selinux: correctly label /proc inodes in use before the policy is loaded
[firefly-linux-kernel-4.4.55.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h>           /* for Unix socket types */
71 #include <net/af_unix.h>        /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 #define NUM_SEL_MNT_OPTS 5
99
100 extern struct security_operations *security_ops;
101
102 /* SECMARK reference count */
103 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
106 int selinux_enforcing;
107
108 static int __init enforcing_setup(char *str)
109 {
110         unsigned long enforcing;
111         if (!strict_strtoul(str, 0, &enforcing))
112                 selinux_enforcing = enforcing ? 1 : 0;
113         return 1;
114 }
115 __setup("enforcing=", enforcing_setup);
116 #endif
117
118 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
119 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
120
121 static int __init selinux_enabled_setup(char *str)
122 {
123         unsigned long enabled;
124         if (!strict_strtoul(str, 0, &enabled))
125                 selinux_enabled = enabled ? 1 : 0;
126         return 1;
127 }
128 __setup("selinux=", selinux_enabled_setup);
129 #else
130 int selinux_enabled = 1;
131 #endif
132
133 static struct kmem_cache *sel_inode_cache;
134
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.
143  *
144  */
145 static int selinux_secmark_enabled(void)
146 {
147         return (atomic_read(&selinux_secmark_refcount) > 0);
148 }
149
150 /*
151  * initialise the security for the init task
152  */
153 static void cred_init_security(void)
154 {
155         struct cred *cred = (struct cred *) current->real_cred;
156         struct task_security_struct *tsec;
157
158         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
159         if (!tsec)
160                 panic("SELinux:  Failed to initialize initial task.\n");
161
162         tsec->osid = tsec->sid = SECINITSID_KERNEL;
163         cred->security = tsec;
164 }
165
166 /*
167  * get the security ID of a set of credentials
168  */
169 static inline u32 cred_sid(const struct cred *cred)
170 {
171         const struct task_security_struct *tsec;
172
173         tsec = cred->security;
174         return tsec->sid;
175 }
176
177 /*
178  * get the objective security ID of a task
179  */
180 static inline u32 task_sid(const struct task_struct *task)
181 {
182         u32 sid;
183
184         rcu_read_lock();
185         sid = cred_sid(__task_cred(task));
186         rcu_read_unlock();
187         return sid;
188 }
189
190 /*
191  * get the subjective security ID of the current task
192  */
193 static inline u32 current_sid(void)
194 {
195         const struct task_security_struct *tsec = current_security();
196
197         return tsec->sid;
198 }
199
200 /* Allocate and free functions for each kind of security blob. */
201
202 static int inode_alloc_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec;
205         u32 sid = current_sid();
206
207         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
208         if (!isec)
209                 return -ENOMEM;
210
211         mutex_init(&isec->lock);
212         INIT_LIST_HEAD(&isec->list);
213         isec->inode = inode;
214         isec->sid = SECINITSID_UNLABELED;
215         isec->sclass = SECCLASS_FILE;
216         isec->task_sid = sid;
217         inode->i_security = isec;
218
219         return 0;
220 }
221
222 static void inode_free_rcu(struct rcu_head *head)
223 {
224         struct inode_security_struct *isec;
225
226         isec = container_of(head, struct inode_security_struct, rcu);
227         kmem_cache_free(sel_inode_cache, isec);
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         /*
241          * The inode may still be referenced in a path walk and
242          * a call to selinux_inode_permission() can be made
243          * after inode_free_security() is called. Ideally, the VFS
244          * wouldn't do this, but fixing that is a much harder
245          * job. For now, simply free the i_security via RCU, and
246          * leave the current inode->i_security pointer intact.
247          * The inode will be freed after the RCU grace period too.
248          */
249         call_rcu(&isec->rcu, inode_free_rcu);
250 }
251
252 static int file_alloc_security(struct file *file)
253 {
254         struct file_security_struct *fsec;
255         u32 sid = current_sid();
256
257         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
258         if (!fsec)
259                 return -ENOMEM;
260
261         fsec->sid = sid;
262         fsec->fown_sid = sid;
263         file->f_security = fsec;
264
265         return 0;
266 }
267
268 static void file_free_security(struct file *file)
269 {
270         struct file_security_struct *fsec = file->f_security;
271         file->f_security = NULL;
272         kfree(fsec);
273 }
274
275 static int superblock_alloc_security(struct super_block *sb)
276 {
277         struct superblock_security_struct *sbsec;
278
279         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
280         if (!sbsec)
281                 return -ENOMEM;
282
283         mutex_init(&sbsec->lock);
284         INIT_LIST_HEAD(&sbsec->isec_head);
285         spin_lock_init(&sbsec->isec_lock);
286         sbsec->sb = sb;
287         sbsec->sid = SECINITSID_UNLABELED;
288         sbsec->def_sid = SECINITSID_FILE;
289         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
290         sb->s_security = sbsec;
291
292         return 0;
293 }
294
295 static void superblock_free_security(struct super_block *sb)
296 {
297         struct superblock_security_struct *sbsec = sb->s_security;
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 /* The file system's label must be initialized prior to use. */
303
304 static const char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 3,
325         Opt_rootcontext = 4,
326         Opt_labelsupport = 5,
327 };
328
329 static const match_table_t tokens = {
330         {Opt_context, CONTEXT_STR "%s"},
331         {Opt_fscontext, FSCONTEXT_STR "%s"},
332         {Opt_defcontext, DEFCONTEXT_STR "%s"},
333         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
334         {Opt_labelsupport, LABELSUPP_STR},
335         {Opt_error, NULL},
336 };
337
338 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
339
340 static int may_context_mount_sb_relabel(u32 sid,
341                         struct superblock_security_struct *sbsec,
342                         const struct cred *cred)
343 {
344         const struct task_security_struct *tsec = cred->security;
345         int rc;
346
347         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348                           FILESYSTEM__RELABELFROM, NULL);
349         if (rc)
350                 return rc;
351
352         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
353                           FILESYSTEM__RELABELTO, NULL);
354         return rc;
355 }
356
357 static int may_context_mount_inode_relabel(u32 sid,
358                         struct superblock_security_struct *sbsec,
359                         const struct cred *cred)
360 {
361         const struct task_security_struct *tsec = cred->security;
362         int rc;
363         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
364                           FILESYSTEM__RELABELFROM, NULL);
365         if (rc)
366                 return rc;
367
368         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
369                           FILESYSTEM__ASSOCIATE, NULL);
370         return rc;
371 }
372
373 static int sb_finish_set_opts(struct super_block *sb)
374 {
375         struct superblock_security_struct *sbsec = sb->s_security;
376         struct dentry *root = sb->s_root;
377         struct inode *root_inode = root->d_inode;
378         int rc = 0;
379
380         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
381                 /* Make sure that the xattr handler exists and that no
382                    error other than -ENODATA is returned by getxattr on
383                    the root directory.  -ENODATA is ok, as this may be
384                    the first boot of the SELinux kernel before we have
385                    assigned xattr values to the filesystem. */
386                 if (!root_inode->i_op->getxattr) {
387                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
388                                "xattr support\n", sb->s_id, sb->s_type->name);
389                         rc = -EOPNOTSUPP;
390                         goto out;
391                 }
392                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
393                 if (rc < 0 && rc != -ENODATA) {
394                         if (rc == -EOPNOTSUPP)
395                                 printk(KERN_WARNING "SELinux: (dev %s, type "
396                                        "%s) has no security xattr handler\n",
397                                        sb->s_id, sb->s_type->name);
398                         else
399                                 printk(KERN_WARNING "SELinux: (dev %s, type "
400                                        "%s) getxattr errno %d\n", sb->s_id,
401                                        sb->s_type->name, -rc);
402                         goto out;
403                 }
404         }
405
406         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
407
408         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
409                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
410                        sb->s_id, sb->s_type->name);
411         else
412                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
413                        sb->s_id, sb->s_type->name,
414                        labeling_behaviors[sbsec->behavior-1]);
415
416         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
417             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
418             sbsec->behavior == SECURITY_FS_USE_NONE ||
419             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
420                 sbsec->flags &= ~SE_SBLABELSUPP;
421
422         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
423         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
424                 sbsec->flags |= SE_SBLABELSUPP;
425
426         /* Initialize the root inode. */
427         rc = inode_doinit_with_dentry(root_inode, root);
428
429         /* Initialize any other inodes associated with the superblock, e.g.
430            inodes created prior to initial policy load or inodes created
431            during get_sb by a pseudo filesystem that directly
432            populates itself. */
433         spin_lock(&sbsec->isec_lock);
434 next_inode:
435         if (!list_empty(&sbsec->isec_head)) {
436                 struct inode_security_struct *isec =
437                                 list_entry(sbsec->isec_head.next,
438                                            struct inode_security_struct, list);
439                 struct inode *inode = isec->inode;
440                 spin_unlock(&sbsec->isec_lock);
441                 inode = igrab(inode);
442                 if (inode) {
443                         if (!IS_PRIVATE(inode))
444                                 inode_doinit(inode);
445                         iput(inode);
446                 }
447                 spin_lock(&sbsec->isec_lock);
448                 list_del_init(&isec->list);
449                 goto next_inode;
450         }
451         spin_unlock(&sbsec->isec_lock);
452 out:
453         return rc;
454 }
455
456 /*
457  * This function should allow an FS to ask what it's mount security
458  * options were so it can use those later for submounts, displaying
459  * mount options, or whatever.
460  */
461 static int selinux_get_mnt_opts(const struct super_block *sb,
462                                 struct security_mnt_opts *opts)
463 {
464         int rc = 0, i;
465         struct superblock_security_struct *sbsec = sb->s_security;
466         char *context = NULL;
467         u32 len;
468         char tmp;
469
470         security_init_mnt_opts(opts);
471
472         if (!(sbsec->flags & SE_SBINITIALIZED))
473                 return -EINVAL;
474
475         if (!ss_initialized)
476                 return -EINVAL;
477
478         tmp = sbsec->flags & SE_MNTMASK;
479         /* count the number of mount options for this sb */
480         for (i = 0; i < 8; i++) {
481                 if (tmp & 0x01)
482                         opts->num_mnt_opts++;
483                 tmp >>= 1;
484         }
485         /* Check if the Label support flag is set */
486         if (sbsec->flags & SE_SBLABELSUPP)
487                 opts->num_mnt_opts++;
488
489         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
490         if (!opts->mnt_opts) {
491                 rc = -ENOMEM;
492                 goto out_free;
493         }
494
495         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
496         if (!opts->mnt_opts_flags) {
497                 rc = -ENOMEM;
498                 goto out_free;
499         }
500
501         i = 0;
502         if (sbsec->flags & FSCONTEXT_MNT) {
503                 rc = security_sid_to_context(sbsec->sid, &context, &len);
504                 if (rc)
505                         goto out_free;
506                 opts->mnt_opts[i] = context;
507                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
508         }
509         if (sbsec->flags & CONTEXT_MNT) {
510                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
511                 if (rc)
512                         goto out_free;
513                 opts->mnt_opts[i] = context;
514                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
515         }
516         if (sbsec->flags & DEFCONTEXT_MNT) {
517                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
518                 if (rc)
519                         goto out_free;
520                 opts->mnt_opts[i] = context;
521                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
522         }
523         if (sbsec->flags & ROOTCONTEXT_MNT) {
524                 struct inode *root = sbsec->sb->s_root->d_inode;
525                 struct inode_security_struct *isec = root->i_security;
526
527                 rc = security_sid_to_context(isec->sid, &context, &len);
528                 if (rc)
529                         goto out_free;
530                 opts->mnt_opts[i] = context;
531                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
532         }
533         if (sbsec->flags & SE_SBLABELSUPP) {
534                 opts->mnt_opts[i] = NULL;
535                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
536         }
537
538         BUG_ON(i != opts->num_mnt_opts);
539
540         return 0;
541
542 out_free:
543         security_free_mnt_opts(opts);
544         return rc;
545 }
546
547 static int bad_option(struct superblock_security_struct *sbsec, char flag,
548                       u32 old_sid, u32 new_sid)
549 {
550         char mnt_flags = sbsec->flags & SE_MNTMASK;
551
552         /* check if the old mount command had the same options */
553         if (sbsec->flags & SE_SBINITIALIZED)
554                 if (!(sbsec->flags & flag) ||
555                     (old_sid != new_sid))
556                         return 1;
557
558         /* check if we were passed the same options twice,
559          * aka someone passed context=a,context=b
560          */
561         if (!(sbsec->flags & SE_SBINITIALIZED))
562                 if (mnt_flags & flag)
563                         return 1;
564         return 0;
565 }
566
567 /*
568  * Allow filesystems with binary mount data to explicitly set mount point
569  * labeling information.
570  */
571 static int selinux_set_mnt_opts(struct super_block *sb,
572                                 struct security_mnt_opts *opts)
573 {
574         const struct cred *cred = current_cred();
575         int rc = 0, i;
576         struct superblock_security_struct *sbsec = sb->s_security;
577         const char *name = sb->s_type->name;
578         struct inode *inode = sbsec->sb->s_root->d_inode;
579         struct inode_security_struct *root_isec = inode->i_security;
580         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
581         u32 defcontext_sid = 0;
582         char **mount_options = opts->mnt_opts;
583         int *flags = opts->mnt_opts_flags;
584         int num_opts = opts->num_mnt_opts;
585
586         mutex_lock(&sbsec->lock);
587
588         if (!ss_initialized) {
589                 if (!num_opts) {
590                         /* Defer initialization until selinux_complete_init,
591                            after the initial policy is loaded and the security
592                            server is ready to handle calls. */
593                         goto out;
594                 }
595                 rc = -EINVAL;
596                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
597                         "before the security server is initialized\n");
598                 goto out;
599         }
600
601         /*
602          * Binary mount data FS will come through this function twice.  Once
603          * from an explicit call and once from the generic calls from the vfs.
604          * Since the generic VFS calls will not contain any security mount data
605          * we need to skip the double mount verification.
606          *
607          * This does open a hole in which we will not notice if the first
608          * mount using this sb set explict options and a second mount using
609          * this sb does not set any security options.  (The first options
610          * will be used for both mounts)
611          */
612         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
613             && (num_opts == 0))
614                 goto out;
615
616         /*
617          * parse the mount options, check if they are valid sids.
618          * also check if someone is trying to mount the same sb more
619          * than once with different security options.
620          */
621         for (i = 0; i < num_opts; i++) {
622                 u32 sid;
623
624                 if (flags[i] == SE_SBLABELSUPP)
625                         continue;
626                 rc = security_context_to_sid(mount_options[i],
627                                              strlen(mount_options[i]), &sid);
628                 if (rc) {
629                         printk(KERN_WARNING "SELinux: security_context_to_sid"
630                                "(%s) failed for (dev %s, type %s) errno=%d\n",
631                                mount_options[i], sb->s_id, name, rc);
632                         goto out;
633                 }
634                 switch (flags[i]) {
635                 case FSCONTEXT_MNT:
636                         fscontext_sid = sid;
637
638                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
639                                         fscontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= FSCONTEXT_MNT;
643                         break;
644                 case CONTEXT_MNT:
645                         context_sid = sid;
646
647                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
648                                         context_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= CONTEXT_MNT;
652                         break;
653                 case ROOTCONTEXT_MNT:
654                         rootcontext_sid = sid;
655
656                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
657                                         rootcontext_sid))
658                                 goto out_double_mount;
659
660                         sbsec->flags |= ROOTCONTEXT_MNT;
661
662                         break;
663                 case DEFCONTEXT_MNT:
664                         defcontext_sid = sid;
665
666                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
667                                         defcontext_sid))
668                                 goto out_double_mount;
669
670                         sbsec->flags |= DEFCONTEXT_MNT;
671
672                         break;
673                 default:
674                         rc = -EINVAL;
675                         goto out;
676                 }
677         }
678
679         if (sbsec->flags & SE_SBINITIALIZED) {
680                 /* previously mounted with options, but not on this attempt? */
681                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
682                         goto out_double_mount;
683                 rc = 0;
684                 goto out;
685         }
686
687         if (strcmp(sb->s_type->name, "proc") == 0)
688                 sbsec->flags |= SE_SBPROC;
689
690         /* Determine the labeling behavior to use for this filesystem type. */
691         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
692         if (rc) {
693                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
694                        __func__, sb->s_type->name, rc);
695                 goto out;
696         }
697
698         /* sets the context of the superblock for the fs being mounted. */
699         if (fscontext_sid) {
700                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
701                 if (rc)
702                         goto out;
703
704                 sbsec->sid = fscontext_sid;
705         }
706
707         /*
708          * Switch to using mount point labeling behavior.
709          * sets the label used on all file below the mountpoint, and will set
710          * the superblock context if not already set.
