBOL_GPL(security_inode_setattr);
578
579 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
580 {
581         if (unlikely(IS_PRIVATE(dentry->d_inode)))
582                 return 0;
583         return security_ops->inode_getattr(mnt, dentry);
584 }
585
586 int security_inode_setxattr(struct dentry *dentry, const char *name,
587                             const void *value, size_t size, int flags)
588 {
589         int ret;
590
591         if (unlikely(IS_PRIVATE(dentry->d_inode)))
592                 return 0;
593         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
594         if (ret)
595                 return ret;
596         ret = ima_inode_setxattr(dentry, name, value, size);
597         if (ret)
598                 return ret;
599         return evm_inode_setxattr(dentry, name, value, size);
600 }
601
602 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
603                                   const void *value, size_t size, int flags)
604 {
605         if (unlikely(IS_PRIVATE(dentry->d_inode)))
606                 return;
607         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
608         evm_inode_post_setxattr(dentry, name, value, size);
609 }
610
611 int security_inode_getxattr(struct dentry *dentry, const char *name)
612 {
613         if (unlikely(IS_PRIVATE(dentry->d_inode)))
614                 return 0;
615         return security_ops->inode_getxattr(dentry, name);
616 }
617
618 int security_inode_listxattr(struct dentry *dentry)
619 {
620         if (unlikely(IS_PRIVATE(dentry->d_inode)))
621                 return 0;
622         return security_ops->inode_listxattr(dentry);
623 }
624
625 int security_inode_removexattr(struct dentry *dentry, const char *name)
626 {
627         int ret;
628
629         if (unlikely(IS_PRIVATE(dentry->d_inode)))
630                 return 0;
631         ret = security_ops->inode_removexattr(dentry, name);
632         if (ret)
633                 return ret;
634         ret = ima_inode_removexattr(dentry, name);
635         if (ret)
636                 return ret;
637         return evm_inode_removexattr(dentry, name);
638 }
639
640 int security_inode_need_killpriv(struct dentry *dentry)
641 {
642         return security_ops->inode_need_killpriv(dentry);
643 }
644
645 int security_inode_killpriv(struct dentry *dentry)
646 {
647         return security_ops->inode_killpriv(dentry);
648 }
649
650 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
651 {
652         if (unlikely(IS_PRIVATE(inode)))
653                 return -EOPNOTSUPP;
654         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
655 }
656
657 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
658 {
659         if (unlikely(IS_PRIVATE(inode)))
660                 return -EOPNOTSUPP;
661         return security_ops->inode_setsecurity(inode, name, value, size, flags);
662 }
663
664 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
665 {
666         if (unlikely(IS_PRIVATE(inode)))
667                 return 0;
668         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
669 }
670
671 void security_inode_getsecid(const struct inode *inode, u32 *secid)
672 {
673         security_ops->inode_getsecid(inode, secid);
674 }
675
676 int security_file_permission(struct file *file, int mask)
677 {
678         int ret;
679
680         ret = security_ops->file_permission(file, mask);
681         if (ret)
682                 return ret;
683
684         return fsnotify_perm(file, mask);
685 }
686
687 int security_file_alloc(struct file *file)
688 {
689         return security_ops->file_alloc_security(file);
690 }
691
692 void security_file_free(struct file *file)
693 {
694         security_ops->file_free_security(file);
695 }
696
697 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
698 {
699         return security_ops->file_ioctl(file, cmd, arg);
700 }
701
702 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
703 {
704         /*
705          * Does we have PROT_READ and does the application expect
706          * it to imply PROT_EXEC?  If not, nothing to talk about...
707          */
708         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
709                 return prot;
710         if (!(current->personality & READ_IMPLIES_EXEC))
711                 return prot;
712         /*
713          * if that's an anonymous mapping, let it.
