selinux: remove secondary ops call to bprm_committed_creds
[firefly-linux-kernel-4.4.55.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534         int rc;
2535
2536         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2537         if (rc)
2538                 return rc;
2539
2540         if (flags & MS_REMOUNT)
2541                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2542                                            FILESYSTEM__REMOUNT, NULL);
2543         else
2544                 return dentry_has_perm(cred, path->mnt, path->dentry,
2545                                        FILE__MOUNTON);
2546 }
2547
2548 static int selinux_umount(struct vfsmount *mnt, int flags)
2549 {
2550         const struct cred *cred = current_cred();
2551         int rc;
2552
2553         rc = secondary_ops->sb_umount(mnt, flags);
2554         if (rc)
2555                 return rc;
2556
2557         return superblock_has_perm(cred, mnt->mnt_sb,
2558                                    FILESYSTEM__UNMOUNT, NULL);
2559 }
2560
2561 /* inode security operations */
2562
2563 static int selinux_inode_alloc_security(struct inode *inode)
2564 {
2565         return inode_alloc_security(inode);
2566 }
2567
2568 static void selinux_inode_free_security(struct inode *inode)
2569 {
2570         inode_free_security(inode);
2571 }
2572
2573 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2574                                        char **name, void **value,
2575                                        size_t *len)
2576 {
2577         const struct cred *cred = current_cred();
2578         const struct task_security_struct *tsec = cred->security;
2579         struct inode_security_struct *dsec;
2580         struct superblock_security_struct *sbsec;
2581         u32 sid, newsid, clen;
2582         int rc;
2583         char *namep = NULL, *context;
2584
2585         dsec = dir->i_security;
2586         sbsec = dir->i_sb->s_security;
2587
2588         sid = tsec->sid;
2589         newsid = tsec->create_sid;
2590
2591         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2592                 rc = security_transition_sid(sid, dsec->sid,
2593                                              inode_mode_to_security_class(inode->i_mode),
2594                                              &newsid);
2595                 if (rc) {
2596                         printk(KERN_WARNING "%s:  "
2597                                "security_transition_sid failed, rc=%d (dev=%s "
2598                                "ino=%ld)\n",
2599                                __func__,
2600                                -rc, inode->i_sb->s_id, inode->i_ino);
2601                         return rc;
2602                 }
2603         }
2604
2605         /* Possibly defer initialization to selinux_complete_init. */
2606         if (sbsec->flags & SE_SBINITIALIZED) {
2607                 struct inode_security_struct *isec = inode->i_security;
2608                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2609                 isec->sid = newsid;
2610                 isec->initialized = 1;
2611         }
2612
2613         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2614                 return -EOPNOTSUPP;
2615
2616         if (name) {
2617                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2618                 if (!namep)
2619                         return -ENOMEM;
2620                 *name = namep;
2621         }
2622
2623         if (value && len) {
2624                 rc = security_sid_to_context_force(newsid, &context, &clen);
2625                 if (rc) {
2626                         kfree(namep);
2627                         return rc;
2628                 }
2629                 *value = context;
2630                 *len = clen;
2631         }
2632
2633         return 0;
2634 }
2635
2636 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2637 {
2638         return may_create(dir, dentry, SECCLASS_FILE);
2639 }
2640
2641 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2642 {
2643         int rc;
2644
2645         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2646         if (rc)
2647                 return rc;
2648         return may_link(dir, old_dentry, MAY_LINK);
2649 }
2650
2651 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2652 {
2653         int rc;
2654
2655         rc = secondary_ops->inode_unlink(dir, dentry);
2656         if (rc)
2657                 return rc;
2658         return may_link(dir, dentry, MAY_UNLINK);
2659 }
2660
2661 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2662 {
2663         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2664 }
2665
2666 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2667 {
2668         return may_create(dir, dentry, SECCLASS_DIR);
2669 }
2670
2671 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2672 {
2673         return may_link(dir, dentry, MAY_RMDIR);
2674 }
2675
2676 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2677 {
2678         int rc;
2679
2680         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2681         if (rc)
2682                 return rc;
2683
2684         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2685 }
2686
2687 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2688                                 struct inode *new_inode, struct dentry *new_dentry)
2689 {
2690         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2691 }
2692
2693 static int selinux_inode_readlink(struct dentry *dentry)
2694 {
2695         const struct cred *cred = current_cred();
2696
2697         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2698 }
2699
2700 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2701 {
2702         const struct cred *cred = current_cred();
2703         int rc;
2704
2705         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2706         if (rc)
2707                 return rc;
2708         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2709 }
2710
2711 static int selinux_inode_permission(struct inode *inode, int mask)
2712 {
2713         const struct cred *cred = current_cred();
2714         int rc;
2715
2716         rc = secondary_ops->inode_permission(inode, mask);
2717         if (rc)
2718                 return rc;
2719
2720         if (!mask) {
2721                 /* No permission to check.  Existence test. */
2722                 return 0;
2723         }
2724
2725         return inode_has_perm(cred, inode,
2726                               file_mask_to_av(inode->i_mode, mask), NULL);
2727 }
2728
2729 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2730 {
2731         const struct cred *cred = current_cred();
2732         int rc;
2733
2734         rc = secondary_ops->inode_setattr(dentry, iattr);
2735         if (rc)
2736                 return rc;
2737
2738         if (iattr->ia_valid & ATTR_FORCE)
2739                 return 0;
2740
2741         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2742                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2743                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2744
2745         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2746 }
2747
2748 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2749 {
2750         const struct cred *cred = current_cred();
2751
2752         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2753 }
2754
2755 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2756 {
2757         const struct cred *cred = current_cred();
2758
2759         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2760                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2761                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2762                         if (!capable(CAP_SETFCAP))
2763                                 return -EPERM;
2764                 } else if (!capable(CAP_SYS_ADMIN)) {
2765                         /* A different attribute in the security namespace.
2766                            Restrict to administrator. */
2767                         return -EPERM;
2768                 }
2769         }
2770
2771         /* Not an attribute we recognize, so just check the
2772            ordinary setattr permission. */
2773         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2774 }
2775
2776 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2777                                   const void *value, size_t size, int flags)
2778 {
2779         struct inode *inode = dentry->d_inode;
2780         struct inode_security_struct *isec = inode->i_security;
2781         struct superblock_security_struct *sbsec;
2782         struct avc_audit_data ad;
2783         u32 newsid, sid = current_sid();
2784         int rc = 0;
2785
2786         if (strcmp(name, XATTR_NAME_SELINUX))
2787                 return selinux_inode_setotherxattr(dentry, name);
2788
2789         sbsec = inode->i_sb->s_security;
2790         if (!(sbsec->flags & SE_SBLABELSUPP))
2791                 return -EOPNOTSUPP;
2792
2793         if (!is_owner_or_cap(inode))
2794                 return -EPERM;
2795
2796         AVC_AUDIT_DATA_INIT(&ad, FS);
2797         ad.u.fs.path.dentry = dentry;
2798
2799         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2800                           FILE__RELABELFROM, &ad);
2801         if (rc)
2802                 return rc;
2803
2804         rc = security_context_to_sid(value, size, &newsid);
2805         if (rc == -EINVAL) {
2806                 if (!capable(CAP_MAC_ADMIN))
2807                         return rc;
2808                 rc = security_context_to_sid_force(value, size, &newsid);
2809         }
2810         if (rc)
2811                 return rc;
2812
2813         rc = avc_has_perm(sid, newsid, isec->sclass,
2814                           FILE__RELABELTO, &ad);
2815         if (rc)
2816                 return rc;
2817
2818         rc = security_validate_transition(isec->sid, newsid, sid,
2819                                           isec->sclass);
2820         if (rc)
2821                 return rc;
2822
2823         return avc_has_perm(newsid,
2824                             sbsec->sid,
2825                             SECCLASS_FILESYSTEM,
2826                             FILESYSTEM__ASSOCIATE,
2827                             &ad);
2828 }
2829
2830 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2831                                         const void *value, size_t size,
2832                                         int flags)
2833 {
2834         struct inode *inode = dentry->d_inode;
2835         struct inode_security_struct *isec = inode->i_security;
2836         u32 newsid;
2837         int rc;
2838
2839         if (strcmp(name, XATTR_NAME_SELINUX)) {
2840                 /* Not an attribute we recognize, so nothing to do. */
2841                 return;
2842         }
2843
2844         rc = security_context_to_sid_force(value, size, &newsid);
2845         if (rc) {
2846                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2847                        "for (%s, %lu), rc=%d\n",
2848                        inode->i_sb->s_id, inode->i_ino, -rc);
2849                 return;
2850         }
2851
2852         isec->sid = newsid;
2853         return;
2854 }
2855
2856 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2857 {
2858         const struct cred *cred = current_cred();
2859
2860         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2861 }
2862
2863 static int selinux_inode_listxattr(struct dentry *dentry)
2864 {
2865         const struct cred *cred = current_cred();
2866
2867         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2868 }
2869
2870 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2871 {
2872         if (strcmp(name, XATTR_NAME_SELINUX))
2873                 return selinux_inode_setotherxattr(dentry, name);
2874
2875         /* No one is allowed to remove a SELinux security label.
2876            You can change the label, but all data must be labeled. */
2877         return -EACCES;
2878 }
2879
2880 /*
2881  * Copy the inode security context value to the user.
2882  *
2883  * Permission check is handled by selinux_inode_getxattr hook.
2884  */
2885 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2886 {
2887         u32 size;
2888         int error;
2889         char *context = NULL;
2890         struct inode_security_struct *isec = inode->i_security;
2891
2892         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2893                 return -EOPNOTSUPP;
2894
2895         /*
2896          * If the caller has CAP_MAC_ADMIN, then get the raw context
2897          * value even if it is not defined by current policy; otherwise,
2898          * use the in-core value under current policy.
2899          * Use the non-auditing forms of the permission checks since
2900          * getxattr may be called by unprivileged processes commonly
2901          * and lack of permission just means that we fall back to the
2902          * in-core context value, not a denial.
2903          */
2904         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2905                                 SECURITY_CAP_NOAUDIT);
2906         if (!error)
2907                 error = security_sid_to_context_force(isec->sid, &context,
2908                                                       &size);
2909         else
2910                 error = security_sid_to_context(isec->sid, &context, &size);
2911         if (error)
2912                 return error;
2913         error = size;
2914         if (alloc) {
2915                 *buffer = context;
2916                 goto out_nofree;
2917         }
2918         kfree(context);
2919 out_nofree:
2920         return error;
2921 }
2922
2923 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2924                                      const void *value, size_t size, int flags)
2925 {
2926         struct inode_security_struct *isec = inode->i_security;
2927         u32 newsid;
2928         int rc;
2929
2930         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2931                 return -EOPNOTSUPP;
2932
2933         if (!value || !size)
2934                 return -EACCES;
2935
2936         rc = security_context_to_sid((void *)value, size, &newsid);
2937         if (rc)
2938                 return rc;
2939
2940         isec->sid = newsid;
2941         return 0;
2942 }
2943
2944 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2945 {
2946         const int len = sizeof(XATTR_NAME_SELINUX);
2947         if (buffer && len <= buffer_size)
2948                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2949         return len;
2950 }
2951
2952 static int selinux_inode_need_killpriv(struct dentry *dentry)
2953 {
2954         return secondary_ops->inode_need_killpriv(dentry);
2955 }
2956
2957 static int selinux_inode_killpriv(struct dentry *dentry)
2958 {
2959         return secondary_ops->inode_killpriv(dentry);
2960 }
2961
2962 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2963 {
2964         struct inode_security_struct *isec = inode->i_security;
2965         *secid = isec->sid;
2966 }
2967
2968 /* file security operations */
2969
2970 static int selinux_revalidate_file_permission(struct file *file, int mask)
2971 {
2972         const struct cred *cred = current_cred();
2973         int rc;
2974         struct inode *inode = file->f_path.dentry->d_inode;
2975
2976         if (!mask) {
2977                 /* No permission to check.  Existence test. */
2978                 return 0;
2979         }
2980
2981         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2982         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2983                 mask |= MAY_APPEND;
2984
2985         rc = file_has_perm(cred, file,
2986                            file_mask_to_av(inode->i_mode, mask));
2987         if (rc)
2988                 return rc;
2989
2990         return selinux_netlbl_inode_permission(inode, mask);
2991 }
2992
2993 static int selinux_file_permission(struct file *file, int mask)
2994 {
2995         struct inode *inode = file->f_path.dentry->d_inode;
2996         struct file_security_struct *fsec = file->f_security;
2997         struct inode_security_struct *isec = inode->i_security;
2998         u32 sid = current_sid();
2999
3000         if (!mask) {
3001                 /* No permission to check.  Existence test. */
3002                 return 0;
3003         }
3004
3005         if (sid == fsec->sid && fsec->isid == isec->sid
3006             && fsec->pseqno == avc_policy_seqno())
3007                 return selinux_netlbl_inode_permission(inode, mask);
3008
3009         return selinux_revalidate_file_permission(file, mask);
3010 }
3011
3012 static int selinux_file_alloc_security(struct file *file)
3013 {
3014         return file_alloc_security(file);
3015 }
3016
3017 static void selinux_file_free_security(struct file *file)
3018 {
3019         file_free_security(file);
3020 }
3021
3022 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3023                               unsigned long arg)
3024 {
3025         const struct cred *cred = current_cred();
3026         u32 av = 0;
3027
3028         if (_IOC_DIR(cmd) & _IOC_WRITE)
3029                 av |= FILE__WRITE;
3030         if (_IOC_DIR(cmd) & _IOC_READ)
3031                 av |= FILE__READ;
3032         if (!av)
3033                 av = FILE__IOCTL;
3034
3035         return file_has_perm(cred, file, av);
3036 }
3037
3038 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3039 {
3040         const struct cred *cred = current_cred();
3041         int rc = 0;
3042
3043 #ifndef CONFIG_PPC32
3044         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3045                 /*
3046                  * We are making executable an anonymous mapping or a
3047                  * private file mapping that will also be writable.