711          */
712         if (context_sid) {
713                 if (!fscontext_sid) {
714                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
715                                                           cred);
716                         if (rc)
717                                 goto out;
718                         sbsec->sid = context_sid;
719                 } else {
720                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
721                                                              cred);
722                         if (rc)
723                                 goto out;
724                 }
725                 if (!rootcontext_sid)
726                         rootcontext_sid = context_sid;
727
728                 sbsec->mntpoint_sid = context_sid;
729                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
730         }
731
732         if (rootcontext_sid) {
733                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
734                                                      cred);
735                 if (rc)
736                         goto out;
737
738                 root_isec->sid = rootcontext_sid;
739                 root_isec->initialized = 1;
740         }
741
742         if (defcontext_sid) {
743                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
744                         rc = -EINVAL;
745                         printk(KERN_WARNING "SELinux: defcontext option is "
746                                "invalid for this filesystem type\n");
747                         goto out;
748                 }
749
750                 if (defcontext_sid != sbsec->def_sid) {
751                         rc = may_context_mount_inode_relabel(defcontext_sid,
752                                                              sbsec, cred);
753                         if (rc)
754                                 goto out;
755                 }
756
757                 sbsec->def_sid = defcontext_sid;
758         }
759
760         rc = sb_finish_set_opts(sb);
761 out:
762         mutex_unlock(&sbsec->lock);
763         return rc;
764 out_double_mount:
765         rc = -EINVAL;
766         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
767                "security settings for (dev %s, type %s)\n", sb->s_id, name);
768         goto out;
769 }
770
771 static int selinux_cmp_sb_context(const struct super_block *oldsb,
772                                     const struct super_block *newsb)
773 {
774         struct superblock_security_struct *old = oldsb->s_security;
775         struct superblock_security_struct *new = newsb->s_security;
776         char oldflags = old->flags & SE_MNTMASK;
777         char newflags = new->flags & SE_MNTMASK;
778
779         if (oldflags != newflags)
780                 goto mismatch;
781         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
782                 goto mismatch;
783         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
784                 goto mismatch;
785         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
786                 goto mismatch;
787         if (oldflags & ROOTCONTEXT_MNT) {
788                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
789                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
790                 if (oldroot->sid != newroot->sid)
791                         goto mismatch;
792         }
793         return 0;
794 mismatch:
795         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
796                             "different security settings for (dev %s, "
797                             "type %s)\n", newsb->s_id, newsb->s_type->name);
798         return -EBUSY;
799 }
800
801 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely deal with this superblock later
814          */
815         if (!ss_initialized)
816                 return 0;
817
818         /* how can we clone if the old one wasn't set up?? */
819         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
820
821         /* if fs is reusing a sb, make sure that the contexts match */
822         if (newsbsec->flags & SE_SBINITIALIZED)
823                 return selinux_cmp_sb_context(oldsb, newsb);
824
825         mutex_lock(&newsbsec->lock);
826
827         newsbsec->flags = oldsbsec->flags;
828
829         newsbsec->sid = oldsbsec->sid;
830         newsbsec->def_sid = oldsbsec->def_sid;
831         newsbsec->behavior = oldsbsec->behavior;
832
833         if (set_context) {
834                 u32 sid = oldsbsec->mntpoint_sid;
835
836                 if (!set_fscontext)
837                         newsbsec->sid = sid;
838                 if (!set_rootcontext) {
839                         struct inode *newinode = newsb->s_root->d_inode;
840                         struct inode_security_struct *newisec = newinode->i_security;
841                         newisec->sid = sid;
842                 }
843                 newsbsec->mntpoint_sid = sid;
844         }
845         if (set_rootcontext) {
846                 const struct inode *oldinode = oldsb->s_root->d_inode;
847                 const struct inode_security_struct *oldisec = oldinode->i_security;
848                 struct inode *newinode = newsb->s_root->d_inode;
849                 struct inode_security_struct *newisec = newinode->i_security;
850
851                 newisec->sid = oldisec->sid;
852         }
853
854         sb_finish_set_opts(newsb);
855         mutex_unlock(&newsbsec->lock);
856         return 0;
857 }
858
859 static int selinux_parse_opts_str(char *options,
860                                   struct security_mnt_opts *opts)
861 {
862         char *p;
863         char *context = NULL, *defcontext = NULL;
864         char *fscontext = NULL, *rootcontext = NULL;
865         int rc, num_mnt_opts = 0;
866
867         opts->num_mnt_opts = 0;
868
869         /* Standard string-based options. */
870         while ((p = strsep(&options, "|")) != NULL) {
871                 int token;
872                 substring_t args[MAX_OPT_ARGS];
873
874                 if (!*p)
875                         continue;
876
877                 token = match_token(p, tokens, args);
878
879                 switch (token) {
880                 case Opt_context:
881                         if (context || defcontext) {
882                                 rc = -EINVAL;
883                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
884                                 goto out_err;
885                         }
886                         context = match_strdup(&args[0]);
887                         if (!context) {
888                                 rc = -ENOMEM;
889                                 goto out_err;
890                         }
891                         break;
892
893                 case Opt_fscontext:
894                         if (fscontext) {
895                                 rc = -EINVAL;
896                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
897                                 goto out_err;
898                         }
899                         fscontext = match_strdup(&args[0]);
900                         if (!fscontext) {
901                                 rc = -ENOMEM;
902                                 goto out_err;
903                         }
904                         break;
905
906                 case Opt_rootcontext:
907                         if (rootcontext) {
908                                 rc = -EINVAL;
909                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
910                                 goto out_err;
911                         }
912                         rootcontext = match_strdup(&args[0]);
913                         if (!rootcontext) {
914                                 rc = -ENOMEM;
915                                 goto out_err;
916                         }
917                         break;
918
919                 case Opt_defcontext:
920                         if (context || defcontext) {
921                                 rc = -EINVAL;
922                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
923                                 goto out_err;
924                         }
925                         defcontext = match_strdup(&args[0]);
926                         if (!defcontext) {
927                                 rc = -ENOMEM;
928                                 goto out_err;
929                         }
930                         break;
931                 case Opt_labelsupport:
932                         break;
933                 default:
934                         rc = -EINVAL;
935                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
936                         goto out_err;
937
938                 }
939         }
940
941         rc = -ENOMEM;
942         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
943         if (!opts->mnt_opts)
944                 goto out_err;
945
946         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
947         if (!opts->mnt_opts_flags) {
948                 kfree(opts->mnt_opts);
949                 goto out_err;
950         }
951
952         if (fscontext) {
953                 opts->mnt_opts[num_mnt_opts] = fscontext;
954                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
955         }
956         if (context) {
957                 opts->mnt_opts[num_mnt_opts] = context;
958                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
959         }
960         if (rootcontext) {
961                 opts->mnt_opts[num_mnt_opts] = rootcontext;
962                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
963         }
964         if (defcontext) {
965                 opts->mnt_opts[num_mnt_opts] = defcontext;
966                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
967         }
968
969         opts->num_mnt_opts = num_mnt_opts;
970         return 0;
971
972 out_err:
973         kfree(context);
974         kfree(defcontext);
975         kfree(fscontext);
976         kfree(rootcontext);
977         return rc;
978 }
979 /*
980  * string mount options parsing and call set the sbsec
981  */
982 static int superblock_doinit(struct super_block *sb, void *data)
983 {
984         int rc = 0;
985         char *options = data;
986         struct security_mnt_opts opts;
987
988         security_init_mnt_opts(&opts);
989
990         if (!data)
991                 goto out;
992
993         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
994
995         rc = selinux_parse_opts_str(options, &opts);
996         if (rc)
997                 goto out_err;
998
999 out:
1000         rc = selinux_set_mnt_opts(sb, &opts);
1001
1002 out_err:
1003         security_free_mnt_opts(&opts);
1004         return rc;
1005 }
1006
1007 static void selinux_write_opts(struct seq_file *m,
1008                                struct security_mnt_opts *opts)
1009 {
1010         int i;
1011         char *prefix;
1012
1013         for (i = 0; i < opts->num_mnt_opts; i++) {
1014                 char *has_comma;
1015
1016                 if (opts->mnt_opts[i])
1017                         has_comma = strchr(opts->mnt_opts[i], ',');
1018                 else
1019                         has_comma = NULL;
1020
1021                 switch (opts->mnt_opts_flags[i]) {
1022                 case CONTEXT_MNT:
1023                         prefix = CONTEXT_STR;
1024                         break;
1025                 case FSCONTEXT_MNT:
1026                         prefix = FSCONTEXT_STR;
1027                         break;
1028                 case ROOTCONTEXT_MNT:
1029                         prefix = ROOTCONTEXT_STR;
1030                         break;
1031                 case DEFCONTEXT_MNT:
1032                         prefix = DEFCONTEXT_STR;
1033                         break;
1034                 case SE_SBLABELSUPP:
1035                         seq_putc(m, ',');
1036                         seq_puts(m, LABELSUPP_STR);
1037                         continue;
1038                 default:
1039                         BUG();
1040                         return;
1041                 };
1042                 /* we need a comma before each option */
1043                 seq_putc(m, ',');
1044                 seq_puts(m, prefix);
1045                 if (has_comma)
1046                         seq_putc(m, '\"');
1047                 seq_puts(m, opts->mnt_opts[i]);
1048                 if (has_comma)
1049                         seq_putc(m, '\"');
1050         }
1051 }
1052
1053 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1054 {
1055         struct security_mnt_opts opts;
1056         int rc;
1057
1058         rc = selinux_get_mnt_opts(sb, &opts);
1059         if (rc) {
1060                 /* before policy load we may get EINVAL, don't show anything */
1061                 if (rc == -EINVAL)
1062                         rc = 0;
1063                 return rc;
1064         }
1065
1066         selinux_write_opts(m, &opts);
1067
1068         security_free_mnt_opts(&opts);
1069
1070         return rc;
1071 }
1072
1073 static inline u16 inode_mode_to_security_class(umode_t mode)
1074 {
1075         switch (mode & S_IFMT) {
1076         case S_IFSOCK:
1077                 return SECCLASS_SOCK_FILE;
1078         case S_IFLNK:
1079                 return SECCLASS_LNK_FILE;
1080         case S_IFREG:
1081                 return SECCLASS_FILE;
1082         case S_IFBLK:
1083                 return SECCLASS_BLK_FILE;
1084         case S_IFDIR:
1085                 return SECCLASS_DIR;
1086         case S_IFCHR:
1087                 return SECCLASS_CHR_FILE;
1088         case S_IFIFO:
1089                 return SECCLASS_FIFO_FILE;
1090
1091         }
1092
1093         return SECCLASS_FILE;
1094 }
1095
1096 static inline int default_protocol_stream(int protocol)
1097 {
1098         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1099 }
1100
1101 static inline int default_protocol_dgram(int protocol)
1102 {
1103         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1104 }
1105
1106 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1107 {
1108         switch (family) {
1109         case PF_UNIX:
1110                 switch (type) {
1111                 case SOCK_STREAM:
1112                 case SOCK_SEQPACKET:
1113                         return SECCLASS_UNIX_STREAM_SOCKET;
1114                 case SOCK_DGRAM:
1115                         return SECCLASS_UNIX_DGRAM_SOCKET;
1116                 }
1117                 break;
1118         case PF_INET:
1119         case PF_INET6:
1120                 switch (type) {
1121                 case SOCK_STREAM:
1122                         if (default_protocol_stream(protocol))
1123                                 return SECCLASS_TCP_SOCKET;
1124                         else
1125                                 return SECCLASS_RAWIP_SOCKET;
1126                 case SOCK_DGRAM:
1127                         if (default_protocol_dgram(protocol))
1128                                 return SECCLASS_UDP_SOCKET;
1129                         else
1130                                 return SECCLASS_RAWIP_SOCKET;
1131                 case SOCK_DCCP:
1132                         return SECCLASS_DCCP_SOCKET;
1133                 default:
1134                         return SECCLASS_RAWIP_SOCKET;
1135                 }
1136                 break;
1137         case PF_NETLINK:
1138                 switch (protocol) {
1139                 case NETLINK_ROUTE:
1140                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1141                 case NETLINK_FIREWALL:
1142                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1143                 case NETLINK_SOCK_DIAG:
1144                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1145                 case NETLINK_NFLOG:
1146                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1147                 case NETLINK_XFRM:
1148                         return SECCLASS_NETLINK_XFRM_SOCKET;
1149                 case NETLINK_SELINUX:
1150                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1151                 case NETLINK_AUDIT:
1152                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1153                 case NETLINK_IP6_FW:
1154                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1155                 case NETLINK_DNRTMSG:
1156                         return SECCLASS_NETLINK_DNRT_SOCKET;
1157                 case NETLINK_KOBJECT_UEVENT:
1158                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1159                 default:
1160                         return SECCLASS_NETLINK_SOCKET;
1161                 }
1162         case PF_PACKET:
1163                 return SECCLASS_PACKET_SOCKET;
1164         case PF_KEY:
1165                 return SECCLASS_KEY_SOCKET;
1166         case PF_APPLETALK:
1167                 return SECCLASS_APPLETALK_SOCKET;
1168         }
1169
1170         return SECCLASS_SOCKET;
1171 }
1172
1173 #ifdef CONFIG_PROC_FS
1174 static int selinux_proc_get_sid(struct dentry *dentry,
1175                                 u16 tclass,
1176                                 u32 *sid)
1177 {
1178         int rc;
1179         char *buffer, *path;
1180
1181         buffer = (char *)__get_free_page(GFP_KERNEL);
1182         if (!buffer)
1183                 return -ENOMEM;
1184
1185         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1186         if (IS_ERR(path))
1187                 rc = PTR_ERR(path);
1188         else {
1189                 /* each process gets a /proc/PID/ entry. Strip off the
1190                  * PID part to get a valid selinux labeling.
1191                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1192                 while (path[1] >= '0' && path[1] <= '9') {
1193                         path[1] = '/';
1194                         path++;
1195                 }
1196                 rc = security_genfs_sid("proc", path, tclass, sid);
1197         }
1198         free_page((unsigned long)buffer);
1199         return rc;
1200 }
1201 #else
1202 static int selinux_proc_get_sid(struct dentry *dentry,
1203                                 u16 tclass,
1204                                 u32 *sid)
1205 {
1206         return -EINVAL;
1207 }
1208 #endif
1209
1210 /* The inode's security attributes must be initialized before first use. */
1211 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1212 {
1213         struct superblock_security_struct *sbsec = NULL;
1214         struct inode_security_struct *isec = inode->i_security;
1215         u32 sid;
1216         struct dentry *dentry;
1217 #define INITCONTEXTLEN 255
1218         char *context = NULL;
1219         unsigned len = 0;
1220         int rc = 0;
1221
1222         if (isec->initialized)
1223                 goto out;
1224
1225         mutex_lock(&isec->lock);
1226         if (isec->initialized)
1227                 goto out_unlock;
1228
1229         sbsec = inode->i_sb->s_security;
1230         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1231                 /* Defer initialization until selinux_complete_init,
1232                    after the initial policy is loaded and the security
1233                    server is ready to handle calls. */
1234                 spin_lock(&sbsec->isec_lock);
1235                 if (list_empty(&isec->list))
1236                         list_add(&isec->list, &sbsec->isec_head);
1237                 spin_unlock(&sbsec->isec_lock);
1238                 goto out_unlock;
1239         }
1240
1241         switch (sbsec->behavior) {
1242         case SECURITY_FS_USE_XATTR:
1243                 if (!inode->i_op->getxattr) {
1244                         isec->sid = sbsec->def_sid;
1245                         break;
1246                 }
1247
1248                 /* Need a dentry, since the xattr API requires one.
1249                    Life would be simpler if we could just pass the inode. */
1250                 if (opt_dentry) {
1251                         /* Called from d_instantiate or d_splice_alias. */
1252                         dentry = dget(opt_dentry);
1253                 } else {
1254                         /* Called from selinux_complete_init, try to find a dentry. */
1255                         dentry = d_find_alias(inode);
1256                 }
1257                 if (!dentry) {
1258                         /*
1259                          * this is can be hit on boot when a file is accessed
1260                          * before the policy is loaded.  When we load policy we
1261                          * may find inodes that have no dentry on the
1262                          * sbsec->isec_head list.  No reason to complain as these
1263                          * will get fixed up the next time we go through
1264                          * inode_doinit with a dentry, before these inodes could
1265                          * be used again by userspace.
1266                          */
1267                         goto out_unlock;
1268                 }
1269
1270                 len = INITCONTEXTLEN;
1271                 context = kmalloc(len+1, GFP_NOFS);
1272                 if (!context) {
1273                         rc = -ENOMEM;
1274                         dput(dentry);
1275                         goto out_unlock;
1276                 }
1277                 context[len] = '\0';
1278                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1279                                            context, len);
1280                 if (rc == -ERANGE) {
1281                         kfree(context);
1282
1283                         /* Need a larger buffer.  Query for the right size. */
1284                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1285                                                    NULL, 0);
1286                         if (rc < 0) {
1287                                 dput(dentry);
1288                                 goto out_unlock;
1289                         }
1290                         len = rc;
1291                         context = kmalloc(len+1, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         context[len] = '\0';
1298                         rc = inode->i_op->getxattr(dentry,
1299                                                    XATTR_NAME_SELINUX,
1300                                                    context, len);
1301                 }
1302                 dput(dentry);
1303                 if (rc < 0) {
1304                         if (rc != -ENODATA) {
1305                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1306                                        "%d for dev=%s ino=%ld\n", __func__,
1307                                        -rc, inode->i_sb->s_id, inode->i_ino);
1308                                 kfree(context);
1309                                 goto out_unlock;
1310                         }
1311                         /* Map ENODATA to the default file SID */
1312                         sid = sbsec->def_sid;
1313                         rc = 0;
1314                 } else {
1315                         rc = security_context_to_sid_default(context, rc, &sid,
1316                                                              sbsec->def_sid,
1317                                                              GFP_NOFS);
1318                         if (rc) {
1319                                 char *dev = inode->i_sb->s_id;
1320                                 unsigned long ino = inode->i_ino;
1321
1322                                 if (rc == -EINVAL) {
1323                                         if (printk_ratelimit())
1324                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1325                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1326                                                         "filesystem in question.\n", ino, dev, context);
1327                                 } else {
1328                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1329                                                "returned %d for dev=%s ino=%ld\n",
1330                                                __func__, context, -rc, dev, ino);
1331                                 }
1332                                 kfree(context);
1333                                 /* Leave with the unlabeled SID */
1334                                 rc = 0;
1335                                 break;
1336                         }
1337                 }
1338                 kfree(context);
1339                 isec->sid = sid;
1340                 break;
1341         case SECURITY_FS_USE_TASK:
1342                 isec->sid = isec->task_sid;
1343                 break;
1344         case SECURITY_FS_USE_TRANS:
1345                 /* Default to the fs SID. */
1346                 isec->sid = sbsec->sid;
1347
1348                 /* Try to obtain a transition SID. */
1349                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1350                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1351                                              isec->sclass, NULL, &sid);
1352                 if (rc)
1353                         goto out_unlock;
1354                 isec->sid = sid;
1355                 break;
1356         case SECURITY_FS_USE_MNTPOINT:
1357                 isec->sid = sbsec->mntpoint_sid;
1358                 break;
1359         default:
1360                 /* Default to the fs superblock SID. */
1361                 isec->sid = sbsec->sid;
1362
1363                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1364                         /* We must have a dentry to determine the label on
1365                          * procfs inodes */
1366                         if (opt_dentry)
1367                                 /* Called from d_instantiate or
1368                                  * d_splice_alias. */
1369                                 dentry = dget(opt_dentry);
1370                         else
1371                                 /* Called from selinux_complete_init, try to
1372                                  * find a dentry. */
1373                                 dentry = d_find_alias(inode);
1374                         /*
1375                          * This can be hit on boot when a file is accessed
1376                          * before the policy is loaded.  When we load policy we
1377                          * may find inodes that have no dentry on the
1378                          * sbsec->isec_head list.  No reason to complain as
1379                          * these will get fixed up the next time we go through
1380                          * inode_doinit() with a dentry, before these inodes
1381                          * could be used again by userspace.
1382                          */
1383                         if (!dentry)
1384                                 goto out_unlock;
1385                         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1386                         rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1387                         dput(dentry);
1388                         if (rc)
1389                                 goto out_unlock;
1390                         isec->sid = sid;
1391                 }
1392                 break;
1393         }
1394
1395         isec->initialized = 1;
1396
1397 out_unlock:
1398         mutex_unlock(&isec->lock);
1399 out:
1400         if (isec->sclass == SECCLASS_FILE)
1401                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402         return rc;
1403 }
1404
1405 /* Convert a Linux signal to an access vector. */
1406 static inline u32 signal_to_av(int sig)
1407 {
1408         u32 perm = 0;
1409
1410         switch (sig) {
1411         case SIGCHLD:
1412                 /* Commonly granted from child to parent. */
1413                 perm = PROCESS__SIGCHLD;
1414                 break;
1415         case SIGKILL:
1416                 /* Cannot be caught or ignored */
1417                 perm = PROCESS__SIGKILL;
1418                 break;
1419         case SIGSTOP:
1420                 /* Cannot be caught or ignored */
1421                 perm = PROCESS__SIGSTOP;
1422                 break;
1423         default:
1424                 /* All other signals. */
1425                 perm = PROCESS__SIGNAL;
1426                 break;
1427         }
1428
1429         return perm;
1430 }
1431
1432 /*
1433  * Check permission between a pair of credentials
1434  * fork check, ptrace check, etc.
1435  */
1436 static int cred_has_perm(const struct cred *actor,
1437                          const struct cred *target,
1438                          u32 perms)
1439 {
1440         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1441
1442         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1443 }
1444
1445 /*
1446  * Check permission between a pair of tasks, e.g. signal checks,
1447  * fork check, ptrace check, etc.
1448  * tsk1 is the actor and tsk2 is the target
1449  * - this uses the default subjective creds of tsk1
1450  */
1451 static int task_has_perm(const struct task_struct *tsk1,
1452                          const struct task_struct *tsk2,
1453                          u32 perms)
1454 {
1455         const struct task_security_struct *__tsec1, *__tsec2;
1456         u32 sid1, sid2;
1457
1458         rcu_read_lock();
1459         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1460         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1461         rcu_read_unlock();
1462         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1463 }
1464
1465 /*
1466  * Check permission between current and another task, e.g. signal checks,
1467  * fork check, ptrace check, etc.
1468  * current is the actor and tsk2 is the target
1469  * - this uses current's subjective creds
1470  */
1471 static int current_has_perm(const struct task_struct *tsk,
1472                             u32 perms)
1473 {
1474         u32 sid, tsid;
1475
1476         sid = current_sid();
1477         tsid = task_sid(tsk);
1478         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1479 }
1480
1481 #if CAP_LAST_CAP > 63
1482 #error Fix SELinux to handle capabilities > 63.
1483 #endif
1484
1485 /* Check whether a task is allowed to use a capability. */
1486 static int cred_has_capability(const struct cred *cred,
1487                                int cap, int audit)
1488 {
1489         struct common_audit_data ad;
1490         struct av_decision avd;
1491         u16 sclass;
1492         u32 sid = cred_sid(cred);
1493         u32 av = CAP_TO_MASK(cap);
1494         int rc;
1495
1496         ad.type = LSM_AUDIT_DATA_CAP;
1497         ad.u.cap = cap;
1498
1499         switch (CAP_TO_INDEX(cap)) {
1500         case 0:
1501                 sclass = SECCLASS_CAPABILITY;
1502                 break;
1503         case 1:
1504                 sclass = SECCLASS_CAPABILITY2;
1505                 break;
1506         default:
1507                 printk(KERN_ERR
1508                        "SELinux:  out of range capability %d\n", cap);
1509                 BUG();
1510                 return -EINVAL;
1511         }
1512
1513         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1514         if (audit == SECURITY_CAP_AUDIT) {
1515                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1516                 if (rc2)
1517                         return rc2;
1518         }
1519         return rc;
1520 }
1521
1522 /* Check whether a task is allowed to use a system operation. */
1523 static int task_has_system(struct task_struct *tsk,
1524                            u32 perms)
1525 {
1526         u32 sid = task_sid(tsk);
1527
1528         return avc_has_perm(sid, SECINITSID_KERNEL,
1529                             SECCLASS_SYSTEM, perms, NULL);
1530 }
1531
1532 /* Check whether a task has a particular permission to an inode.
1533    The 'adp' parameter is optional and allows other audit
1534    data to be passed (e.g. the dentry). */
1535 static int inode_has_perm(const struct cred *cred,
1536                           struct inode *inode,
1537                           u32 perms,
1538                           struct common_audit_data *adp,
1539                           unsigned flags)
1540 {
1541         struct inode_security_struct *isec;
1542         u32 sid;
1543
1544         validate_creds(cred);
1545
1546         if (unlikely(IS_PRIVATE(inode)))
1547                 return 0;
1548
1549         sid = cred_sid(cred);
1550         isec = inode->i_security;
1551
1552         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1553 }
1554
1555 /* Same as inode_has_perm, but pass explicit audit data containing
1556    the dentry to help the auditing code to more easily generate the
1557    pathname if needed. */
1558 static inline int dentry_has_perm(const struct cred *cred,
1559                                   struct dentry *dentry,
1560                                   u32 av)
1561 {
1562         struct inode *inode = dentry->d_inode;
1563         struct common_audit_data ad;
1564
1565         ad.type = LSM_AUDIT_DATA_DENTRY;
1566         ad.u.dentry = dentry;
1567         return inode_has_perm(cred, inode, av, &ad, 0);
1568 }
1569
1570 /* Same as inode_has_perm, but pass explicit audit data containing
1571    the path to help the auditing code to more easily generate the
1572    pathname if needed. */
1573 static inline int path_has_perm(const struct cred *cred,
1574                                 struct path *path,
1575                                 u32 av)
1576 {
1577         struct inode *inode = path->dentry->d_inode;
1578         struct common_audit_data ad;
1579
1580         ad.type = LSM_AUDIT_DATA_PATH;
1581         ad.u.path = *path;
1582         return inode_has_perm(cred, inode, av, &ad, 0);
1583 }
1584
1585 /* Check whether a task can use an open file descriptor to
1586    access an inode in a given way.  Check access to the
1587    descriptor itself, and then use dentry_has_perm to
1588    check a particular permission to the file.