714          */
715         if (!file)
716                 return prot | PROT_EXEC;
717         /*
718          * ditto if it's not on noexec mount, except that on !MMU we need
719          * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
720          */
721         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
722 #ifndef CONFIG_MMU
723                 unsigned long caps = 0;
724                 struct address_space *mapping = file->f_mapping;
725                 if (mapping && mapping->backing_dev_info)
726                         caps = mapping->backing_dev_info->capabilities;
727                 if (!(caps & BDI_CAP_EXEC_MAP))
728                         return prot;
729 #endif
730                 return prot | PROT_EXEC;
731         }
732         /* anything on noexec mount won't get PROT_EXEC */
733         return prot;
734 }
735
736 int security_mmap_file(struct file *file, unsigned long prot,
737                         unsigned long flags)
738 {
739         int ret;
740         ret = security_ops->mmap_file(file, prot,
741                                         mmap_prot(file, prot), flags);
742         if (ret)
743                 return ret;
744         return ima_file_mmap(file, prot);
745 }
746
747 int security_mmap_addr(unsigned long addr)
748 {
749         return security_ops->mmap_addr(addr);
750 }
751
752 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
753                             unsigned long prot)
754 {
755         return security_ops->file_mprotect(vma, reqprot, prot);
756 }
757
758 int security_file_lock(struct file *file, unsigned int cmd)
759 {
760         return security_ops->file_lock(file, cmd);
761 }
762
763 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
764 {
765         return security_ops->file_fcntl(file, cmd, arg);
766 }
767
768 int security_file_set_fowner(struct file *file)
769 {
770         return security_ops->file_set_fowner(file);
771 }
772
773 int security_file_send_sigiotask(struct task_struct *tsk,
774                                   struct fown_struct *fown, int sig)
775 {
776         return security_ops->file_send_sigiotask(tsk, fown, sig);
777 }
778
779 int security_file_receive(struct file *file)
780 {
781         return security_ops->file_receive(file);
782 }
783
784 int security_file_open(struct file *file, const struct cred *cred)
785 {
786         int ret;
787
788         ret = security_ops->file_open(file, cred);
789         if (ret)
790                 return ret;
791
792         return fsnotify_perm(file, MAY_OPEN);
793 }
794
795 int security_task_create(unsigned long clone_flags)
796 {
797         return security_ops->task_create(clone_flags);
798 }
799
800 void security_task_free(struct task_struct *task)
801 {
802 #ifdef CONFIG_SECURITY_YAMA_STACKED
803         yama_task_free(task);
804 #endif
805         security_ops->task_free(task);
806 }
807
808 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
809 {
810         return security_ops->cred_alloc_blank(cred, gfp);
811 }
812
813 void security_cred_free(struct cred *cred)
814 {
815         security_ops->cred_free(cred);
816 }
817
818 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
819 {
820         return security_ops->cred_prepare(new, old, gfp);
821 }
822
823 void security_transfer_creds(struct cred *new, const struct cred *old)
824 {
825         security_ops->cred_transfer(new, old);
826 }
827
828 int security_kernel_act_as(struct cred *new, u32 secid)
829 {
830         return security_ops->kernel_act_as(new, secid);
831 }
832
833 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
834 {
835         return security_ops->kernel_create_files_as(new, inode);
836 }
837
838 int security_kernel_module_request(char *kmod_name)
839 {
840         return security_ops->kernel_module_request(kmod_name);
841 }
842
843 int security_kernel_module_from_file(struct file *file)
844 {
845         int ret;
846
847         ret = security_ops->kernel_module_from_file(file);
848         if (ret)
849                 return ret;
850         return ima_module_check(file);
851 }
852
853 int security_task_fix_setuid(struct cred *new, const struct cred *old,
854                              int flags)
855 {
856         return security_ops->task_fix_setuid(new, old, flags);
857 }
858
859 int security_task_setpgid(struct task_struct *p, pid_t pgid)
860 {
861         return security_ops->task_setpgid(p, pgid);