3048                  * This has an additional check.
3049                  */
3050                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3051                 if (rc)
3052                         goto error;
3053         }
3054 #endif
3055
3056         if (file) {
3057                 /* read access is always possible with a mapping */
3058                 u32 av = FILE__READ;
3059
3060                 /* write access only matters if the mapping is shared */
3061                 if (shared && (prot & PROT_WRITE))
3062                         av |= FILE__WRITE;
3063
3064                 if (prot & PROT_EXEC)
3065                         av |= FILE__EXECUTE;
3066
3067                 return file_has_perm(cred, file, av);
3068         }
3069
3070 error:
3071         return rc;
3072 }
3073
3074 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3075                              unsigned long prot, unsigned long flags,
3076                              unsigned long addr, unsigned long addr_only)
3077 {
3078         int rc = 0;
3079         u32 sid = current_sid();
3080
3081         if (addr < mmap_min_addr)
3082                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3083                                   MEMPROTECT__MMAP_ZERO, NULL);
3084         if (rc || addr_only)
3085                 return rc;
3086
3087         if (selinux_checkreqprot)
3088                 prot = reqprot;
3089
3090         return file_map_prot_check(file, prot,
3091                                    (flags & MAP_TYPE) == MAP_SHARED);
3092 }
3093
3094 static int selinux_file_mprotect(struct vm_area_struct *vma,
3095                                  unsigned long reqprot,
3096                                  unsigned long prot)
3097 {
3098         const struct cred *cred = current_cred();
3099         int rc;
3100
3101         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3102         if (rc)
3103                 return rc;
3104
3105         if (selinux_checkreqprot)
3106                 prot = reqprot;
3107
3108 #ifndef CONFIG_PPC32
3109         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3110                 rc = 0;
3111                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3112                     vma->vm_end <= vma->vm_mm->brk) {
3113                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3114                 } else if (!vma->vm_file &&
3115                            vma->vm_start <= vma->vm_mm->start_stack &&
3116                            vma->vm_end >= vma->vm_mm->start_stack) {
3117                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3118                 } else if (vma->vm_file && vma->anon_vma) {
3119                         /*
3120                          * We are making executable a file mapping that has
3121                          * had some COW done. Since pages might have been
3122                          * written, check ability to execute the possibly
3123                          * modified content.  This typically should only
3124                          * occur for text relocations.
3125                          */
3126                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3127                 }
3128                 if (rc)
3129                         return rc;
3130         }
3131 #endif
3132
3133         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3134 }
3135
3136 static int selinux_file_lock(struct file *file, unsigned int cmd)
3137 {
3138         const struct cred *cred = current_cred();
3139
3140         return file_has_perm(cred, file, FILE__LOCK);
3141 }
3142
3143 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3144                               unsigned long arg)
3145 {
3146         const struct cred *cred = current_cred();
3147         int err = 0;
3148
3149         switch (cmd) {
3150         case F_SETFL:
3151                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3152                         err = -EINVAL;
3153                         break;
3154                 }
3155
3156                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3157                         err = file_has_perm(cred, file, FILE__WRITE);
3158                         break;
3159                 }
3160                 /* fall through */
3161         case F_SETOWN:
3162         case F_SETSIG:
3163         case F_GETFL:
3164         case F_GETOWN:
3165         case F_GETSIG:
3166                 /* Just check FD__USE permission */
3167                 err = file_has_perm(cred, file, 0);
3168                 break;
3169         case F_GETLK:
3170         case F_SETLK:
3171         case F_SETLKW:
3172 #if BITS_PER_LONG == 32
3173         case F_GETLK64:
3174         case F_SETLK64:
3175         case F_SETLKW64:
3176 #endif
3177                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3178                         err = -EINVAL;
3179                         break;
3180                 }
3181                 err = file_has_perm(cred, file, FILE__LOCK);
3182                 break;
3183         }
3184
3185         return err;
3186 }
3187
3188 static int selinux_file_set_fowner(struct file *file)
3189 {
3190         struct file_security_struct *fsec;
3191
3192         fsec = file->f_security;
3193         fsec->fown_sid = current_sid();
3194
3195         return 0;
3196 }
3197
3198 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3199                                        struct fown_struct *fown, int signum)
3200 {
3201         struct file *file;
3202         u32 sid = current_sid();
3203         u32 perm;
3204         struct file_security_struct *fsec;
3205
3206         /* struct fown_struct is never outside the context of a struct file */
3207         file = container_of(fown, struct file, f_owner);
3208
3209         fsec = file->f_security;
3210
3211         if (!signum)
3212                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3213         else
3214                 perm = signal_to_av(signum);
3215
3216         return avc_has_perm(fsec->fown_sid, sid,
3217                             SECCLASS_PROCESS, perm, NULL);
3218 }
3219
3220 static int selinux_file_receive(struct file *file)
3221 {
3222         const struct cred *cred = current_cred();
3223
3224         return file_has_perm(cred, file, file_to_av(file));
3225 }
3226
3227 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3228 {
3229         struct file_security_struct *fsec;
3230         struct inode *inode;
3231         struct inode_security_struct *isec;
3232
3233         inode = file->f_path.dentry->d_inode;
3234         fsec = file->f_security;
3235         isec = inode->i_security;
3236         /*
3237          * Save inode label and policy sequence number
3238          * at open-time so that selinux_file_permission
3239          * can determine whether revalidation is necessary.
3240          * Task label is already saved in the file security
3241          * struct as its SID.
3242          */
3243         fsec->isid = isec->sid;
3244         fsec->pseqno = avc_policy_seqno();
3245         /*
3246          * Since the inode label or policy seqno may have changed
3247          * between the selinux_inode_permission check and the saving
3248          * of state above, recheck that access is still permitted.
3249          * Otherwise, access might never be revalidated against the
3250          * new inode label or new policy.
3251          * This check is not redundant - do not remove.
3252          */
3253         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3254 }
3255
3256 /* task security operations */
3257
3258 static int selinux_task_create(unsigned long clone_flags)
3259 {
3260         int rc;
3261
3262         rc = secondary_ops->task_create(clone_flags);
3263         if (rc)
3264                 return rc;
3265
3266         return current_has_perm(current, PROCESS__FORK);
3267 }
3268
3269 /*
3270  * detach and free the LSM part of a set of credentials
3271  */
3272 static void selinux_cred_free(struct cred *cred)
3273 {
3274         struct task_security_struct *tsec = cred->security;
3275         cred->security = NULL;
3276         kfree(tsec);
3277 }
3278
3279 /*
3280  * prepare a new set of credentials for modification
3281  */
3282 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3283                                 gfp_t gfp)
3284 {
3285         const struct task_security_struct *old_tsec;
3286         struct task_security_struct *tsec;
3287
3288         old_tsec = old->security;
3289
3290         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3291         if (!tsec)
3292                 return -ENOMEM;
3293
3294         new->security = tsec;
3295         return 0;
3296 }
3297
3298 /*
3299  * commit new credentials
3300  */
3301 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3302 {
3303         secondary_ops->cred_commit(new, old);
3304 }
3305
3306 /*
3307  * set the security data for a kernel service
3308  * - all the creation contexts are set to unlabelled
3309  */
3310 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3311 {
3312         struct task_security_struct *tsec = new->security;
3313         u32 sid = current_sid();
3314         int ret;
3315
3316         ret = avc_has_perm(sid, secid,
3317                            SECCLASS_KERNEL_SERVICE,
3318                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3319                            NULL);
3320         if (ret == 0) {
3321                 tsec->sid = secid;
3322                 tsec->create_sid = 0;
3323                 tsec->keycreate_sid = 0;
3324                 tsec->sockcreate_sid = 0;
3325         }
3326         return ret;
3327 }
3328
3329 /*
3330  * set the file creation context in a security record to the same as the
3331  * objective context of the specified inode
3332  */
3333 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3334 {
3335         struct inode_security_struct *isec = inode->i_security;
3336         struct task_security_struct *tsec = new->security;
3337         u32 sid = current_sid();
3338         int ret;
3339
3340         ret = avc_has_perm(sid, isec->sid,
3341                            SECCLASS_KERNEL_SERVICE,
3342                            KERNEL_SERVICE__CREATE_FILES_AS,
3343                            NULL);
3344
3345         if (ret == 0)
3346                 tsec->create_sid = isec->sid;
3347         return 0;
3348 }
3349
3350 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3351 {
3352         /* Since setuid only affects the current process, and
3353            since the SELinux controls are not based on the Linux
3354            identity attributes, SELinux does not need to control
3355            this operation.  However, SELinux does control the use
3356            of the CAP_SETUID and CAP_SETGID capabilities using the
3357            capable hook. */
3358         return 0;
3359 }
3360
3361 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3362                                    int flags)
3363 {
3364         return secondary_ops->task_fix_setuid(new, old, flags);
3365 }
3366
3367 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3368 {
3369         /* See the comment for setuid above. */
3370         return 0;
3371 }
3372
3373 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3374 {
3375         return current_has_perm(p, PROCESS__SETPGID);
3376 }
3377
3378 static int selinux_task_getpgid(struct task_struct *p)
3379 {
3380         return current_has_perm(p, PROCESS__GETPGID);
3381 }
3382
3383 static int selinux_task_getsid(struct task_struct *p)
3384 {
3385         return current_has_perm(p, PROCESS__GETSESSION);
3386 }
3387
3388 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3389 {
3390         *secid = task_sid(p);
3391 }
3392
3393 static int selinux_task_setgroups(struct group_info *group_info)
3394 {
3395         /* See the comment for setuid above. */
3396         return 0;
3397 }
3398
3399 static int selinux_task_setnice(struct task_struct *p, int nice)
3400 {
3401         int rc;
3402
3403         rc = secondary_ops->task_setnice(p, nice);
3404         if (rc)
3405                 return rc;
3406
3407         return current_has_perm(p, PROCESS__SETSCHED);
3408 }
3409
3410 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3411 {
3412         int rc;
3413
3414         rc = secondary_ops->task_setioprio(p, ioprio);
3415         if (rc)
3416                 return rc;
3417
3418         return current_has_perm(p, PROCESS__SETSCHED);
3419 }
3420
3421 static int selinux_task_getioprio(struct task_struct *p)
3422 {
3423         return current_has_perm(p, PROCESS__GETSCHED);
3424 }
3425
3426 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3427 {
3428         struct rlimit *old_rlim = current->signal->rlim + resource;
3429         int rc;
3430
3431         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3432         if (rc)
3433                 return rc;
3434
3435         /* Control the ability to change the hard limit (whether
3436            lowering or raising it), so that the hard limit can
3437            later be used as a safe reset point for the soft limit
3438            upon context transitions.  See selinux_bprm_committing_creds. */
3439         if (old_rlim->rlim_max != new_rlim->rlim_max)
3440                 return current_has_perm(current, PROCESS__SETRLIMIT);
3441
3442         return 0;
3443 }
3444
3445 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3446 {
3447         int rc;
3448
3449         rc = secondary_ops->task_setscheduler(p, policy, lp);
3450         if (rc)
3451                 return rc;
3452
3453         return current_has_perm(p, PROCESS__SETSCHED);
3454 }
3455
3456 static int selinux_task_getscheduler(struct task_struct *p)
3457 {
3458         return current_has_perm(p, PROCESS__GETSCHED);
3459 }
3460
3461 static int selinux_task_movememory(struct task_struct *p)
3462 {
3463         return current_has_perm(p, PROCESS__SETSCHED);
3464 }
3465
3466 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3467                                 int sig, u32 secid)
3468 {
3469         u32 perm;
3470         int rc;
3471
3472         rc = secondary_ops->task_kill(p, info, sig, secid);
3473         if (rc)
3474                 return rc;
3475
3476         if (!sig)
3477                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3478         else
3479                 perm = signal_to_av(sig);
3480         if (secid)
3481                 rc = avc_has_perm(secid, task_sid(p),
3482                                   SECCLASS_PROCESS, perm, NULL);
3483         else
3484                 rc = current_has_perm(p, perm);
3485         return rc;
3486 }
3487
3488 static int selinux_task_prctl(int option,
3489                               unsigned long arg2,
3490                               unsigned long arg3,
3491                               unsigned long arg4,
3492                               unsigned long arg5)
3493 {
3494         /* The current prctl operations do not appear to require
3495            any SELinux controls since they merely observe or modify
3496            the state of the current process. */
3497         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3498 }