1589    Access to the descriptor is implicitly granted if it
1590    has the same SID as the process.  If av is zero, then
1591    access to the file is not checked, e.g. for cases
1592    where only the descriptor is affected like seek. */
1593 static int file_has_perm(const struct cred *cred,
1594                          struct file *file,
1595                          u32 av)
1596 {
1597         struct file_security_struct *fsec = file->f_security;
1598         struct inode *inode = file_inode(file);
1599         struct common_audit_data ad;
1600         u32 sid = cred_sid(cred);
1601         int rc;
1602
1603         ad.type = LSM_AUDIT_DATA_PATH;
1604         ad.u.path = file->f_path;
1605
1606         if (sid != fsec->sid) {
1607                 rc = avc_has_perm(sid, fsec->sid,
1608                                   SECCLASS_FD,
1609                                   FD__USE,
1610                                   &ad);
1611                 if (rc)
1612                         goto out;
1613         }
1614
1615         /* av is zero if only checking access to the descriptor. */
1616         rc = 0;
1617         if (av)
1618                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1619
1620 out:
1621         return rc;
1622 }
1623
1624 /* Check whether a task can create a file. */
1625 static int may_create(struct inode *dir,
1626                       struct dentry *dentry,
1627                       u16 tclass)
1628 {
1629         const struct task_security_struct *tsec = current_security();
1630         struct inode_security_struct *dsec;
1631         struct superblock_security_struct *sbsec;
1632         u32 sid, newsid;
1633         struct common_audit_data ad;
1634         int rc;
1635
1636         dsec = dir->i_security;
1637         sbsec = dir->i_sb->s_security;
1638
1639         sid = tsec->sid;
1640         newsid = tsec->create_sid;
1641
1642         ad.type = LSM_AUDIT_DATA_DENTRY;
1643         ad.u.dentry = dentry;
1644
1645         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1646                           DIR__ADD_NAME | DIR__SEARCH,
1647                           &ad);
1648         if (rc)
1649                 return rc;
1650
1651         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1652                 rc = security_transition_sid(sid, dsec->sid, tclass,
1653                                              &dentry->d_name, &newsid);
1654                 if (rc)
1655                         return rc;
1656         }
1657
1658         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1659         if (rc)
1660                 return rc;
1661
1662         return avc_has_perm(newsid, sbsec->sid,
1663                             SECCLASS_FILESYSTEM,
1664                             FILESYSTEM__ASSOCIATE, &ad);
1665 }
1666
1667 /* Check whether a task can create a key. */
1668 static int may_create_key(u32 ksid,
1669                           struct task_struct *ctx)
1670 {
1671         u32 sid = task_sid(ctx);
1672
1673         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1674 }
1675
1676 #define MAY_LINK        0
1677 #define MAY_UNLINK      1
1678 #define MAY_RMDIR       2
1679
1680 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1681 static int may_link(struct inode *dir,
1682                     struct dentry *dentry,
1683                     int kind)
1684
1685 {
1686         struct inode_security_struct *dsec, *isec;
1687         struct common_audit_data ad;
1688         u32 sid = current_sid();
1689         u32 av;
1690         int rc;
1691
1692         dsec = dir->i_security;
1693         isec = dentry->d_inode->i_security;
1694
1695         ad.type = LSM_AUDIT_DATA_DENTRY;
1696         ad.u.dentry = dentry;
1697
1698         av = DIR__SEARCH;
1699         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1700         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1701         if (rc)
1702                 return rc;
1703
1704         switch (kind) {
1705         case MAY_LINK:
1706                 av = FILE__LINK;
1707                 break;
1708         case MAY_UNLINK:
1709                 av = FILE__UNLINK;
1710                 break;
1711         case MAY_RMDIR:
1712                 av = DIR__RMDIR;
1713                 break;
1714         default:
1715                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1716                         __func__, kind);
1717                 return 0;
1718         }
1719
1720         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1721         return rc;
1722 }
1723
1724 static inline int may_rename(struct inode *old_dir,
1725                              struct dentry *old_dentry,
1726                              struct inode *new_dir,
1727                              struct dentry *new_dentry)
1728 {
1729         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1730         struct common_audit_data ad;
1731         u32 sid = current_sid();
1732         u32 av;
1733         int old_is_dir, new_is_dir;
1734         int rc;
1735
1736         old_dsec = old_dir->i_security;
1737         old_isec = old_dentry->d_inode->i_security;
1738         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1739         new_dsec = new_dir->i_security;
1740
1741         ad.type = LSM_AUDIT_DATA_DENTRY;
1742
1743         ad.u.dentry = old_dentry;
1744         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1745                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1746         if (rc)
1747                 return rc;
1748         rc = avc_has_perm(sid, old_isec->sid,
1749                           old_isec->sclass, FILE__RENAME, &ad);
1750         if (rc)
1751                 return rc;
1752         if (old_is_dir && new_dir != old_dir) {
1753                 rc = avc_has_perm(sid, old_isec->sid,
1754                                   old_isec->sclass, DIR__REPARENT, &ad);
1755                 if (rc)
1756                         return rc;
1757         }
1758
1759         ad.u.dentry = new_dentry;
1760         av = DIR__ADD_NAME | DIR__SEARCH;
1761         if (new_dentry->d_inode)
1762                 av |= DIR__REMOVE_NAME;
1763         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1764         if (rc)
1765                 return rc;
1766         if (new_dentry->d_inode) {
1767                 new_isec = new_dentry->d_inode->i_security;
1768                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1769                 rc = avc_has_perm(sid, new_isec->sid,
1770                                   new_isec->sclass,
1771                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1772                 if (rc)
1773                         return rc;
1774         }
1775
1776         return 0;
1777 }
1778
1779 /* Check whether a task can perform a filesystem operation. */
1780 static int superblock_has_perm(const struct cred *cred,
1781                                struct super_block *sb,
1782                                u32 perms,
1783                                struct common_audit_data *ad)
1784 {
1785         struct superblock_security_struct *sbsec;
1786         u32 sid = cred_sid(cred);
1787
1788         sbsec = sb->s_security;
1789         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1790 }
1791
1792 /* Convert a Linux mode and permission mask to an access vector. */
1793 static inline u32 file_mask_to_av(int mode, int mask)
1794 {
1795         u32 av = 0;
1796
1797         if (!S_ISDIR(mode)) {
1798                 if (mask & MAY_EXEC)
1799                         av |= FILE__EXECUTE;
1800                 if (mask & MAY_READ)
1801                         av |= FILE__READ;
1802
1803                 if (mask & MAY_APPEND)
1804                         av |= FILE__APPEND;
1805                 else if (mask & MAY_WRITE)
1806                         av |= FILE__WRITE;
1807
1808         } else {
1809                 if (mask & MAY_EXEC)
1810                         av |= DIR__SEARCH;
1811                 if (mask & MAY_WRITE)
1812                         av |= DIR__WRITE;
1813                 if (mask & MAY_READ)
1814                         av |= DIR__READ;
1815         }
1816
1817         return av;
1818 }
1819
1820 /* Convert a Linux file to an access vector. */
1821 static inline u32 file_to_av(struct file *file)
1822 {
1823         u32 av = 0;
1824
1825         if (file->f_mode & FMODE_READ)
1826                 av |= FILE__READ;
1827         if (file->f_mode & FMODE_WRITE) {
1828                 if (file->f_flags & O_APPEND)
1829                         av |= FILE__APPEND;
1830                 else
1831                         av |= FILE__WRITE;
1832         }
1833         if (!av) {
1834                 /*
1835                  * Special file opened with flags 3 for ioctl-only use.
1836                  */
1837                 av = FILE__IOCTL;
1838         }
1839
1840         return av;
1841 }
1842
1843 /*
1844  * Convert a file to an access vector and include the correct open
1845  * open permission.
1846  */
1847 static inline u32 open_file_to_av(struct file *file)
1848 {
1849         u32 av = file_to_av(file);
1850
1851         if (selinux_policycap_openperm)
1852                 av |= FILE__OPEN;
1853
1854         return av;
1855 }
1856
1857 /* Hook functions begin here. */
1858
1859 static int selinux_ptrace_access_check(struct task_struct *child,
1860                                      unsigned int mode)
1861 {
1862         int rc;
1863
1864         rc = cap_ptrace_access_check(child, mode);
1865         if (rc)
1866                 return rc;
1867
1868         if (mode & PTRACE_MODE_READ) {
1869                 u32 sid = current_sid();
1870                 u32 csid = task_sid(child);
1871                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1872         }
1873
1874         return current_has_perm(child, PROCESS__PTRACE);
1875 }
1876
1877 static int selinux_ptrace_traceme(struct task_struct *parent)
1878 {
1879         int rc;
1880
1881         rc = cap_ptrace_traceme(parent);
1882         if (rc)
1883                 return rc;
1884
1885         return task_has_perm(parent, current, PROCESS__PTRACE);
1886 }
1887
1888 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1889                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1890 {
1891         int error;
1892
1893         error = current_has_perm(target, PROCESS__GETCAP);
1894         if (error)
1895                 return error;
1896
1897         return cap_capget(target, effective, inheritable, permitted);
1898 }
1899
1900 static int selinux_capset(struct cred *new, const struct cred *old,
1901                           const kernel_cap_t *effective,
1902                           const kernel_cap_t *inheritable,
1903                           const kernel_cap_t *permitted)
1904 {
1905         int error;
1906
1907         error = cap_capset(new, old,
1908                                       effective, inheritable, permitted);
1909         if (error)
1910                 return error;
1911
1912         return cred_has_perm(old, new, PROCESS__SETCAP);
1913 }
1914
1915 /*
1916  * (This comment used to live with the selinux_task_setuid hook,
1917  * which was removed).
1918  *
1919  * Since setuid only affects the current process, and since the SELinux
1920  * controls are not based on the Linux identity attributes, SELinux does not
1921  * need to control this operation.  However, SELinux does control the use of
1922  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1923  */
1924
1925 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1926                            int cap, int audit)
1927 {
1928         int rc;
1929
1930         rc = cap_capable(cred, ns, cap, audit);
1931         if (rc)
1932                 return rc;
1933
1934         return cred_has_capability(cred, cap, audit);
1935 }
1936
1937 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1938 {
1939         const struct cred *cred = current_cred();
1940         int rc = 0;
1941
1942         if (!sb)
1943                 return 0;
1944
1945         switch (cmds) {
1946         case Q_SYNC:
1947         case Q_QUOTAON:
1948         case Q_QUOTAOFF:
1949         case Q_SETINFO:
1950         case Q_SETQUOTA:
1951                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1952                 break;
1953         case Q_GETFMT:
1954         case Q_GETINFO:
1955         case Q_GETQUOTA:
1956                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1957                 break;
1958         default:
1959                 rc = 0;  /* let the kernel handle invalid cmds */
1960                 break;
1961         }
1962         return rc;
1963 }
1964
1965 static int selinux_quota_on(struct dentry *dentry)
1966 {
1967         const struct cred *cred = current_cred();
1968
1969         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1970 }
1971
1972 static int selinux_syslog(int type)
1973 {
1974         int rc;
1975
1976         switch (type) {
1977         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1978         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1979                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1980                 break;
1981         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1982         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1983         /* Set level of messages printed to console */
1984         case SYSLOG_ACTION_CONSOLE_LEVEL:
1985                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1986                 break;
1987         case SYSLOG_ACTION_CLOSE:       /* Close log */
1988         case SYSLOG_ACTION_OPEN:        /* Open log */
1989         case SYSLOG_ACTION_READ:        /* Read from log */
1990         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1991         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1992         default:
1993                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1994                 break;
1995         }
1996         return rc;
1997 }
1998
1999 /*
2000  * Check that a process has enough memory to allocate a new virtual
2001  * mapping. 0 means there is enough memory for the allocation to
2002  * succeed and -ENOMEM implies there is not.
2003  *
2004  * Do not audit the selinux permission check, as this is applied to all
2005  * processes that allocate mappings.
2006  */
2007 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2008 {
2009         int rc, cap_sys_admin = 0;
2010
2011         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2012                              SECURITY_CAP_NOAUDIT);
2013         if (rc == 0)
2014                 cap_sys_admin = 1;
2015
2016         return __vm_enough_memory(mm, pages, cap_sys_admin);
2017 }
2018
2019 /* binprm security operations */
2020
2021 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2022 {
2023         const struct task_security_struct *old_tsec;
2024         struct task_security_struct *new_tsec;
2025         struct inode_security_struct *isec;
2026         struct common_audit_data ad;
2027         struct inode *inode = file_inode(bprm->file);
2028         int rc;
2029
2030         rc = cap_bprm_set_creds(bprm);
2031         if (rc)
2032                 return rc;
2033
2034         /* SELinux context only depends on initial program or script and not
2035          * the script interpreter */
2036         if (bprm->cred_prepared)
2037                 return 0;
2038
2039         old_tsec = current_security();
2040         new_tsec = bprm->cred->security;
2041         isec = inode->i_security;
2042
2043         /* Default to the current task SID. */
2044         new_tsec->sid = old_tsec->sid;
2045         new_tsec->osid = old_tsec->sid;
2046
2047         /* Reset fs, key, and sock SIDs on execve. */
2048         new_tsec->create_sid = 0;
2049         new_tsec->keycreate_sid = 0;
2050         new_tsec->sockcreate_sid = 0;
2051
2052         if (old_tsec->exec_sid) {
2053                 new_tsec->sid = old_tsec->exec_sid;
2054                 /* Reset exec SID on execve. */
2055                 new_tsec->exec_sid = 0;
2056
2057                 /*
2058                  * Minimize confusion: if no_new_privs and a transition is
2059                  * explicitly requested, then fail the exec.
2060                  */
2061                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2062                         return -EPERM;
2063         } else {
2064                 /* Check for a default transition on this program. */
2065                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2066                                              SECCLASS_PROCESS, NULL,
2067                                              &new_tsec->sid);
2068                 if (rc)
2069                         return rc;
2070         }
2071
2072         ad.type = LSM_AUDIT_DATA_PATH;
2073         ad.u.path = bprm->file->f_path;
2074
2075         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2076             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2077                 new_tsec->sid = old_tsec->sid;
2078
2079         if (new_tsec->sid == old_tsec->sid) {
2080                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2081                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2082                 if (rc)
2083                         return rc;
2084         } else {
2085                 /* Check permissions for the transition. */
2086                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2087                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2088                 if (rc)
2089                         return rc;
2090
2091                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2092                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2093                 if (rc)
2094                         return rc;
2095
2096                 /* Check for shared state */
2097                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2098                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2099                                           SECCLASS_PROCESS, PROCESS__SHARE,
2100                                           NULL);
2101                         if (rc)
2102                                 return -EPERM;
2103                 }
2104
2105                 /* Make sure that anyone attempting to ptrace over a task that
2106                  * changes its SID has the appropriate permit */
2107                 if (bprm->unsafe &
2108                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2109                         struct task_struct *tracer;
2110                         struct task_security_struct *sec;
2111                         u32 ptsid = 0;
2112
2113                         rcu_read_lock();
2114                         tracer = ptrace_parent(current);
2115                         if (likely(tracer != NULL)) {
2116                                 sec = __task_cred(tracer)->security;
2117                                 ptsid = sec->sid;
2118                         }
2119                         rcu_read_unlock();
2120
2121                         if (ptsid != 0) {
2122                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2123                                                   SECCLASS_PROCESS,
2124                                                   PROCESS__PTRACE, NULL);
2125                                 if (rc)
2126                                         return -EPERM;
2127                         }
2128                 }
2129
2130                 /* Clear any possibly unsafe personality bits on exec: */
2131                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2132         }
2133
2134         return 0;
2135 }
2136
2137 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2138 {
2139         const struct task_security_struct *tsec = current_security();
2140         u32 sid, osid;
2141         int atsecure = 0;
2142
2143         sid = tsec->sid;
2144         osid = tsec->osid;
2145
2146         if (osid != sid) {
2147                 /* Enable secure mode for SIDs transitions unless
2148                    the noatsecure permission is granted between
2149                    the two SIDs, i.e. ahp returns 0. */
2150                 atsecure = avc_has_perm(osid, sid,
2151                                         SECCLASS_PROCESS,
2152                                         PROCESS__NOATSECURE, NULL);
2153         }
2154
2155         return (atsecure || cap_bprm_secureexec(bprm));
2156 }
2157
2158 static int match_file(const void *p, struct file *file, unsigned fd)
2159 {
2160         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2161 }
2162
2163 /* Derived from fs/exec.c:flush_old_files. */
2164 static inline void flush_unauthorized_files(const struct cred *cred,
2165                                             struct files_struct *files)
2166 {
2167         struct file *file, *devnull = NULL;
2168         struct tty_struct *tty;
2169         int drop_tty = 0;
2170         unsigned n;
2171
2172         tty = get_current_tty();
2173         if (tty) {
2174                 spin_lock(&tty_files_lock);
2175                 if (!list_empty(&tty->tty_files)) {
2176                         struct tty_file_private *file_priv;
2177
2178                         /* Revalidate access to controlling tty.
2179                            Use path_has_perm on the tty path directly rather
2180                            than using file_has_perm, as this particular open
2181                            file may belong to another process and we are only
2182                            interested in the inode-based check here. */
2183                         file_priv = list_first_entry(&tty->tty_files,
2184                                                 struct tty_file_private, list);
2185                         file = file_priv->file;
2186                         if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2187                                 drop_tty = 1;
2188                 }
2189                 spin_unlock(&tty_files_lock);
2190                 tty_kref_put(tty);
2191         }
2192         /* Reset controlling tty. */
2193         if (drop_tty)
2194                 no_tty();
2195
2196         /* Revalidate access to inherited open files. */
2197         n = iterate_fd(files, 0, match_file, cred);
2198         if (!n) /* none found? */
2199                 return;
2200
2201         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2202         if (IS_ERR(devnull))
2203                 devnull = NULL;
2204         /* replace all the matching ones with this */
2205         do {
2206                 replace_fd(n - 1, devnull, 0);
2207         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2208         if (devnull)
2209                 fput(devnull);
2210 }
2211
2212 /*
2213  * Prepare a process for imminent new credential changes due to exec
2214  */
2215 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2216 {
2217         struct task_security_struct *new_tsec;
2218         struct rlimit *rlim, *initrlim;
2219         int rc, i;
2220
2221         new_tsec = bprm->cred->security;
2222         if (new_tsec->sid == new_tsec->osid)
2223                 return;
2224
2225         /* Close files for which the new task SID is not authorized. */
2226         flush_unauthorized_files(bprm->cred, current->files);
2227
2228         /* Always clear parent death signal on SID transitions. */
2229         current->pdeath_signal = 0;
2230
2231         /* Check whether the new SID can inherit resource limits from the old
2232          * SID.  If not, reset all soft limits to the lower of the current
2233          * task's hard limit and the init task's soft limit.
2234          *
2235          * Note that the setting of hard limits (even to lower them) can be
2236          * controlled by the setrlimit check.  The inclusion of the init task's
2237          * soft limit into the computation is to avoid resetting soft limits
2238          * higher than the default soft limit for cases where the default is
2239          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2240          */
2241         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2242                           PROCESS__RLIMITINH, NULL);
2243         if (rc) {
2244                 /* protect against do_prlimit() */
2245                 task_lock(current);
2246                 for (i = 0; i < RLIM_NLIMITS; i++) {
2247                         rlim = current->signal->rlim + i;
2248                         initrlim = init_task.signal->rlim + i;
2249                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2250                 }
2251                 task_unlock(current);
2252                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2253         }
2254 }
2255
2256 /*
2257  * Clean up the process immediately after the installation of new credentials
2258  * due to exec
2259  */
2260 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2261 {
2262         const struct task_security_struct *tsec = current_security();
2263         struct itimerval itimer;
2264         u32 osid, sid;
2265         int rc, i;
2266
2267         osid = tsec->osid;
2268         sid = tsec->sid;
2269
2270         if (sid == osid)
2271                 return;
2272
2273         /* Check whether the new SID can inherit signal state from the old SID.
2274          * If not, clear itimers to avoid subsequent signal generation and
2275          * flush and unblock signals.
2276          *
2277          * This must occur _after_ the task SID has been updated so that any
2278          * kill done after the flush will be checked against the new SID.
