selinux: remove secondary ops call to task_setrlimit
[firefly-linux-kernel-4.4.55.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534
2535         if (flags & MS_REMOUNT)
2536                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2537                                            FILESYSTEM__REMOUNT, NULL);
2538         else
2539                 return dentry_has_perm(cred, path->mnt, path->dentry,
2540                                        FILE__MOUNTON);
2541 }
2542
2543 static int selinux_umount(struct vfsmount *mnt, int flags)
2544 {
2545         const struct cred *cred = current_cred();
2546
2547         return superblock_has_perm(cred, mnt->mnt_sb,
2548                                    FILESYSTEM__UNMOUNT, NULL);
2549 }
2550
2551 /* inode security operations */
2552
2553 static int selinux_inode_alloc_security(struct inode *inode)
2554 {
2555         return inode_alloc_security(inode);
2556 }
2557
2558 static void selinux_inode_free_security(struct inode *inode)
2559 {
2560         inode_free_security(inode);
2561 }
2562
2563 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2564                                        char **name, void **value,
2565                                        size_t *len)
2566 {
2567         const struct cred *cred = current_cred();
2568         const struct task_security_struct *tsec = cred->security;
2569         struct inode_security_struct *dsec;
2570         struct superblock_security_struct *sbsec;
2571         u32 sid, newsid, clen;
2572         int rc;
2573         char *namep = NULL, *context;
2574
2575         dsec = dir->i_security;
2576         sbsec = dir->i_sb->s_security;
2577
2578         sid = tsec->sid;
2579         newsid = tsec->create_sid;
2580
2581         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2582                 rc = security_transition_sid(sid, dsec->sid,
2583                                              inode_mode_to_security_class(inode->i_mode),
2584                                              &newsid);
2585                 if (rc) {
2586                         printk(KERN_WARNING "%s:  "
2587                                "security_transition_sid failed, rc=%d (dev=%s "
2588                                "ino=%ld)\n",
2589                                __func__,
2590                                -rc, inode->i_sb->s_id, inode->i_ino);
2591                         return rc;
2592                 }
2593         }
2594
2595         /* Possibly defer initialization to selinux_complete_init. */
2596         if (sbsec->flags & SE_SBINITIALIZED) {
2597                 struct inode_security_struct *isec = inode->i_security;
2598                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2599                 isec->sid = newsid;
2600                 isec->initialized = 1;
2601         }
2602
2603         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2604                 return -EOPNOTSUPP;
2605
2606         if (name) {
2607                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2608                 if (!namep)
2609                         return -ENOMEM;
2610                 *name = namep;
2611         }
2612
2613         if (value && len) {
2614                 rc = security_sid_to_context_force(newsid, &context, &clen);
2615                 if (rc) {
2616                         kfree(namep);
2617                         return rc;
2618                 }
2619                 *value = context;
2620                 *len = clen;
2621         }
2622
2623         return 0;
2624 }
2625
2626 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_FILE);
2629 }
2630
2631 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2632 {
2633         return may_link(dir, old_dentry, MAY_LINK);
2634 }
2635
2636 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2637 {
2638         return may_link(dir, dentry, MAY_UNLINK);
2639 }
2640
2641 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2642 {
2643         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2644 }
2645
2646 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2647 {
2648         return may_create(dir, dentry, SECCLASS_DIR);
2649 }
2650
2651 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2652 {
2653         return may_link(dir, dentry, MAY_RMDIR);
2654 }
2655
2656 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2657 {
2658         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2659 }
2660
2661 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2662                                 struct inode *new_inode, struct dentry *new_dentry)
2663 {
2664         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2665 }
2666
2667 static int selinux_inode_readlink(struct dentry *dentry)
2668 {
2669         const struct cred *cred = current_cred();
2670
2671         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2672 }
2673
2674 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2675 {
2676         const struct cred *cred = current_cred();
2677
2678         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2679 }
2680
2681 static int selinux_inode_permission(struct inode *inode, int mask)
2682 {
2683         const struct cred *cred = current_cred();
2684
2685         if (!mask) {
2686                 /* No permission to check.  Existence test. */
2687                 return 0;
2688         }
2689
2690         return inode_has_perm(cred, inode,
2691                               file_mask_to_av(inode->i_mode, mask), NULL);
2692 }
2693
2694 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2695 {
2696         const struct cred *cred = current_cred();
2697
2698         if (iattr->ia_valid & ATTR_FORCE)
2699                 return 0;
2700
2701         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2703                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2704
2705         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2706 }
2707
2708 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709 {
2710         const struct cred *cred = current_cred();
2711
2712         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2713 }
2714
2715 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2716 {
2717         const struct cred *cred = current_cred();
2718
2719         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2720                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2721                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2722                         if (!capable(CAP_SETFCAP))
2723                                 return -EPERM;
2724                 } else if (!capable(CAP_SYS_ADMIN)) {
2725                         /* A different attribute in the security namespace.
2726                            Restrict to administrator. */
2727                         return -EPERM;
2728                 }
2729         }
2730
2731         /* Not an attribute we recognize, so just check the
2732            ordinary setattr permission. */
2733         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2734 }
2735
2736 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2737                                   const void *value, size_t size, int flags)
2738 {
2739         struct inode *inode = dentry->d_inode;
2740         struct inode_security_struct *isec = inode->i_security;
2741         struct superblock_security_struct *sbsec;
2742         struct avc_audit_data ad;
2743         u32 newsid, sid = current_sid();
2744         int rc = 0;
2745
2746         if (strcmp(name, XATTR_NAME_SELINUX))
2747                 return selinux_inode_setotherxattr(dentry, name);
2748
2749         sbsec = inode->i_sb->s_security;
2750         if (!(sbsec->flags & SE_SBLABELSUPP))
2751                 return -EOPNOTSUPP;
2752
2753         if (!is_owner_or_cap(inode))
2754                 return -EPERM;
2755
2756         AVC_AUDIT_DATA_INIT(&ad, FS);
2757         ad.u.fs.path.dentry = dentry;
2758
2759         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2760                           FILE__RELABELFROM, &ad);
2761         if (rc)
2762                 return rc;
2763
2764         rc = security_context_to_sid(value, size, &newsid);
2765         if (rc == -EINVAL) {
2766                 if (!capable(CAP_MAC_ADMIN))
2767                         return rc;
2768                 rc = security_context_to_sid_force(value, size, &newsid);
2769         }
2770         if (rc)
2771                 return rc;
2772
2773         rc = avc_has_perm(sid, newsid, isec->sclass,
2774                           FILE__RELABELTO, &ad);
2775         if (rc)
2776                 return rc;
2777
2778         rc = security_validate_transition(isec->sid, newsid, sid,
2779                                           isec->sclass);
2780         if (rc)
2781                 return rc;
2782
2783         return avc_has_perm(newsid,
2784                             sbsec->sid,
2785                             SECCLASS_FILESYSTEM,
2786                             FILESYSTEM__ASSOCIATE,
2787                             &ad);
2788 }
2789
2790 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2791                                         const void *value, size_t size,
2792                                         int flags)
2793 {
2794         struct inode *inode = dentry->d_inode;
2795         struct inode_security_struct *isec = inode->i_security;
2796         u32 newsid;
2797         int rc;
2798
2799         if (strcmp(name, XATTR_NAME_SELINUX)) {
2800                 /* Not an attribute we recognize, so nothing to do. */
2801                 return;
2802         }
2803
2804         rc = security_context_to_sid_force(value, size, &newsid);
2805         if (rc) {
2806                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2807                        "for (%s, %lu), rc=%d\n",
2808                        inode->i_sb->s_id, inode->i_ino, -rc);
2809                 return;
2810         }
2811
2812         isec->sid = newsid;
2813         return;
2814 }
2815
2816 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2817 {
2818         const struct cred *cred = current_cred();
2819
2820         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2821 }
2822
2823 static int selinux_inode_listxattr(struct dentry *dentry)
2824 {
2825         const struct cred *cred = current_cred();
2826
2827         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2828 }
2829
2830 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2831 {
2832         if (strcmp(name, XATTR_NAME_SELINUX))
2833                 return selinux_inode_setotherxattr(dentry, name);
2834
2835         /* No one is allowed to remove a SELinux security label.