3499
3500 static int selinux_task_wait(struct task_struct *p)
3501 {
3502         return task_has_perm(p, current, PROCESS__SIGCHLD);
3503 }
3504
3505 static void selinux_task_to_inode(struct task_struct *p,
3506                                   struct inode *inode)
3507 {
3508         struct inode_security_struct *isec = inode->i_security;
3509         u32 sid = task_sid(p);
3510
3511         isec->sid = sid;
3512         isec->initialized = 1;
3513 }
3514
3515 /* Returns error only if unable to parse addresses */
3516 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3517                         struct avc_audit_data *ad, u8 *proto)
3518 {
3519         int offset, ihlen, ret = -EINVAL;
3520         struct iphdr _iph, *ih;
3521
3522         offset = skb_network_offset(skb);
3523         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3524         if (ih == NULL)
3525                 goto out;
3526
3527         ihlen = ih->ihl * 4;
3528         if (ihlen < sizeof(_iph))
3529                 goto out;
3530
3531         ad->u.net.v4info.saddr = ih->saddr;
3532         ad->u.net.v4info.daddr = ih->daddr;
3533         ret = 0;
3534
3535         if (proto)
3536                 *proto = ih->protocol;
3537
3538         switch (ih->protocol) {
3539         case IPPROTO_TCP: {
3540                 struct tcphdr _tcph, *th;
3541
3542                 if (ntohs(ih->frag_off) & IP_OFFSET)
3543                         break;
3544
3545                 offset += ihlen;
3546                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3547                 if (th == NULL)
3548                         break;
3549
3550                 ad->u.net.sport = th->source;
3551                 ad->u.net.dport = th->dest;
3552                 break;
3553         }
3554
3555         case IPPROTO_UDP: {
3556                 struct udphdr _udph, *uh;
3557
3558                 if (ntohs(ih->frag_off) & IP_OFFSET)
3559                         break;
3560
3561                 offset += ihlen;
3562                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3563                 if (uh == NULL)
3564                         break;
3565
3566                 ad->u.net.sport = uh->source;
3567                 ad->u.net.dport = uh->dest;
3568                 break;
3569         }
3570
3571         case IPPROTO_DCCP: {
3572                 struct dccp_hdr _dccph, *dh;
3573
3574                 if (ntohs(ih->frag_off) & IP_OFFSET)
3575                         break;
3576
3577                 offset += ihlen;
3578                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3579                 if (dh == NULL)
3580                         break;
3581
3582                 ad->u.net.sport = dh->dccph_sport;
3583                 ad->u.net.dport = dh->dccph_dport;
3584                 break;
3585         }
3586
3587         default:
3588                 break;
3589         }
3590 out:
3591         return ret;
3592 }
3593
3594 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3595
3596 /* Returns error only if unable to parse addresses */
3597 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3598                         struct avc_audit_data *ad, u8 *proto)
3599 {
3600         u8 nexthdr;
3601         int ret = -EINVAL, offset;
3602         struct ipv6hdr _ipv6h, *ip6;
3603
3604         offset = skb_network_offset(skb);
3605         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3606         if (ip6 == NULL)
3607                 goto out;
3608
3609         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3610         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3611         ret = 0;
3612
3613         nexthdr = ip6->nexthdr;
3614         offset += sizeof(_ipv6h);
3615         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3616         if (offset < 0)
3617                 goto out;
3618
3619         if (proto)
3620                 *proto = nexthdr;
3621
3622         switch (nexthdr) {
3623         case IPPROTO_TCP: {
3624                 struct tcphdr _tcph, *th;
3625
3626                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3627                 if (th == NULL)
3628                         break;
3629
3630                 ad->u.net.sport = th->source;
3631                 ad->u.net.dport = th->dest;
3632                 break;
3633         }
3634
3635         case IPPROTO_UDP: {
3636                 struct udphdr _udph, *uh;
3637
3638                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3639                 if (uh == NULL)
3640                         break;
3641
3642                 ad->u.net.sport = uh->source;
3643                 ad->u.net.dport = uh->dest;
3644                 break;
3645         }
3646
3647         case IPPROTO_DCCP: {
3648                 struct dccp_hdr _dccph, *dh;
3649
3650                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3651                 if (dh == NULL)
3652                         break;
3653
3654                 ad->u.net.sport = dh->dccph_sport;
3655                 ad->u.net.dport = dh->dccph_dport;
3656                 break;
3657         }
3658
3659         /* includes fragments */
3660         default:
3661                 break;
3662         }
3663 out:
3664         return ret;
3665 }
3666
3667 #endif /* IPV6 */
3668
3669 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3670                              char **_addrp, int src, u8 *proto)
3671 {
3672         char *addrp;
3673         int ret;
3674
3675         switch (ad->u.net.family) {
3676         case PF_INET:
3677                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3678                 if (ret)
3679                         goto parse_error;
3680                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3681                                        &ad->u.net.v4info.daddr);
3682                 goto okay;
3683
3684 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3685         case PF_INET6:
3686                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3687                 if (ret)
3688                         goto parse_error;
3689                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3690                                        &ad->u.net.v6info.daddr);
3691                 goto okay;
3692 #endif  /* IPV6 */
3693         default:
3694                 addrp = NULL;
3695                 goto okay;
3696         }
3697
3698 parse_error:
3699         printk(KERN_WARNING
3700                "SELinux: failure in selinux_parse_skb(),"
3701                " unable to parse packet\n");
3702         return ret;
3703
3704 okay:
3705         if (_addrp)
3706                 *_addrp = addrp;
3707         return 0;
3708 }
3709
3710 /**
3711  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3712  * @skb: the packet
3713  * @family: protocol family
3714  * @sid: the packet's peer label SID
3715  *
3716  * Description:
3717  * Check the various different forms of network peer labeling and determine
3718  * the peer label/SID for the packet; most of the magic actually occurs in
3719  * the security server function security_net_peersid_cmp().  The function
3720  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3721  * or -EACCES if @sid is invalid due to inconsistencies with the different
3722  * peer labels.
3723  *
3724  */
3725 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3726 {
3727         int err;
3728         u32 xfrm_sid;
3729         u32 nlbl_sid;
3730         u32 nlbl_type;
3731
3732         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3733         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3734
3735         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3736         if (unlikely(err)) {
3737                 printk(KERN_WARNING
3738                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3739                        " unable to determine packet's peer label\n");
3740                 return -EACCES;
3741         }
3742
3743         return 0;
3744 }
3745
3746 /* socket security operations */
3747 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3748                            u32 perms)
3749 {
3750         struct inode_security_struct *isec;
3751         struct avc_audit_data ad;
3752         u32 sid;
3753         int err = 0;
3754
3755         isec = SOCK_INODE(sock)->i_security;
3756
3757         if (isec->sid == SECINITSID_KERNEL)
3758                 goto out;
3759         sid = task_sid(task);
3760
3761         AVC_AUDIT_DATA_INIT(&ad, NET);
3762         ad.u.net.sk = sock->sk;
3763         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3764
3765 out:
3766         return err;
3767 }
3768
3769 static int selinux_socket_create(int family, int type,
3770                                  int protocol, int kern)
3771 {
3772         const struct cred *cred = current_cred();
3773         const struct task_security_struct *tsec = cred->security;
3774         u32 sid, newsid;
3775         u16 secclass;
3776         int err = 0;
3777
3778         if (kern)
3779                 goto out;
3780
3781         sid = tsec->sid;
3782         newsid = tsec->sockcreate_sid ?: sid;
3783
3784         secclass = socket_type_to_security_class(family, type, protocol);
3785         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3786
3787 out:
3788         return err;
3789 }
3790
3791 static int selinux_socket_post_create(struct socket *sock, int family,
3792                                       int type, int protocol, int kern)
3793 {
3794         const struct cred *cred = current_cred();
3795         const struct task_security_struct *tsec = cred->security;
3796         struct inode_security_struct *isec;
3797         struct sk_security_struct *sksec;
3798         u32 sid, newsid;
3799         int err = 0;
3800
3801         sid = tsec->sid;
3802         newsid = tsec->sockcreate_sid;
3803
3804         isec = SOCK_INODE(sock)->i_security;
3805
3806         if (kern)
3807                 isec->sid = SECINITSID_KERNEL;
3808         else if (newsid)
3809                 isec->sid = newsid;
3810         else
3811                 isec->sid = sid;
3812
3813         isec->sclass = socket_type_to_security_class(family, type, protocol);
3814         isec->initialized = 1;
3815
3816         if (sock->sk) {
3817                 sksec = sock->sk->sk_security;
3818                 sksec->sid = isec->sid;
3819                 sksec->sclass = isec->sclass;
3820                 err = selinux_netlbl_socket_post_create(sock);
3821         }
3822
3823         return err;
3824 }
3825
3826 /* Range of port numbers used to automatically bind.
3827    Need to determine whether we should perform a name_bind
3828    permission check between the socket and the port number. */
3829
3830 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3831 {
3832         u16 family;
3833         int err;
3834
3835         err = socket_has_perm(current, sock, SOCKET__BIND);
3836         if (err)
3837                 goto out;
3838
3839         /*
3840          * If PF_INET or PF_INET6, check name_bind permission for the port.
3841          * Multiple address binding for SCTP is not supported yet: we just
3842          * check the first address now.
3843          */
3844         family = sock->sk->sk_family;
3845         if (family == PF_INET || family == PF_INET6) {
3846                 char *addrp;
3847                 struct inode_security_struct *isec;
3848                 struct avc_audit_data ad;
3849                 struct sockaddr_in *addr4 = NULL;
3850                 struct sockaddr_in6 *addr6 = NULL;
3851                 unsigned short snum;
3852                 struct sock *sk = sock->sk;
3853                 u32 sid, node_perm;
3854
3855                 isec = SOCK_INODE(sock)->i_security;
3856
3857                 if (family == PF_INET) {
3858                         addr4 = (struct sockaddr_in *)address;
3859                         snum = ntohs(addr4->sin_port);
3860                         addrp = (char *)&addr4->sin_addr.s_addr;
3861                 } else {
3862                         addr6 = (struct sockaddr_in6 *)address;
3863                         snum = ntohs(addr6->sin6_port);
3864                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3865                 }
3866
3867                 if (snum) {
3868                         int low, high;
3869
3870                         inet_get_local_port_range(&low, &high);
3871
3872                         if (snum < max(PROT_SOCK, low) || snum > high) {
3873                                 err = sel_netport_sid(sk->sk_protocol,
3874                                                       snum, &sid);
3875                                 if (err)
3876                                         goto out;
3877                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3878                                 ad.u.net.sport = htons(snum);
3879                                 ad.u.net.family = family;
3880                                 err = avc_has_perm(isec->sid, sid,
3881                                                    isec->sclass,
3882                                                    SOCKET__NAME_BIND, &ad);
3883                                 if (err)
3884                                         goto out;
3885                         }
3886                 }
3887
3888                 switch (isec->sclass) {
3889                 case SECCLASS_TCP_SOCKET:
3890                         node_perm = TCP_SOCKET__NODE_BIND;
3891                         break;
3892
3893                 case SECCLASS_UDP_SOCKET:
3894                         node_perm = UDP_SOCKET__NODE_BIND;
3895                         break;
3896
3897                 case SECCLASS_DCCP_SOCKET:
3898                         node_perm = DCCP_SOCKET__NODE_BIND;
3899                         break;
3900
3901                 default:
3902                         node_perm = RAWIP_SOCKET__NODE_BIND;
3903                         break;
3904                 }
3905
3906                 err = sel_netnode_sid(addrp, family, &sid);
3907                 if (err)
3908                         goto out;
3909
3910                 AVC_AUDIT_DATA_INIT(&ad, NET);
3911                 ad.u.net.sport = htons(snum);
3912                 ad.u.net.family = family;
3913
3914                 if (family == PF_INET)
3915                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3916                 else
3917                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3918
3919                 err = avc_has_perm(isec->sid, sid,
3920                                    isec->sclass, node_perm, &ad);
3921                 if (err)
3922                         goto out;
3923         }
3924 out:
3925         return err;
3926 }
3927
3928 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3929 {
3930         struct sock *sk = sock->sk;
3931         struct inode_security_struct *isec;
3932         int err;
3933
3934         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3935         if (err)
3936                 return err;
3937
3938         /*
3939          * If a TCP or DCCP socket, check name_connect permission for the port.