2279          */
2280         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2281         if (rc) {
2282                 memset(&itimer, 0, sizeof itimer);
2283                 for (i = 0; i < 3; i++)
2284                         do_setitimer(i, &itimer, NULL);
2285                 spin_lock_irq(&current->sighand->siglock);
2286                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2287                         __flush_signals(current);
2288                         flush_signal_handlers(current, 1);
2289                         sigemptyset(&current->blocked);
2290                 }
2291                 spin_unlock_irq(&current->sighand->siglock);
2292         }
2293
2294         /* Wake up the parent if it is waiting so that it can recheck
2295          * wait permission to the new task SID. */
2296         read_lock(&tasklist_lock);
2297         __wake_up_parent(current, current->real_parent);
2298         read_unlock(&tasklist_lock);
2299 }
2300
2301 /* superblock security operations */
2302
2303 static int selinux_sb_alloc_security(struct super_block *sb)
2304 {
2305         return superblock_alloc_security(sb);
2306 }
2307
2308 static void selinux_sb_free_security(struct super_block *sb)
2309 {
2310         superblock_free_security(sb);
2311 }
2312
2313 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2314 {
2315         if (plen > olen)
2316                 return 0;
2317
2318         return !memcmp(prefix, option, plen);
2319 }
2320
2321 static inline int selinux_option(char *option, int len)
2322 {
2323         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2324                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2325                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2326                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2327                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2328 }
2329
2330 static inline void take_option(char **to, char *from, int *first, int len)
2331 {
2332         if (!*first) {
2333                 **to = ',';
2334                 *to += 1;
2335         } else
2336                 *first = 0;
2337         memcpy(*to, from, len);
2338         *to += len;
2339 }
2340
2341 static inline void take_selinux_option(char **to, char *from, int *first,
2342                                        int len)
2343 {
2344         int current_size = 0;
2345
2346         if (!*first) {
2347                 **to = '|';
2348                 *to += 1;
2349         } else
2350                 *first = 0;
2351
2352         while (current_size < len) {
2353                 if (*from != '"') {
2354                         **to = *from;
2355                         *to += 1;
2356                 }
2357                 from += 1;
2358                 current_size += 1;
2359         }
2360 }
2361
2362 static int selinux_sb_copy_data(char *orig, char *copy)
2363 {
2364         int fnosec, fsec, rc = 0;
2365         char *in_save, *in_curr, *in_end;
2366         char *sec_curr, *nosec_save, *nosec;
2367         int open_quote = 0;
2368
2369         in_curr = orig;
2370         sec_curr = copy;
2371
2372         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2373         if (!nosec) {
2374                 rc = -ENOMEM;
2375                 goto out;
2376         }
2377
2378         nosec_save = nosec;
2379         fnosec = fsec = 1;
2380         in_save = in_end = orig;
2381
2382         do {
2383                 if (*in_end == '"')
2384                         open_quote = !open_quote;
2385                 if ((*in_end == ',' && open_quote == 0) ||
2386                                 *in_end == '\0') {
2387                         int len = in_end - in_curr;
2388
2389                         if (selinux_option(in_curr, len))
2390                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2391                         else
2392                                 take_option(&nosec, in_curr, &fnosec, len);
2393
2394                         in_curr = in_end + 1;
2395                 }
2396         } while (*in_end++);
2397
2398         strcpy(in_save, nosec_save);
2399         free_page((unsigned long)nosec_save);
2400 out:
2401         return rc;
2402 }
2403
2404 static int selinux_sb_remount(struct super_block *sb, void *data)
2405 {
2406         int rc, i, *flags;
2407         struct security_mnt_opts opts;
2408         char *secdata, **mount_options;
2409         struct superblock_security_struct *sbsec = sb->s_security;
2410
2411         if (!(sbsec->flags & SE_SBINITIALIZED))
2412                 return 0;
2413
2414         if (!data)
2415                 return 0;
2416
2417         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2418                 return 0;
2419
2420         security_init_mnt_opts(&opts);
2421         secdata = alloc_secdata();
2422         if (!secdata)
2423                 return -ENOMEM;
2424         rc = selinux_sb_copy_data(data, secdata);
2425         if (rc)
2426                 goto out_free_secdata;
2427
2428         rc = selinux_parse_opts_str(secdata, &opts);
2429         if (rc)
2430                 goto out_free_secdata;
2431
2432         mount_options = opts.mnt_opts;
2433         flags = opts.mnt_opts_flags;
2434
2435         for (i = 0; i < opts.num_mnt_opts; i++) {
2436                 u32 sid;
2437                 size_t len;
2438
2439                 if (flags[i] == SE_SBLABELSUPP)
2440                         continue;
2441                 len = strlen(mount_options[i]);
2442                 rc = security_context_to_sid(mount_options[i], len, &sid);
2443                 if (rc) {
2444                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2445                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2446                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2447                         goto out_free_opts;
2448                 }
2449                 rc = -EINVAL;
2450                 switch (flags[i]) {
2451                 case FSCONTEXT_MNT:
2452                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2453                                 goto out_bad_option;
2454                         break;
2455                 case CONTEXT_MNT:
2456                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2457                                 goto out_bad_option;
2458                         break;
2459                 case ROOTCONTEXT_MNT: {
2460                         struct inode_security_struct *root_isec;
2461                         root_isec = sb->s_root->d_inode->i_security;
2462
2463                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2464                                 goto out_bad_option;
2465                         break;
2466                 }
2467                 case DEFCONTEXT_MNT:
2468                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2469                                 goto out_bad_option;
2470                         break;
2471                 default:
2472                         goto out_free_opts;
2473                 }
2474         }
2475
2476         rc = 0;
2477 out_free_opts:
2478         security_free_mnt_opts(&opts);
2479 out_free_secdata:
2480         free_secdata(secdata);
2481         return rc;
2482 out_bad_option:
2483         printk(KERN_WARNING "SELinux: unable to change security options "
2484                "during remount (dev %s, type=%s)\n", sb->s_id,
2485                sb->s_type->name);
2486         goto out_free_opts;
2487 }
2488
2489 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2490 {
2491         const struct cred *cred = current_cred();
2492         struct common_audit_data ad;
2493         int rc;
2494
2495         rc = superblock_doinit(sb, data);
2496         if (rc)
2497                 return rc;
2498
2499         /* Allow all mounts performed by the kernel */
2500         if (flags & MS_KERNMOUNT)
2501                 return 0;
2502
2503         ad.type = LSM_AUDIT_DATA_DENTRY;
2504         ad.u.dentry = sb->s_root;
2505         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2506 }
2507
2508 static int selinux_sb_statfs(struct dentry *dentry)
2509 {
2510         const struct cred *cred = current_cred();
2511         struct common_audit_data ad;
2512
2513         ad.type = LSM_AUDIT_DATA_DENTRY;
2514         ad.u.dentry = dentry->d_sb->s_root;
2515         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2516 }
2517
2518 static int selinux_mount(const char *dev_name,
2519                          struct path *path,
2520                          const char *type,
2521                          unsigned long flags,
2522                          void *data)
2523 {
2524         const struct cred *cred = current_cred();
2525
2526         if (flags & MS_REMOUNT)
2527                 return superblock_has_perm(cred, path->dentry->d_sb,
2528                                            FILESYSTEM__REMOUNT, NULL);
2529         else
2530                 return path_has_perm(cred, path, FILE__MOUNTON);
2531 }
2532
2533 static int selinux_umount(struct vfsmount *mnt, int flags)
2534 {
2535         const struct cred *cred = current_cred();
2536
2537         return superblock_has_perm(cred, mnt->mnt_sb,
2538                                    FILESYSTEM__UNMOUNT, NULL);
2539 }
2540
2541 /* inode security operations */
2542
2543 static int selinux_inode_alloc_security(struct inode *inode)
2544 {
2545         return inode_alloc_security(inode);
2546 }
2547
2548 static void selinux_inode_free_security(struct inode *inode)
2549 {
2550         inode_free_security(inode);
2551 }
2552
2553 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2554                                        const struct qstr *qstr, char **name,
2555                                        void **value, size_t *len)
2556 {
2557         const struct task_security_struct *tsec = current_security();
2558         struct inode_security_struct *dsec;
2559         struct superblock_security_struct *sbsec;
2560         u32 sid, newsid, clen;
2561         int rc;
2562         char *namep = NULL, *context;
2563
2564         dsec = dir->i_security;
2565         sbsec = dir->i_sb->s_security;
2566
2567         sid = tsec->sid;
2568         newsid = tsec->create_sid;
2569
2570         if ((sbsec->flags & SE_SBINITIALIZED) &&
2571             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2572                 newsid = sbsec->mntpoint_sid;
2573         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2574                 rc = security_transition_sid(sid, dsec->sid,
2575                                              inode_mode_to_security_class(inode->i_mode),
2576                                              qstr, &newsid);
2577                 if (rc) {
2578                         printk(KERN_WARNING "%s:  "
2579                                "security_transition_sid failed, rc=%d (dev=%s "
2580                                "ino=%ld)\n",
2581                                __func__,
2582                                -rc, inode->i_sb->s_id, inode->i_ino);
2583                         return rc;
2584                 }
2585         }
2586
2587         /* Possibly defer initialization to selinux_complete_init. */
2588         if (sbsec->flags & SE_SBINITIALIZED) {
2589                 struct inode_security_struct *isec = inode->i_security;
2590                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2591                 isec->sid = newsid;
2592                 isec->initialized = 1;
2593         }
2594
2595         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2596                 return -EOPNOTSUPP;
2597
2598         if (name) {
2599                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2600                 if (!namep)
2601                         return -ENOMEM;
2602                 *name = namep;
2603         }
2604
2605         if (value && len) {
2606                 rc = security_sid_to_context_force(newsid, &context, &clen);
2607                 if (rc) {
2608                         kfree(namep);
2609                         return rc;
2610                 }
2611                 *value = context;
2612                 *len = clen;
2613         }
2614
2615         return 0;
2616 }
2617
2618 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2619 {
2620         return may_create(dir, dentry, SECCLASS_FILE);
2621 }
2622
2623 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2624 {
2625         return may_link(dir, old_dentry, MAY_LINK);
2626 }
2627
2628 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2629 {
2630         return may_link(dir, dentry, MAY_UNLINK);
2631 }
2632
2633 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2634 {
2635         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2636 }
2637
2638 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2639 {
2640         return may_create(dir, dentry, SECCLASS_DIR);
2641 }
2642
2643 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2644 {
2645         return may_link(dir, dentry, MAY_RMDIR);
2646 }
2647
2648 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2649 {
2650         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2651 }
2652
2653 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2654                                 struct inode *new_inode, struct dentry *new_dentry)
2655 {
2656         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2657 }
2658
2659 static int selinux_inode_readlink(struct dentry *dentry)
2660 {
2661         const struct cred *cred = current_cred();
2662
2663         return dentry_has_perm(cred, dentry, FILE__READ);
2664 }
2665
2666 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2667 {
2668         const struct cred *cred = current_cred();
2669
2670         return dentry_has_perm(cred, dentry, FILE__READ);
2671 }
2672
2673 static noinline int audit_inode_permission(struct inode *inode,
2674                                            u32 perms, u32 audited, u32 denied,
2675                                            unsigned flags)
2676 {
2677         struct common_audit_data ad;
2678         struct inode_security_struct *isec = inode->i_security;
2679         int rc;
2680
2681         ad.type = LSM_AUDIT_DATA_INODE;
2682         ad.u.inode = inode;
2683
2684         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2685                             audited, denied, &ad, flags);
2686         if (rc)
2687                 return rc;
2688         return 0;
2689 }
2690
2691 static int selinux_inode_permission(struct inode *inode, int mask)
2692 {
2693         const struct cred *cred = current_cred();
2694         u32 perms;
2695         bool from_access;
2696         unsigned flags = mask & MAY_NOT_BLOCK;
2697         struct inode_security_struct *isec;
2698         u32 sid;
2699         struct av_decision avd;
2700         int rc, rc2;
2701         u32 audited, denied;
2702
2703         from_access = mask & MAY_ACCESS;
2704         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2705
2706         /* No permission to check.  Existence test. */
2707         if (!mask)
2708                 return 0;
2709
2710         validate_creds(cred);
2711
2712         if (unlikely(IS_PRIVATE(inode)))
2713                 return 0;
2714
2715         perms = file_mask_to_av(inode->i_mode, mask);
2716
2717         sid = cred_sid(cred);
2718         isec = inode->i_security;
2719
2720         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2721         audited = avc_audit_required(perms, &avd, rc,
2722                                      from_access ? FILE__AUDIT_ACCESS : 0,
2723                                      &denied);
2724         if (likely(!audited))
2725                 return rc;
2726
2727         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2728         if (rc2)
2729                 return rc2;
2730         return rc;
2731 }
2732
2733 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2734 {
2735         const struct cred *cred = current_cred();
2736         unsigned int ia_valid = iattr->ia_valid;
2737         __u32 av = FILE__WRITE;
2738
2739         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2740         if (ia_valid & ATTR_FORCE) {
2741                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2742                               ATTR_FORCE);
2743                 if (!ia_valid)
2744                         return 0;
2745         }
2746
2747         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2748                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2749                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2750
2751         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2752                 av |= FILE__OPEN;
2753
2754         return dentry_has_perm(cred, dentry, av);
2755 }
2756
2757 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2758 {
2759         const struct cred *cred = current_cred();
2760         struct path path;
2761
2762         path.dentry = dentry;
2763         path.mnt = mnt;
2764
2765         return path_has_perm(cred, &path, FILE__GETATTR);
2766 }
2767
2768 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2769 {
2770         const struct cred *cred = current_cred();
2771
2772         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2773                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2774                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2775                         if (!capable(CAP_SETFCAP))
2776                                 return -EPERM;
2777                 } else if (!capable(CAP_SYS_ADMIN)) {
2778                         /* A different attribute in the security namespace.
2779                            Restrict to administrator. */
2780                         return -EPERM;
2781                 }
2782         }
2783
2784         /* Not an attribute we recognize, so just check the
2785            ordinary setattr permission. */
2786         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2787 }
2788
2789 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2790                                   const void *value, size_t size, int flags)
2791 {
2792         struct inode *inode = dentry->d_inode;
2793         struct inode_security_struct *isec = inode->i_security;
2794         struct superblock_security_struct *sbsec;
2795         struct common_audit_data ad;
2796         u32 newsid, sid = current_sid();
2797         int rc = 0;
2798
2799         if (strcmp(name, XATTR_NAME_SELINUX))
2800                 return selinux_inode_setotherxattr(dentry, name);
2801
2802         sbsec = inode->i_sb->s_security;
2803         if (!(sbsec->flags & SE_SBLABELSUPP))
2804                 return -EOPNOTSUPP;
2805
2806         if (!inode_owner_or_capable(inode))
2807                 return -EPERM;
2808
2809         ad.type = LSM_AUDIT_DATA_DENTRY;
2810         ad.u.dentry = dentry;
2811
2812         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2813                           FILE__RELABELFROM, &ad);
2814         if (rc)
2815                 return rc;
2816
2817         rc = security_context_to_sid(value, size, &newsid);
2818         if (rc == -EINVAL) {
2819                 if (!capable(CAP_MAC_ADMIN)) {
2820                         struct audit_buffer *ab;
2821                         size_t audit_size;
2822                         const char *str;
2823
2824                         /* We strip a nul only if it is at the end, otherwise the
2825                          * context contains a nul and we should audit that */
2826                         if (value) {
2827                                 str = value;
2828                                 if (str[size - 1] == '\0')
2829                                         audit_size = size - 1;
2830                                 else
2831                                         audit_size = size;
2832                         } else {
2833                                 str = "";
2834                                 audit_size = 0;
2835                         }
2836                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2837                         audit_log_format(ab, "op=setxattr invalid_context=");
2838                         audit_log_n_untrustedstring(ab, value, audit_size);
2839                         audit_log_end(ab);
2840
2841                         return rc;
2842                 }
2843                 rc = security_context_to_sid_force(value, size, &newsid);
2844         }
2845         if (rc)
2846                 return rc;
2847
2848         rc = avc_has_perm(sid, newsid, isec->sclass,
2849                           FILE__RELABELTO, &ad);
2850         if (rc)
2851                 return rc;
2852
2853         rc = security_validate_transition(isec->sid, newsid, sid,
2854                                           isec->sclass);
2855         if (rc)
2856                 return rc;
2857
2858         return avc_has_perm(newsid,
2859                             sbsec->sid,
2860                             SECCLASS_FILESYSTEM,
2861                             FILESYSTEM__ASSOCIATE,
2862                             &ad);
2863 }
2864
2865 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2866                                         const void *value, size_t size,
2867                                         int flags)
2868 {
2869         struct inode *inode = dentry->d_inode;
2870         struct inode_security_struct *isec = inode->i_security;
2871         u32 newsid;
2872         int rc;
2873
2874         if (strcmp(name, XATTR_NAME_SELINUX)) {
2875                 /* Not an attribute we recognize, so nothing to do. */
2876                 return;
2877         }
2878
2879         rc = security_context_to_sid_force(value, size, &newsid);
2880         if (rc) {
2881                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2882                        "for (%s, %lu), rc=%d\n",
2883                        inode->i_sb->s_id, inode->i_ino, -rc);
2884                 return;
2885         }
2886
2887         isec->sid = newsid;
2888         return;
2889 }
2890
2891 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2892 {
2893         const struct cred *cred = current_cred();
2894
2895         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2896 }
2897
2898 static int selinux_inode_listxattr(struct dentry *dentry)
2899 {
2900         const struct cred *cred = current_cred();
2901
2902         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2903 }
2904
2905 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2906 {
2907         if (strcmp(name, XATTR_NAME_SELINUX))
2908                 return selinux_inode_setotherxattr(dentry, name);
2909
2910         /* No one is allowed to remove a SELinux security label.
2911            You can change the label, but all data must be labeled. */
2912         return -EACCES;
2913 }
2914
2915 /*
2916  * Copy the inode security context value to the user.
2917  *
2918  * Permission check is handled by selinux_inode_getxattr hook.
2919  */
2920 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2921 {
2922         u32 size;
2923         int error;
2924         char *context = NULL;
2925         struct inode_security_struct *isec = inode->i_security;
2926
2927         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2928                 return -EOPNOTSUPP;
2929
2930         /*
2931          * If the caller has CAP_MAC_ADMIN, then get the raw context
2932          * value even if it is not defined by current policy; otherwise,
2933          * use the in-core value under current policy.
2934          * Use the non-auditing forms of the permission checks since
2935          * getxattr may be called by unprivileged processes commonly
2936          * and lack of permission just means that we fall back to the
2937          * in-core context value, not a denial.
2938          */
2939         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2940                                 SECURITY_CAP_NOAUDIT);
2941         if (!error)
2942                 error = security_sid_to_context_force(isec->sid, &context,
2943                                                       &size);
2944         else
2945                 error = security_sid_to_context(isec->sid, &context, &size);
2946         if (error)
2947                 return error;
2948         error = size;
2949         if (alloc) {
2950                 *buffer = context;
2951                 goto out_nofree;
2952         }
2953         kfree(context);
2954 out_nofree:
2955         return error;
2956 }
2957
2958 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2959                                      const void *value, size_t size, int flags)
2960 {
2961         struct inode_security_struct *isec = inode->i_security;
2962         u32 newsid;
2963         int rc;
2964
2965         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2966                 return -EOPNOTSUPP;
2967
2968         if (!value || !size)
2969                 return -EACCES;
2970
2971         rc = security_context_to_sid((void *)value, size, &newsid);
2972         if (rc)
2973                 return rc;
2974
2975         isec->sid = newsid;
2976         isec->initialized = 1;
2977         return 0;
2978 }
2979
2980 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2981 {
2982         const int len = sizeof(XATTR_NAME_SELINUX);
2983         if (buffer && len <= buffer_size)
2984                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2985         return len;
2986 }
2987
2988 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2989 {
2990         struct inode_security_struct *isec = inode->i_security;
2991         *secid = isec->sid;
2992 }
2993
2994 /* file security operations */
2995
2996 static int selinux_revalidate_file_permission(struct file *file, int mask)
2997 {
2998         const struct cred *cred = current_cred();
2999         struct inode *inode = file_inode(file);
3000
3001         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3002         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3003                 mask |= MAY_APPEND;
3004
3005         return file_has_perm(cred, file,
3006                              file_mask_to_av(inode->i_mode, mask));
3007 }
3008
3009 static int selinux_file_permission(struct file *file, int mask)
3010 {
3011         struct inode *inode = file_inode(file);
3012         struct file_security_struct *fsec = file->f_security;
3013         struct inode_security_struct *isec = inode->i_security;
3014         u32 sid = current_sid();
3015
3016         if (!mask)
3017                 /* No permission to check.  Existence test. */
3018                 return 0;
3019
3020         if (sid == fsec->sid && fsec->isid == isec->sid &&
3021             fsec->pseqno == avc_policy_seqno())
3022                 /* No change since file_open check. */
3023                 return 0;
3024
3025         return selinux_revalidate_file_permission(file, mask);
3026 }
3027
3028 static int selinux_file_alloc_security(struct file *file)
3029 {
3030         return file_alloc_security(file);
3031 }
3032
3033 static void selinux_file_free_security(struct file *file)
3034 {
3035         file_free_security(file);
3036 }
3037
3038 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3039                               unsigned long arg)
3040 {
3041         const struct cred *cred = current_cred();
3042         int error = 0;
3043
3044         switch (cmd) {
3045         case FIONREAD:
3046         /* fall through */
3047         case FIBMAP:
3048         /* fall through */
3049         case FIGETBSZ:
3050         /* fall through */
3051         case FS_IOC_GETFLAGS:
3052         /* fall through */
3053         case FS_IOC_GETVERSION:
3054                 error = file_has_perm(cred, file, FILE__GETATTR);
3055                 break;
3056
3057         case FS_IOC_SETFLAGS:
3058         /* fall through */
3059         case FS_IOC_SETVERSION:
3060                 error = file_has_perm(cred, file, FILE__SETATTR);
3061                 break;
3062
3063         /* sys_ioctl() checks */
3064         case FIONBIO:
3065         /* fall through */
3066         case FIOASYNC:
3067                 error = file_has_perm(cred, file, 0);
3068                 break;
3069
3070         case KDSKBENT:
3071         case KDSKBSENT:
3072                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3073                                             SECURITY_CAP_AUDIT);
3074                 break;
3075
3076         /* default case assumes that the command will go
3077          * to the file's ioctl() function.
3078          */
3079         default:
3080                 error = file_has_perm(cred, file, FILE__IOCTL);
3081         }
3082         return error;
3083 }
3084
3085 static int default_noexec;
3086
3087 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3088 {
3089         const struct cred *cred = current_cred();
3090         int rc = 0;
3091
3092         if (default_noexec &&
3093             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3094                 /*
3095                  * We are making executable an anonymous mapping or a
3096                  * private file mapping that will also be writable.
3097                  * This has an additional check.