2836            You can change the label, but all data must be labeled. */
2837         return -EACCES;
2838 }
2839
2840 /*
2841  * Copy the inode security context value to the user.
2842  *
2843  * Permission check is handled by selinux_inode_getxattr hook.
2844  */
2845 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2846 {
2847         u32 size;
2848         int error;
2849         char *context = NULL;
2850         struct inode_security_struct *isec = inode->i_security;
2851
2852         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2853                 return -EOPNOTSUPP;
2854
2855         /*
2856          * If the caller has CAP_MAC_ADMIN, then get the raw context
2857          * value even if it is not defined by current policy; otherwise,
2858          * use the in-core value under current policy.
2859          * Use the non-auditing forms of the permission checks since
2860          * getxattr may be called by unprivileged processes commonly
2861          * and lack of permission just means that we fall back to the
2862          * in-core context value, not a denial.
2863          */
2864         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2865                                 SECURITY_CAP_NOAUDIT);
2866         if (!error)
2867                 error = security_sid_to_context_force(isec->sid, &context,
2868                                                       &size);
2869         else
2870                 error = security_sid_to_context(isec->sid, &context, &size);
2871         if (error)
2872                 return error;
2873         error = size;
2874         if (alloc) {
2875                 *buffer = context;
2876                 goto out_nofree;
2877         }
2878         kfree(context);
2879 out_nofree:
2880         return error;
2881 }
2882
2883 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2884                                      const void *value, size_t size, int flags)
2885 {
2886         struct inode_security_struct *isec = inode->i_security;
2887         u32 newsid;
2888         int rc;
2889
2890         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2891                 return -EOPNOTSUPP;
2892
2893         if (!value || !size)
2894                 return -EACCES;
2895
2896         rc = security_context_to_sid((void *)value, size, &newsid);
2897         if (rc)
2898                 return rc;
2899
2900         isec->sid = newsid;
2901         return 0;
2902 }
2903
2904 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2905 {
2906         const int len = sizeof(XATTR_NAME_SELINUX);
2907         if (buffer && len <= buffer_size)
2908                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2909         return len;
2910 }
2911
2912 static int selinux_inode_need_killpriv(struct dentry *dentry)
2913 {
2914         return secondary_ops->inode_need_killpriv(dentry);
2915 }
2916
2917 static int selinux_inode_killpriv(struct dentry *dentry)
2918 {
2919         return secondary_ops->inode_killpriv(dentry);
2920 }
2921
2922 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2923 {
2924         struct inode_security_struct *isec = inode->i_security;
2925         *secid = isec->sid;
2926 }
2927
2928 /* file security operations */
2929
2930 static int selinux_revalidate_file_permission(struct file *file, int mask)
2931 {
2932         const struct cred *cred = current_cred();
2933         int rc;
2934         struct inode *inode = file->f_path.dentry->d_inode;
2935
2936         if (!mask) {
2937                 /* No permission to check.  Existence test. */
2938                 return 0;
2939         }
2940
2941         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943                 mask |= MAY_APPEND;
2944
2945         rc = file_has_perm(cred, file,
2946                            file_mask_to_av(inode->i_mode, mask));
2947         if (rc)
2948                 return rc;
2949
2950         return selinux_netlbl_inode_permission(inode, mask);
2951 }
2952
2953 static int selinux_file_permission(struct file *file, int mask)
2954 {
2955         struct inode *inode = file->f_path.dentry->d_inode;
2956         struct file_security_struct *fsec = file->f_security;
2957         struct inode_security_struct *isec = inode->i_security;
2958         u32 sid = current_sid();
2959
2960         if (!mask) {
2961                 /* No permission to check.  Existence test. */
2962                 return 0;
2963         }
2964
2965         if (sid == fsec->sid && fsec->isid == isec->sid
2966             && fsec->pseqno == avc_policy_seqno())
2967                 return selinux_netlbl_inode_permission(inode, mask);
2968
2969         return selinux_revalidate_file_permission(file, mask);
2970 }
2971
2972 static int selinux_file_alloc_security(struct file *file)
2973 {
2974         return file_alloc_security(file);
2975 }
2976
2977 static void selinux_file_free_security(struct file *file)
2978 {
2979         file_free_security(file);
2980 }
2981
2982 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2983                               unsigned long arg)
2984 {
2985         const struct cred *cred = current_cred();
2986         u32 av = 0;
2987
2988         if (_IOC_DIR(cmd) & _IOC_WRITE)
2989                 av |= FILE__WRITE;
2990         if (_IOC_DIR(cmd) & _IOC_READ)
2991                 av |= FILE__READ;
2992         if (!av)
2993                 av = FILE__IOCTL;
2994
2995         return file_has_perm(cred, file, av);
2996 }
2997
2998 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2999 {
3000         const struct cred *cred = current_cred();
3001         int rc = 0;
3002
3003 #ifndef CONFIG_PPC32
3004         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3005                 /*
3006                  * We are making executable an anonymous mapping or a
3007                  * private file mapping that will also be writable.
3008                  * This has an additional check.
3009                  */
3010                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3011                 if (rc)
3012                         goto error;
3013         }
3014 #endif
3015
3016         if (file) {
3017                 /* read access is always possible with a mapping */
3018                 u32 av = FILE__READ;
3019
3020                 /* write access only matters if the mapping is shared */
3021                 if (shared && (prot & PROT_WRITE))
3022                         av |= FILE__WRITE;
3023
3024                 if (prot & PROT_EXEC)
3025                         av |= FILE__EXECUTE;
3026
3027                 return file_has_perm(cred, file, av);
3028         }
3029
3030 error:
3031         return rc;
3032 }
3033
3034 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3035                              unsigned long prot, unsigned long flags,
3036                              unsigned long addr, unsigned long addr_only)
3037 {
3038         int rc = 0;
3039         u32 sid = current_sid();
3040
3041         if (addr < mmap_min_addr)
3042                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3043                                   MEMPROTECT__MMAP_ZERO, NULL);
3044         if (rc || addr_only)
3045                 return rc;
3046
3047         if (selinux_checkreqprot)
3048                 prot = reqprot;
3049
3050         return file_map_prot_check(file, prot,
3051                                    (flags & MAP_TYPE) == MAP_SHARED);
3052 }
3053
3054 static int selinux_file_mprotect(struct vm_area_struct *vma,
3055                                  unsigned long reqprot,
3056                                  unsigned long prot)
3057 {
3058         const struct cred *cred = current_cred();
3059
3060         if (selinux_checkreqprot)
3061                 prot = reqprot;
3062
3063 #ifndef CONFIG_PPC32
3064         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3065                 int rc = 0;
3066                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3067                     vma->vm_end <= vma->vm_mm->brk) {
3068                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3069                 } else if (!vma->vm_file &&
3070                            vma->vm_start <= vma->vm_mm->start_stack &&
3071                            vma->vm_end >= vma->vm_mm->start_stack) {
3072                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3073                 } else if (vma->vm_file && vma->anon_vma) {
3074                         /*
3075                          * We are making executable a file mapping that has
3076                          * had some COW done. Since pages might have been
3077                          * written, check ability to execute the possibly
3078                          * modified content.  This typically should only
3079                          * occur for text relocations.