3940          */
3941         isec = SOCK_INODE(sock)->i_security;
3942         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3943             isec->sclass == SECCLASS_DCCP_SOCKET) {
3944                 struct avc_audit_data ad;
3945                 struct sockaddr_in *addr4 = NULL;
3946                 struct sockaddr_in6 *addr6 = NULL;
3947                 unsigned short snum;
3948                 u32 sid, perm;
3949
3950                 if (sk->sk_family == PF_INET) {
3951                         addr4 = (struct sockaddr_in *)address;
3952                         if (addrlen < sizeof(struct sockaddr_in))
3953                                 return -EINVAL;
3954                         snum = ntohs(addr4->sin_port);
3955                 } else {
3956                         addr6 = (struct sockaddr_in6 *)address;
3957                         if (addrlen < SIN6_LEN_RFC2133)
3958                                 return -EINVAL;
3959                         snum = ntohs(addr6->sin6_port);
3960                 }
3961
3962                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3963                 if (err)
3964                         goto out;
3965
3966                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3967                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3968
3969                 AVC_AUDIT_DATA_INIT(&ad, NET);
3970                 ad.u.net.dport = htons(snum);
3971                 ad.u.net.family = sk->sk_family;
3972                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3973                 if (err)
3974                         goto out;
3975         }
3976
3977         err = selinux_netlbl_socket_connect(sk, address);
3978
3979 out:
3980         return err;
3981 }
3982
3983 static int selinux_socket_listen(struct socket *sock, int backlog)
3984 {
3985         return socket_has_perm(current, sock, SOCKET__LISTEN);
3986 }
3987
3988 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3989 {
3990         int err;
3991         struct inode_security_struct *isec;
3992         struct inode_security_struct *newisec;
3993
3994         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3995         if (err)
3996                 return err;
3997
3998         newisec = SOCK_INODE(newsock)->i_security;
3999
4000         isec = SOCK_INODE(sock)->i_security;
4001         newisec->sclass = isec->sclass;
4002         newisec->sid = isec->sid;
4003         newisec->initialized = 1;
4004
4005         return 0;
4006 }
4007
4008 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4009                                   int size)
4010 {
4011         int rc;
4012
4013         rc = socket_has_perm(current, sock, SOCKET__WRITE);
4014         if (rc)
4015                 return rc;
4016
4017         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
4018 }
4019
4020 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4021                                   int size, int flags)
4022 {
4023         return socket_has_perm(current, sock, SOCKET__READ);
4024 }
4025
4026 static int selinux_socket_getsockname(struct socket *sock)
4027 {
4028         return socket_has_perm(current, sock, SOCKET__GETATTR);
4029 }
4030
4031 static int selinux_socket_getpeername(struct socket *sock)
4032 {
4033         return socket_has_perm(current, sock, SOCKET__GETATTR);
4034 }
4035
4036 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4037 {
4038         int err;
4039
4040         err = socket_has_perm(current, sock, SOCKET__SETOPT);
4041         if (err)
4042                 return err;
4043
4044         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4045 }
4046
4047 static int selinux_socket_getsockopt(struct socket *sock, int level,
4048                                      int optname)
4049 {
4050         return socket_has_perm(current, sock, SOCKET__GETOPT);
4051 }
4052
4053 static int selinux_socket_shutdown(struct socket *sock, int how)
4054 {
4055         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4056 }
4057
4058 static int selinux_socket_unix_stream_connect(struct socket *sock,
4059                                               struct socket *other,
4060                                               struct sock *newsk)
4061 {
4062         struct sk_security_struct *ssec;
4063         struct inode_security_struct *isec;
4064         struct inode_security_struct *other_isec;
4065         struct avc_audit_data ad;
4066         int err;
4067
4068         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4069         if (err)
4070                 return err;
4071
4072         isec = SOCK_INODE(sock)->i_security;
4073         other_isec = SOCK_INODE(other)->i_security;
4074
4075         AVC_AUDIT_DATA_INIT(&ad, NET);
4076         ad.u.net.sk = other->sk;
4077
4078         err = avc_has_perm(isec->sid, other_isec->sid,
4079                            isec->sclass,
4080                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4081         if (err)
4082                 return err;
4083
4084         /* connecting socket */
4085         ssec = sock->sk->sk_security;
4086         ssec->peer_sid = other_isec->sid;
4087
4088         /* server child socket */
4089         ssec = newsk->sk_security;
4090         ssec->peer_sid = isec->sid;
4091         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4092
4093         return err;
4094 }
4095
4096 static int selinux_socket_unix_may_send(struct socket *sock,
4097                                         struct socket *other)
4098 {
4099         struct inode_security_struct *isec;
4100         struct inode_security_struct *other_isec;
4101         struct avc_audit_data ad;
4102         int err;
4103
4104         isec = SOCK_INODE(sock)->i_security;
4105         other_isec = SOCK_INODE(other)->i_security;
4106
4107         AVC_AUDIT_DATA_INIT(&ad, NET);
4108         ad.u.net.sk = other->sk;
4109
4110         err = avc_has_perm(isec->sid, other_isec->sid,
4111                            isec->sclass, SOCKET__SENDTO, &ad);
4112         if (err)
4113                 return err;
4114
4115         return 0;
4116 }
4117
4118 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4119                                     u32 peer_sid,
4120                                     struct avc_audit_data *ad)
4121 {
4122         int err;
4123         u32 if_sid;
4124         u32 node_sid;
4125
4126         err = sel_netif_sid(ifindex, &if_sid);
4127         if (err)
4128                 return err;
4129         err = avc_has_perm(peer_sid, if_sid,
4130                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4131         if (err)
4132                 return err;
4133
4134         err = sel_netnode_sid(addrp, family, &node_sid);
4135         if (err)
4136                 return err;
4137         return avc_has_perm(peer_sid, node_sid,
4138                             SECCLASS_NODE, NODE__RECVFROM, ad);
4139 }
4140
4141 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4142                                                 struct sk_buff *skb,
4143                                                 struct avc_audit_data *ad,
4144                                                 u16 family,
4145                                                 char *addrp)
4146 {
4147         int err;
4148         struct sk_security_struct *sksec = sk->sk_security;
4149         u16 sk_class;
4150         u32 netif_perm, node_perm, recv_perm;
4151         u32 port_sid, node_sid, if_sid, sk_sid;
4152
4153         sk_sid = sksec->sid;
4154         sk_class = sksec->sclass;
4155
4156         switch (sk_class) {
4157         case SECCLASS_UDP_SOCKET:
4158                 netif_perm = NETIF__UDP_RECV;
4159                 node_perm = NODE__UDP_RECV;
4160                 recv_perm = UDP_SOCKET__RECV_MSG;
4161                 break;
4162         case SECCLASS_TCP_SOCKET:
4163                 netif_perm = NETIF__TCP_RECV;
4164                 node_perm = NODE__TCP_RECV;
4165                 recv_perm = TCP_SOCKET__RECV_MSG;
4166                 break;
4167         case SECCLASS_DCCP_SOCKET:
4168                 netif_perm = NETIF__DCCP_RECV;
4169                 node_perm = NODE__DCCP_RECV;
4170                 recv_perm = DCCP_SOCKET__RECV_MSG;
4171                 break;
4172         default:
4173                 netif_perm = NETIF__RAWIP_RECV;
4174                 node_perm = NODE__RAWIP_RECV;
4175                 recv_perm = 0;
4176                 break;
4177         }
4178
4179         err = sel_netif_sid(skb->iif, &if_sid);
4180         if (err)
4181                 return err;
4182         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4183         if (err)
4184                 return err;
4185
4186         err = sel_netnode_sid(addrp, family, &node_sid);
4187         if (err)
4188                 return err;
4189         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4190         if (err)
4191                 return err;
4192
4193         if (!recv_perm)
4194                 return 0;
4195         err = sel_netport_sid(sk->sk_protocol,
4196                               ntohs(ad->u.net.sport), &port_sid);
4197         if (unlikely(err)) {
4198                 printk(KERN_WARNING
4199                        "SELinux: failure in"
4200                        " selinux_sock_rcv_skb_iptables_compat(),"
4201                        " network port label not found\n");
4202                 return err;
4203         }
4204         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4205 }
4206
4207 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4208                                        u16 family)
4209 {
4210         int err = 0;
4211         struct sk_security_struct *sksec = sk->sk_security;
4212         u32 peer_sid;
4213         u32 sk_sid = sksec->sid;
4214         struct avc_audit_data ad;
4215         char *addrp;
4216
4217         AVC_AUDIT_DATA_INIT(&ad, NET);
4218         ad.u.net.netif = skb->iif;
4219         ad.u.net.family = family;
4220         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4221         if (err)
4222                 return err;
4223
4224         if (selinux_compat_net)
4225                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4226                                                            family, addrp);
4227         else if (selinux_secmark_enabled())
4228                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4229                                    PACKET__RECV, &ad);
4230         if (err)
4231                 return err;
4232
4233         if (selinux_policycap_netpeer) {
4234                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4235                 if (err)
4236                         return err;
4237                 err = avc_has_perm(sk_sid, peer_sid,
4238                                    SECCLASS_PEER, PEER__RECV, &ad);
4239                 if (err)
4240                         selinux_netlbl_err(skb, err, 0);
4241         } else {
4242                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4243                 if (err)
4244                         return err;
4245                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4246         }
4247
4248         return err;
4249 }
4250
4251 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4252 {
4253         int err;
4254         struct sk_security_struct *sksec = sk->sk_security;
4255         u16 family = sk->sk_family;
4256         u32 sk_sid = sksec->sid;
4257         struct avc_audit_data ad;
4258         char *addrp;
4259         u8 secmark_active;
4260         u8 peerlbl_active;
4261
4262         if (family != PF_INET && family != PF_INET6)
4263                 return 0;
4264
4265         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4266         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4267                 family = PF_INET;
4268
4269         /* If any sort of compatibility mode is enabled then handoff processing
4270          * to the selinux_sock_rcv_skb_compat() function to deal with the
4271          * special handling.  We do this in an attempt to keep this function
4272          * as fast and as clean as possible. */
4273         if (selinux_compat_net || !selinux_policycap_netpeer)
4274                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4275
4276         secmark_active = selinux_secmark_enabled();
4277         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4278         if (!secmark_active && !peerlbl_active)
4279                 return 0;
4280
4281         AVC_AUDIT_DATA_INIT(&ad, NET);
4282         ad.u.net.netif = skb->iif;
4283         ad.u.net.family = family;
4284         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4285         if (err)
4286                 return err;
4287
4288         if (peerlbl_active) {
4289                 u32 peer_sid;
4290
4291                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4292                 if (err)
4293                         return err;
4294                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4295                                                peer_sid, &ad);
4296                 if (err) {
4297                         selinux_netlbl_err(skb, err, 0);
4298                         return err;
4299                 }
4300                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4301                                    PEER__RECV, &ad);
4302                 if (err)
4303                         selinux_netlbl_err(skb, err, 0);
4304         }
4305
4306         if (secmark_active) {
4307                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4308                                    PACKET__RECV, &ad);
4309                 if (err)
4310                         return err;
4311         }
4312
4313         return err;
4314 }
4315
4316 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4317                                             int __user *optlen, unsigned len)
4318 {
4319         int err = 0;
4320         char *scontext;
4321         u32 scontext_len;
4322         struct sk_security_struct *ssec;
4323         struct inode_security_struct *isec;
4324         u32 peer_sid = SECSID_NULL;
4325
4326         isec = SOCK_INODE(sock)->i_security;
4327
4328         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4329             isec->sclass == SECCLASS_TCP_SOCKET) {
4330                 ssec = sock->sk->sk_security;
4331                 peer_sid = ssec->peer_sid;
4332         }
4333         if (peer_sid == SECSID_NULL) {
4334                 err = -ENOPROTOOPT;
4335                 goto out;
4336         }
4337
4338         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4339
4340         if (err)
4341                 goto out;
4342
4343         if (scontext_len > len) {
4344                 err = -ERANGE;
4345                 goto out_len;
4346         }
4347
4348         if (copy_to_user(optval, scontext, scontext_len))
4349                 err = -EFAULT;
4350
4351 out_len:
4352         if (put_user(scontext_len, optlen))
4353                 err = -EFAULT;
4354
4355         kfree(scontext);
4356 out:
4357         return err;
4358 }
4359
4360 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4361 {
4362         u32 peer_secid = SECSID_NULL;
4363         u16 family;
4364
4365         if (skb && skb->protocol == htons(ETH_P_IP))
4366                 family = PF_INET;
4367         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4368                 family = PF_INET6;
4369         else if (sock)
4370                 family = sock->sk->sk_family;
4371         else
4372                 goto out;
4373
4374         if (sock && family == PF_UNIX)
4375                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4376         else if (skb)
4377                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4378
4379 out:
4380         *secid = peer_secid;
4381         if (peer_secid == SECSID_NULL)
4382                 return -EINVAL;
4383         return 0;
4384 }
4385
4386 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4387 {
4388         return sk_alloc_security(sk, family, priority);
4389 }
4390
4391 static void selinux_sk_free_security(struct sock *sk)
4392 {
4393         sk_free_security(sk);
4394 }
4395
4396 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4397 {
4398         struct sk_security_struct *ssec = sk->sk_security;
4399         struct sk_security_struct *newssec = newsk->sk_security;
4400
4401         newssec->sid = ssec->sid;
4402         newssec->peer_sid = ssec->peer_sid;
4403         newssec->sclass = ssec->sclass;
4404
4405         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4406 }
4407
4408 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4409 {
4410         if (!sk)
4411                 *secid = SECINITSID_ANY_SOCKET;
4412         else {
4413                 struct sk_security_struct *sksec = sk->sk_security;
4414
4415                 *secid = sksec->sid;
4416         }
4417 }
4418
4419 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4420 {
4421         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4422         struct sk_security_struct *sksec = sk->sk_security;
4423
4424         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4425             sk->sk_family == PF_UNIX)
4426                 isec->sid = sksec->sid;
4427         sksec->sclass = isec->sclass;
4428 }
4429
4430 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4431                                      struct request_sock *req)
4432 {
4433         struct sk_security_struct *sksec = sk->sk_security;
4434         int err;
4435         u16 family = sk->sk_family;
4436         u32 newsid;
4437         u32 peersid;
4438
4439         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4440         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4441                 family = PF_INET;
4442
4443         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4444         if (err)
4445                 return err;
4446         if (peersid == SECSID_NULL) {
4447                 req->secid = sksec->sid;
4448                 req->peer_secid = SECSID_NULL;
4449                 return 0;
4450         }
4451
4452         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4453         if (err)
4454                 return err;
4455
4456         req->secid = newsid;
4457         req->peer_secid = peersid;
4458         return 0;
4459 }
4460
4461 static void selinux_inet_csk_clone(struct sock *newsk,
4462                                    const struct request_sock *req)
4463 {
4464         struct sk_security_struct *newsksec = newsk->sk_security;
4465
4466         newsksec->sid = req->secid;
4467         newsksec->peer_sid = req->peer_secid;
4468         /* NOTE: Ideally, we should also get the isec->sid for the
4469            new socket in sync, but we don't have the isec available yet.