862 }
863
864 int security_task_getpgid(struct task_struct *p)
865 {
866         return security_ops->task_getpgid(p);
867 }
868
869 int security_task_getsid(struct task_struct *p)
870 {
871         return security_ops->task_getsid(p);
872 }
873
874 void security_task_getsecid(struct task_struct *p, u32 *secid)
875 {
876         security_ops->task_getsecid(p, secid);
877 }
878 EXPORT_SYMBOL(security_task_getsecid);
879
880 int security_task_setnice(struct task_struct *p, int nice)
881 {
882         return security_ops->task_setnice(p, nice);
883 }
884
885 int security_task_setioprio(struct task_struct *p, int ioprio)
886 {
887         return security_ops->task_setioprio(p, ioprio);
888 }
889
890 int security_task_getioprio(struct task_struct *p)
891 {
892         return security_ops->task_getioprio(p);
893 }
894
895 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
896                 struct rlimit *new_rlim)
897 {
898         return security_ops->task_setrlimit(p, resource, new_rlim);
899 }
900
901 int security_task_setscheduler(struct task_struct *p)
902 {
903         return security_ops->task_setscheduler(p);
904 }
905
906 int security_task_getscheduler(struct task_struct *p)
907 {
908         return security_ops->task_getscheduler(p);
909 }
910
911 int security_task_movememory(struct task_struct *p)
912 {
913         return security_ops->task_movememory(p);
914 }
915
916 int security_task_kill(struct task_struct *p, struct siginfo *info,
917                         int sig, u32 secid)
918 {
919         return security_ops->task_kill(p, info, sig, secid);
920 }
921
922 int security_task_wait(struct task_struct *p)
923 {
924         return security_ops->task_wait(p);
925 }
926
927 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
928                          unsigned long arg4, unsigned long arg5)
929 {
930 #ifdef CONFIG_SECURITY_YAMA_STACKED
931         int rc;
932         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
933         if (rc != -ENOSYS)
934                 return rc;
935 #endif
936         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
937 }
938
939 void security_task_to_inode(struct task_struct *p, struct inode *inode)
940 {
941         security_ops->task_to_inode(p, inode);
942 }
943
944 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
945 {
946         return security_ops->ipc_permission(ipcp, flag);
947 }
948
949 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
950 {
951         security_ops->ipc_getsecid(ipcp, secid);
952 }
953
954 int security_msg_msg_alloc(struct msg_msg *msg)
955 {
956         return security_ops->msg_msg_alloc_security(msg);
957 }
958
959 void security_msg_msg_free(struct msg_msg *msg)
960 {
961         security_ops->msg_msg_free_security(msg);
962 }
963
964 int security_msg_queue_alloc(struct msg_queue *msq)
965 {
966         return security_ops->msg_queue_alloc_security(msq);
967 }
968
969 void security_msg_queue_free(struct msg_queue *msq)
970 {
971         security_ops->msg_queue_free_security(msq);
972 }
973
974 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
975 {
976         return security_ops->msg_queue_associate(msq, msqflg);
977 }
978
979 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
980 {
981         return security_ops->msg_queue_msgctl(msq, cmd);
982 }
983
984 int security_msg_queue_msgsnd(struct msg_queue *msq,
985                                struct msg_msg *msg, int msqflg)
986 {
987         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
988 }
989
990 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
991                                struct task_struct *target, long type, int mode)
992 {
993         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
994 }
995
996 int security_shm_alloc(struct shmid_kernel *shp)
997 {
998         return security_ops->shm_alloc_security(shp);
999 }
1000
1001 void security_shm_free(struct shmid_kernel *shp)
1002 {
1003         security_ops->shm_free_security(shp);
1004 }
1005
1006 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1007 {
1008         return security_ops->shm_associate(shp, shmflg);
1009 }
1010
1011 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1012 {
1013         return security_ops->shm_shmctl(shp, cmd);
1014 }
1015
1016 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1017 {
1018         return security_ops->shm_shmat(shp, shmaddr, shmflg);
1019 }