3080                          */
3081                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3082                 }
3083                 if (rc)
3084                         return rc;
3085         }
3086 #endif
3087
3088         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3089 }
3090
3091 static int selinux_file_lock(struct file *file, unsigned int cmd)
3092 {
3093         const struct cred *cred = current_cred();
3094
3095         return file_has_perm(cred, file, FILE__LOCK);
3096 }
3097
3098 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3099                               unsigned long arg)
3100 {
3101         const struct cred *cred = current_cred();
3102         int err = 0;
3103
3104         switch (cmd) {
3105         case F_SETFL:
3106                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3107                         err = -EINVAL;
3108                         break;
3109                 }
3110
3111                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3112                         err = file_has_perm(cred, file, FILE__WRITE);
3113                         break;
3114                 }
3115                 /* fall through */
3116         case F_SETOWN:
3117         case F_SETSIG:
3118         case F_GETFL:
3119         case F_GETOWN:
3120         case F_GETSIG:
3121                 /* Just check FD__USE permission */
3122                 err = file_has_perm(cred, file, 0);
3123                 break;
3124         case F_GETLK:
3125         case F_SETLK:
3126         case F_SETLKW:
3127 #if BITS_PER_LONG == 32
3128         case F_GETLK64:
3129         case F_SETLK64:
3130         case F_SETLKW64:
3131 #endif
3132                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3133                         err = -EINVAL;
3134                         break;
3135                 }
3136                 err = file_has_perm(cred, file, FILE__LOCK);
3137                 break;
3138         }
3139
3140         return err;
3141 }
3142
3143 static int selinux_file_set_fowner(struct file *file)
3144 {
3145         struct file_security_struct *fsec;
3146
3147         fsec = file->f_security;
3148         fsec->fown_sid = current_sid();
3149
3150         return 0;
3151 }
3152
3153 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3154                                        struct fown_struct *fown, int signum)
3155 {
3156         struct file *file;
3157         u32 sid = current_sid();
3158         u32 perm;
3159         struct file_security_struct *fsec;
3160
3161         /* struct fown_struct is never outside the context of a struct file */
3162         file = container_of(fown, struct file, f_owner);
3163
3164         fsec = file->f_security;
3165
3166         if (!signum)
3167                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3168         else
3169                 perm = signal_to_av(signum);
3170
3171         return avc_has_perm(fsec->fown_sid, sid,
3172                             SECCLASS_PROCESS, perm, NULL);
3173 }
3174
3175 static int selinux_file_receive(struct file *file)
3176 {
3177         const struct cred *cred = current_cred();
3178
3179         return file_has_perm(cred, file, file_to_av(file));
3180 }
3181
3182 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3183 {
3184         struct file_security_struct *fsec;
3185         struct inode *inode;
3186         struct inode_security_struct *isec;
3187
3188         inode = file->f_path.dentry->d_inode;
3189         fsec = file->f_security;
3190         isec = inode->i_security;
3191         /*
3192          * Save inode label and policy sequence number
3193          * at open-time so that selinux_file_permission
3194          * can determine whether revalidation is necessary.
3195          * Task label is already saved in the file security
3196          * struct as its SID.
3197          */
3198         fsec->isid = isec->sid;
3199         fsec->pseqno = avc_policy_seqno();
3200         /*
3201          * Since the inode label or policy seqno may have changed
3202          * between the selinux_inode_permission check and the saving
3203          * of state above, recheck that access is still permitted.
3204          * Otherwise, access might never be revalidated against the
3205          * new inode label or new policy.
3206          * This check is not redundant - do not remove.
3207          */
3208         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3209 }
3210
3211 /* task security operations */
3212
3213 static int selinux_task_create(unsigned long clone_flags)
3214 {
3215         return current_has_perm(current, PROCESS__FORK);
3216 }
3217
3218 /*
3219  * detach and free the LSM part of a set of credentials
3220  */
3221 static void selinux_cred_free(struct cred *cred)
3222 {
3223         struct task_security_struct *tsec = cred->security;
3224         cred->security = NULL;
3225         kfree(tsec);
3226 }
3227
3228 /*
3229  * prepare a new set of credentials for modification
3230  */
3231 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3232                                 gfp_t gfp)
3233 {
3234         const struct task_security_struct *old_tsec;
3235         struct task_security_struct *tsec;
3236
3237         old_tsec = old->security;
3238
3239         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3240         if (!tsec)
3241                 return -ENOMEM;
3242
3243         new->security = tsec;
3244         return 0;
3245 }
3246
3247 /*
3248  * set the security data for a kernel service
3249  * - all the creation contexts are set to unlabelled
3250  */
3251 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3252 {
3253         struct task_security_struct *tsec = new->security;
3254         u32 sid = current_sid();
3255         int ret;
3256
3257         ret = avc_has_perm(sid, secid,
3258                            SECCLASS_KERNEL_SERVICE,
3259                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3260                            NULL);
3261         if (ret == 0) {
3262                 tsec->sid = secid;
3263                 tsec->create_sid = 0;
3264                 tsec->keycreate_sid = 0;
3265                 tsec->sockcreate_sid = 0;
3266         }
3267         return ret;
3268 }
3269
3270 /*
3271  * set the file creation context in a security record to the same as the
3272  * objective context of the specified inode
3273  */
3274 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3275 {
3276         struct inode_security_struct *isec = inode->i_security;
3277         struct task_security_struct *tsec = new->security;
3278         u32 sid = current_sid();
3279         int ret;
3280
3281         ret = avc_has_perm(sid, isec->sid,
3282                            SECCLASS_KERNEL_SERVICE,
3283                            KERNEL_SERVICE__CREATE_FILES_AS,
3284                            NULL);
3285
3286         if (ret == 0)
3287                 tsec->create_sid = isec->sid;
3288         return 0;
3289 }
3290
3291 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3292 {
3293         /* Since setuid only affects the current process, and
3294            since the SELinux controls are not based on the Linux
3295            identity attributes, SELinux does not need to control
3296            this operation.  However, SELinux does control the use
3297            of the CAP_SETUID and CAP_SETGID capabilities using the
3298            capable hook. */
3299         return 0;
3300 }
3301
3302 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3303                                    int flags)
3304 {
3305         return secondary_ops->task_fix_setuid(new, old, flags);
3306 }
3307
3308 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3309 {
3310         /* See the comment for setuid above. */
3311         return 0;
3312 }
3313
3314 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3315 {
3316         return current_has_perm(p, PROCESS__SETPGID);
3317 }
3318
3319 static int selinux_task_getpgid(struct task_struct *p)
3320 {
3321         return current_has_perm(p, PROCESS__GETPGID);
3322 }
3323
3324 static int selinux_task_getsid(struct task_struct *p)
3325 {
3326         return current_has_perm(p, PROCESS__GETSESSION);
3327 }
3328
3329 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3330 {
3331         *secid = task_sid(p);
3332 }
3333
3334 static int selinux_task_setgroups(struct group_info *group_info)
3335 {
3336         /* See the comment for setuid above. */
3337         return 0;
3338 }
3339
3340 static int selinux_task_setnice(struct task_struct *p, int nice)
3341 {
3342         int rc;
3343
3344         rc = secondary_ops->task_setnice(p, nice);
3345         if (rc)
3346                 return rc;
3347
3348         return current_has_perm(p, PROCESS__SETSCHED);
3349 }
3350
3351 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3352 {
3353         int rc;
3354
3355         rc = secondary_ops->task_setioprio(p, ioprio);
3356         if (rc)
3357                 return rc;
3358
3359         return current_has_perm(p, PROCESS__SETSCHED);
3360 }
3361
3362 static int selinux_task_getioprio(struct task_struct *p)
3363 {
3364         return current_has_perm(p, PROCESS__GETSCHED);
3365 }
3366
3367 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3368 {
3369         struct rlimit *old_rlim = current->signal->rlim + resource;
3370
3371         /* Control the ability to change the hard limit (whether
3372            lowering or raising it), so that the hard limit can