4470            So we will wait until sock_graft to do it, by which
4471            time it will have been created and available. */
4472
4473         /* We don't need to take any sort of lock here as we are the only
4474          * thread with access to newsksec */
4475         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4476 }
4477
4478 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4479 {
4480         u16 family = sk->sk_family;
4481         struct sk_security_struct *sksec = sk->sk_security;
4482
4483         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4484         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4485                 family = PF_INET;
4486
4487         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4488
4489         selinux_netlbl_inet_conn_established(sk, family);
4490 }
4491
4492 static void selinux_req_classify_flow(const struct request_sock *req,
4493                                       struct flowi *fl)
4494 {
4495         fl->secid = req->secid;
4496 }
4497
4498 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4499 {
4500         int err = 0;
4501         u32 perm;
4502         struct nlmsghdr *nlh;
4503         struct socket *sock = sk->sk_socket;
4504         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4505
4506         if (skb->len < NLMSG_SPACE(0)) {
4507                 err = -EINVAL;
4508                 goto out;
4509         }
4510         nlh = nlmsg_hdr(skb);
4511
4512         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4513         if (err) {
4514                 if (err == -EINVAL) {
4515                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4516                                   "SELinux:  unrecognized netlink message"
4517                                   " type=%hu for sclass=%hu\n",
4518                                   nlh->nlmsg_type, isec->sclass);
4519                         if (!selinux_enforcing || security_get_allow_unknown())
4520                                 err = 0;
4521                 }
4522
4523                 /* Ignore */
4524                 if (err == -ENOENT)
4525                         err = 0;
4526                 goto out;
4527         }
4528
4529         err = socket_has_perm(current, sock, perm);
4530 out:
4531         return err;
4532 }
4533
4534 #ifdef CONFIG_NETFILTER
4535
4536 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4537                                        u16 family)
4538 {
4539         int err;
4540         char *addrp;
4541         u32 peer_sid;
4542         struct avc_audit_data ad;
4543         u8 secmark_active;
4544         u8 netlbl_active;
4545         u8 peerlbl_active;
4546
4547         if (!selinux_policycap_netpeer)
4548                 return NF_ACCEPT;
4549
4550         secmark_active = selinux_secmark_enabled();
4551         netlbl_active = netlbl_enabled();
4552         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4553         if (!secmark_active && !peerlbl_active)
4554                 return NF_ACCEPT;
4555
4556         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4557                 return NF_DROP;
4558
4559         AVC_AUDIT_DATA_INIT(&ad, NET);
4560         ad.u.net.netif = ifindex;
4561         ad.u.net.family = family;
4562         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4563                 return NF_DROP;
4564
4565         if (peerlbl_active) {
4566                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4567                                                peer_sid, &ad);
4568                 if (err) {
4569                         selinux_netlbl_err(skb, err, 1);
4570                         return NF_DROP;
4571                 }
4572         }
4573
4574         if (secmark_active)
4575                 if (avc_has_perm(peer_sid, skb->secmark,
4576                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4577                         return NF_DROP;
4578
4579         if (netlbl_active)
4580                 /* we do this in the FORWARD path and not the POST_ROUTING
4581                  * path because we want to make sure we apply the necessary
4582                  * labeling before IPsec is applied so we can leverage AH
4583                  * protection */
4584                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4585                         return NF_DROP;
4586
4587         return NF_ACCEPT;
4588 }
4589
4590 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4591                                          struct sk_buff *skb,
4592                                          const struct net_device *in,
4593                                          const struct net_device *out,
4594                                          int (*okfn)(struct sk_buff *))
4595 {
4596         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4597 }
4598
4599 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4600 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4601                                          struct sk_buff *skb,
4602                                          const struct net_device *in,
4603                                          const struct net_device *out,
4604                                          int (*okfn)(struct sk_buff *))
4605 {
4606         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4607 }
4608 #endif  /* IPV6 */
4609
4610 static unsigned int selinux_ip_output(struct sk_buff *skb,
4611                                       u16 family)
4612 {
4613         u32 sid;
4614
4615         if (!netlbl_enabled())
4616                 return NF_ACCEPT;
4617
4618         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4619          * because we want to make sure we apply the necessary labeling
4620          * before IPsec is applied so we can leverage AH protection */
4621         if (skb->sk) {
4622                 struct sk_security_struct *sksec = skb->sk->sk_security;
4623                 sid = sksec->sid;
4624         } else
4625                 sid = SECINITSID_KERNEL;
4626         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4627                 return NF_DROP;
4628
4629         return NF_ACCEPT;
4630 }
4631
4632 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4633                                         struct sk_buff *skb,
4634                                         const struct net_device *in,
4635                                         const struct net_device *out,
4636                                         int (*okfn)(struct sk_buff *))
4637 {
4638         return selinux_ip_output(skb, PF_INET);
4639 }
4640
4641 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4642                                                 int ifindex,
4643                                                 struct avc_audit_data *ad,
4644                                                 u16 family, char *addrp)
4645 {
4646         int err;
4647         struct sk_security_struct *sksec = sk->sk_security;
4648         u16 sk_class;
4649         u32 netif_perm, node_perm, send_perm;
4650         u32 port_sid, node_sid, if_sid, sk_sid;
4651
4652         sk_sid = sksec->sid;
4653         sk_class = sksec->sclass;
4654
4655         switch (sk_class) {
4656         case SECCLASS_UDP_SOCKET:
4657                 netif_perm = NETIF__UDP_SEND;
4658                 node_perm = NODE__UDP_SEND;
4659                 send_perm = UDP_SOCKET__SEND_MSG;
4660                 break;
4661         case SECCLASS_TCP_SOCKET:
4662                 netif_perm = NETIF__TCP_SEND;
4663                 node_perm = NODE__TCP_SEND;
4664                 send_perm = TCP_SOCKET__SEND_MSG;
4665                 break;
4666         case SECCLASS_DCCP_SOCKET:
4667                 netif_perm = NETIF__DCCP_SEND;
4668                 node_perm = NODE__DCCP_SEND;
4669                 send_perm = DCCP_SOCKET__SEND_MSG;
4670                 break;
4671         default:
4672                 netif_perm = NETIF__RAWIP_SEND;
4673                 node_perm = NODE__RAWIP_SEND;
4674                 send_perm = 0;
4675                 break;
4676         }
4677
4678         err = sel_netif_sid(ifindex, &if_sid);
4679         if (err)
4680                 return err;
4681         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4682                 return err;
4683
4684         err = sel_netnode_sid(addrp, family, &node_sid);
4685         if (err)
4686                 return err;
4687         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4688         if (err)
4689                 return err;
4690
4691         if (send_perm != 0)
4692                 return 0;
4693
4694         err = sel_netport_sid(sk->sk_protocol,
4695                               ntohs(ad->u.net.dport), &port_sid);
4696         if (unlikely(err)) {
4697                 printk(KERN_WARNING
4698                        "SELinux: failure in"
4699                        " selinux_ip_postroute_iptables_compat(),"
4700                        " network port label not found\n");
4701                 return err;
4702         }
4703         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4704 }
4705
4706 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4707                                                 int ifindex,
4708                                                 u16 family)
4709 {
4710         struct sock *sk = skb->sk;
4711         struct sk_security_struct *sksec;
4712         struct avc_audit_data ad;
4713         char *addrp;
4714         u8 proto;
4715
4716         if (sk == NULL)
4717                 return NF_ACCEPT;
4718         sksec = sk->sk_security;
4719
4720         AVC_AUDIT_DATA_INIT(&ad, NET);
4721         ad.u.net.netif = ifindex;
4722         ad.u.net.family = family;
4723         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4724                 return NF_DROP;
4725
4726         if (selinux_compat_net) {
4727                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4728                                                          &ad, family, addrp))
4729                         return NF_DROP;
4730         } else if (selinux_secmark_enabled()) {
4731                 if (avc_has_perm(sksec->sid, skb->secmark,
4732                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4733                         return NF_DROP;
4734         }
4735
4736         if (selinux_policycap_netpeer)
4737                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4738                         return NF_DROP;
4739
4740         return NF_ACCEPT;
4741 }
4742
4743 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4744                                          u16 family)
4745 {
4746         u32 secmark_perm;
4747         u32 peer_sid;
4748         struct sock *sk;
4749         struct avc_audit_data ad;
4750         char *addrp;
4751         u8 secmark_active;
4752         u8 peerlbl_active;
4753
4754         /* If any sort of compatibility mode is enabled then handoff processing
4755          * to the selinux_ip_postroute_compat() function to deal with the
4756          * special handling.  We do this in an attempt to keep this function
4757          * as fast and as clean as possible. */
4758         if (selinux_compat_net || !selinux_policycap_netpeer)
4759                 return selinux_ip_postroute_compat(skb, ifindex, family);
4760 #ifdef CONFIG_XFRM
4761         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4762          * packet transformation so allow the packet to pass without any checks
4763          * since we'll have another chance to perform access control checks
4764          * when the packet is on it's final way out.