1020
1021 int security_sem_alloc(struct sem_array *sma)
1022 {
1023         return security_ops->sem_alloc_security(sma);
1024 }
1025
1026 void security_sem_free(struct sem_array *sma)
1027 {
1028         security_ops->sem_free_security(sma);
1029 }
1030
1031 int security_sem_associate(struct sem_array *sma, int semflg)
1032 {
1033         return security_ops->sem_associate(sma, semflg);
1034 }
1035
1036 int security_sem_semctl(struct sem_array *sma, int cmd)
1037 {
1038         return security_ops->sem_semctl(sma, cmd);
1039 }
1040
1041 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1042                         unsigned nsops, int alter)
1043 {
1044         return security_ops->sem_semop(sma, sops, nsops, alter);
1045 }
1046
1047 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1048 {
1049         if (unlikely(inode && IS_PRIVATE(inode)))
1050                 return;
1051         security_ops->d_instantiate(dentry, inode);
1052 }
1053 EXPORT_SYMBOL(security_d_instantiate);
1054
1055 int security_getprocattr(struct task_struct *p, char *name, char **value)
1056 {
1057         return security_ops->getprocattr(p, name, value);
1058 }
1059
1060 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1061 {
1062         return security_ops->setprocattr(p, name, value, size);
1063 }
1064
1065 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1066 {
1067         return security_ops->netlink_send(sk, skb);
1068 }
1069
1070 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1071 {
1072         return security_ops->secid_to_secctx(secid, secdata, seclen);
1073 }
1074 EXPORT_SYMBOL(security_secid_to_secctx);
1075
1076 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1077 {
1078         return security_ops->secctx_to_secid(secdata, seclen, secid);
1079 }
1080 EXPORT_SYMBOL(security_secctx_to_secid);
1081
1082 void security_release_secctx(char *secdata, u32 seclen)
1083 {
1084         security_ops->release_secctx(secdata, seclen);
1085 }
1086 EXPORT_SYMBOL(security_release_secctx);
1087
1088 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1089 {
1090         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1091 }
1092 EXPORT_SYMBOL(security_inode_notifysecctx);
1093
1094 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1095 {
1096         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1097 }
1098 EXPORT_SYMBOL(security_inode_setsecctx);
1099
1100 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1101 {
1102         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1103 }
1104 EXPORT_SYMBOL(security_inode_getsecctx);
1105
1106 #ifdef CONFIG_SECURITY_NETWORK
1107
1108 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1109 {
1110         return security_ops->unix_stream_connect(sock, other, newsk);
1111 }
1112 EXPORT_SYMBOL(security_unix_stream_connect);
1113
1114 int security_unix_may_send(struct socket *sock,  struct socket *other)
1115 {
1116         return security_ops->unix_may_send(sock, other);
1117 }
1118 EXPORT_SYMBOL(security_unix_may_send);
1119
1120 int security_socket_create(int family, int type, int protocol, int kern)
1121 {
1122         return security_ops->socket_create(family, type, protocol, kern);
1123 }
1124
1125 int security_socket_post_create(struct socket *sock, int family,
1126                                 int type, int protocol, int kern)
1127 {
1128         return security_ops->socket_post_create(sock, family, type,
1129                                                 protocol, kern);
1130 }
1131
1132 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1133 {
1134         return security_ops->socket_bind(sock, address, addrlen);
1135 }
1136
1137 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1138 {
1139         return security_ops->socket_connect(sock, address, addrlen);
1140 }
1141
1142 int security_socket_listen(struct socket *sock, int backlog)
1143 {
1144         return security_ops->socket_listen(sock, backlog);
1145 }
1146
1147 int security_socket_accept(struct socket *sock, struct socket *newsock)
1148 {
1149         return security_ops->socket_accept(sock, newsock);
1150 }
1151
1152 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1153 {
1154         return security_ops->socket_sendmsg(sock, msg, size);
1155 }
1156
1157 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1158                             int size, int flags)
1159 {