3373            later be used as a safe reset point for the soft limit
3374            upon context transitions.  See selinux_bprm_committing_creds. */
3375         if (old_rlim->rlim_max != new_rlim->rlim_max)
3376                 return current_has_perm(current, PROCESS__SETRLIMIT);
3377
3378         return 0;
3379 }
3380
3381 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3382 {
3383         int rc;
3384
3385         rc = secondary_ops->task_setscheduler(p, policy, lp);
3386         if (rc)
3387                 return rc;
3388
3389         return current_has_perm(p, PROCESS__SETSCHED);
3390 }
3391
3392 static int selinux_task_getscheduler(struct task_struct *p)
3393 {
3394         return current_has_perm(p, PROCESS__GETSCHED);
3395 }
3396
3397 static int selinux_task_movememory(struct task_struct *p)
3398 {
3399         return current_has_perm(p, PROCESS__SETSCHED);
3400 }
3401
3402 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3403                                 int sig, u32 secid)
3404 {
3405         u32 perm;
3406         int rc;
3407
3408         rc = secondary_ops->task_kill(p, info, sig, secid);
3409         if (rc)
3410                 return rc;
3411
3412         if (!sig)
3413                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3414         else
3415                 perm = signal_to_av(sig);
3416         if (secid)
3417                 rc = avc_has_perm(secid, task_sid(p),
3418                                   SECCLASS_PROCESS, perm, NULL);
3419         else
3420                 rc = current_has_perm(p, perm);
3421         return rc;
3422 }
3423
3424 static int selinux_task_prctl(int option,
3425                               unsigned long arg2,
3426                               unsigned long arg3,
3427                               unsigned long arg4,
3428                               unsigned long arg5)
3429 {
3430         /* The current prctl operations do not appear to require
3431            any SELinux controls since they merely observe or modify
3432            the state of the current process. */
3433         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3434 }
3435
3436 static int selinux_task_wait(struct task_struct *p)
3437 {
3438         return task_has_perm(p, current, PROCESS__SIGCHLD);
3439 }
3440
3441 static void selinux_task_to_inode(struct task_struct *p,
3442                                   struct inode *inode)
3443 {
3444         struct inode_security_struct *isec = inode->i_security;
3445         u32 sid = task_sid(p);
3446
3447         isec->sid = sid;
3448         isec->initialized = 1;
3449 }
3450
3451 /* Returns error only if unable to parse addresses */
3452 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3453                         struct avc_audit_data *ad, u8 *proto)
3454 {
3455         int offset, ihlen, ret = -EINVAL;
3456         struct iphdr _iph, *ih;
3457
3458         offset = skb_network_offset(skb);
3459         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3460         if (ih == NULL)
3461                 goto out;
3462
3463         ihlen = ih->ihl * 4;
3464         if (ihlen < sizeof(_iph))
3465                 goto out;
3466
3467         ad->u.net.v4info.saddr = ih->saddr;
3468         ad->u.net.v4info.daddr = ih->daddr;
3469         ret = 0;
3470
3471         if (proto)
3472                 *proto = ih->protocol;
3473
3474         switch (ih->protocol) {
3475         case IPPROTO_TCP: {
3476                 struct tcphdr _tcph, *th;
3477
3478                 if (ntohs(ih->frag_off) & IP_OFFSET)
3479                         break;
3480
3481                 offset += ihlen;
3482                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3483                 if (th == NULL)
3484                         break;
3485
3486                 ad->u.net.sport = th->source;
3487                 ad->u.net.dport = th->dest;
3488                 break;
3489         }
3490
3491         case IPPROTO_UDP: {
3492                 struct udphdr _udph, *uh;
3493
3494                 if (ntohs(ih->frag_off) & IP_OFFSET)
3495                         break;
3496
3497                 offset += ihlen;
3498                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3499                 if (uh == NULL)
3500                         break;
3501
3502                 ad->u.net.sport = uh->source;
3503                 ad->u.net.dport = uh->dest;
3504                 break;
3505         }
3506
3507         case IPPROTO_DCCP: {
3508                 struct dccp_hdr _dccph, *dh;
3509
3510                 if (ntohs(ih->frag_off) & IP_OFFSET)
3511                         break;
3512
3513                 offset += ihlen;
3514                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3515                 if (dh == NULL)
3516                         break;
3517
3518                 ad->u.net.sport = dh->dccph_sport;
3519                 ad->u.net.dport = dh->dccph_dport;
3520                 break;
3521         }
3522
3523         default:
3524                 break;
3525         }
3526 out:
3527         return ret;
3528 }
3529
3530 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3531
3532 /* Returns error only if unable to parse addresses */
3533 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3534                         struct avc_audit_data *ad, u8 *proto)
3535 {
3536         u8 nexthdr;
3537         int ret = -EINVAL, offset;
3538         struct ipv6hdr _ipv6h, *ip6;
3539
3540         offset = skb_network_offset(skb);
3541         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3542         if (ip6 == NULL)
3543                 goto out;
3544
3545         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3546         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3547         ret = 0;
3548
3549         nexthdr = ip6->nexthdr;
3550         offset += sizeof(_ipv6h);
3551         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3552         if (offset < 0)
3553                 goto out;
3554
3555         if (proto)
3556                 *proto = nexthdr;
3557
3558         switch (nexthdr) {
3559         case IPPROTO_TCP: {
3560                 struct tcphdr _tcph, *th;
3561
3562                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3563                 if (th == NULL)
3564                         break;
3565
3566                 ad->u.net.sport = th->source;
3567                 ad->u.net.dport = th->dest;
3568                 break;
3569         }
3570
3571         case IPPROTO_UDP: {
3572                 struct udphdr _udph, *uh;
3573
3574                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3575                 if (uh == NULL)
3576                         break;
3577
3578                 ad->u.net.sport = uh->source;
3579                 ad->u.net.dport = uh->dest;
3580                 break;
3581         }
3582
3583         case IPPROTO_DCCP: {
3584                 struct dccp_hdr _dccph, *dh;
3585
3586                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3587                 if (dh == NULL)
3588                         break;
3589
3590                 ad->u.net.sport = dh->dccph_sport;
3591                 ad->u.net.dport = dh->dccph_dport;
3592                 break;
3593         }
3594
3595         /* includes fragments */
3596         default:
3597                 break;
3598         }
3599 out:
3600         return ret;
3601 }
3602
3603 #endif /* IPV6 */
3604
3605 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3606                              char **_addrp, int src, u8 *proto)
3607 {
3608         char *addrp;
3609         int ret;
3610
3611         switch (ad->u.net.family) {
3612         case PF_INET:
3613                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3614                 if (ret)
3615                         goto parse_error;
3616                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3617                                        &ad->u.net.v4info.daddr);
3618                 goto okay;
3619
3620 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3621         case PF_INET6:
3622                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3623                 if (ret)
3624                         goto parse_error;
3625                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3626                                        &ad->u.net.v6info.daddr);
3627                 goto okay;
3628 #endif  /* IPV6 */
3629         default:
3630                 addrp = NULL;
3631                 goto okay;
3632         }
3633
3634 parse_error:
3635         printk(KERN_WARNING
3636                "SELinux: failure in selinux_parse_skb(),"
3637                " unable to parse packet\n");
3638         return ret;
3639
3640 okay:
3641         if (_addrp)
3642                 *_addrp = addrp;
3643         return 0;
3644 }
3645
3646 /**
3647  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3648  * @skb: the packet
3649  * @family: protocol family
3650  * @sid: the packet's peer label SID
3651  *
3652  * Description:
3653  * Check the various different forms of network peer labeling and determine
3654  * the peer label/SID for the packet; most of the magic actually occurs in
3655  * the security server function security_net_peersid_cmp().  The function
3656  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3657  * or -EACCES if @sid is invalid due to inconsistencies with the different
3658  * peer labels.