3098                  */
3099                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3100                 if (rc)
3101                         goto error;
3102         }
3103
3104         if (file) {
3105                 /* read access is always possible with a mapping */
3106                 u32 av = FILE__READ;
3107
3108                 /* write access only matters if the mapping is shared */
3109                 if (shared && (prot & PROT_WRITE))
3110                         av |= FILE__WRITE;
3111
3112                 if (prot & PROT_EXEC)
3113                         av |= FILE__EXECUTE;
3114
3115                 return file_has_perm(cred, file, av);
3116         }
3117
3118 error:
3119         return rc;
3120 }
3121
3122 static int selinux_mmap_addr(unsigned long addr)
3123 {
3124         int rc = 0;
3125         u32 sid = current_sid();
3126
3127         /*
3128          * notice that we are intentionally putting the SELinux check before
3129          * the secondary cap_file_mmap check.  This is such a likely attempt
3130          * at bad behaviour/exploit that we always want to get the AVC, even
3131          * if DAC would have also denied the operation.
3132          */
3133         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3134                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3135                                   MEMPROTECT__MMAP_ZERO, NULL);
3136                 if (rc)
3137                         return rc;
3138         }
3139
3140         /* do DAC check on address space usage */
3141         return cap_mmap_addr(addr);
3142 }
3143
3144 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3145                              unsigned long prot, unsigned long flags)
3146 {
3147         if (selinux_checkreqprot)
3148                 prot = reqprot;
3149
3150         return file_map_prot_check(file, prot,
3151                                    (flags & MAP_TYPE) == MAP_SHARED);
3152 }
3153
3154 static int selinux_file_mprotect(struct vm_area_struct *vma,
3155                                  unsigned long reqprot,
3156                                  unsigned long prot)
3157 {
3158         const struct cred *cred = current_cred();
3159
3160         if (selinux_checkreqprot)
3161                 prot = reqprot;
3162
3163         if (default_noexec &&
3164             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3165                 int rc = 0;
3166                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3167                     vma->vm_end <= vma->vm_mm->brk) {
3168                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3169                 } else if (!vma->vm_file &&
3170                            vma->vm_start <= vma->vm_mm->start_stack &&
3171                            vma->vm_end >= vma->vm_mm->start_stack) {
3172                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3173                 } else if (vma->vm_file && vma->anon_vma) {
3174                         /*
3175                          * We are making executable a file mapping that has
3176                          * had some COW done. Since pages might have been
3177                          * written, check ability to execute the possibly
3178                          * modified content.  This typically should only
3179                          * occur for text relocations.
3180                          */
3181                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3182                 }
3183                 if (rc)
3184                         return rc;
3185         }
3186
3187         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3188 }
3189
3190 static int selinux_file_lock(struct file *file, unsigned int cmd)
3191 {
3192         const struct cred *cred = current_cred();
3193
3194         return file_has_perm(cred, file, FILE__LOCK);
3195 }
3196
3197 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3198                               unsigned long arg)
3199 {
3200         const struct cred *cred = current_cred();
3201         int err = 0;
3202
3203         switch (cmd) {
3204         case F_SETFL:
3205                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3206                         err = file_has_perm(cred, file, FILE__WRITE);
3207                         break;
3208                 }
3209                 /* fall through */
3210         case F_SETOWN:
3211         case F_SETSIG:
3212         case F_GETFL:
3213         case F_GETOWN:
3214         case F_GETSIG:
3215         case F_GETOWNER_UIDS:
3216                 /* Just check FD__USE permission */
3217                 err = file_has_perm(cred, file, 0);
3218                 break;
3219         case F_GETLK:
3220         case F_SETLK:
3221         case F_SETLKW:
3222 #if BITS_PER_LONG == 32
3223         case F_GETLK64:
3224         case F_SETLK64:
3225         case F_SETLKW64:
3226 #endif
3227                 err = file_has_perm(cred, file, FILE__LOCK);
3228                 break;
3229         }
3230
3231         return err;
3232 }
3233
3234 static int selinux_file_set_fowner(struct file *file)
3235 {
3236         struct file_security_struct *fsec;
3237
3238         fsec = file->f_security;
3239         fsec->fown_sid = current_sid();
3240
3241         return 0;
3242 }
3243
3244 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3245                                        struct fown_struct *fown, int signum)
3246 {
3247         struct file *file;
3248         u32 sid = task_sid(tsk);
3249         u32 perm;
3250         struct file_security_struct *fsec;
3251
3252         /* struct fown_struct is never outside the context of a struct file */
3253         file = container_of(fown, struct file, f_owner);
3254
3255         fsec = file->f_security;
3256
3257         if (!signum)
3258                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3259         else
3260                 perm = signal_to_av(signum);
3261
3262         return avc_has_perm(fsec->fown_sid, sid,
3263                             SECCLASS_PROCESS, perm, NULL);
3264 }
3265
3266 static int selinux_file_receive(struct file *file)
3267 {
3268         const struct cred *cred = current_cred();
3269
3270         return file_has_perm(cred, file, file_to_av(file));
3271 }
3272
3273 static int selinux_file_open(struct file *file, const struct cred *cred)
3274 {
3275         struct file_security_struct *fsec;
3276         struct inode_security_struct *isec;
3277
3278         fsec = file->f_security;
3279         isec = file_inode(file)->i_security;
3280         /*
3281          * Save inode label and policy sequence number
3282          * at open-time so that selinux_file_permission
3283          * can determine whether revalidation is necessary.
3284          * Task label is already saved in the file security
3285          * struct as its SID.
3286          */
3287         fsec->isid = isec->sid;
3288         fsec->pseqno = avc_policy_seqno();
3289         /*
3290          * Since the inode label or policy seqno may have changed
3291          * between the selinux_inode_permission check and the saving
3292          * of state above, recheck that access is still permitted.
3293          * Otherwise, access might never be revalidated against the
3294          * new inode label or new policy.
3295          * This check is not redundant - do not remove.
3296          */
3297         return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3298 }
3299
3300 /* task security operations */
3301
3302 static int selinux_task_create(unsigned long clone_flags)
3303 {
3304         return current_has_perm(current, PROCESS__FORK);
3305 }
3306
3307 /*
3308  * allocate the SELinux part of blank credentials
3309  */
3310 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3311 {
3312         struct task_security_struct *tsec;
3313
3314         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3315         if (!tsec)
3316                 return -ENOMEM;
3317
3318         cred->security = tsec;
3319         return 0;
3320 }
3321
3322 /*
3323  * detach and free the LSM part of a set of credentials
3324  */
3325 static void selinux_cred_free(struct cred *cred)
3326 {
3327         struct task_security_struct *tsec = cred->security;
3328
3329         /*
3330          * cred->security == NULL if security_cred_alloc_blank() or
3331          * security_prepare_creds() returned an error.
3332          */
3333         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3334         cred->security = (void *) 0x7UL;
3335         kfree(tsec);
3336 }
3337
3338 /*
3339  * prepare a new set of credentials for modification
3340  */
3341 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3342                                 gfp_t gfp)
3343 {
3344         const struct task_security_struct *old_tsec;
3345         struct task_security_struct *tsec;
3346
3347         old_tsec = old->security;
3348
3349         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3350         if (!tsec)
3351                 return -ENOMEM;
3352
3353         new->security = tsec;
3354         return 0;
3355 }
3356
3357 /*
3358  * transfer the SELinux data to a blank set of creds
3359  */
3360 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3361 {
3362         const struct task_security_struct *old_tsec = old->security;
3363         struct task_security_struct *tsec = new->security;
3364
3365         *tsec = *old_tsec;
3366 }
3367
3368 /*
3369  * set the security data for a kernel service
3370  * - all the creation contexts are set to unlabelled
3371  */
3372 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3373 {
3374         struct task_security_struct *tsec = new->security;
3375         u32 sid = current_sid();
3376         int ret;
3377
3378         ret = avc_has_perm(sid, secid,
3379                            SECCLASS_KERNEL_SERVICE,
3380                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3381                            NULL);
3382         if (ret == 0) {
3383                 tsec->sid = secid;
3384                 tsec->create_sid = 0;
3385                 tsec->keycreate_sid = 0;
3386                 tsec->sockcreate_sid = 0;
3387         }
3388         return ret;
3389 }
3390
3391 /*
3392  * set the file creation context in a security record to the same as the
3393  * objective context of the specified inode
3394  */
3395 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3396 {
3397         struct inode_security_struct *isec = inode->i_security;
3398         struct task_security_struct *tsec = new->security;
3399         u32 sid = current_sid();
3400         int ret;
3401
3402         ret = avc_has_perm(sid, isec->sid,
3403                            SECCLASS_KERNEL_SERVICE,
3404                            KERNEL_SERVICE__CREATE_FILES_AS,
3405                            NULL);
3406
3407         if (ret == 0)
3408                 tsec->create_sid = isec->sid;
3409         return ret;
3410 }
3411
3412 static int selinux_kernel_module_request(char *kmod_name)
3413 {
3414         u32 sid;
3415         struct common_audit_data ad;
3416
3417         sid = task_sid(current);
3418
3419         ad.type = LSM_AUDIT_DATA_KMOD;
3420         ad.u.kmod_name = kmod_name;
3421
3422         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3423                             SYSTEM__MODULE_REQUEST, &ad);
3424 }
3425
3426 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3427 {
3428         return current_has_perm(p, PROCESS__SETPGID);
3429 }
3430
3431 static int selinux_task_getpgid(struct task_struct *p)
3432 {
3433         return current_has_perm(p, PROCESS__GETPGID);
3434 }
3435
3436 static int selinux_task_getsid(struct task_struct *p)
3437 {
3438         return current_has_perm(p, PROCESS__GETSESSION);
3439 }
3440
3441 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3442 {
3443         *secid = task_sid(p);
3444 }
3445
3446 static int selinux_task_setnice(struct task_struct *p, int nice)
3447 {
3448         int rc;
3449
3450         rc = cap_task_setnice(p, nice);
3451         if (rc)
3452                 return rc;
3453
3454         return current_has_perm(p, PROCESS__SETSCHED);
3455 }
3456
3457 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3458 {
3459         int rc;
3460
3461         rc = cap_task_setioprio(p, ioprio);
3462         if (rc)
3463                 return rc;
3464
3465         return current_has_perm(p, PROCESS__SETSCHED);
3466 }
3467
3468 static int selinux_task_getioprio(struct task_struct *p)
3469 {
3470         return current_has_perm(p, PROCESS__GETSCHED);
3471 }
3472
3473 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3474                 struct rlimit *new_rlim)
3475 {
3476         struct rlimit *old_rlim = p->signal->rlim + resource;
3477
3478         /* Control the ability to change the hard limit (whether
3479            lowering or raising it), so that the hard limit can
3480            later be used as a safe reset point for the soft limit
3481            upon context transitions.  See selinux_bprm_committing_creds. */
3482         if (old_rlim->rlim_max != new_rlim->rlim_max)
3483                 return current_has_perm(p, PROCESS__SETRLIMIT);
3484
3485         return 0;
3486 }
3487
3488 static int selinux_task_setscheduler(struct task_struct *p)
3489 {
3490         int rc;
3491
3492         rc = cap_task_setscheduler(p);
3493         if (rc)
3494                 return rc;
3495
3496         return current_has_perm(p, PROCESS__SETSCHED);
3497 }
3498
3499 static int selinux_task_getscheduler(struct task_struct *p)
3500 {
3501         return current_has_perm(p, PROCESS__GETSCHED);
3502 }
3503
3504 static int selinux_task_movememory(struct task_struct *p)
3505 {
3506         return current_has_perm(p, PROCESS__SETSCHED);
3507 }
3508
3509 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3510                                 int sig, u32 secid)
3511 {
3512         u32 perm;
3513         int rc;
3514
3515         if (!sig)
3516                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3517         else
3518                 perm = signal_to_av(sig);
3519         if (secid)
3520                 rc = avc_has_perm(secid, task_sid(p),
3521                                   SECCLASS_PROCESS, perm, NULL);
3522         else
3523                 rc = current_has_perm(p, perm);
3524         return rc;
3525 }
3526
3527 static int selinux_task_wait(struct task_struct *p)
3528 {
3529         return task_has_perm(p, current, PROCESS__SIGCHLD);
3530 }
3531
3532 static void selinux_task_to_inode(struct task_struct *p,
3533                                   struct inode *inode)
3534 {
3535         struct inode_security_struct *isec = inode->i_security;
3536         u32 sid = task_sid(p);
3537
3538         isec->sid = sid;
3539         isec->initialized = 1;
3540 }
3541
3542 /* Returns error only if unable to parse addresses */
3543 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3544                         struct common_audit_data *ad, u8 *proto)
3545 {
3546         int offset, ihlen, ret = -EINVAL;
3547         struct iphdr _iph, *ih;
3548
3549         offset = skb_network_offset(skb);
3550         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3551         if (ih == NULL)
3552                 goto out;
3553
3554         ihlen = ih->ihl * 4;
3555         if (ihlen < sizeof(_iph))
3556                 goto out;
3557
3558         ad->u.net->v4info.saddr = ih->saddr;
3559         ad->u.net->v4info.daddr = ih->daddr;
3560         ret = 0;
3561
3562         if (proto)
3563                 *proto = ih->protocol;
3564
3565         switch (ih->protocol) {
3566         case IPPROTO_TCP: {
3567                 struct tcphdr _tcph, *th;
3568
3569                 if (ntohs(ih->frag_off) & IP_OFFSET)
3570                         break;
3571
3572                 offset += ihlen;
3573                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3574                 if (th == NULL)
3575                         break;
3576
3577                 ad->u.net->sport = th->source;
3578                 ad->u.net->dport = th->dest;
3579                 break;
3580         }
3581
3582         case IPPROTO_UDP: {
3583                 struct udphdr _udph, *uh;
3584
3585                 if (ntohs(ih->frag_off) & IP_OFFSET)
3586                         break;
3587
3588                 offset += ihlen;
3589                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3590                 if (uh == NULL)
3591                         break;
3592
3593                 ad->u.net->sport = uh->source;
3594                 ad->u.net->dport = uh->dest;
3595                 break;
3596         }
3597
3598         case IPPROTO_DCCP: {
3599                 struct dccp_hdr _dccph, *dh;
3600
3601                 if (ntohs(ih->frag_off) & IP_OFFSET)
3602                         break;
3603
3604                 offset += ihlen;
3605                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3606                 if (dh == NULL)
3607                         break;
3608
3609                 ad->u.net->sport = dh->dccph_sport;
3610                 ad->u.net->dport = dh->dccph_dport;
3611                 break;
3612         }
3613
3614         default:
3615                 break;
3616         }
3617 out:
3618         return ret;
3619 }
3620
3621 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3622
3623 /* Returns error only if unable to parse addresses */
3624 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3625                         struct common_audit_data *ad, u8 *proto)
3626 {
3627         u8 nexthdr;
3628         int ret = -EINVAL, offset;
3629         struct ipv6hdr _ipv6h, *ip6;
3630         __be16 frag_off;
3631
3632         offset = skb_network_offset(skb);
3633         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3634         if (ip6 == NULL)
3635                 goto out;
3636
3637         ad->u.net->v6info.saddr = ip6->saddr;
3638         ad->u.net->v6info.daddr = ip6->daddr;
3639         ret = 0;
3640
3641         nexthdr = ip6->nexthdr;
3642         offset += sizeof(_ipv6h);
3643         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3644         if (offset < 0)
3645                 goto out;
3646
3647         if (proto)
3648                 *proto = nexthdr;
3649
3650         switch (nexthdr) {
3651         case IPPROTO_TCP: {
3652                 struct tcphdr _tcph, *th;
3653
3654                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3655                 if (th == NULL)
3656                         break;
3657
3658                 ad->u.net->sport = th->source;
3659                 ad->u.net->dport = th->dest;
3660                 break;
3661         }
3662
3663         case IPPROTO_UDP: {
3664                 struct udphdr _udph, *uh;
3665
3666                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3667                 if (uh == NULL)
3668                         break;
3669
3670                 ad->u.net->sport = uh->source;
3671                 ad->u.net->dport = uh->dest;
3672                 break;
3673         }
3674
3675         case IPPROTO_DCCP: {
3676                 struct dccp_hdr _dccph, *dh;
3677
3678                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3679                 if (dh == NULL)
3680                         break;
3681
3682                 ad->u.net->sport = dh->dccph_sport;
3683                 ad->u.net->dport = dh->dccph_dport;
3684                 break;
3685         }
3686
3687         /* includes fragments */
3688         default:
3689                 break;
3690         }
3691 out:
3692         return ret;
3693 }
3694
3695 #endif /* IPV6 */
3696
3697 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3698                              char **_addrp, int src, u8 *proto)
3699 {
3700         char *addrp;
3701         int ret;
3702
3703         switch (ad->u.net->family) {
3704         case PF_INET:
3705                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3706                 if (ret)
3707                         goto parse_error;
3708                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3709                                        &ad->u.net->v4info.daddr);
3710                 goto okay;
3711
3712 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3713         case PF_INET6:
3714                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3715                 if (ret)
3716                         goto parse_error;
3717                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3718                                        &ad->u.net->v6info.daddr);
3719                 goto okay;
3720 #endif  /* IPV6 */
3721         default:
3722                 addrp = NULL;
3723                 goto okay;
3724         }
3725
3726 parse_error:
3727         printk(KERN_WARNING
3728                "SELinux: failure in selinux_parse_skb(),"
3729                " unable to parse packet\n");
3730         return ret;
3731
3732 okay:
3733         if (_addrp)
3734                 *_addrp = addrp;
3735         return 0;
3736 }
3737
3738 /**
3739  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3740  * @skb: the packet
3741  * @family: protocol family
3742  * @sid: the packet's peer label SID
3743  *
3744  * Description:
3745  * Check the various different forms of network peer labeling and determine
3746  * the peer label/SID for the packet; most of the magic actually occurs in
3747  * the security server function security_net_peersid_cmp().  The function
3748  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3749  * or -EACCES if @sid is invalid due to inconsistencies with the different
3750  * peer labels.
3751  *
3752  */
3753 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3754 {
3755         int err;
3756         u32 xfrm_sid;
3757         u32 nlbl_sid;
3758         u32 nlbl_type;
3759
3760         selinux_xfrm_skb_sid(skb, &xfrm_sid);
3761         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3762
3763         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3764         if (unlikely(err)) {
3765                 printk(KERN_WARNING
3766                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3767                        " unable to determine packet's peer label\n");
3768                 return -EACCES;
3769         }
3770
3771         return 0;
3772 }
3773
3774 /**
3775  * selinux_conn_sid - Determine the child socket label for a connection
3776  * @sk_sid: the parent socket's SID
3777  * @skb_sid: the packet's SID
3778  * @conn_sid: the resulting connection SID
3779  *
3780  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3781  * combined with the MLS information from @skb_sid in order to create
3782  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3783  * of @sk_sid.  Returns zero on success, negative values on failure.
3784  *
3785  */
3786 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3787 {
3788         int err = 0;
3789
3790         if (skb_sid != SECSID_NULL)
3791                 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3792         else
3793                 *conn_sid = sk_sid;
3794
3795         return err;
3796 }
3797
3798 /* socket security operations */
3799
3800 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3801                                  u16 secclass, u32 *socksid)
3802 {
3803         if (tsec->sockcreate_sid > SECSID_NULL) {
3804                 *socksid = tsec->sockcreate_sid;
3805                 return 0;
3806         }
3807
3808         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3809                                        socksid);
3810 }
3811
3812 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3813 {
3814         struct sk_security_struct *sksec = sk->sk_security;
3815         struct common_audit_data ad;
3816         struct lsm_network_audit net = {0,};
3817         u32 tsid = task_sid(task);
3818
3819         if (sksec->sid == SECINITSID_KERNEL)
3820                 return 0;
3821
3822         ad.type = LSM_AUDIT_DATA_NET;
3823         ad.u.net = &net;
3824         ad.u.net->sk = sk;
3825
3826         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3827 }
3828
3829 static int selinux_socket_create(int family, int type,
3830                                  int protocol, int kern)
3831 {
3832         const struct task_security_struct *tsec = current_security();
3833         u32 newsid;
3834         u16 secclass;
3835         int rc;
3836
3837         if (kern)
3838                 return 0;
3839
3840         secclass = socket_type_to_security_class(family, type, protocol);
3841         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3842         if (rc)
3843                 return rc;
3844
3845         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3846 }
3847
3848 static int selinux_socket_post_create(struct socket *sock, int family,
3849                                       int type, int protocol, int kern)
3850 {
3851         const struct task_security_struct *tsec = current_security();
3852         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3853         struct sk_security_struct *sksec;
3854         int err = 0;
3855
3856         isec->sclass = socket_type_to_security_class(family, type, protocol);
3857
3858         if (kern)
3859                 isec->sid = SECINITSID_KERNEL;
3860         else {
3861                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3862                 if (err)
3863                         return err;
3864         }
3865
3866         isec->initialized = 1;
3867
3868         if (sock->sk) {
3869                 sksec = sock->sk->sk_security;
3870                 sksec->sid = isec->sid;
3871                 sksec->sclass = isec->sclass;
3872                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3873         }
3874
3875         return err;
3876 }
3877
3878 /* Range of port numbers used to automatically bind.
3879    Need to determine whether we should perform a name_bind
3880    permission check between the socket and the port number. */
3881
3882 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3883 {
3884         struct sock *sk = sock->sk;
3885         u16 family;
3886         int err;
3887
3888         err = sock_has_perm(current, sk, SOCKET__BIND);
3889         if (err)
3890                 goto out;
3891
3892         /*
3893          * If PF_INET or PF_INET6, check name_bind permission for the port.