1160         return security_ops->socket_recvmsg(sock, msg, size, flags);
1161 }
1162
1163 int security_socket_getsockname(struct socket *sock)
1164 {
1165         return security_ops->socket_getsockname(sock);
1166 }
1167
1168 int security_socket_getpeername(struct socket *sock)
1169 {
1170         return security_ops->socket_getpeername(sock);
1171 }
1172
1173 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1174 {
1175         return security_ops->socket_getsockopt(sock, level, optname);
1176 }
1177
1178 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1179 {
1180         return security_ops->socket_setsockopt(sock, level, optname);
1181 }
1182
1183 int security_socket_shutdown(struct socket *sock, int how)
1184 {
1185         return security_ops->socket_shutdown(sock, how);
1186 }
1187
1188 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1189 {
1190         return security_ops->socket_sock_rcv_skb(sk, skb);
1191 }
1192 EXPORT_SYMBOL(security_sock_rcv_skb);
1193
1194 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1195                                       int __user *optlen, unsigned len)
1196 {
1197         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1198 }
1199
1200 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1201 {
1202         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1203 }
1204 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1205
1206 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1207 {
1208         return security_ops->sk_alloc_security(sk, family, priority);
1209 }
1210
1211 void security_sk_free(struct sock *sk)
1212 {
1213         security_ops->sk_free_security(sk);
1214 }
1215
1216 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1217 {
1218         security_ops->sk_clone_security(sk, newsk);
1219 }
1220 EXPORT_SYMBOL(security_sk_clone);
1221
1222 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1223 {
1224         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1225 }
1226 EXPORT_SYMBOL(security_sk_classify_flow);
1227
1228 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1229 {
1230         security_ops->req_classify_flow(req, fl);
1231 }
1232 EXPORT_SYMBOL(security_req_classify_flow);
1233
1234 void security_sock_graft(struct sock *sk, struct socket *parent)
1235 {
1236         security_ops->sock_graft(sk, parent);
1237 }
1238 EXPORT_SYMBOL(security_sock_graft);
1239
1240 int security_inet_conn_request(struct sock *sk,
1241                         struct sk_buff *skb, struct request_sock *req)
1242 {
1243         return security_ops->inet_conn_request(sk, skb, req);
1244 }
1245 EXPORT_SYMBOL(security_inet_conn_request);
1246
1247 void security_inet_csk_clone(struct sock *newsk,
1248                         const struct request_sock *req)
1249 {
1250         security_ops->inet_csk_clone(newsk, req);
1251 }
1252
1253 void security_inet_conn_established(struct sock *sk,
1254                         struct sk_buff *skb)
1255 {
1256         security_ops->inet_conn_established(sk, skb);
1257 }
1258
1259 int security_secmark_relabel_packet(u32 secid)
1260 {
1261         return security_ops->secmark_relabel_packet(secid);
1262 }
1263 EXPORT_SYMBOL(security_secmark_relabel_packet);
1264
1265 void security_secmark_refcount_inc(void)
1266 {
1267         security_ops->secmark_refcount_inc();
1268 }
1269 EXPORT_SYMBOL(security_secmark_refcount_inc);
1270
1271 void security_secmark_refcount_dec(void)
1272 {
1273         security_ops->secmark_refcount_dec();
1274 }
1275 EXPORT_SYMBOL(security_secmark_refcount_dec);
1276
1277 int security_tun_dev_alloc_security(void **security)
1278 {
1279         return security_ops->tun_dev_alloc_security(security);
1280 }
1281 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1282
1283 void security_tun_dev_free_security(void *security)
1284 {
1285         security_ops->tun_dev_free_security(security);
1286 }
1287 EXPORT_SYMBOL(security_tun_dev_free_security);
1288
1289 int security_tun_dev_create(void)
1290 {
1291         return security_ops->tun_dev_create();
1292 }
1293 EXPORT_SYMBOL(security_tun_dev_create);
1294
1295 int security_tun_dev_attach_queue(void *security)
1296 {
1297         return security_ops->tun_dev_attach_queue(security);
1298 }
1299 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1300
1301 int security_tun_dev_attach(struct sock *sk, void *security)
1302 {
1303         return security_ops->tun_dev_attach(sk, security);