3659  *
3660  */
3661 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3662 {
3663         int err;
3664         u32 xfrm_sid;
3665         u32 nlbl_sid;
3666         u32 nlbl_type;
3667
3668         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3669         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3670
3671         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3672         if (unlikely(err)) {
3673                 printk(KERN_WARNING
3674                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3675                        " unable to determine packet's peer label\n");
3676                 return -EACCES;
3677         }
3678
3679         return 0;
3680 }
3681
3682 /* socket security operations */
3683 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3684                            u32 perms)
3685 {
3686         struct inode_security_struct *isec;
3687         struct avc_audit_data ad;
3688         u32 sid;
3689         int err = 0;
3690
3691         isec = SOCK_INODE(sock)->i_security;
3692
3693         if (isec->sid == SECINITSID_KERNEL)
3694                 goto out;
3695         sid = task_sid(task);
3696
3697         AVC_AUDIT_DATA_INIT(&ad, NET);
3698         ad.u.net.sk = sock->sk;
3699         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3700
3701 out:
3702         return err;
3703 }
3704
3705 static int selinux_socket_create(int family, int type,
3706                                  int protocol, int kern)
3707 {
3708         const struct cred *cred = current_cred();
3709         const struct task_security_struct *tsec = cred->security;
3710         u32 sid, newsid;
3711         u16 secclass;
3712         int err = 0;
3713
3714         if (kern)
3715                 goto out;
3716
3717         sid = tsec->sid;
3718         newsid = tsec->sockcreate_sid ?: sid;
3719
3720         secclass = socket_type_to_security_class(family, type, protocol);
3721         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3722
3723 out:
3724         return err;
3725 }
3726
3727 static int selinux_socket_post_create(struct socket *sock, int family,
3728                                       int type, int protocol, int kern)
3729 {
3730         const struct cred *cred = current_cred();
3731         const struct task_security_struct *tsec = cred->security;
3732         struct inode_security_struct *isec;
3733         struct sk_security_struct *sksec;
3734         u32 sid, newsid;
3735         int err = 0;
3736
3737         sid = tsec->sid;
3738         newsid = tsec->sockcreate_sid;
3739
3740         isec = SOCK_INODE(sock)->i_security;
3741
3742         if (kern)
3743                 isec->sid = SECINITSID_KERNEL;
3744         else if (newsid)
3745                 isec->sid = newsid;
3746         else
3747                 isec->sid = sid;
3748
3749         isec->sclass = socket_type_to_security_class(family, type, protocol);
3750         isec->initialized = 1;
3751
3752         if (sock->sk) {
3753                 sksec = sock->sk->sk_security;
3754                 sksec->sid = isec->sid;
3755                 sksec->sclass = isec->sclass;
3756                 err = selinux_netlbl_socket_post_create(sock);
3757         }
3758
3759         return err;
3760 }
3761
3762 /* Range of port numbers used to automatically bind.
3763    Need to determine whether we should perform a name_bind
3764    permission check between the socket and the port number. */
3765
3766 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3767 {
3768         u16 family;
3769         int err;
3770
3771         err = socket_has_perm(current, sock, SOCKET__BIND);
3772         if (err)
3773                 goto out;
3774
3775         /*
3776          * If PF_INET or PF_INET6, check name_bind permission for the port.
3777          * Multiple address binding for SCTP is not supported yet: we just
3778          * check the first address now.
3779          */
3780         family = sock->sk->sk_family;
3781         if (family == PF_INET || family == PF_INET6) {
3782                 char *addrp;
3783                 struct inode_security_struct *isec;
3784                 struct avc_audit_data ad;
3785                 struct sockaddr_in *addr4 = NULL;
3786                 struct sockaddr_in6 *addr6 = NULL;
3787                 unsigned short snum;
3788                 struct sock *sk = sock->sk;
3789                 u32 sid, node_perm;
3790
3791                 isec = SOCK_INODE(sock)->i_security;
3792
3793                 if (family == PF_INET) {
3794                         addr4 = (struct sockaddr_in *)address;
3795                         snum = ntohs(addr4->sin_port);
3796                         addrp = (char *)&addr4->sin_addr.s_addr;
3797                 } else {
3798                         addr6 = (struct sockaddr_in6 *)address;
3799                         snum = ntohs(addr6->sin6_port);
3800                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3801                 }
3802
3803                 if (snum) {
3804                         int low, high;
3805
3806                         inet_get_local_port_range(&low, &high);
3807
3808                         if (snum < max(PROT_SOCK, low) || snum > high) {
3809                                 err = sel_netport_sid(sk->sk_protocol,
3810                                                       snum, &sid);
3811                                 if (err)
3812                                         goto out;
3813                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3814                                 ad.u.net.sport = htons(snum);
3815                                 ad.u.net.family = family;
3816                                 err = avc_has_perm(isec->sid, sid,
3817                                                    isec->sclass,
3818                                                    SOCKET__NAME_BIND, &ad);
3819                                 if (err)
3820                                         goto out;
3821                         }
3822                 }
3823
3824                 switch (isec->sclass) {
3825                 case SECCLASS_TCP_SOCKET:
3826                         node_perm = TCP_SOCKET__NODE_BIND;
3827                         break;
3828
3829                 case SECCLASS_UDP_SOCKET:
3830                         node_perm = UDP_SOCKET__NODE_BIND;
3831                         break;
3832
3833                 case SECCLASS_DCCP_SOCKET:
3834                         node_perm = DCCP_SOCKET__NODE_BIND;
3835                         break;
3836
3837                 default:
3838                         node_perm = RAWIP_SOCKET__NODE_BIND;
3839                         break;
3840                 }
3841
3842                 err = sel_netnode_sid(addrp, family, &sid);
3843                 if (err)
3844                         goto out;
3845
3846                 AVC_AUDIT_DATA_INIT(&ad, NET);
3847                 ad.u.net.sport = htons(snum);
3848                 ad.u.net.family = family;
3849
3850                 if (family == PF_INET)
3851                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3852                 else
3853                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3854
3855                 err = avc_has_perm(isec->sid, sid,
3856                                    isec->sclass, node_perm, &ad);
3857                 if (err)
3858                         goto out;
3859         }
3860 out:
3861         return err;
3862 }
3863
3864 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3865 {
3866         struct sock *sk = sock->sk;
3867         struct inode_security_struct *isec;
3868         int err;
3869
3870         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3871         if (err)
3872                 return err;
3873
3874         /*
3875          * If a TCP or DCCP socket, check name_connect permission for the port.
3876          */
3877         isec = SOCK_INODE(sock)->i_security;
3878         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3879             isec->sclass == SECCLASS_DCCP_SOCKET) {
3880                 struct avc_audit_data ad;
3881                 struct sockaddr_in *addr4 = NULL;
3882                 struct sockaddr_in6 *addr6 = NULL;
3883                 unsigned short snum;
3884                 u32 sid, perm;
3885
3886                 if (sk->sk_family == PF_INET) {
3887                         addr4 = (struct sockaddr_in *)address;
3888                         if (addrlen < sizeof(struct sockaddr_in))
3889                                 return -EINVAL;
3890                         snum = ntohs(addr4->sin_port);
3891                 } else {
3892                         addr6 = (struct sockaddr_in6 *)address;
3893                         if (addrlen < SIN6_LEN_RFC2133)
3894                                 return -EINVAL;
3895                         snum = ntohs(addr6->sin6_port);
3896                 }
3897
3898                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3899                 if (err)
3900                         goto out;
3901
3902                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3903                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3904
3905                 AVC_AUDIT_DATA_INIT(&ad, NET);
3906                 ad.u.net.dport = htons(snum);
3907                 ad.u.net.family = sk->sk_family;
3908                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3909                 if (err)
3910                         goto out;
3911         }
3912
3913         err = selinux_netlbl_socket_connect(sk, address);
3914
3915 out:
3916         return err;
3917 }
3918
3919 static int selinux_socket_listen(struct socket *sock, int backlog)
3920 {
3921         return socket_has_perm(current, sock, SOCKET__LISTEN);
3922 }
3923
3924 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3925 {
3926         int err;
3927         struct inode_security_struct *isec;
3928         struct inode_security_struct *newisec;
3929
3930         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3931         if (err)
3932                 return err;
3933
3934         newisec = SOCK_INODE(newsock)->i_security;
3935
3936         isec = SOCK_INODE(sock)->i_security;
3937         newisec->sclass = isec->sclass;
3938         newisec->sid = isec->sid;
3939         newisec->initialized = 1;
3940
3941         return 0;
3942 }
3943
3944 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3945                                   int size)
3946 {
3947         int rc;