3894          * Multiple address binding for SCTP is not supported yet: we just
3895          * check the first address now.
3896          */
3897         family = sk->sk_family;
3898         if (family == PF_INET || family == PF_INET6) {
3899                 char *addrp;
3900                 struct sk_security_struct *sksec = sk->sk_security;
3901                 struct common_audit_data ad;
3902                 struct lsm_network_audit net = {0,};
3903                 struct sockaddr_in *addr4 = NULL;
3904                 struct sockaddr_in6 *addr6 = NULL;
3905                 unsigned short snum;
3906                 u32 sid, node_perm;
3907
3908                 if (family == PF_INET) {
3909                         addr4 = (struct sockaddr_in *)address;
3910                         snum = ntohs(addr4->sin_port);
3911                         addrp = (char *)&addr4->sin_addr.s_addr;
3912                 } else {
3913                         addr6 = (struct sockaddr_in6 *)address;
3914                         snum = ntohs(addr6->sin6_port);
3915                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3916                 }
3917
3918                 if (snum) {
3919                         int low, high;
3920
3921                         inet_get_local_port_range(&low, &high);
3922
3923                         if (snum < max(PROT_SOCK, low) || snum > high) {
3924                                 err = sel_netport_sid(sk->sk_protocol,
3925                                                       snum, &sid);
3926                                 if (err)
3927                                         goto out;
3928                                 ad.type = LSM_AUDIT_DATA_NET;
3929                                 ad.u.net = &net;
3930                                 ad.u.net->sport = htons(snum);
3931                                 ad.u.net->family = family;
3932                                 err = avc_has_perm(sksec->sid, sid,
3933                                                    sksec->sclass,
3934                                                    SOCKET__NAME_BIND, &ad);
3935                                 if (err)
3936                                         goto out;
3937                         }
3938                 }
3939
3940                 switch (sksec->sclass) {
3941                 case SECCLASS_TCP_SOCKET:
3942                         node_perm = TCP_SOCKET__NODE_BIND;
3943                         break;
3944
3945                 case SECCLASS_UDP_SOCKET:
3946                         node_perm = UDP_SOCKET__NODE_BIND;
3947                         break;
3948
3949                 case SECCLASS_DCCP_SOCKET:
3950                         node_perm = DCCP_SOCKET__NODE_BIND;
3951                         break;
3952
3953                 default:
3954                         node_perm = RAWIP_SOCKET__NODE_BIND;
3955                         break;
3956                 }
3957
3958                 err = sel_netnode_sid(addrp, family, &sid);
3959                 if (err)
3960                         goto out;
3961
3962                 ad.type = LSM_AUDIT_DATA_NET;
3963                 ad.u.net = &net;
3964                 ad.u.net->sport = htons(snum);
3965                 ad.u.net->family = family;
3966
3967                 if (family == PF_INET)
3968                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3969                 else
3970                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3971
3972                 err = avc_has_perm(sksec->sid, sid,
3973                                    sksec->sclass, node_perm, &ad);
3974                 if (err)
3975                         goto out;
3976         }
3977 out:
3978         return err;
3979 }
3980
3981 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3982 {
3983         struct sock *sk = sock->sk;
3984         struct sk_security_struct *sksec = sk->sk_security;
3985         int err;
3986
3987         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3988         if (err)
3989                 return err;
3990
3991         /*
3992          * If a TCP or DCCP socket, check name_connect permission for the port.
3993          */
3994         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3995             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3996                 struct common_audit_data ad;
3997                 struct lsm_network_audit net = {0,};
3998                 struct sockaddr_in *addr4 = NULL;
3999                 struct sockaddr_in6 *addr6 = NULL;
4000                 unsigned short snum;
4001                 u32 sid, perm;
4002
4003                 if (sk->sk_family == PF_INET) {
4004                         addr4 = (struct sockaddr_in *)address;
4005                         if (addrlen < sizeof(struct sockaddr_in))
4006                                 return -EINVAL;
4007                         snum = ntohs(addr4->sin_port);
4008                 } else {
4009                         addr6 = (struct sockaddr_in6 *)address;
4010                         if (addrlen < SIN6_LEN_RFC2133)
4011                                 return -EINVAL;
4012                         snum = ntohs(addr6->sin6_port);
4013                 }
4014
4015                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4016                 if (err)
4017                         goto out;
4018
4019                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4020                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4021
4022                 ad.type = LSM_AUDIT_DATA_NET;
4023                 ad.u.net = &net;
4024                 ad.u.net->dport = htons(snum);
4025                 ad.u.net->family = sk->sk_family;
4026                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4027                 if (err)
4028                         goto out;
4029         }
4030
4031         err = selinux_netlbl_socket_connect(sk, address);
4032
4033 out:
4034         return err;
4035 }
4036
4037 static int selinux_socket_listen(struct socket *sock, int backlog)
4038 {
4039         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4040 }
4041
4042 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4043 {
4044         int err;
4045         struct inode_security_struct *isec;
4046         struct inode_security_struct *newisec;
4047
4048         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4049         if (err)
4050                 return err;
4051
4052         newisec = SOCK_INODE(newsock)->i_security;
4053
4054         isec = SOCK_INODE(sock)->i_security;
4055         newisec->sclass = isec->sclass;
4056         newisec->sid = isec->sid;
4057         newisec->initialized = 1;
4058
4059         return 0;
4060 }
4061
4062 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4063                                   int size)
4064 {
4065         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4066 }
4067
4068 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4069                                   int size, int flags)
4070 {
4071         return sock_has_perm(current, sock->sk, SOCKET__READ);
4072 }
4073
4074 static int selinux_socket_getsockname(struct socket *sock)
4075 {
4076         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4077 }
4078
4079 static int selinux_socket_getpeername(struct socket *sock)
4080 {
4081         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4082 }
4083
4084 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4085 {
4086         int err;
4087
4088         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4089         if (err)
4090                 return err;
4091
4092         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4093 }
4094
4095 static int selinux_socket_getsockopt(struct socket *sock, int level,
4096                                      int optname)
4097 {
4098         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4099 }
4100
4101 static int selinux_socket_shutdown(struct socket *sock, int how)
4102 {
4103         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4104 }
4105
4106 static int selinux_socket_unix_stream_connect(struct sock *sock,
4107                                               struct sock *other,
4108                                               struct sock *newsk)
4109 {
4110         struct sk_security_struct *sksec_sock = sock->sk_security;
4111         struct sk_security_struct *sksec_other = other->sk_security;
4112         struct sk_security_struct *sksec_new = newsk->sk_security;
4113         struct common_audit_data ad;
4114         struct lsm_network_audit net = {0,};
4115         int err;
4116
4117         ad.type = LSM_AUDIT_DATA_NET;
4118         ad.u.net = &net;
4119         ad.u.net->sk = other;
4120
4121         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4122                            sksec_other->sclass,
4123                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4124         if (err)
4125                 return err;
4126
4127         /* server child socket */
4128         sksec_new->peer_sid = sksec_sock->sid;
4129         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4130                                     &sksec_new->sid);
4131         if (err)
4132                 return err;
4133
4134         /* connecting socket */
4135         sksec_sock->peer_sid = sksec_new->sid;
4136
4137         return 0;
4138 }
4139
4140 static int selinux_socket_unix_may_send(struct socket *sock,
4141                                         struct socket *other)
4142 {
4143         struct sk_security_struct *ssec = sock->sk->sk_security;
4144         struct sk_security_struct *osec = other->sk->sk_security;
4145         struct common_audit_data ad;
4146         struct lsm_network_audit net = {0,};
4147
4148         ad.type = LSM_AUDIT_DATA_NET;
4149         ad.u.net = &net;
4150         ad.u.net->sk = other->sk;
4151
4152         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4153                             &ad);
4154 }
4155
4156 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4157                                     u32 peer_sid,
4158                                     struct common_audit_data *ad)
4159 {
4160         int err;
4161         u32 if_sid;
4162         u32 node_sid;
4163
4164         err = sel_netif_sid(ifindex, &if_sid);
4165         if (err)
4166                 return err;
4167         err = avc_has_perm(peer_sid, if_sid,
4168                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4169         if (err)
4170                 return err;
4171
4172         err = sel_netnode_sid(addrp, family, &node_sid);
4173         if (err)
4174                 return err;
4175         return avc_has_perm(peer_sid, node_sid,
4176                             SECCLASS_NODE, NODE__RECVFROM, ad);
4177 }
4178
4179 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4180                                        u16 family)
4181 {
4182         int err = 0;
4183         struct sk_security_struct *sksec = sk->sk_security;
4184         u32 sk_sid = sksec->sid;
4185         struct common_audit_data ad;
4186         struct lsm_network_audit net = {0,};
4187         char *addrp;
4188
4189         ad.type = LSM_AUDIT_DATA_NET;
4190         ad.u.net = &net;
4191         ad.u.net->netif = skb->skb_iif;
4192         ad.u.net->family = family;
4193         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4194         if (err)
4195                 return err;
4196
4197         if (selinux_secmark_enabled()) {
4198                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4199                                    PACKET__RECV, &ad);
4200                 if (err)
4201                         return err;
4202         }
4203
4204         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4205         if (err)
4206                 return err;
4207         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4208
4209         return err;
4210 }
4211
4212 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4213 {
4214         int err;
4215         struct sk_security_struct *sksec = sk->sk_security;
4216         u16 family = sk->sk_family;
4217         u32 sk_sid = sksec->sid;
4218         struct common_audit_data ad;
4219         struct lsm_network_audit net = {0,};
4220         char *addrp;
4221         u8 secmark_active;
4222         u8 peerlbl_active;
4223
4224         if (family != PF_INET && family != PF_INET6)
4225                 return 0;
4226
4227         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4228         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4229                 family = PF_INET;
4230
4231         /* If any sort of compatibility mode is enabled then handoff processing
4232          * to the selinux_sock_rcv_skb_compat() function to deal with the
4233          * special handling.  We do this in an attempt to keep this function
4234          * as fast and as clean as possible. */
4235         if (!selinux_policycap_netpeer)
4236                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4237
4238         secmark_active = selinux_secmark_enabled();
4239         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4240         if (!secmark_active && !peerlbl_active)
4241                 return 0;
4242
4243         ad.type = LSM_AUDIT_DATA_NET;
4244         ad.u.net = &net;
4245         ad.u.net->netif = skb->skb_iif;
4246         ad.u.net->family = family;
4247         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4248         if (err)
4249                 return err;
4250
4251         if (peerlbl_active) {
4252                 u32 peer_sid;
4253
4254                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4255                 if (err)
4256                         return err;
4257                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4258                                                peer_sid, &ad);
4259                 if (err) {
4260                         selinux_netlbl_err(skb, err, 0);
4261                         return err;
4262                 }
4263                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4264                                    PEER__RECV, &ad);
4265                 if (err) {
4266                         selinux_netlbl_err(skb, err, 0);
4267                         return err;
4268                 }
4269         }
4270
4271         if (secmark_active) {
4272                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4273                                    PACKET__RECV, &ad);
4274                 if (err)
4275                         return err;
4276         }
4277
4278         return err;
4279 }
4280
4281 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4282                                             int __user *optlen, unsigned len)
4283 {
4284         int err = 0;
4285         char *scontext;
4286         u32 scontext_len;
4287         struct sk_security_struct *sksec = sock->sk->sk_security;
4288         u32 peer_sid = SECSID_NULL;
4289
4290         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4291             sksec->sclass == SECCLASS_TCP_SOCKET)
4292                 peer_sid = sksec->peer_sid;
4293         if (peer_sid == SECSID_NULL)
4294                 return -ENOPROTOOPT;
4295
4296         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4297         if (err)
4298                 return err;
4299
4300         if (scontext_len > len) {
4301                 err = -ERANGE;
4302                 goto out_len;
4303         }
4304
4305         if (copy_to_user(optval, scontext, scontext_len))
4306                 err = -EFAULT;
4307
4308 out_len:
4309         if (put_user(scontext_len, optlen))
4310                 err = -EFAULT;
4311         kfree(scontext);
4312         return err;
4313 }
4314
4315 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4316 {
4317         u32 peer_secid = SECSID_NULL;
4318         u16 family;
4319
4320         if (skb && skb->protocol == htons(ETH_P_IP))
4321                 family = PF_INET;
4322         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4323                 family = PF_INET6;
4324         else if (sock)
4325                 family = sock->sk->sk_family;
4326         else
4327                 goto out;
4328
4329         if (sock && family == PF_UNIX)
4330                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4331         else if (skb)
4332                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4333
4334 out:
4335         *secid = peer_secid;
4336         if (peer_secid == SECSID_NULL)
4337                 return -EINVAL;
4338         return 0;
4339 }
4340
4341 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4342 {
4343         struct sk_security_struct *sksec;
4344
4345         sksec = kzalloc(sizeof(*sksec), priority);
4346         if (!sksec)
4347                 return -ENOMEM;
4348
4349         sksec->peer_sid = SECINITSID_UNLABELED;
4350         sksec->sid = SECINITSID_UNLABELED;
4351         selinux_netlbl_sk_security_reset(sksec);
4352         sk->sk_security = sksec;
4353
4354         return 0;
4355 }
4356
4357 static void selinux_sk_free_security(struct sock *sk)
4358 {
4359         struct sk_security_struct *sksec = sk->sk_security;
4360
4361         sk->sk_security = NULL;
4362         selinux_netlbl_sk_security_free(sksec);
4363         kfree(sksec);
4364 }
4365
4366 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4367 {
4368         struct sk_security_struct *sksec = sk->sk_security;
4369         struct sk_security_struct *newsksec = newsk->sk_security;
4370
4371         newsksec->sid = sksec->sid;
4372         newsksec->peer_sid = sksec->peer_sid;
4373         newsksec->sclass = sksec->sclass;
4374
4375         selinux_netlbl_sk_security_reset(newsksec);
4376 }
4377
4378 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4379 {
4380         if (!sk)
4381                 *secid = SECINITSID_ANY_SOCKET;
4382         else {
4383                 struct sk_security_struct *sksec = sk->sk_security;
4384
4385                 *secid = sksec->sid;
4386         }
4387 }
4388
4389 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4390 {
4391         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4392         struct sk_security_struct *sksec = sk->sk_security;
4393
4394         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4395             sk->sk_family == PF_UNIX)
4396                 isec->sid = sksec->sid;
4397         sksec->sclass = isec->sclass;
4398 }
4399
4400 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4401                                      struct request_sock *req)
4402 {
4403         struct sk_security_struct *sksec = sk->sk_security;
4404         int err;
4405         u16 family = sk->sk_family;
4406         u32 connsid;
4407         u32 peersid;
4408
4409         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4410         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4411                 family = PF_INET;
4412
4413         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4414         if (err)
4415                 return err;
4416         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4417         if (err)
4418                 return err;
4419         req->secid = connsid;
4420         req->peer_secid = peersid;
4421
4422         return selinux_netlbl_inet_conn_request(req, family);
4423 }
4424
4425 static void selinux_inet_csk_clone(struct sock *newsk,
4426                                    const struct request_sock *req)
4427 {
4428         struct sk_security_struct *newsksec = newsk->sk_security;
4429
4430         newsksec->sid = req->secid;
4431         newsksec->peer_sid = req->peer_secid;
4432         /* NOTE: Ideally, we should also get the isec->sid for the
4433            new socket in sync, but we don't have the isec available yet.
4434            So we will wait until sock_graft to do it, by which
4435            time it will have been created and available. */
4436
4437         /* We don't need to take any sort of lock here as we are the only
4438          * thread with access to newsksec */
4439         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4440 }
4441
4442 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4443 {
4444         u16 family = sk->sk_family;
4445         struct sk_security_struct *sksec = sk->sk_security;
4446
4447         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4448         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4449                 family = PF_INET;
4450
4451         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4452 }
4453
4454 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4455 {
4456         skb_set_owner_w(skb, sk);
4457 }
4458
4459 static int selinux_secmark_relabel_packet(u32 sid)
4460 {
4461         const struct task_security_struct *__tsec;
4462         u32 tsid;
4463
4464         __tsec = current_security();
4465         tsid = __tsec->sid;
4466
4467         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4468 }
4469
4470 static void selinux_secmark_refcount_inc(void)
4471 {
4472         atomic_inc(&selinux_secmark_refcount);
4473 }
4474
4475 static void selinux_secmark_refcount_dec(void)
4476 {
4477         atomic_dec(&selinux_secmark_refcount);
4478 }
4479
4480 static void selinux_req_classify_flow(const struct request_sock *req,
4481                                       struct flowi *fl)
4482 {
4483         fl->flowi_secid = req->secid;
4484 }
4485
4486 static int selinux_tun_dev_alloc_security(void **security)
4487 {
4488         struct tun_security_struct *tunsec;
4489
4490         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4491         if (!tunsec)
4492                 return -ENOMEM;
4493         tunsec->sid = current_sid();
4494
4495         *security = tunsec;
4496         return 0;
4497 }
4498
4499 static void selinux_tun_dev_free_security(void *security)
4500 {
4501         kfree(security);
4502 }
4503
4504 static int selinux_tun_dev_create(void)
4505 {
4506         u32 sid = current_sid();
4507
4508         /* we aren't taking into account the "sockcreate" SID since the socket
4509          * that is being created here is not a socket in the traditional sense,
4510          * instead it is a private sock, accessible only to the kernel, and
4511          * representing a wide range of network traffic spanning multiple
4512          * connections unlike traditional sockets - check the TUN driver to
4513          * get a better understanding of why this socket is special */
4514
4515         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4516                             NULL);
4517 }
4518
4519 static int selinux_tun_dev_attach_queue(void *security)
4520 {
4521         struct tun_security_struct *tunsec = security;
4522
4523         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4524                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4525 }
4526
4527 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4528 {
4529         struct tun_security_struct *tunsec = security;
4530         struct sk_security_struct *sksec = sk->sk_security;
4531
4532         /* we don't currently perform any NetLabel based labeling here and it
4533          * isn't clear that we would want to do so anyway; while we could apply
4534          * labeling without the support of the TUN user the resulting labeled
4535          * traffic from the other end of the connection would almost certainly
4536          * cause confusion to the TUN user that had no idea network labeling
4537          * protocols were being used */
4538
4539         sksec->sid = tunsec->sid;
4540         sksec->sclass = SECCLASS_TUN_SOCKET;
4541
4542         return 0;
4543 }
4544
4545 static int selinux_tun_dev_open(void *security)
4546 {
4547         struct tun_security_struct *tunsec = security;
4548         u32 sid = current_sid();
4549         int err;
4550
4551         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4552                            TUN_SOCKET__RELABELFROM, NULL);
4553         if (err)
4554                 return err;
4555         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4556                            TUN_SOCKET__RELABELTO, NULL);
4557         if (err)
4558                 return err;
4559         tunsec->sid = sid;
4560
4561         return 0;
4562 }
4563
4564 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4565 {
4566         int err = 0;
4567         u32 perm;
4568         struct nlmsghdr *nlh;
4569         struct sk_security_struct *sksec = sk->sk_security;
4570
4571         if (skb->len < NLMSG_HDRLEN) {
4572                 err = -EINVAL;
4573                 goto out;
4574         }
4575         nlh = nlmsg_hdr(skb);
4576
4577         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4578         if (err) {
4579                 if (err == -EINVAL) {
4580                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4581                                   "SELinux:  unrecognized netlink message"
4582                                   " type=%hu for sclass=%hu\n",
4583                                   nlh->nlmsg_type, sksec->sclass);
4584                         if (!selinux_enforcing || security_get_allow_unknown())
4585                                 err = 0;
4586                 }
4587
4588                 /* Ignore */
4589                 if (err == -ENOENT)
4590                         err = 0;
4591                 goto out;
4592         }
4593
4594         err = sock_has_perm(current, sk, perm);
4595 out:
4596         return err;
4597 }
4598
4599 #ifdef CONFIG_NETFILTER
4600
4601 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4602                                        u16 family)
4603 {
4604         int err;
4605         char *addrp;
4606         u32 peer_sid;
4607         struct common_audit_data ad;
4608         struct lsm_network_audit net = {0,};
4609         u8 secmark_active;
4610         u8 netlbl_active;
4611         u8 peerlbl_active;
4612
4613         if (!selinux_policycap_netpeer)
4614                 return NF_ACCEPT;
4615
4616         secmark_active = selinux_secmark_enabled();
4617         netlbl_active = netlbl_enabled();
4618         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4619         if (!secmark_active && !peerlbl_active)
4620                 return NF_ACCEPT;
4621
4622         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4623                 return NF_DROP;
4624
4625         ad.type = LSM_AUDIT_DATA_NET;
4626         ad.u.net = &net;
4627         ad.u.net->netif = ifindex;
4628         ad.u.net->family = family;
4629         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4630                 return NF_DROP;
4631
4632         if (peerlbl_active) {
4633                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4634                                                peer_sid, &ad);
4635                 if (err) {
4636                         selinux_netlbl_err(skb, err, 1);
4637                         return NF_DROP;
4638                 }
4639         }
4640
4641         if (secmark_active)
4642                 if (avc_has_perm(peer_sid, skb->secmark,
4643                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4644                         return NF_DROP;
4645
4646         if (netlbl_active)
4647                 /* we do this in the FORWARD path and not the POST_ROUTING
4648                  * path because we want to make sure we apply the necessary
4649                  * labeling before IPsec is applied so we can leverage AH
4650                  * protection */
4651                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4652                         return NF_DROP;
4653
4654         return NF_ACCEPT;
4655 }
4656
4657 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4658                                          struct sk_buff *skb,
4659                                          const struct net_device *in,
4660                                          const struct net_device *out,
4661                                          int (*okfn)(struct sk_buff *))
4662 {
4663         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4664 }
4665
4666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4667 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4668                                          struct sk_buff *skb,
4669                                          const struct net_device *in,
4670                                          const struct net_device *out,
4671                                          int (*okfn)(struct sk_buff *))
4672 {
4673         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4674 }
4675 #endif  /* IPV6 */
4676
4677 static unsigned int selinux_ip_output(struct sk_buff *skb,
4678                                       u16 family)
4679 {
4680         struct sock *sk;
4681         u32 sid;
4682
4683         if (!netlbl_enabled())
4684                 return NF_ACCEPT;
4685
4686         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4687          * because we want to make sure we apply the necessary labeling
4688          * before IPsec is applied so we can leverage AH protection */
4689         sk = skb->sk;
4690         if (sk) {
4691                 struct sk_security_struct *sksec;
4692
4693                 if (sk->sk_state == TCP_LISTEN)
4694                         /* if the socket is the listening state then this
4695                          * packet is a SYN-ACK packet which means it needs to
4696                          * be labeled based on the connection/request_sock and
4697                          * not the parent socket.  unfortunately, we can't
4698                          * lookup the request_sock yet as it isn't queued on
4699                          * the parent socket until after the SYN-ACK is sent.