1304 }
1305 EXPORT_SYMBOL(security_tun_dev_attach);
1306
1307 int security_tun_dev_open(void *security)
1308 {
1309         return security_ops->tun_dev_open(security);
1310 }
1311 EXPORT_SYMBOL(security_tun_dev_open);
1312
1313 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1314 {
1315         security_ops->skb_owned_by(skb, sk);
1316 }
1317
1318 #endif  /* CONFIG_SECURITY_NETWORK */
1319
1320 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1321
1322 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1323 {
1324         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1325 }
1326 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327
1328 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329                               struct xfrm_sec_ctx **new_ctxp)
1330 {
1331         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332 }
1333
1334 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335 {
1336         security_ops->xfrm_policy_free_security(ctx);
1337 }
1338 EXPORT_SYMBOL(security_xfrm_policy_free);
1339
1340 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341 {
1342         return security_ops->xfrm_policy_delete_security(ctx);
1343 }
1344
1345 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1346 {
1347         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1348 }
1349 EXPORT_SYMBOL(security_xfrm_state_alloc);
1350
1351 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1352                                       struct xfrm_sec_ctx *polsec, u32 secid)
1353 {
1354         if (!polsec)
1355                 return 0;
1356         /*
1357          * We want the context to be taken from secid which is usually
1358          * from the sock.
1359          */
1360         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1361 }
1362
1363 int security_xfrm_state_delete(struct xfrm_state *x)
1364 {
1365         return security_ops->xfrm_state_delete_security(x);
1366 }
1367 EXPORT_SYMBOL(security_xfrm_state_delete);
1368
1369 void security_xfrm_state_free(struct xfrm_state *x)
1370 {
1371         security_ops->xfrm_state_free_security(x);
1372 }
1373
1374 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1375 {
1376         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1377 }
1378
1379 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1380                                        struct xfrm_policy *xp,
1381                                        const struct flowi *fl)
1382 {
1383         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1384 }
1385
1386 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1387 {
1388         return security_ops->xfrm_decode_session(skb, secid, 1);
1389 }
1390
1391 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1392 {
1393         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1394
1395         BUG_ON(rc);
1396 }
1397 EXPORT_SYMBOL(security_skb_classify_flow);
1398
1399 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1400
1401 #ifdef CONFIG_KEYS
1402
1403 int security_key_alloc(struct key *key, const struct cred *cred,
1404                        unsigned long flags)
1405 {
1406         return security_ops->key_alloc(key, cred, flags);
1407 }
1408
1409 void security_key_free(struct key *key)
1410 {
1411         security_ops->key_free(key);
1412 }
1413
1414 int security_key_permission(key_ref_t key_ref,
1415                             const struct cred *cred, key_perm_t perm)
1416 {
1417         return security_ops->key_permission(key_ref, cred, perm);
1418 }
1419
1420 int security_key_getsecurity(struct key *key, char **_buffer)
1421 {
1422         return security_ops->key_getsecurity(key, _buffer);
1423 }
1424
1425 #endif  /* CONFIG_KEYS */
1426
1427 #ifdef CONFIG_AUDIT
1428
1429 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1430 {
1431         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1432 }
1433
1434 int security_audit_rule_known(struct audit_krule *krule)
1435 {
1436         return security_ops->audit_rule_known(krule);
1437 }
1438
1439 void security_audit_rule_free(void *lsmrule)
1440 {
1441         security_ops->audit_rule_free(lsmrule);
1442 }
1443
1444 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1445                               struct audit_context *actx)
1446 {
1447         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1448 }
1449
1450 #endif /* CONFIG_AUDIT */