3948
3949         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3950         if (rc)
3951                 return rc;
3952
3953         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3954 }
3955
3956 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3957                                   int size, int flags)
3958 {
3959         return socket_has_perm(current, sock, SOCKET__READ);
3960 }
3961
3962 static int selinux_socket_getsockname(struct socket *sock)
3963 {
3964         return socket_has_perm(current, sock, SOCKET__GETATTR);
3965 }
3966
3967 static int selinux_socket_getpeername(struct socket *sock)
3968 {
3969         return socket_has_perm(current, sock, SOCKET__GETATTR);
3970 }
3971
3972 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3973 {
3974         int err;
3975
3976         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3977         if (err)
3978                 return err;
3979
3980         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3981 }
3982
3983 static int selinux_socket_getsockopt(struct socket *sock, int level,
3984                                      int optname)
3985 {
3986         return socket_has_perm(current, sock, SOCKET__GETOPT);
3987 }
3988
3989 static int selinux_socket_shutdown(struct socket *sock, int how)
3990 {
3991         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3992 }
3993
3994 static int selinux_socket_unix_stream_connect(struct socket *sock,
3995                                               struct socket *other,
3996                                               struct sock *newsk)
3997 {
3998         struct sk_security_struct *ssec;
3999         struct inode_security_struct *isec;
4000         struct inode_security_struct *other_isec;
4001         struct avc_audit_data ad;
4002         int err;
4003
4004         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4005         if (err)
4006                 return err;
4007
4008         isec = SOCK_INODE(sock)->i_security;
4009         other_isec = SOCK_INODE(other)->i_security;
4010
4011         AVC_AUDIT_DATA_INIT(&ad, NET);
4012         ad.u.net.sk = other->sk;
4013
4014         err = avc_has_perm(isec->sid, other_isec->sid,
4015                            isec->sclass,
4016                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4017         if (err)
4018                 return err;
4019
4020         /* connecting socket */
4021         ssec = sock->sk->sk_security;
4022         ssec->peer_sid = other_isec->sid;
4023
4024         /* server child socket */
4025         ssec = newsk->sk_security;
4026         ssec->peer_sid = isec->sid;
4027         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4028
4029         return err;
4030 }
4031
4032 static int selinux_socket_unix_may_send(struct socket *sock,
4033                                         struct socket *other)
4034 {
4035         struct inode_security_struct *isec;
4036         struct inode_security_struct *other_isec;
4037         struct avc_audit_data ad;
4038         int err;
4039
4040         isec = SOCK_INODE(sock)->i_security;
4041         other_isec = SOCK_INODE(other)->i_security;
4042
4043         AVC_AUDIT_DATA_INIT(&ad, NET);
4044         ad.u.net.sk = other->sk;
4045
4046         err = avc_has_perm(isec->sid, other_isec->sid,
4047                            isec->sclass, SOCKET__SENDTO, &ad);
4048         if (err)
4049                 return err;
4050
4051         return 0;
4052 }
4053
4054 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4055                                     u32 peer_sid,
4056                                     struct avc_audit_data *ad)
4057 {
4058         int err;
4059         u32 if_sid;
4060         u32 node_sid;
4061
4062         err = sel_netif_sid(ifindex, &if_sid);
4063         if (err)
4064                 return err;
4065         err = avc_has_perm(peer_sid, if_sid,
4066                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4067         if (err)
4068                 return err;
4069
4070         err = sel_netnode_sid(addrp, family, &node_sid);
4071         if (err)
4072                 return err;
4073         return avc_has_perm(peer_sid, node_sid,
4074                             SECCLASS_NODE, NODE__RECVFROM, ad);
4075 }
4076
4077 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4078                                                 struct sk_buff *skb,
4079                                                 struct avc_audit_data *ad,
4080                                                 u16 family,
4081                                                 char *addrp)
4082 {
4083         int err;
4084         struct sk_security_struct *sksec = sk->sk_security;
4085         u16 sk_class;
4086         u32 netif_perm, node_perm, recv_perm;
4087         u32 port_sid, node_sid, if_sid, sk_sid;
4088
4089         sk_sid = sksec->sid;
4090         sk_class = sksec->sclass;
4091
4092         switch (sk_class) {
4093         case SECCLASS_UDP_SOCKET:
4094                 netif_perm = NETIF__UDP_RECV;
4095                 node_perm = NODE__UDP_RECV;
4096                 recv_perm = UDP_SOCKET__RECV_MSG;
4097                 break;
4098         case SECCLASS_TCP_SOCKET:
4099                 netif_perm = NETIF__TCP_RECV;
4100                 node_perm = NODE__TCP_RECV;
4101                 recv_perm = TCP_SOCKET__RECV_MSG;
4102                 break;
4103         case SECCLASS_DCCP_SOCKET:
4104                 netif_perm = NETIF__DCCP_RECV;
4105                 node_perm = NODE__DCCP_RECV;
4106                 recv_perm = DCCP_SOCKET__RECV_MSG;
4107                 break;
4108         default:
4109                 netif_perm = NETIF__RAWIP_RECV;
4110                 node_perm = NODE__RAWIP_RECV;
4111                 recv_perm = 0;
4112                 break;
4113         }
4114
4115         err = sel_netif_sid(skb->iif, &if_sid);
4116         if (err)
4117                 return err;
4118         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4119         if (err)
4120                 return err;
4121
4122         err = sel_netnode_sid(addrp, family, &node_sid);
4123         if (err)
4124                 return err;
4125         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4126         if (err)
4127                 return err;
4128
4129         if (!recv_perm)
4130                 return 0;
4131         err = sel_netport_sid(sk->sk_protocol,
4132                               ntohs(ad->u.net.sport), &port_sid);
4133         if (unlikely(err)) {
4134                 printk(KERN_WARNING
4135                        "SELinux: failure in"
4136                        " selinux_sock_rcv_skb_iptables_compat(),"
4137                        " network port label not found\n");
4138                 return err;
4139         }
4140         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4141 }
4142
4143 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4144                                        u16 family)
4145 {
4146         int err = 0;
4147         struct sk_security_struct *sksec = sk->sk_security;
4148         u32 peer_sid;
4149         u32 sk_sid = sksec->sid;
4150         struct avc_audit_data ad;
4151         char *addrp;
4152
4153         AVC_AUDIT_DATA_INIT(&ad, NET);
4154         ad.u.net.netif = skb->iif;
4155         ad.u.net.family = family;
4156         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4157         if (err)
4158                 return err;
4159
4160         if (selinux_compat_net)
4161                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4162                                                            family, addrp);
4163         else if (selinux_secmark_enabled())
4164                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4165                                    PACKET__RECV, &ad);
4166         if (err)
4167                 return err;
4168
4169         if (selinux_policycap_netpeer) {
4170                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4171                 if (err)
4172                         return err;
4173                 err = avc_has_perm(sk_sid, peer_sid,
4174                                    SECCLASS_PEER, PEER__RECV, &ad);
4175                 if (err)
4176                         selinux_netlbl_err(skb, err, 0);
4177         } else {
4178                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4179                 if (err)
4180                         return err;
4181                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4182         }
4183
4184         return err;
4185 }
4186
4187 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4188 {
4189         int err;
4190         struct sk_security_struct *sksec = sk->sk_security;
4191         u16 family = sk->sk_family;
4192         u32 sk_sid = sksec->sid;
4193         struct avc_audit_data ad;
4194         char *addrp;
4195         u8 secmark_active;
4196         u8 peerlbl_active;
4197
4198         if (family != PF_INET && family != PF_INET6)
4199                 return 0;
4200
4201         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4202         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4203                 family = PF_INET;
4204
4205         /* If any sort of compatibility mode is enabled then handoff processing
4206          * to the selinux_sock_rcv_skb_compat() function to deal with the
4207          * special handling.  We do this in an attempt to keep this function
4208          * as fast and as clean as possible. */
4209         if (selinux_compat_net || !selinux_policycap_netpeer)
4210                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4211
4212         secmark_active = selinux_secmark_enabled();
4213         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4214         if (!secmark_active && !peerlbl_active)
4215                 return 0;
4216
4217         AVC_AUDIT_DATA_INIT(&ad, NET);
4218         ad.u.net.netif = skb->iif;
4219         ad.u.net.family = family;
4220         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4221         if (err)
4222                 return err;
4223
4224         if (peerlbl_active) {
4225                 u32 peer_sid;
4226
4227                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4228                 if (err)
4229                         return err;
4230                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4231                                                peer_sid, &ad);
4232                 if (err) {