4700                          * the "solution" is to simply pass the packet as-is
4701                          * as any IP option based labeling should be copied
4702                          * from the initial connection request (in the IP
4703                          * layer).  it is far from ideal, but until we get a
4704                          * security label in the packet itself this is the
4705                          * best we can do. */
4706                         return NF_ACCEPT;
4707
4708                 /* standard practice, label using the parent socket */
4709                 sksec = sk->sk_security;
4710                 sid = sksec->sid;
4711         } else
4712                 sid = SECINITSID_KERNEL;
4713         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4714                 return NF_DROP;
4715
4716         return NF_ACCEPT;
4717 }
4718
4719 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4720                                         struct sk_buff *skb,
4721                                         const struct net_device *in,
4722                                         const struct net_device *out,
4723                                         int (*okfn)(struct sk_buff *))
4724 {
4725         return selinux_ip_output(skb, PF_INET);
4726 }
4727
4728 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4729                                                 int ifindex,
4730                                                 u16 family)
4731 {
4732         struct sock *sk = skb->sk;
4733         struct sk_security_struct *sksec;
4734         struct common_audit_data ad;
4735         struct lsm_network_audit net = {0,};
4736         char *addrp;
4737         u8 proto;
4738
4739         if (sk == NULL)
4740                 return NF_ACCEPT;
4741         sksec = sk->sk_security;
4742
4743         ad.type = LSM_AUDIT_DATA_NET;
4744         ad.u.net = &net;
4745         ad.u.net->netif = ifindex;
4746         ad.u.net->family = family;
4747         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4748                 return NF_DROP;
4749
4750         if (selinux_secmark_enabled())
4751                 if (avc_has_perm(sksec->sid, skb->secmark,
4752                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4753                         return NF_DROP_ERR(-ECONNREFUSED);
4754
4755         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4756                 return NF_DROP_ERR(-ECONNREFUSED);
4757
4758         return NF_ACCEPT;
4759 }
4760
4761 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4762                                          u16 family)
4763 {
4764         u32 secmark_perm;
4765         u32 peer_sid;
4766         struct sock *sk;
4767         struct common_audit_data ad;
4768         struct lsm_network_audit net = {0,};
4769         char *addrp;
4770         u8 secmark_active;
4771         u8 peerlbl_active;
4772
4773         /* If any sort of compatibility mode is enabled then handoff processing
4774          * to the selinux_ip_postroute_compat() function to deal with the
4775          * special handling.  We do this in an attempt to keep this function
4776          * as fast and as clean as possible. */
4777         if (!selinux_policycap_netpeer)
4778                 return selinux_ip_postroute_compat(skb, ifindex, family);
4779
4780         secmark_active = selinux_secmark_enabled();
4781         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4782         if (!secmark_active && !peerlbl_active)
4783                 return NF_ACCEPT;
4784
4785         sk = skb->sk;
4786
4787 #ifdef CONFIG_XFRM
4788         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4789          * packet transformation so allow the packet to pass without any checks
4790          * since we'll have another chance to perform access control checks
4791          * when the packet is on it's final way out.
4792          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4793          *       is NULL, in this case go ahead and apply access control.
4794          *       is NULL, in this case go ahead and apply access control.
4795          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4796          *       TCP listening state we cannot wait until the XFRM processing
4797          *       is done as we will miss out on the SA label if we do;
4798          *       unfortunately, this means more work, but it is only once per
4799          *       connection. */
4800         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4801             !(sk != NULL && sk->sk_state == TCP_LISTEN))
4802                 return NF_ACCEPT;
4803 #endif
4804
4805         if (sk == NULL) {
4806                 /* Without an associated socket the packet is either coming
4807                  * from the kernel or it is being forwarded; check the packet
4808                  * to determine which and if the packet is being forwarded
4809                  * query the packet directly to determine the security label. */
4810                 if (skb->skb_iif) {
4811                         secmark_perm = PACKET__FORWARD_OUT;
4812                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4813                                 return NF_DROP;
4814                 } else {
4815                         secmark_perm = PACKET__SEND;
4816                         peer_sid = SECINITSID_KERNEL;
4817                 }
4818         } else if (sk->sk_state == TCP_LISTEN) {
4819                 /* Locally generated packet but the associated socket is in the
4820                  * listening state which means this is a SYN-ACK packet.  In
4821                  * this particular case the correct security label is assigned
4822                  * to the connection/request_sock but unfortunately we can't
4823                  * query the request_sock as it isn't queued on the parent
4824                  * socket until after the SYN-ACK packet is sent; the only
4825                  * viable choice is to regenerate the label like we do in
4826                  * selinux_inet_conn_request().  See also selinux_ip_output()
4827                  * for similar problems. */
4828                 u32 skb_sid;
4829                 struct sk_security_struct *sksec = sk->sk_security;
4830                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4831                         return NF_DROP;
4832                 /* At this point, if the returned skb peerlbl is SECSID_NULL
4833                  * and the packet has been through at least one XFRM
4834                  * transformation then we must be dealing with the "final"
4835                  * form of labeled IPsec packet; since we've already applied
4836                  * all of our access controls on this packet we can safely
4837                  * pass the packet. */
4838                 if (skb_sid == SECSID_NULL) {
4839                         switch (family) {
4840                         case PF_INET:
4841                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4842                                         return NF_ACCEPT;
4843                                 break;
4844                         case PF_INET6:
4845                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4846                                         return NF_ACCEPT;
4847                         default:
4848                                 return NF_DROP_ERR(-ECONNREFUSED);
4849                         }
4850                 }
4851                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4852                         return NF_DROP;
4853                 secmark_perm = PACKET__SEND;
4854         } else {
4855                 /* Locally generated packet, fetch the security label from the
4856                  * associated socket. */
4857                 struct sk_security_struct *sksec = sk->sk_security;
4858                 peer_sid = sksec->sid;
4859                 secmark_perm = PACKET__SEND;
4860         }
4861
4862         ad.type = LSM_AUDIT_DATA_NET;
4863         ad.u.net = &net;
4864         ad.u.net->netif = ifindex;
4865         ad.u.net->family = family;
4866         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4867                 return NF_DROP;
4868
4869         if (secmark_active)
4870                 if (avc_has_perm(peer_sid, skb->secmark,
4871                                  SECCLASS_PACKET, secmark_perm, &ad))
4872                         return NF_DROP_ERR(-ECONNREFUSED);
4873
4874         if (peerlbl_active) {
4875                 u32 if_sid;
4876                 u32 node_sid;
4877
4878                 if (sel_netif_sid(ifindex, &if_sid))
4879                         return NF_DROP;
4880                 if (avc_has_perm(peer_sid, if_sid,
4881                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4882                         return NF_DROP_ERR(-ECONNREFUSED);
4883
4884                 if (sel_netnode_sid(addrp, family, &node_sid))
4885                         return NF_DROP;
4886                 if (avc_has_perm(peer_sid, node_sid,
4887                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4888                         return NF_DROP_ERR(-ECONNREFUSED);
4889         }
4890
4891         return NF_ACCEPT;
4892 }
4893
4894 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4895                                            struct sk_buff *skb,
4896                                            const struct net_device *in,
4897                                            const struct net_device *out,
4898                                            int (*okfn)(struct sk_buff *))
4899 {
4900         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4901 }
4902
4903 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4904 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4905                                            struct sk_buff *skb,
4906                                            const struct net_device *in,
4907                                            const struct net_device *out,
4908                                            int (*okfn)(struct sk_buff *))
4909 {
4910         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4911 }
4912 #endif  /* IPV6 */
4913
4914 #endif  /* CONFIG_NETFILTER */
4915
4916 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4917 {
4918         int err;
4919
4920         err = cap_netlink_send(sk, skb);
4921         if (err)
4922                 return err;
4923
4924         return selinux_nlmsg_perm(sk, skb);
4925 }
4926
4927 static int ipc_alloc_security(struct task_struct *task,
4928                               struct kern_ipc_perm *perm,
4929                               u16 sclass)
4930 {
4931         struct ipc_security_struct *isec;
4932         u32 sid;
4933
4934         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4935         if (!isec)
4936                 return -ENOMEM;
4937
4938         sid = task_sid(task);
4939         isec->sclass = sclass;
4940         isec->sid = sid;
4941         perm->security = isec;
4942
4943         return 0;
4944 }
4945
4946 static void ipc_free_security(struct kern_ipc_perm *perm)
4947 {
4948         struct ipc_security_struct *isec = perm->security;
4949         perm->security = NULL;
4950         kfree(isec);
4951 }
4952
4953 static int msg_msg_alloc_security(struct msg_msg *msg)
4954 {
4955         struct msg_security_struct *msec;
4956
4957         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4958         if (!msec)
4959                 return -ENOMEM;
4960
4961         msec->sid = SECINITSID_UNLABELED;
4962         msg->security = msec;
4963
4964         return 0;
4965 }
4966
4967 static void msg_msg_free_security(struct msg_msg *msg)
4968 {
4969         struct msg_security_struct *msec = msg->security;
4970
4971         msg->security = NULL;
4972         kfree(msec);
4973 }
4974
4975 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4976                         u32 perms)
4977 {
4978         struct ipc_security_struct *isec;
4979         struct common_audit_data ad;
4980         u32 sid = current_sid();
4981
4982         isec = ipc_perms->security;
4983
4984         ad.type = LSM_AUDIT_DATA_IPC;
4985         ad.u.ipc_id = ipc_perms->key;
4986
4987         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4988 }
4989
4990 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4991 {
4992         return msg_msg_alloc_security(msg);
4993 }
4994
4995 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4996 {
4997         msg_msg_free_security(msg);
4998 }
4999
5000 /* message queue security operations */
5001 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5002 {
5003         struct ipc_security_struct *isec;
5004         struct common_audit_data ad;
5005         u32 sid = current_sid();
5006         int rc;
5007
5008         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5009         if (rc)
5010                 return rc;
5011
5012         isec = msq->q_perm.security;
5013
5014         ad.type = LSM_AUDIT_DATA_IPC;
5015         ad.u.ipc_id = msq->q_perm.key;
5016
5017         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5018                           MSGQ__CREATE, &ad);
5019         if (rc) {
5020                 ipc_free_security(&msq->q_perm);
5021                 return rc;
5022         }
5023         return 0;
5024 }
5025
5026 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5027 {
5028         ipc_free_security(&msq->q_perm);
5029 }
5030
5031 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5032 {
5033         struct ipc_security_struct *isec;
5034         struct common_audit_data ad;
5035         u32 sid = current_sid();
5036
5037         isec = msq->q_perm.security;
5038
5039         ad.type = LSM_AUDIT_DATA_IPC;
5040         ad.u.ipc_id = msq->q_perm.key;
5041
5042         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5043                             MSGQ__ASSOCIATE, &ad);
5044 }
5045
5046 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5047 {
5048         int err;
5049         int perms;
5050
5051         switch (cmd) {
5052         case IPC_INFO:
5053         case MSG_INFO:
5054                 /* No specific object, just general system-wide information. */
5055                 return task_has_system(current, SYSTEM__IPC_INFO);
5056         case IPC_STAT:
5057         case MSG_STAT:
5058                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5059                 break;
5060         case IPC_SET:
5061                 perms = MSGQ__SETATTR;
5062                 break;
5063         case IPC_RMID:
5064                 perms = MSGQ__DESTROY;
5065                 break;
5066         default:
5067                 return 0;
5068         }
5069
5070         err = ipc_has_perm(&msq->q_perm, perms);
5071         return err;
5072 }
5073
5074 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5075 {
5076         struct ipc_security_struct *isec;
5077         struct msg_security_struct *msec;
5078         struct common_audit_data ad;
5079         u32 sid = current_sid();
5080         int rc;
5081
5082         isec = msq->q_perm.security;
5083         msec = msg->security;
5084
5085         /*
5086          * First time through, need to assign label to the message
5087          */
5088         if (msec->sid == SECINITSID_UNLABELED) {
5089                 /*
5090                  * Compute new sid based on current process and
5091                  * message queue this message will be stored in
5092                  */
5093                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5094                                              NULL, &msec->sid);
5095                 if (rc)
5096                         return rc;
5097         }
5098
5099         ad.type = LSM_AUDIT_DATA_IPC;
5100         ad.u.ipc_id = msq->q_perm.key;
5101
5102         /* Can this process write to the queue? */
5103         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5104                           MSGQ__WRITE, &ad);
5105         if (!rc)
5106                 /* Can this process send the message */
5107                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5108                                   MSG__SEND, &ad);
5109         if (!rc)
5110                 /* Can the message be put in the queue? */
5111                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5112                                   MSGQ__ENQUEUE, &ad);
5113
5114         return rc;
5115 }
5116
5117 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5118                                     struct task_struct *target,
5119                                     long type, int mode)
5120 {
5121         struct ipc_security_struct *isec;
5122         struct msg_security_struct *msec;
5123         struct common_audit_data ad;
5124         u32 sid = task_sid(target);
5125         int rc;
5126
5127         isec = msq->q_perm.security;
5128         msec = msg->security;
5129
5130         ad.type = LSM_AUDIT_DATA_IPC;
5131         ad.u.ipc_id = msq->q_perm.key;
5132
5133         rc = avc_has_perm(sid, isec->sid,
5134                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5135         if (!rc)
5136                 rc = avc_has_perm(sid, msec->sid,
5137                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5138         return rc;
5139 }
5140
5141 /* Shared Memory security operations */
5142 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5143 {
5144         struct ipc_security_struct *isec;
5145         struct common_audit_data ad;
5146         u32 sid = current_sid();
5147         int rc;
5148
5149         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5150         if (rc)
5151                 return rc;
5152
5153         isec = shp->shm_perm.security;
5154
5155         ad.type = LSM_AUDIT_DATA_IPC;
5156         ad.u.ipc_id = shp->shm_perm.key;
5157
5158         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5159                           SHM__CREATE, &ad);
5160         if (rc) {
5161                 ipc_free_security(&shp->shm_perm);
5162                 return rc;
5163         }
5164         return 0;
5165 }
5166
5167 static void selinux_shm_free_security(struct shmid_kernel *shp)
5168 {
5169         ipc_free_security(&shp->shm_perm);
5170 }
5171
5172 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5173 {
5174         struct ipc_security_struct *isec;
5175         struct common_audit_data ad;
5176         u32 sid = current_sid();
5177
5178         isec = shp->shm_perm.security;
5179
5180         ad.type = LSM_AUDIT_DATA_IPC;
5181         ad.u.ipc_id = shp->shm_perm.key;
5182
5183         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5184                             SHM__ASSOCIATE, &ad);
5185 }
5186
5187 /* Note, at this point, shp is locked down */
5188 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5189 {
5190         int perms;
5191         int err;
5192
5193         switch (cmd) {
5194         case IPC_INFO:
5195         case SHM_INFO:
5196                 /* No specific object, just general system-wide information. */
5197                 return task_has_system(current, SYSTEM__IPC_INFO);
5198         case IPC_STAT:
5199         case SHM_STAT:
5200                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5201                 break;
5202         case IPC_SET:
5203                 perms = SHM__SETATTR;
5204                 break;
5205         case SHM_LOCK:
5206         case SHM_UNLOCK:
5207                 perms = SHM__LOCK;
5208                 break;
5209         case IPC_RMID:
5210                 perms = SHM__DESTROY;
5211                 break;
5212         default:
5213                 return 0;
5214         }
5215
5216         err = ipc_has_perm(&shp->shm_perm, perms);
5217         return err;
5218 }
5219
5220 static int selinux_shm_shmat(struct shmid_kernel *shp,
5221                              char __user *shmaddr, int shmflg)
5222 {
5223         u32 perms;
5224
5225         if (shmflg & SHM_RDONLY)
5226                 perms = SHM__READ;
5227         else
5228                 perms = SHM__READ | SHM__WRITE;
5229
5230         return ipc_has_perm(&shp->shm_perm, perms);
5231 }
5232
5233 /* Semaphore security operations */
5234 static int selinux_sem_alloc_security(struct sem_array *sma)
5235 {
5236         struct ipc_security_struct *isec;
5237         struct common_audit_data ad;
5238         u32 sid = current_sid();
5239         int rc;
5240
5241         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5242         if (rc)
5243                 return rc;
5244
5245         isec = sma->sem_perm.security;
5246
5247         ad.type = LSM_AUDIT_DATA_IPC;
5248         ad.u.ipc_id = sma->sem_perm.key;
5249
5250         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5251                           SEM__CREATE, &ad);
5252         if (rc) {
5253                 ipc_free_security(&sma->sem_perm);
5254                 return rc;
5255         }
5256         return 0;
5257 }
5258
5259 static void selinux_sem_free_security(struct sem_array *sma)
5260 {
5261         ipc_free_security(&sma->sem_perm);
5262 }
5263
5264 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5265 {
5266         struct ipc_security_struct *isec;
5267         struct common_audit_data ad;
5268         u32 sid = current_sid();
5269
5270         isec = sma->sem_perm.security;
5271
5272         ad.type = LSM_AUDIT_DATA_IPC;
5273         ad.u.ipc_id = sma->sem_perm.key;
5274
5275         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5276                             SEM__ASSOCIATE, &ad);
5277 }
5278
5279 /* Note, at this point, sma is locked down */
5280 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5281 {
5282         int err;
5283         u32 perms;
5284
5285         switch (cmd) {
5286         case IPC_INFO:
5287         case SEM_INFO:
5288                 /* No specific object, just general system-wide information. */
5289                 return task_has_system(current, SYSTEM__IPC_INFO);
5290         case GETPID:
5291         case GETNCNT:
5292         case GETZCNT:
5293                 perms = SEM__GETATTR;
5294                 break;
5295         case GETVAL:
5296         case GETALL:
5297                 perms = SEM__READ;
5298                 break;
5299         case SETVAL:
5300         case SETALL:
5301                 perms = SEM__WRITE;
5302                 break;
5303         case IPC_RMID:
5304                 perms = SEM__DESTROY;
5305                 break;
5306         case IPC_SET:
5307                 perms = SEM__SETATTR;
5308                 break;
5309         case IPC_STAT:
5310         case SEM_STAT:
5311                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5312                 break;
5313         default:
5314                 return 0;
5315         }
5316
5317         err = ipc_has_perm(&sma->sem_perm, perms);
5318         return err;
5319 }
5320
5321 static int selinux_sem_semop(struct sem_array *sma,
5322                              struct sembuf *sops, unsigned nsops, int alter)
5323 {
5324         u32 perms;
5325
5326         if (alter)
5327                 perms = SEM__READ | SEM__WRITE;
5328         else
5329                 perms = SEM__READ;
5330
5331         return ipc_has_perm(&sma->sem_perm, perms);
5332 }
5333
5334 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5335 {
5336         u32 av = 0;
5337
5338         av = 0;
5339         if (flag & S_IRUGO)
5340                 av |= IPC__UNIX_READ;
5341         if (flag & S_IWUGO)
5342                 av |= IPC__UNIX_WRITE;
5343
5344         if (av == 0)
5345                 return 0;
5346
5347         return ipc_has_perm(ipcp, av);
5348 }
5349
5350 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5351 {
5352         struct ipc_security_struct *isec = ipcp->security;
5353         *secid = isec->sid;
5354 }
5355
5356 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5357 {
5358         if (inode)
5359                 inode_doinit_with_dentry(inode, dentry);
5360 }
5361
5362 static int selinux_getprocattr(struct task_struct *p,
5363                                char *name, char **value)
5364 {
5365         const struct task_security_struct *__tsec;
5366         u32 sid;
5367         int error;
5368         unsigned len;
5369
5370         if (current != p) {
5371                 error = current_has_perm(p, PROCESS__GETATTR);
5372                 if (error)
5373                         return error;
5374         }
5375
5376         rcu_read_lock();
5377         __tsec = __task_cred(p)->security;
5378
5379         if (!strcmp(name, "current"))
5380                 sid = __tsec->sid;
5381         else if (!strcmp(name, "prev"))
5382                 sid = __tsec->osid;
5383         else if (!strcmp(name, "exec"))
5384                 sid = __tsec->exec_sid;
5385         else if (!strcmp(name, "fscreate"))
5386                 sid = __tsec->create_sid;
5387         else if (!strcmp(name, "keycreate"))
5388                 sid = __tsec->keycreate_sid;
5389         else if (!strcmp(name, "sockcreate"))
5390                 sid = __tsec->sockcreate_sid;
5391         else
5392                 goto invalid;
5393         rcu_read_unlock();
5394
5395         if (!sid)
5396                 return 0;
5397
5398         error = security_sid_to_context(sid, value, &len);
5399         if (error)
5400                 return error;
5401         return len;
5402
5403 invalid:
5404         rcu_read_unlock();
5405         return -EINVAL;
5406 }
5407
5408 static int selinux_setprocattr(struct task_struct *p,
5409                                char *name, void *value, size_t size)
5410 {
5411         struct task_security_struct *tsec;
5412         struct task_struct *tracer;
5413         struct cred *new;
5414         u32 sid = 0, ptsid;
5415         int error;
5416         char *str = value;
5417
5418         if (current != p) {
5419                 /* SELinux only allows a process to change its own
5420                    security attributes. */
5421                 return -EACCES;
5422         }
5423
5424         /*
5425          * Basic control over ability to set these attributes at all.