4765          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4766          *       is NULL, in this case go ahead and apply access control. */
4767         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4768                 return NF_ACCEPT;
4769 #endif
4770         secmark_active = selinux_secmark_enabled();
4771         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4772         if (!secmark_active && !peerlbl_active)
4773                 return NF_ACCEPT;
4774
4775         /* if the packet is being forwarded then get the peer label from the
4776          * packet itself; otherwise check to see if it is from a local
4777          * application or the kernel, if from an application get the peer label
4778          * from the sending socket, otherwise use the kernel's sid */
4779         sk = skb->sk;
4780         if (sk == NULL) {
4781                 switch (family) {
4782                 case PF_INET:
4783                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4784                                 secmark_perm = PACKET__FORWARD_OUT;
4785                         else
4786                                 secmark_perm = PACKET__SEND;
4787                         break;
4788                 case PF_INET6:
4789                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4790                                 secmark_perm = PACKET__FORWARD_OUT;
4791                         else
4792                                 secmark_perm = PACKET__SEND;
4793                         break;
4794                 default:
4795                         return NF_DROP;
4796                 }
4797                 if (secmark_perm == PACKET__FORWARD_OUT) {
4798                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4799                                 return NF_DROP;
4800                 } else
4801                         peer_sid = SECINITSID_KERNEL;
4802         } else {
4803                 struct sk_security_struct *sksec = sk->sk_security;
4804                 peer_sid = sksec->sid;
4805                 secmark_perm = PACKET__SEND;
4806         }
4807
4808         AVC_AUDIT_DATA_INIT(&ad, NET);
4809         ad.u.net.netif = ifindex;
4810         ad.u.net.family = family;
4811         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4812                 return NF_DROP;
4813
4814         if (secmark_active)
4815                 if (avc_has_perm(peer_sid, skb->secmark,
4816                                  SECCLASS_PACKET, secmark_perm, &ad))
4817                         return NF_DROP;
4818
4819         if (peerlbl_active) {
4820                 u32 if_sid;
4821                 u32 node_sid;
4822
4823                 if (sel_netif_sid(ifindex, &if_sid))
4824                         return NF_DROP;
4825                 if (avc_has_perm(peer_sid, if_sid,
4826                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4827                         return NF_DROP;
4828
4829                 if (sel_netnode_sid(addrp, family, &node_sid))
4830                         return NF_DROP;
4831                 if (avc_has_perm(peer_sid, node_sid,
4832                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4833                         return NF_DROP;
4834         }
4835
4836         return NF_ACCEPT;
4837 }
4838
4839 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4840                                            struct sk_buff *skb,
4841                                            const struct net_device *in,
4842                                            const struct net_device *out,
4843                                            int (*okfn)(struct sk_buff *))
4844 {
4845         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4846 }
4847
4848 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4849 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4850                                            struct sk_buff *skb,
4851                                            const struct net_device *in,
4852                                            const struct net_device *out,
4853                                            int (*okfn)(struct sk_buff *))
4854 {
4855         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4856 }
4857 #endif  /* IPV6 */
4858
4859 #endif  /* CONFIG_NETFILTER */
4860
4861 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4862 {
4863         int err;
4864
4865         err = secondary_ops->netlink_send(sk, skb);
4866         if (err)
4867                 return err;
4868
4869         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4870                 err = selinux_nlmsg_perm(sk, skb);
4871
4872         return err;
4873 }
4874
4875 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4876 {
4877         int err;
4878         struct avc_audit_data ad;
4879
4880         err = secondary_ops->netlink_recv(skb, capability);
4881         if (err)
4882                 return err;
4883
4884         AVC_AUDIT_DATA_INIT(&ad, CAP);
4885         ad.u.cap = capability;
4886
4887         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4888                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4889 }
4890
4891 static int ipc_alloc_security(struct task_struct *task,
4892                               struct kern_ipc_perm *perm,
4893                               u16 sclass)
4894 {
4895         struct ipc_security_struct *isec;
4896         u32 sid;
4897
4898         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4899         if (!isec)
4900                 return -ENOMEM;
4901
4902         sid = task_sid(task);
4903         isec->sclass = sclass;
4904         isec->sid = sid;
4905         perm->security = isec;
4906
4907         return 0;
4908 }
4909
4910 static void ipc_free_security(struct kern_ipc_perm *perm)
4911 {
4912         struct ipc_security_struct *isec = perm->security;
4913         perm->security = NULL;
4914         kfree(isec);
4915 }
4916
4917 static int msg_msg_alloc_security(struct msg_msg *msg)
4918 {
4919         struct msg_security_struct *msec;
4920
4921         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4922         if (!msec)
4923                 return -ENOMEM;
4924
4925         msec->sid = SECINITSID_UNLABELED;
4926         msg->security = msec;
4927
4928         return 0;
4929 }
4930
4931 static void msg_msg_free_security(struct msg_msg *msg)
4932 {
4933         struct msg_security_struct *msec = msg->security;
4934
4935         msg->security = NULL;
4936         kfree(msec);
4937 }
4938
4939 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4940                         u32 perms)
4941 {
4942         struct ipc_security_struct *isec;
4943         struct avc_audit_data ad;
4944         u32 sid = current_sid();
4945
4946         isec = ipc_perms->security;
4947
4948         AVC_AUDIT_DATA_INIT(&ad, IPC);
4949         ad.u.ipc_id = ipc_perms->key;
4950
4951         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4952 }
4953
4954 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4955 {
4956         return msg_msg_alloc_security(msg);
4957 }
4958
4959 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4960 {
4961         msg_msg_free_security(msg);
4962 }
4963
4964 /* message queue security operations */
4965 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4966 {
4967         struct ipc_security_struct *isec;
4968         struct avc_audit_data ad;
4969         u32 sid = current_sid();
4970         int rc;
4971
4972         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4973         if (rc)
4974                 return rc;
4975
4976         isec = msq->q_perm.security;
4977
4978         AVC_AUDIT_DATA_INIT(&ad, IPC);
4979         ad.u.ipc_id = msq->q_perm.key;
4980
4981         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4982                           MSGQ__CREATE, &ad);
4983         if (rc) {
4984                 ipc_free_security(&msq->q_perm);
4985                 return rc;
4986         }
4987         return 0;
4988 }
4989
4990 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4991 {
4992         ipc_free_security(&msq->q_perm);
4993 }
4994
4995 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4996 {
4997         struct ipc_security_struct *isec;
4998         struct avc_audit_data ad;
4999         u32 sid = current_sid();
5000
5001         isec = msq->q_perm.security;
5002
5003         AVC_AUDIT_DATA_INIT(&ad, IPC);
5004         ad.u.ipc_id = msq->q_perm.key;
5005
5006         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5007                             MSGQ__ASSOCIATE, &ad);
5008 }
5009
5010 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5011 {
5012         int err;
5013         int perms;
5014
5015         switch (cmd) {
5016         case IPC_INFO:
5017         case MSG_INFO:
5018                 /* No specific object, just general system-wide information. */
5019                 return task_has_system(current, SYSTEM__IPC_INFO);
5020         case IPC_STAT:
5021         case MSG_STAT:
5022                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5023                 break;
5024         case IPC_SET:
5025                 perms = MSGQ__SETATTR;
5026                 break;
5027         case IPC_RMID:
5028                 perms = MSGQ__DESTROY;
5029                 break;
5030         default:
5031                 return 0;
5032         }
5033
5034         err = ipc_has_perm(&msq->q_perm, perms);
5035         return err;
5036 }
5037
5038 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5039 {
5040         struct ipc_security_struct *isec;
5041         struct msg_security_struct *msec;
5042         struct avc_audit_data ad;
5043         u32 sid = current_sid();
5044         int rc;
5045
5046         isec = msq->q_perm.security;
5047         msec = msg->security;
5048
5049         /*
5050          * First time through, need to assign label to the message
5051          */
5052         if (msec->sid == SECINITSID_UNLABELED) {
5053                 /*
5054                  * Compute new sid based on current process and
5055                  * message queue this message will be stored in
5056                  */
5057                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5058                                              &msec->sid);
5059                 if (rc)
5060                         return rc;
5061         }
5062
5063         AVC_AUDIT_DATA_INIT(&ad, IPC);
5064         ad.u.ipc_id = msq->q_perm.key;
5065
5066         /* Can this process write to the queue? */
5067         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5068                           MSGQ__WRITE, &ad);
5069         if (!rc)
5070                 /* Can this process send the message */
5071                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5072                                   MSG__SEND, &ad);
5073         if (!rc)
5074                 /* Can the message be put in the queue? */
5075                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5076                                   MSGQ__ENQUEUE, &ad);
5077
5078         return rc;
5079 }
5080
5081 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5082                                     struct task_struct *target,
5083                                     long type, int mode)
5084 {
5085         struct ipc_security_struct *isec;
5086         struct msg_security_struct *msec;
5087         struct avc_audit_data ad;
5088         u32 sid = task_sid(target);
5089         int rc;
5090
5091         isec = msq->q_perm.security;
5092         msec = msg->security;
5093
5094         AVC_AUDIT_DATA_INIT(&ad, IPC);
5095         ad.u.ipc_id = msq->q_perm.key;
5096
5097         rc = avc_has_perm(sid, isec->sid,
5098                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5099         if (!rc)
5100                 rc = avc_has_perm(sid, msec->sid,
5101                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5102         return rc;
5103 }
5104
5105 /* Shared Memory security operations */
5106 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5107 {
5108         struct ipc_security_struct *isec;
5109         struct avc_audit_data ad;
5110         u32 sid = current_sid();
5111         int rc;
5112
5113         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5114         if (rc)
5115                 return rc;
5116
5117         isec = shp->shm_perm.security;
5118
5119         AVC_AUDIT_DATA_INIT(&ad, IPC);
5120         ad.u.ipc_id = shp->shm_perm.key;
5121
5122         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5123                           SHM__CREATE, &ad);
5124         if (rc) {
5125                 ipc_free_security(&shp->shm_perm);
5126                 return rc;
5127         }
5128         return 0;
5129 }
5130
5131 static void selinux_shm_free_security(struct shmid_kernel *shp)
5132 {
5133         ipc_free_security(&shp->shm_perm);
5134 }
5135
5136 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5137 {
5138         struct ipc_security_struct *isec;
5139         struct avc_audit_data ad;
5140         u32 sid = current_sid();
5141
5142         isec = shp->shm_perm.security;
5143
5144         AVC_AUDIT_DATA_INIT(&ad, IPC);
5145         ad.u.ipc_id = shp->shm_perm.key;
5146
5147         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5148                             SHM__ASSOCIATE, &ad);
5149 }
5150
5151 /* Note, at this point, shp is locked down */
5152 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5153 {
5154         int perms;
5155         int err;
5156
5157         switch (cmd) {
5158         case IPC_INFO:
5159         case SHM_INFO:
5160                 /* No specific object, just general system-wide information. */
5161                 return task_has_system(current, SYSTEM__IPC_INFO);
5162         case IPC_STAT:
5163         case SHM_STAT:
5164                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5165                 break;
5166         case IPC_SET:
5167                 perms = SHM__SETATTR;
5168                 break;
5169         case SHM_LOCK:
5170         case SHM_UNLOCK:
5171                 perms = SHM__LOCK;
5172                 break;
5173         case IPC_RMID:
5174                 perms = SHM__DESTROY;
5175                 break;
5176         default:
5177                 return 0;
5178         }
5179
5180         err = ipc_has_perm(&shp->shm_perm, perms);
5181         return err;
5182 }
5183
5184 static int selinux_shm_shmat(struct shmid_kernel *shp,
5185                              char __user *shmaddr, int shmflg)
5186 {
5187         u32 perms;
5188         int rc;
5189
5190         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5191         if (rc)
5192                 return rc;
5193
5194         if (shmflg & SHM_RDONLY)
5195                 perms = SHM__READ;
5196         else
5197                 perms = SHM__READ | SHM__WRITE;
5198
5199         return ipc_has_perm(&shp->shm_perm, perms);
5200 }
5201
5202 /* Semaphore security operations */
5203 static int selinux_sem_alloc_security(struct sem_array *sma)
5204 {
5205         struct ipc_security_struct *isec;
5206         struct avc_audit_data ad;
5207         u32 sid = current_sid();
5208         int rc;
5209
5210         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5211         if (rc)
5212                 return rc;
5213
5214         isec = sma->sem_perm.security;
5215