4233                         selinux_netlbl_err(skb, err, 0);
4234                         return err;
4235                 }
4236                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4237                                    PEER__RECV, &ad);
4238                 if (err)
4239                         selinux_netlbl_err(skb, err, 0);
4240         }
4241
4242         if (secmark_active) {
4243                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4244                                    PACKET__RECV, &ad);
4245                 if (err)
4246                         return err;
4247         }
4248
4249         return err;
4250 }
4251
4252 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4253                                             int __user *optlen, unsigned len)
4254 {
4255         int err = 0;
4256         char *scontext;
4257         u32 scontext_len;
4258         struct sk_security_struct *ssec;
4259         struct inode_security_struct *isec;
4260         u32 peer_sid = SECSID_NULL;
4261
4262         isec = SOCK_INODE(sock)->i_security;
4263
4264         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4265             isec->sclass == SECCLASS_TCP_SOCKET) {
4266                 ssec = sock->sk->sk_security;
4267                 peer_sid = ssec->peer_sid;
4268         }
4269         if (peer_sid == SECSID_NULL) {
4270                 err = -ENOPROTOOPT;
4271                 goto out;
4272         }
4273
4274         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4275
4276         if (err)
4277                 goto out;
4278
4279         if (scontext_len > len) {
4280                 err = -ERANGE;
4281                 goto out_len;
4282         }
4283
4284         if (copy_to_user(optval, scontext, scontext_len))
4285                 err = -EFAULT;
4286
4287 out_len:
4288         if (put_user(scontext_len, optlen))
4289                 err = -EFAULT;
4290
4291         kfree(scontext);
4292 out:
4293         return err;
4294 }
4295
4296 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4297 {
4298         u32 peer_secid = SECSID_NULL;
4299         u16 family;
4300
4301         if (skb && skb->protocol == htons(ETH_P_IP))
4302                 family = PF_INET;
4303         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4304                 family = PF_INET6;
4305         else if (sock)
4306                 family = sock->sk->sk_family;
4307         else
4308                 goto out;
4309
4310         if (sock && family == PF_UNIX)
4311                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4312         else if (skb)
4313                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4314
4315 out:
4316         *secid = peer_secid;
4317         if (peer_secid == SECSID_NULL)
4318                 return -EINVAL;
4319         return 0;
4320 }
4321
4322 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4323 {
4324         return sk_alloc_security(sk, family, priority);
4325 }
4326
4327 static void selinux_sk_free_security(struct sock *sk)
4328 {
4329         sk_free_security(sk);
4330 }
4331
4332 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4333 {
4334         struct sk_security_struct *ssec = sk->sk_security;
4335         struct sk_security_struct *newssec = newsk->sk_security;
4336
4337         newssec->sid = ssec->sid;
4338         newssec->peer_sid = ssec->peer_sid;
4339         newssec->sclass = ssec->sclass;
4340
4341         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4342 }
4343
4344 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4345 {
4346         if (!sk)
4347                 *secid = SECINITSID_ANY_SOCKET;
4348         else {
4349                 struct sk_security_struct *sksec = sk->sk_security;
4350
4351                 *secid = sksec->sid;
4352         }
4353 }
4354
4355 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4356 {
4357         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4358         struct sk_security_struct *sksec = sk->sk_security;
4359
4360         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4361             sk->sk_family == PF_UNIX)
4362                 isec->sid = sksec->sid;
4363         sksec->sclass = isec->sclass;
4364 }
4365
4366 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4367                                      struct request_sock *req)
4368 {
4369         struct sk_security_struct *sksec = sk->sk_security;
4370         int err;
4371         u16 family = sk->sk_family;
4372         u32 newsid;
4373         u32 peersid;
4374
4375         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4376         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4377                 family = PF_INET;
4378
4379         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4380         if (err)
4381                 return err;
4382         if (peersid == SECSID_NULL) {
4383                 req->secid = sksec->sid;
4384                 req->peer_secid = SECSID_NULL;
4385                 return 0;
4386         }
4387
4388         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4389         if (err)
4390                 return err;
4391
4392         req->secid = newsid;
4393         req->peer_secid = peersid;
4394         return 0;
4395 }
4396
4397 static void selinux_inet_csk_clone(struct sock *newsk,
4398                                    const struct request_sock *req)
4399 {
4400         struct sk_security_struct *newsksec = newsk->sk_security;
4401
4402         newsksec->sid = req->secid;
4403         newsksec->peer_sid = req->peer_secid;
4404         /* NOTE: Ideally, we should also get the isec->sid for the
4405            new socket in sync, but we don't have the isec available yet.
4406            So we will wait until sock_graft to do it, by which
4407            time it will have been created and available. */
4408
4409         /* We don't need to take any sort of lock here as we are the only
4410          * thread with access to newsksec */
4411         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4412 }
4413
4414 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4415 {
4416         u16 family = sk->sk_family;
4417         struct sk_security_struct *sksec = sk->sk_security;
4418
4419         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4420         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4421                 family = PF_INET;
4422
4423         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4424
4425         selinux_netlbl_inet_conn_established(sk, family);
4426 }
4427
4428 static void selinux_req_classify_flow(const struct request_sock *req,
4429                                       struct flowi *fl)
4430 {
4431         fl->secid = req->secid;
4432 }
4433
4434 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4435 {
4436         int err = 0;
4437         u32 perm;
4438         struct nlmsghdr *nlh;
4439         struct socket *sock = sk->sk_socket;
4440         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4441
4442         if (skb->len < NLMSG_SPACE(0)) {
4443                 err = -EINVAL;
4444                 goto out;
4445         }
4446         nlh = nlmsg_hdr(skb);
4447
4448         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4449         if (err) {
4450                 if (err == -EINVAL) {
4451                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4452                                   "SELinux:  unrecognized netlink message"
4453                                   " type=%hu for sclass=%hu\n",
4454                                   nlh->nlmsg_type, isec->sclass);
4455                         if (!selinux_enforcing || security_get_allow_unknown())
4456                                 err = 0;
4457                 }
4458
4459                 /* Ignore */
4460                 if (err == -ENOENT)
4461                         err = 0;
4462                 goto out;
4463         }
4464
4465         err = socket_has_perm(current, sock, perm);
4466 out:
4467         return err;
4468 }
4469
4470 #ifdef CONFIG_NETFILTER
4471
4472 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4473                                        u16 family)
4474 {
4475         int err;
4476         char *addrp;
4477         u32 peer_sid;
4478         struct avc_audit_data ad;
4479         u8 secmark_active;
4480         u8 netlbl_active;
4481         u8 peerlbl_active;
4482
4483         if (!selinux_policycap_netpeer)
4484                 return NF_ACCEPT;
4485
4486         secmark_active = selinux_secmark_enabled();
4487         netlbl_active = netlbl_enabled();
4488         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4489         if (!secmark_active && !peerlbl_active)
4490                 return NF_ACCEPT;
4491
4492         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4493                 return NF_DROP;
4494
4495         AVC_AUDIT_DATA_INIT(&ad, NET);
4496         ad.u.net.netif = ifindex;
4497         ad.u.net.family = family;
4498         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4499                 return NF_DROP;
4500
4501         if (peerlbl_active) {
4502                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4503                                                peer_sid, &ad);
4504                 if (err) {
4505                         selinux_netlbl_err(skb, err, 1);
4506                         return NF_DROP;
4507                 }
4508         }
4509
4510         if (secmark_active)
4511                 if (avc_has_perm(peer_sid, skb->secmark,
4512                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4513                         return NF_DROP;
4514
4515         if (netlbl_active)
4516                 /* we do this in the FORWARD path and not the POST_ROUTING
4517                  * path because we want to make sure we apply the necessary
4518                  * labeling before IPsec is applied so we can leverage AH
4519                  * protection */
4520                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4521                         return NF_DROP;
4522
4523         return NF_ACCEPT;
4524 }
4525
4526 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4527                                          struct sk_buff *skb,
4528                                          const struct net_device *in,
4529                                          const struct net_device *out,
4530                                          int (*okfn)(struct sk_buff *))