5426          * current == p, but we'll pass them separately in case the
5427          * above restriction is ever removed.
5428          */
5429         if (!strcmp(name, "exec"))
5430                 error = current_has_perm(p, PROCESS__SETEXEC);
5431         else if (!strcmp(name, "fscreate"))
5432                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5433         else if (!strcmp(name, "keycreate"))
5434                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5435         else if (!strcmp(name, "sockcreate"))
5436                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5437         else if (!strcmp(name, "current"))
5438                 error = current_has_perm(p, PROCESS__SETCURRENT);
5439         else
5440                 error = -EINVAL;
5441         if (error)
5442                 return error;
5443
5444         /* Obtain a SID for the context, if one was specified. */
5445         if (size && str[1] && str[1] != '\n') {
5446                 if (str[size-1] == '\n') {
5447                         str[size-1] = 0;
5448                         size--;
5449                 }
5450                 error = security_context_to_sid(value, size, &sid);
5451                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5452                         if (!capable(CAP_MAC_ADMIN)) {
5453                                 struct audit_buffer *ab;
5454                                 size_t audit_size;
5455
5456                                 /* We strip a nul only if it is at the end, otherwise the
5457                                  * context contains a nul and we should audit that */
5458                                 if (str[size - 1] == '\0')
5459                                         audit_size = size - 1;
5460                                 else
5461                                         audit_size = size;
5462                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5463                                 audit_log_format(ab, "op=fscreate invalid_context=");
5464                                 audit_log_n_untrustedstring(ab, value, audit_size);
5465                                 audit_log_end(ab);
5466
5467                                 return error;
5468                         }
5469                         error = security_context_to_sid_force(value, size,
5470                                                               &sid);
5471                 }
5472                 if (error)
5473                         return error;
5474         }
5475
5476         new = prepare_creds();
5477         if (!new)
5478                 return -ENOMEM;
5479
5480         /* Permission checking based on the specified context is
5481            performed during the actual operation (execve,
5482            open/mkdir/...), when we know the full context of the
5483            operation.  See selinux_bprm_set_creds for the execve
5484            checks and may_create for the file creation checks. The
5485            operation will then fail if the context is not permitted. */
5486         tsec = new->security;
5487         if (!strcmp(name, "exec")) {
5488                 tsec->exec_sid = sid;
5489         } else if (!strcmp(name, "fscreate")) {
5490                 tsec->create_sid = sid;
5491         } else if (!strcmp(name, "keycreate")) {
5492                 error = may_create_key(sid, p);
5493                 if (error)
5494                         goto abort_change;
5495                 tsec->keycreate_sid = sid;
5496         } else if (!strcmp(name, "sockcreate")) {
5497                 tsec->sockcreate_sid = sid;
5498         } else if (!strcmp(name, "current")) {
5499                 error = -EINVAL;
5500                 if (sid == 0)
5501                         goto abort_change;
5502
5503                 /* Only allow single threaded processes to change context */
5504                 error = -EPERM;
5505                 if (!current_is_single_threaded()) {
5506                         error = security_bounded_transition(tsec->sid, sid);
5507                         if (error)
5508                                 goto abort_change;
5509                 }
5510
5511                 /* Check permissions for the transition. */
5512                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5513                                      PROCESS__DYNTRANSITION, NULL);
5514                 if (error)
5515                         goto abort_change;
5516
5517                 /* Check for ptracing, and update the task SID if ok.
5518                    Otherwise, leave SID unchanged and fail. */
5519                 ptsid = 0;
5520                 rcu_read_lock();
5521                 tracer = ptrace_parent(p);
5522                 if (tracer)
5523                         ptsid = task_sid(tracer);
5524                 rcu_read_unlock();
5525
5526                 if (tracer) {
5527                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5528                                              PROCESS__PTRACE, NULL);
5529                         if (error)
5530                                 goto abort_change;
5531                 }
5532
5533                 tsec->sid = sid;
5534         } else {
5535                 error = -EINVAL;
5536                 goto abort_change;
5537         }
5538
5539         commit_creds(new);
5540         return size;
5541
5542 abort_change:
5543         abort_creds(new);
5544         return error;
5545 }
5546
5547 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5548 {
5549         return security_sid_to_context(secid, secdata, seclen);
5550 }
5551
5552 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5553 {
5554         return security_context_to_sid(secdata, seclen, secid);
5555 }
5556
5557 static void selinux_release_secctx(char *secdata, u32 seclen)
5558 {
5559         kfree(secdata);
5560 }
5561
5562 /*
5563  *      called with inode->i_mutex locked
5564  */
5565 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5566 {
5567         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5568 }
5569
5570 /*
5571  *      called with inode->i_mutex locked
5572  */
5573 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5574 {
5575         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5576 }
5577
5578 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5579 {
5580         int len = 0;
5581         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5582                                                 ctx, true);
5583         if (len < 0)
5584                 return len;
5585         *ctxlen = len;
5586         return 0;
5587 }
5588 #ifdef CONFIG_KEYS
5589
5590 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5591                              unsigned long flags)
5592 {
5593         const struct task_security_struct *tsec;
5594         struct key_security_struct *ksec;
5595
5596         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5597         if (!ksec)
5598                 return -ENOMEM;
5599
5600         tsec = cred->security;
5601         if (tsec->keycreate_sid)
5602                 ksec->sid = tsec->keycreate_sid;
5603         else
5604                 ksec->sid = tsec->sid;
5605
5606         k->security = ksec;
5607         return 0;
5608 }
5609
5610 static void selinux_key_free(struct key *k)
5611 {
5612         struct key_security_struct *ksec = k->security;
5613
5614         k->security = NULL;
5615         kfree(ksec);
5616 }
5617
5618 static int selinux_key_permission(key_ref_t key_ref,
5619                                   const struct cred *cred,
5620                                   key_perm_t perm)
5621 {
5622         struct key *key;
5623         struct key_security_struct *ksec;
5624         u32 sid;
5625
5626         /* if no specific permissions are requested, we skip the
5627            permission check. No serious, additional covert channels
5628            appear to be created. */
5629         if (perm == 0)
5630                 return 0;
5631
5632         sid = cred_sid(cred);
5633
5634         key = key_ref_to_ptr(key_ref);
5635         ksec = key->security;
5636
5637         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5638 }
5639
5640 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5641 {
5642         struct key_security_struct *ksec = key->security;
5643         char *context = NULL;
5644         unsigned len;
5645         int rc;
5646
5647         rc = security_sid_to_context(ksec->sid, &context, &len);
5648         if (!rc)
5649                 rc = len;
5650         *_buffer = context;
5651         return rc;
5652 }
5653
5654 #endif
5655
5656 static struct security_operations selinux_ops = {
5657         .name =                         "selinux",
5658
5659         .ptrace_access_check =          selinux_ptrace_access_check,
5660         .ptrace_traceme =               selinux_ptrace_traceme,
5661         .capget =                       selinux_capget,
5662         .capset =                       selinux_capset,
5663         .capable =                      selinux_capable,
5664         .quotactl =                     selinux_quotactl,
5665         .quota_on =                     selinux_quota_on,
5666         .syslog =                       selinux_syslog,
5667         .vm_enough_memory =             selinux_vm_enough_memory,
5668
5669         .netlink_send =                 selinux_netlink_send,
5670
5671         .bprm_set_creds =               selinux_bprm_set_creds,
5672         .bprm_committing_creds =        selinux_bprm_committing_creds,
5673         .bprm_committed_creds =         selinux_bprm_committed_creds,
5674         .bprm_secureexec =              selinux_bprm_secureexec,
5675
5676         .sb_alloc_security =            selinux_sb_alloc_security,
5677         .sb_free_security =             selinux_sb_free_security,
5678         .sb_copy_data =                 selinux_sb_copy_data,
5679         .sb_remount =                   selinux_sb_remount,
5680         .sb_kern_mount =                selinux_sb_kern_mount,
5681         .sb_show_options =              selinux_sb_show_options,
5682         .sb_statfs =                    selinux_sb_statfs,
5683         .sb_mount =                     selinux_mount,
5684         .sb_umount =                    selinux_umount,
5685         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5686         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5687         .sb_parse_opts_str =            selinux_parse_opts_str,
5688
5689
5690         .inode_alloc_security =         selinux_inode_alloc_security,
5691         .inode_free_security =          selinux_inode_free_security,
5692         .inode_init_security =          selinux_inode_init_security,
5693         .inode_create =                 selinux_inode_create,
5694         .inode_link =                   selinux_inode_link,
5695         .inode_unlink =                 selinux_inode_unlink,
5696         .inode_symlink =                selinux_inode_symlink,
5697         .inode_mkdir =                  selinux_inode_mkdir,
5698         .inode_rmdir =                  selinux_inode_rmdir,
5699         .inode_mknod =                  selinux_inode_mknod,
5700         .inode_rename =                 selinux_inode_rename,
5701         .inode_readlink =               selinux_inode_readlink,
5702         .inode_follow_link =            selinux_inode_follow_link,
5703         .inode_permission =             selinux_inode_permission,
5704         .inode_setattr =                selinux_inode_setattr,
5705         .inode_getattr =                selinux_inode_getattr,
5706         .inode_setxattr =               selinux_inode_setxattr,
5707         .inode_post_setxattr =          selinux_inode_post_setxattr,
5708         .inode_getxattr =               selinux_inode_getxattr,
5709         .inode_listxattr =              selinux_inode_listxattr,
5710         .inode_removexattr =            selinux_inode_removexattr,
5711         .inode_getsecurity =            selinux_inode_getsecurity,
5712         .inode_setsecurity =            selinux_inode_setsecurity,
5713         .inode_listsecurity =           selinux_inode_listsecurity,
5714         .inode_getsecid =               selinux_inode_getsecid,
5715
5716         .file_permission =              selinux_file_permission,
5717         .file_alloc_security =          selinux_file_alloc_security,
5718         .file_free_security =           selinux_file_free_security,
5719         .file_ioctl =                   selinux_file_ioctl,
5720         .mmap_file =                    selinux_mmap_file,
5721         .mmap_addr =                    selinux_mmap_addr,
5722         .file_mprotect =                selinux_file_mprotect,
5723         .file_lock =                    selinux_file_lock,
5724         .file_fcntl =                   selinux_file_fcntl,
5725         .file_set_fowner =              selinux_file_set_fowner,
5726         .file_send_sigiotask =          selinux_file_send_sigiotask,
5727         .file_receive =                 selinux_file_receive,
5728
5729         .file_open =                    selinux_file_open,
5730
5731         .task_create =                  selinux_task_create,
5732         .cred_alloc_blank =             selinux_cred_alloc_blank,
5733         .cred_free =                    selinux_cred_free,
5734         .cred_prepare =                 selinux_cred_prepare,
5735         .cred_transfer =                selinux_cred_transfer,
5736         .kernel_act_as =                selinux_kernel_act_as,
5737         .kernel_create_files_as =       selinux_kernel_create_files_as,
5738         .kernel_module_request =        selinux_kernel_module_request,
5739         .task_setpgid =                 selinux_task_setpgid,
5740         .task_getpgid =                 selinux_task_getpgid,
5741         .task_getsid =                  selinux_task_getsid,
5742         .task_getsecid =                selinux_task_getsecid,
5743         .task_setnice =                 selinux_task_setnice,
5744         .task_setioprio =               selinux_task_setioprio,
5745         .task_getioprio =               selinux_task_getioprio,
5746         .task_setrlimit =               selinux_task_setrlimit,
5747         .task_setscheduler =            selinux_task_setscheduler,
5748         .task_getscheduler =            selinux_task_getscheduler,
5749         .task_movememory =              selinux_task_movememory,
5750         .task_kill =                    selinux_task_kill,
5751         .task_wait =                    selinux_task_wait,
5752         .task_to_inode =                selinux_task_to_inode,
5753
5754         .ipc_permission =               selinux_ipc_permission,
5755         .ipc_getsecid =                 selinux_ipc_getsecid,
5756
5757         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5758         .msg_msg_free_security =        selinux_msg_msg_free_security,
5759
5760         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5761         .msg_queue_free_security =      selinux_msg_queue_free_security,
5762         .msg_queue_associate =          selinux_msg_queue_associate,
5763         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5764         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5765         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5766
5767         .shm_alloc_security =           selinux_shm_alloc_security,
5768         .shm_free_security =            selinux_shm_free_security,
5769         .shm_associate =                selinux_shm_associate,
5770         .shm_shmctl =                   selinux_shm_shmctl,
5771         .shm_shmat =                    selinux_shm_shmat,
5772
5773         .sem_alloc_security =           selinux_sem_alloc_security,
5774         .sem_free_security =            selinux_sem_free_security,
5775         .sem_associate =                selinux_sem_associate,
5776         .sem_semctl =                   selinux_sem_semctl,
5777         .sem_semop =                    selinux_sem_semop,
5778
5779         .d_instantiate =                selinux_d_instantiate,
5780
5781         .getprocattr =                  selinux_getprocattr,
5782         .setprocattr =                  selinux_setprocattr,
5783
5784         .secid_to_secctx =              selinux_secid_to_secctx,
5785         .secctx_to_secid =              selinux_secctx_to_secid,
5786         .release_secctx =               selinux_release_secctx,
5787         .inode_notifysecctx =           selinux_inode_notifysecctx,
5788         .inode_setsecctx =              selinux_inode_setsecctx,
5789         .inode_getsecctx =              selinux_inode_getsecctx,
5790
5791         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5792         .unix_may_send =                selinux_socket_unix_may_send,
5793
5794         .socket_create =                selinux_socket_create,
5795         .socket_post_create =           selinux_socket_post_create,
5796         .socket_bind =                  selinux_socket_bind,
5797         .socket_connect =               selinux_socket_connect,
5798         .socket_listen =                selinux_socket_listen,
5799         .socket_accept =                selinux_socket_accept,
5800         .socket_sendmsg =               selinux_socket_sendmsg,
5801         .socket_recvmsg =               selinux_socket_recvmsg,
5802         .socket_getsockname =           selinux_socket_getsockname,
5803         .socket_getpeername =           selinux_socket_getpeername,
5804         .socket_getsockopt =            selinux_socket_getsockopt,
5805         .socket_setsockopt =            selinux_socket_setsockopt,
5806         .socket_shutdown =              selinux_socket_shutdown,
5807         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5808         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5809         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5810         .sk_alloc_security =            selinux_sk_alloc_security,
5811         .sk_free_security =             selinux_sk_free_security,
5812         .sk_clone_security =            selinux_sk_clone_security,
5813         .sk_getsecid =                  selinux_sk_getsecid,
5814         .sock_graft =                   selinux_sock_graft,
5815         .inet_conn_request =            selinux_inet_conn_request,
5816         .inet_csk_clone =               selinux_inet_csk_clone,
5817         .inet_conn_established =        selinux_inet_conn_established,
5818         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5819         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5820         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5821         .req_classify_flow =            selinux_req_classify_flow,
5822         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5823         .tun_dev_free_security =        selinux_tun_dev_free_security,
5824         .tun_dev_create =               selinux_tun_dev_create,
5825         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5826         .tun_dev_attach =               selinux_tun_dev_attach,
5827         .tun_dev_open =                 selinux_tun_dev_open,
5828         .skb_owned_by =                 selinux_skb_owned_by,
5829
5830 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5831         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5832         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5833         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5834         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5835         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5836         .xfrm_state_free_security =     selinux_xfrm_state_free,
5837         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5838         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5839         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5840         .xfrm_decode_session =          selinux_xfrm_decode_session,
5841 #endif
5842
5843 #ifdef CONFIG_KEYS
5844         .key_alloc =                    selinux_key_alloc,
5845         .key_free =                     selinux_key_free,
5846         .key_permission =               selinux_key_permission,
5847         .key_getsecurity =              selinux_key_getsecurity,
5848 #endif
5849
5850 #ifdef CONFIG_AUDIT
5851         .audit_rule_init =              selinux_audit_rule_init,
5852         .audit_rule_known =             selinux_audit_rule_known,
5853         .audit_rule_match =             selinux_audit_rule_match,
5854         .audit_rule_free =              selinux_audit_rule_free,
5855 #endif
5856 };
5857
5858 static __init int selinux_init(void)
5859 {
5860         if (!security_module_enable(&selinux_ops)) {
5861                 selinux_enabled = 0;
5862                 return 0;
5863         }
5864
5865         if (!selinux_enabled) {
5866                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5867                 return 0;
5868         }
5869
5870         printk(KERN_INFO "SELinux:  Initializing.\n");
5871
5872         /* Set the security state for the initial task. */
5873         cred_init_security();
5874
5875         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5876
5877         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5878                                             sizeof(struct inode_security_struct),
5879                                             0, SLAB_PANIC, NULL);
5880         avc_init();
5881
5882         if (register_security(&selinux_ops))
5883                 panic("SELinux: Unable to register with kernel.\n");
5884
5885         if (selinux_enforcing)
5886                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5887         else
5888                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5889
5890         return 0;
5891 }
5892
5893 static void delayed_superblock_init(struct super_block *sb, void *unused)
5894 {
5895         superblock_doinit(sb, NULL);
5896 }
5897
5898 void selinux_complete_init(void)
5899 {
5900         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5901
5902         /* Set up any superblocks initialized prior to the policy load. */
5903         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5904         iterate_supers(delayed_superblock_init, NULL);
5905 }
5906
5907 /* SELinux requires early initialization in order to label
5908    all processes and objects when they are created. */
5909 security_initcall(selinux_init);
5910
5911 #if defined(CONFIG_NETFILTER)
5912
5913 static struct nf_hook_ops selinux_ipv4_ops[] = {
5914         {
5915                 .hook =         selinux_ipv4_postroute,
5916                 .owner =        THIS_MODULE,
5917                 .pf =           NFPROTO_IPV4,
5918                 .hooknum =      NF_INET_POST_ROUTING,
5919                 .priority =     NF_IP_PRI_SELINUX_LAST,
5920         },
5921         {
5922                 .hook =         selinux_ipv4_forward,
5923                 .owner =        THIS_MODULE,
5924                 .pf =           NFPROTO_IPV4,
5925                 .hooknum =      NF_INET_FORWARD,
5926                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5927         },
5928         {
5929                 .hook =         selinux_ipv4_output,
5930                 .owner =        THIS_MODULE,
5931                 .pf =           NFPROTO_IPV4,
5932                 .hooknum =      NF_INET_LOCAL_OUT,
5933                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5934         }
5935 };
5936
5937 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5938
5939 static struct nf_hook_ops selinux_ipv6_ops[] = {
5940         {
5941                 .hook =         selinux_ipv6_postroute,
5942                 .owner =        THIS_MODULE,
5943                 .pf =           NFPROTO_IPV6,
5944                 .hooknum =      NF_INET_POST_ROUTING,
5945                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5946         },
5947         {
5948                 .hook =         selinux_ipv6_forward,
5949                 .owner =        THIS_MODULE,
5950                 .pf =           NFPROTO_IPV6,
5951                 .hooknum =      NF_INET_FORWARD,
5952                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5953         }
5954 };
5955
5956 #endif  /* IPV6 */
5957
5958 static int __init selinux_nf_ip_init(void)
5959 {
5960         int err = 0;
5961
5962         if (!selinux_enabled)
5963                 goto out;
5964
5965         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5966
5967         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5968         if (err)
5969                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5970
5971 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5972         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5973         if (err)
5974                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5975 #endif  /* IPV6 */
5976
5977 out:
5978         return err;
5979 }
5980
5981 __initcall(selinux_nf_ip_init);
5982
5983 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5984 static void selinux_nf_ip_exit(void)
5985 {
5986         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5987
5988         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5989 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5990         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5991 #endif  /* IPV6 */
5992 }
5993 #endif
5994
5995 #else /* CONFIG_NETFILTER */
5996
5997 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5998 #define selinux_nf_ip_exit()
5999 #endif
6000
6001 #endif /* CONFIG_NETFILTER */
6002
6003 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6004 static int selinux_disabled;
6005
6006 int selinux_disable(void)
6007 {
6008         if (ss_initialized) {
6009                 /* Not permitted after initial policy load. */
6010                 return -EINVAL;
6011         }
6012
6013         if (selinux_disabled) {
6014                 /* Only do this once. */
6015                 return -EINVAL;
6016         }
6017
6018         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6019
6020         selinux_disabled = 1;
6021         selinux_enabled = 0;
6022
6023         reset_security_ops();
6024
6025         /* Try to destroy the avc node cache */
6026         avc_disable();
6027
6028         /* Unregister netfilter hooks. */
6029         selinux_nf_ip_exit();
6030
6031         /* Unregister selinuxfs. */
6032         exit_sel_fs();
6033
6034         return 0;
6035 }
6036 #endif