5216         AVC_AUDIT_DATA_INIT(&ad, IPC);
5217         ad.u.ipc_id = sma->sem_perm.key;
5218
5219         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5220                           SEM__CREATE, &ad);
5221         if (rc) {
5222                 ipc_free_security(&sma->sem_perm);
5223                 return rc;
5224         }
5225         return 0;
5226 }
5227
5228 static void selinux_sem_free_security(struct sem_array *sma)
5229 {
5230         ipc_free_security(&sma->sem_perm);
5231 }
5232
5233 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5234 {
5235         struct ipc_security_struct *isec;
5236         struct avc_audit_data ad;
5237         u32 sid = current_sid();
5238
5239         isec = sma->sem_perm.security;
5240
5241         AVC_AUDIT_DATA_INIT(&ad, IPC);
5242         ad.u.ipc_id = sma->sem_perm.key;
5243
5244         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5245                             SEM__ASSOCIATE, &ad);
5246 }
5247
5248 /* Note, at this point, sma is locked down */
5249 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5250 {
5251         int err;
5252         u32 perms;
5253
5254         switch (cmd) {
5255         case IPC_INFO:
5256         case SEM_INFO:
5257                 /* No specific object, just general system-wide information. */
5258                 return task_has_system(current, SYSTEM__IPC_INFO);
5259         case GETPID:
5260         case GETNCNT:
5261         case GETZCNT:
5262                 perms = SEM__GETATTR;
5263                 break;
5264         case GETVAL:
5265         case GETALL:
5266                 perms = SEM__READ;
5267                 break;
5268         case SETVAL:
5269         case SETALL:
5270                 perms = SEM__WRITE;
5271                 break;
5272         case IPC_RMID:
5273                 perms = SEM__DESTROY;
5274                 break;
5275         case IPC_SET:
5276                 perms = SEM__SETATTR;
5277                 break;
5278         case IPC_STAT:
5279         case SEM_STAT:
5280                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5281                 break;
5282         default:
5283                 return 0;
5284         }
5285
5286         err = ipc_has_perm(&sma->sem_perm, perms);
5287         return err;
5288 }
5289
5290 static int selinux_sem_semop(struct sem_array *sma,
5291                              struct sembuf *sops, unsigned nsops, int alter)
5292 {
5293         u32 perms;
5294
5295         if (alter)
5296                 perms = SEM__READ | SEM__WRITE;
5297         else
5298                 perms = SEM__READ;
5299
5300         return ipc_has_perm(&sma->sem_perm, perms);
5301 }
5302
5303 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5304 {
5305         u32 av = 0;
5306
5307         av = 0;
5308         if (flag & S_IRUGO)
5309                 av |= IPC__UNIX_READ;
5310         if (flag & S_IWUGO)
5311                 av |= IPC__UNIX_WRITE;
5312
5313         if (av == 0)
5314                 return 0;
5315
5316         return ipc_has_perm(ipcp, av);
5317 }
5318
5319 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5320 {
5321         struct ipc_security_struct *isec = ipcp->security;
5322         *secid = isec->sid;
5323 }
5324
5325 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5326 {
5327         if (inode)
5328                 inode_doinit_with_dentry(inode, dentry);
5329 }
5330
5331 static int selinux_getprocattr(struct task_struct *p,
5332                                char *name, char **value)
5333 {
5334         const struct task_security_struct *__tsec;
5335         u32 sid;
5336         int error;
5337         unsigned len;
5338
5339         if (current != p) {
5340                 error = current_has_perm(p, PROCESS__GETATTR);
5341                 if (error)
5342                         return error;
5343         }
5344
5345         rcu_read_lock();
5346         __tsec = __task_cred(p)->security;
5347
5348         if (!strcmp(name, "current"))
5349                 sid = __tsec->sid;
5350         else if (!strcmp(name, "prev"))
5351                 sid = __tsec->osid;
5352         else if (!strcmp(name, "exec"))
5353                 sid = __tsec->exec_sid;
5354         else if (!strcmp(name, "fscreate"))
5355                 sid = __tsec->create_sid;
5356         else if (!strcmp(name, "keycreate"))
5357                 sid = __tsec->keycreate_sid;
5358         else if (!strcmp(name, "sockcreate"))
5359                 sid = __tsec->sockcreate_sid;
5360         else
5361                 goto invalid;
5362         rcu_read_unlock();
5363
5364         if (!sid)
5365                 return 0;
5366
5367         error = security_sid_to_context(sid, value, &len);
5368         if (error)
5369                 return error;
5370         return len;
5371
5372 invalid:
5373         rcu_read_unlock();
5374         return -EINVAL;
5375 }
5376
5377 static int selinux_setprocattr(struct task_struct *p,
5378                                char *name, void *value, size_t size)
5379 {
5380         struct task_security_struct *tsec;
5381         struct task_struct *tracer;
5382         struct cred *new;
5383         u32 sid = 0, ptsid;
5384         int error;
5385         char *str = value;
5386
5387         if (current != p) {
5388                 /* SELinux only allows a process to change its own
5389                    security attributes. */
5390                 return -EACCES;
5391         }
5392
5393         /*
5394          * Basic control over ability to set these attributes at all.
5395          * current == p, but we'll pass them separately in case the
5396          * above restriction is ever removed.
5397          */
5398         if (!strcmp(name, "exec"))
5399                 error = current_has_perm(p, PROCESS__SETEXEC);
5400         else if (!strcmp(name, "fscreate"))
5401                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5402         else if (!strcmp(name, "keycreate"))
5403                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5404         else if (!strcmp(name, "sockcreate"))
5405                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5406         else if (!strcmp(name, "current"))
5407                 error = current_has_perm(p, PROCESS__SETCURRENT);
5408         else
5409                 error = -EINVAL;
5410         if (error)
5411                 return error;
5412
5413         /* Obtain a SID for the context, if one was specified. */
5414         if (size && str[1] && str[1] != '\n') {
5415                 if (str[size-1] == '\n') {
5416                         str[size-1] = 0;
5417                         size--;
5418                 }
5419                 error = security_context_to_sid(value, size, &sid);
5420                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5421                         if (!capable(CAP_MAC_ADMIN))
5422                                 return error;
5423                         error = security_context_to_sid_force(value, size,
5424                                                               &sid);
5425                 }
5426                 if (error)
5427                         return error;
5428         }
5429
5430         new = prepare_creds();
5431         if (!new)
5432                 return -ENOMEM;
5433
5434         /* Permission checking based on the specified context is
5435            performed during the actual operation (execve,
5436            open/mkdir/...), when we know the full context of the
5437            operation.  See selinux_bprm_set_creds for the execve
5438            checks and may_create for the file creation checks. The
5439            operation will then fail if the context is not permitted. */
5440         tsec = new->security;
5441         if (!strcmp(name, "exec")) {
5442                 tsec->exec_sid = sid;
5443         } else if (!strcmp(name, "fscreate")) {
5444                 tsec->create_sid = sid;
5445         } else if (!strcmp(name, "keycreate")) {
5446                 error = may_create_key(sid, p);
5447                 if (error)
5448                         goto abort_change;
5449                 tsec->keycreate_sid = sid;
5450         } else if (!strcmp(name, "sockcreate")) {
5451                 tsec->sockcreate_sid = sid;
5452         } else if (!strcmp(name, "current")) {
5453                 error = -EINVAL;
5454                 if (sid == 0)
5455                         goto abort_change;
5456
5457                 /* Only allow single threaded processes to change context */
5458                 error = -EPERM;
5459                 if (!is_single_threaded(p)) {
5460                         error = security_bounded_transition(tsec->sid, sid);
5461                         if (error)
5462                                 goto abort_change;
5463                 }
5464
5465                 /* Check permissions for the transition. */
5466                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5467                                      PROCESS__DYNTRANSITION, NULL);
5468                 if (error)
5469                         goto abort_change;
5470
5471                 /* Check for ptracing, and update the task SID if ok.
5472                    Otherwise, leave SID unchanged and fail. */
5473                 ptsid = 0;
5474                 task_lock(p);
5475                 tracer = tracehook_tracer_task(p);
5476                 if (tracer)
5477                         ptsid = task_sid(tracer);
5478                 task_unlock(p);
5479
5480                 if (tracer) {
5481                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5482                                              PROCESS__PTRACE, NULL);
5483                         if (error)
5484                                 goto abort_change;
5485                 }
5486
5487                 tsec->sid = sid;
5488         } else {
5489                 error = -EINVAL;
5490                 goto abort_change;
5491         }
5492
5493         commit_creds(new);
5494         return size;
5495
5496 abort_change:
5497         abort_creds(new);
5498         return error;
5499 }
5500
5501 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5502 {
5503         return security_sid_to_context(secid, secdata, seclen);
5504 }
5505
5506 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5507 {
5508         return security_context_to_sid(secdata, seclen, secid);
5509 }
5510
5511 static void selinux_release_secctx(char *secdata, u32 seclen)
5512 {
5513         kfree(secdata);
5514 }
5515
5516 #ifdef CONFIG_KEYS
5517
5518 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5519                              unsigned long flags)
5520 {
5521         const struct task_security_struct *tsec;
5522         struct key_security_struct *ksec;
5523
5524         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5525         if (!ksec)
5526                 return -ENOMEM;
5527
5528         tsec = cred->security;
5529         if (tsec->keycreate_sid)
5530                 ksec->sid = tsec->keycreate_sid;
5531         else
5532                 ksec->sid = tsec->sid;
5533
5534         k->security = ksec;
5535         return 0;
5536 }
5537
5538 static void selinux_key_free(struct key *k)
5539 {
5540         struct key_security_struct *ksec = k->security;
5541
5542         k->security = NULL;
5543         kfree(ksec);
5544 }
5545
5546 static int selinux_key_permission(key_ref_t key_ref,
5547                                   const struct cred *cred,
5548                                   key_perm_t perm)
5549 {
5550         struct key *key;
5551         struct key_security_struct *ksec;
5552         u32 sid;
5553
5554         /* if no specific permissions are requested, we skip the
5555            permission check. No serious, additional covert channels
5556            appear to be created. */
5557         if (perm == 0)
5558                 return 0;
5559
5560         sid = cred_sid(cred);
5561
5562         key = key_ref_to_ptr(key_ref);
5563         ksec = key->security;
5564
5565         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5566 }
5567
5568 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5569 {
5570         struct key_security_struct *ksec = key->security;
5571         char *context = NULL;
5572         unsigned len;
5573         int rc;
5574
5575         rc = security_sid_to_context(ksec->sid, &context, &len);
5576         if (!rc)
5577                 rc = len;
5578         *_buffer = context;
5579         return rc;
5580 }
5581
5582 #endif
5583
5584 static struct security_operations selinux_ops = {
5585         .name =                         "selinux",
5586
5587         .ptrace_may_access =            selinux_ptrace_may_access,
5588         .ptrace_traceme =               selinux_ptrace_traceme,
5589         .capget =                       selinux_capget,
5590         .capset =                       selinux_capset,
5591         .sysctl =                       selinux_sysctl,
5592         .capable =                      selinux_capable,
5593         .quotactl =                     selinux_quotactl,
5594         .quota_on =                     selinux_quota_on,
5595         .syslog =                       selinux_syslog,
5596         .vm_enough_memory =             selinux_vm_enough_memory,
5597
5598         .netlink_send =                 selinux_netlink_send,
5599         .netlink_recv =                 selinux_netlink_recv,
5600
5601         .bprm_set_creds =               selinux_bprm_set_creds,
5602         .bprm_committing_creds =        selinux_bprm_committing_creds,
5603         .bprm_committed_creds =         selinux_bprm_committed_creds,
5604         .bprm_secureexec =              selinux_bprm_secureexec,
5605
5606         .sb_alloc_security =            selinux_sb_alloc_security,
5607         .sb_free_security =             selinux_sb_free_security,
5608         .sb_copy_data =                 selinux_sb_copy_data,
5609         .sb_kern_mount =                selinux_sb_kern_mount,
5610         .sb_show_options =              selinux_sb_show_options,
5611         .sb_statfs =                    selinux_sb_statfs,
5612         .sb_mount =                     selinux_mount,
5613         .sb_umount =                    selinux_umount,
5614         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5615         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5616         .sb_parse_opts_str =            selinux_parse_opts_str,
5617
5618
5619         .inode_alloc_security =         selinux_inode_alloc_security,
5620         .inode_free_security =          selinux_inode_free_security,
5621         .inode_init_security =          selinux_inode_init_security,
5622         .inode_create =                 selinux_inode_create,
5623         .inode_link =                   selinux_inode_link,
5624         .inode_unlink =                 selinux_inode_unlink,
5625         .inode_symlink =                selinux_inode_symlink,
5626         .inode_mkdir =                  selinux_inode_mkdir,
5627         .inode_rmdir =                  selinux_inode_rmdir,
5628         .inode_mknod =                  selinux_inode_mknod,
5629         .inode_rename =                 selinux_inode_rename,
5630         .inode_readlink =               selinux_inode_readlink,
5631         .inode_follow_link =            selinux_inode_follow_link,
5632         .inode_permission =             selinux_inode_permission,
5633         .inode_setattr =                selinux_inode_setattr,
5634         .inode_getattr =                selinux_inode_getattr,
5635         .inode_setxattr =               selinux_inode_setxattr,
5636         .inode_post_setxattr =          selinux_inode_post_setxattr,
5637         .inode_getxattr =               selinux_inode_getxattr,
5638         .inode_listxattr =              selinux_inode_listxattr,
5639         .inode_removexattr =            selinux_inode_removexattr,
5640         .inode_getsecurity =            selinux_inode_getsecurity,
5641         .inode_setsecurity =            selinux_inode_setsecurity,
5642         .inode_listsecurity =           selinux_inode_listsecurity,
5643         .inode_need_killpriv =          selinux_inode_need_killpriv,
5644         .inode_killpriv =               selinux_inode_killpriv,
5645         .inode_getsecid =               selinux_inode_getsecid,
5646
5647         .file_permission =              selinux_file_permission,
5648         .file_alloc_security =          selinux_file_alloc_security,
5649         .file_free_security =           selinux_file_free_security,
5650         .file_ioctl =                   selinux_file_ioctl,
5651         .file_mmap =                    selinux_file_mmap,
5652         .file_mprotect =                selinux_file_mprotect,
5653         .file_lock =                    selinux_file_lock,
5654         .file_fcntl =                   selinux_file_fcntl,
5655         .file_set_fowner =              selinux_file_set_fowner,
5656         .file_send_sigiotask =          selinux_file_send_sigiotask,
5657         .file_receive =                 selinux_file_receive,
5658
5659         .dentry_open =                  selinux_dentry_open,
5660
5661         .task_create =                  selinux_task_create,
5662         .cred_free =                    selinux_cred_free,
5663         .cred_prepare =                 selinux_cred_prepare,
5664         .cred_commit =                  selinux_cred_commit,
5665         .kernel_act_as =                selinux_kernel_act_as,
5666         .kernel_create_files_as =       selinux_kernel_create_files_as,
5667         .task_setuid =                  selinux_task_setuid,
5668         .task_fix_setuid =              selinux_task_fix_setuid,
5669         .task_setgid =                  selinux_task_setgid,
5670         .task_setpgid =                 selinux_task_setpgid,
5671         .task_getpgid =                 selinux_task_getpgid,
5672         .task_getsid =                  selinux_task_getsid,
5673         .task_getsecid =                selinux_task_getsecid,
5674         .task_setgroups =               selinux_task_setgroups,
5675         .task_setnice =                 selinux_task_setnice,
5676         .task_setioprio =               selinux_task_setioprio,
5677         .task_getioprio =               selinux_task_getioprio,
5678         .task_setrlimit =               selinux_task_setrlimit,
5679         .task_setscheduler =            selinux_task_setscheduler,
5680         .task_getscheduler =            selinux_task_getscheduler,
5681         .task_movememory =              selinux_task_movememory,
5682         .task_kill =                    selinux_task_kill,
5683         .task_wait =                    selinux_task_wait,
5684         .task_prctl =                   selinux_task_prctl,
5685         .task_to_inode =                selinux_task_to_inode,
5686
5687         .ipc_permission =               selinux_ipc_permission,
5688         .ipc_getsecid =                 selinux_ipc_getsecid,
5689
5690         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5691         .msg_msg_free_security =        selinux_msg_msg_free_security,
5692
5693         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5694         .msg_queue_free_security =      selinux_msg_queue_free_security,
5695         .msg_queue_associate =          selinux_msg_queue_associate,
5696         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5697         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5698         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5699
5700         .shm_alloc_security =           selinux_shm_alloc_security,
5701         .shm_free_security =            selinux_shm_free_security,
5702         .shm_associate =                selinux_shm_associate,
5703         .shm_shmctl =                   selinux_shm_shmctl,
5704         .shm_shmat =                    selinux_shm_shmat,
5705
5706         .sem_alloc_security =           selinux_sem_alloc_security,
5707         .sem_free_security =            selinux_sem_free_security,
5708         .sem_associate =                selinux_sem_associate,
5709         .sem_semctl =                   selinux_sem_semctl,
5710         .sem_semop =                    selinux_sem_semop,
5711
5712         .d_instantiate =                selinux_d_instantiate,
5713
5714         .getprocattr =                  selinux_getprocattr,
5715         .setprocattr =                  selinux_setprocattr,
5716
5717         .secid_to_secctx =              selinux_secid_to_secctx,
5718         .secctx_to_secid =              selinux_secctx_to_secid,
5719         .release_secctx =               selinux_release_secctx,
5720
5721         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5722         .unix_may_send =                selinux_socket_unix_may_send,
5723
5724         .socket_create =                selinux_socket_create,
5725         .socket_post_create =           selinux_socket_post_create,
5726         .socket_bind =                  selinux_socket_bind,
5727         .socket_connect =               selinux_socket_connect,
5728         .socket_listen =                selinux_socket_listen,
5729         .socket_accept =                selinux_socket_accept,
5730         .socket_sendmsg =               selinux_socket_sendmsg,
5731         .socket_recvmsg =               selinux_socket_recvmsg,
5732         .socket_getsockname =           selinux_socket_getsockname,
5733         .socket_getpeername =           selinux_socket_getpeername,
5734         .socket_getsockopt =            selinux_socket_getsockopt,
5735         .socket_setsockopt =            selinux_socket_setsockopt,
5736         .socket_shutdown =              selinux_socket_shutdown,
5737         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5738         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5739         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5740         .sk_alloc_security =            selinux_sk_alloc_security,
5741         .sk_free_security =             selinux_sk_free_security,
5742         .sk_clone_security =            selinux_sk_clone_security,
5743         .sk_getsecid =                  selinux_sk_getsecid,
5744         .sock_graft =                   selinux_sock_graft,
5745         .inet_conn_request =            selinux_inet_conn_request,
5746         .inet_csk_clone =               selinux_inet_csk_clone,
5747         .inet_conn_established =        selinux_inet_conn_established,
5748         .req_classify_flow =            selinux_req_classify_flow,
5749
5750 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5751         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5752         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5753         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5754         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5755         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5756         .xfrm_state_free_security =     selinux_xfrm_state_free,
5757         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5758         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5759         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5760         .xfrm_decode_session =          selinux_xfrm_decode_session,
5761 #endif
5762
5763 #ifdef CONFIG_KEYS
5764         .key_alloc =                    selinux_key_alloc,
5765         .key_free =                     selinux_key_free,
5766         .key_permission =               selinux_key_permission,
5767         .key_getsecurity =              selinux_key_getsecurity,
5768 #endif
5769
5770 #ifdef CONFIG_AUDIT
5771         .audit_rule_init =              selinux_audit_rule_init,
5772         .audit_rule_known =             selinux_audit_rule_known,
5773         .audit_rule_match =             selinux_audit_rule_match,
5774         .audit_rule_free =              selinux_audit_rule_free,
5775 #endif
5776 };
5777
5778 static __init int selinux_init(void)
5779 {
5780         if (!security_module_enable(&selinux_ops)) {
5781                 selinux_enabled = 0;
5782                 return 0;
5783         }
5784
5785         if (!selinux_enabled) {
5786                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5787                 return 0;
5788         }
5789
5790         printk(KERN_INFO "SELinux:  Initializing.\n");
5791
5792         /* Set the security state for the initial task. */
5793         cred_init_security();
5794
5795         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5796                                             sizeof(struct inode_security_struct),
5797                                             0, SLAB_PANIC, NULL);
5798         avc_init();
5799
5800         secondary_ops = security_ops;
5801         if (!secondary_ops)
5802                 panic("SELinux: No initial security operations\n");
5803         if (register_security(&selinux_ops))
5804                 panic("SELinux: Unable to register with kernel.\n");
5805
5806         if (selinux_enforcing)
5807                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5808         else
5809                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5810
5811         return 0;
5812 }
5813
5814 void selinux_complete_init(void)
5815 {
5816         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5817
5818         /* Set up any superblocks initialized prior to the policy load. */
5819         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5820         spin_lock(&sb_lock);
5821         spin_lock(&sb_security_lock);
5822 next_sb:
5823         if (!list_empty(&superblock_security_head)) {
5824                 struct superblock_security_struct *sbsec =
5825                                 list_entry(superblock_security_head.next,
5826                                            struct superblock_security_struct,
5827                                            list);
5828                 struct super_block *sb = sbsec->sb;
5829                 sb->s_count++;
5830                 spin_unlock(&sb_security_lock);
5831                 spin_unlock(&sb_lock);
5832                 down_read(&sb->s_umount);
5833                 if (sb->s_root)
5834                         superblock_doinit(sb, NULL);
5835                 drop_super(sb);
5836                 spin_lock(&sb_lock);
5837                 spin_lock(&sb_security_lock);
5838                 list_del_init(&sbsec->list);
5839                 goto next_sb;
5840         }
5841         spin_unlock(&sb_security_lock);
5842         spin_unlock(&sb_lock);
5843 }
5844
5845 /* SELinux requires early initialization in order to label
5846    all processes and objects when they are created. */
5847 security_initcall(selinux_init);
5848
5849 #if defined(CONFIG_NETFILTER)
5850
5851 static struct nf_hook_ops selinux_ipv4_ops[] = {
5852         {
5853                 .hook =         selinux_ipv4_postroute,
5854                 .owner =        THIS_MODULE,
5855                 .pf =           PF_INET,
5856                 .hooknum =      NF_INET_POST_ROUTING,
5857                 .priority =     NF_IP_PRI_SELINUX_LAST,
5858         },
5859         {
5860                 .hook =         selinux_ipv4_forward,
5861                 .owner =        THIS_MODULE,
5862                 .pf =           PF_INET,
5863                 .hooknum =      NF_INET_FORWARD,
5864                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5865         },
5866         {
5867                 .hook =         selinux_ipv4_output,
5868                 .owner =        THIS_MODULE,
5869                 .pf =           PF_INET,
5870                 .hooknum =      NF_INET_LOCAL_OUT,
5871                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5872         }
5873 };
5874
5875 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5876
5877 static struct nf_hook_ops selinux_ipv6_ops[] = {
5878         {
5879                 .hook =         selinux_ipv6_postroute,
5880                 .owner =        THIS_MODULE,
5881                 .pf =           PF_INET6,
5882                 .hooknum =      NF_INET_POST_ROUTING,
5883                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5884         },
5885         {
5886                 .hook =         selinux_ipv6_forward,
5887                 .owner =        THIS_MODULE,
5888                 .pf =           PF_INET6,
5889                 .hooknum =      NF_INET_FORWARD,
5890                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5891         }
5892 };
5893
5894 #endif  /* IPV6 */
5895
5896 static int __init selinux_nf_ip_init(void)
5897 {
5898         int err = 0;
5899
5900         if (!selinux_enabled)
5901                 goto out;
5902
5903         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5904
5905         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5906         if (err)
5907                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5908
5909 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5910         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5911         if (err)
5912                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5913 #endif  /* IPV6 */
5914
5915 out:
5916         return err;
5917 }
5918
5919 __initcall(selinux_nf_ip_init);
5920
5921 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5922 static void selinux_nf_ip_exit(void)
5923 {
5924         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5925
5926         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5927 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5928         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5929 #endif  /* IPV6 */
5930 }
5931 #endif
5932
5933 #else /* CONFIG_NETFILTER */
5934
5935 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5936 #define selinux_nf_ip_exit()
5937 #endif
5938
5939 #endif /* CONFIG_NETFILTER */
5940
5941 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5942 static int selinux_disabled;
5943
5944 int selinux_disable(void)
5945 {
5946         extern void exit_sel_fs(void);
5947
5948         if (ss_initialized) {
5949                 /* Not permitted after initial policy load. */
5950                 return -EINVAL;
5951         }
5952
5953         if (selinux_disabled) {
5954                 /* Only do this once. */
5955                 return -EINVAL;
5956         }
5957
5958         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5959
5960         selinux_disabled = 1;
5961         selinux_enabled = 0;
5962
5963         /* Reset security_ops to the secondary module, dummy or capability. */
5964         security_ops = secondary_ops;
5965
5966         /* Unregister netfilter hooks. */
5967         selinux_nf_ip_exit();
5968
5969         /* Unregister selinuxfs. */
5970         exit_sel_fs();
5971
5972         return 0;
5973 }
5974 #endif