4531 {
4532         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4533 }
4534
4535 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4536 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4537                                          struct sk_buff *skb,
4538                                          const struct net_device *in,
4539                                          const struct net_device *out,
4540                                          int (*okfn)(struct sk_buff *))
4541 {
4542         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4543 }
4544 #endif  /* IPV6 */
4545
4546 static unsigned int selinux_ip_output(struct sk_buff *skb,
4547                                       u16 family)
4548 {
4549         u32 sid;
4550
4551         if (!netlbl_enabled())
4552                 return NF_ACCEPT;
4553
4554         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4555          * because we want to make sure we apply the necessary labeling
4556          * before IPsec is applied so we can leverage AH protection */
4557         if (skb->sk) {
4558                 struct sk_security_struct *sksec = skb->sk->sk_security;
4559                 sid = sksec->sid;
4560         } else
4561                 sid = SECINITSID_KERNEL;
4562         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4563                 return NF_DROP;
4564
4565         return NF_ACCEPT;
4566 }
4567
4568 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4569                                         struct sk_buff *skb,
4570                                         const struct net_device *in,
4571                                         const struct net_device *out,
4572                                         int (*okfn)(struct sk_buff *))
4573 {
4574         return selinux_ip_output(skb, PF_INET);
4575 }
4576
4577 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4578                                                 int ifindex,
4579                                                 struct avc_audit_data *ad,
4580                                                 u16 family, char *addrp)
4581 {
4582         int err;
4583         struct sk_security_struct *sksec = sk->sk_security;
4584         u16 sk_class;
4585         u32 netif_perm, node_perm, send_perm;
4586         u32 port_sid, node_sid, if_sid, sk_sid;
4587
4588         sk_sid = sksec->sid;
4589         sk_class = sksec->sclass;
4590
4591         switch (sk_class) {
4592         case SECCLASS_UDP_SOCKET:
4593                 netif_perm = NETIF__UDP_SEND;
4594                 node_perm = NODE__UDP_SEND;
4595                 send_perm = UDP_SOCKET__SEND_MSG;
4596                 break;
4597         case SECCLASS_TCP_SOCKET:
4598                 netif_perm = NETIF__TCP_SEND;
4599                 node_perm = NODE__TCP_SEND;
4600                 send_perm = TCP_SOCKET__SEND_MSG;
4601                 break;
4602         case SECCLASS_DCCP_SOCKET:
4603                 netif_perm = NETIF__DCCP_SEND;
4604                 node_perm = NODE__DCCP_SEND;
4605                 send_perm = DCCP_SOCKET__SEND_MSG;
4606                 break;
4607         default:
4608                 netif_perm = NETIF__RAWIP_SEND;
4609                 node_perm = NODE__RAWIP_SEND;
4610                 send_perm = 0;
4611                 break;
4612         }
4613
4614         err = sel_netif_sid(ifindex, &if_sid);
4615         if (err)
4616                 return err;
4617         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4618                 return err;
4619
4620         err = sel_netnode_sid(addrp, family, &node_sid);
4621         if (err)
4622                 return err;
4623         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4624         if (err)
4625                 return err;
4626
4627         if (send_perm != 0)
4628                 return 0;
4629
4630         err = sel_netport_sid(sk->sk_protocol,
4631                               ntohs(ad->u.net.dport), &port_sid);
4632         if (unlikely(err)) {
4633                 printk(KERN_WARNING
4634                        "SELinux: failure in"
4635                        " selinux_ip_postroute_iptables_compat(),"
4636                        " network port label not found\n");
4637                 return err;
4638         }
4639         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4640 }
4641
4642 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4643                                                 int ifindex,
4644                                                 u16 family)
4645 {
4646         struct sock *sk = skb->sk;
4647         struct sk_security_struct *sksec;
4648         struct avc_audit_data ad;
4649         char *addrp;
4650         u8 proto;
4651
4652         if (sk == NULL)
4653                 return NF_ACCEPT;
4654         sksec = sk->sk_security;
4655
4656         AVC_AUDIT_DATA_INIT(&ad, NET);
4657         ad.u.net.netif = ifindex;
4658         ad.u.net.family = family;
4659         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4660                 return NF_DROP;
4661
4662         if (selinux_compat_net) {
4663                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4664                                                          &ad, family, addrp))
4665                         return NF_DROP;
4666         } else if (selinux_secmark_enabled()) {
4667                 if (avc_has_perm(sksec->sid, skb->secmark,
4668                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4669                         return NF_DROP;
4670         }
4671
4672         if (selinux_policycap_netpeer)
4673                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4674                         return NF_DROP;
4675
4676         return NF_ACCEPT;
4677 }
4678
4679 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4680                                          u16 family)
4681 {
4682         u32 secmark_perm;
4683         u32 peer_sid;
4684         struct sock *sk;
4685         struct avc_audit_data ad;
4686         char *addrp;
4687         u8 secmark_active;
4688         u8 peerlbl_active;
4689
4690         /* If any sort of compatibility mode is enabled then handoff processing
4691          * to the selinux_ip_postroute_compat() function to deal with the
4692          * special handling.  We do this in an attempt to keep this function
4693          * as fast and as clean as possible. */
4694         if (selinux_compat_net || !selinux_policycap_netpeer)
4695                 return selinux_ip_postroute_compat(skb, ifindex, family);
4696 #ifdef CONFIG_XFRM
4697         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4698          * packet transformation so allow the packet to pass without any checks
4699          * since we'll have another chance to perform access control checks
4700          * when the packet is on it's final way out.
4701          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4702          *       is NULL, in this case go ahead and apply access control. */
4703         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4704                 return NF_ACCEPT;
4705 #endif
4706         secmark_active = selinux_secmark_enabled();
4707         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4708         if (!secmark_active && !peerlbl_active)
4709                 return NF_ACCEPT;
4710
4711         /* if the packet is being forwarded then get the peer label from the
4712          * packet itself; otherwise check to see if it is from a local
4713          * application or the kernel, if from an application get the peer label
4714          * from the sending socket, otherwise use the kernel's sid */
4715         sk = skb->sk;
4716         if (sk == NULL) {
4717                 switch (family) {
4718                 case PF_INET:
4719                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4720                                 secmark_perm = PACKET__FORWARD_OUT;
4721                         else
4722                                 secmark_perm = PACKET__SEND;
4723                         break;
4724                 case PF_INET6:
4725                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4726                                 secmark_perm = PACKET__FORWARD_OUT;
4727                         else
4728                                 secmark_perm = PACKET__SEND;
4729                         break;
4730                 default:
4731                         return NF_DROP;
4732                 }
4733                 if (secmark_perm == PACKET__FORWARD_OUT) {
4734                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4735                                 return NF_DROP;
4736                 } else
4737                         peer_sid = SECINITSID_KERNEL;
4738         } else {
4739                 struct sk_security_struct *sksec = sk->sk_security;
4740                 peer_sid = sksec->sid;
4741                 secmark_perm = PACKET__SEND;
4742         }
4743
4744         AVC_AUDIT_DATA_INIT(&ad, NET);
4745         ad.u.net.netif = ifindex;
4746         ad.u.net.family = family;
4747         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4748                 return NF_DROP;
4749
4750         if (secmark_active)
4751                 if (avc_has_perm(peer_sid, skb->secmark,
4752                                  SECCLASS_PACKET, secmark_perm, &ad))
4753                         return NF_DROP;
4754
4755         if (peerlbl_active) {
4756                 u32 if_sid;
4757                 u32 node_sid;
4758
4759                 if (sel_netif_sid(ifindex, &if_sid))
4760                         return NF_DROP;
4761                 if (avc_has_perm(peer_sid, if_sid,
4762                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4763                         return NF_DROP;
4764
4765                 if (sel_netnode_sid(addrp, family, &node_sid))
4766                         return NF_DROP;
4767                 if (avc_has_perm(peer_sid, node_sid,
4768                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4769                         return NF_DROP;
4770         }
4771
4772         return NF_ACCEPT;
4773 }
4774
4775 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4776                                            struct sk_buff *skb,
4777                                            const struct net_device *in,
4778                                            const struct net_device *out,
4779                                            int (*okfn)(struct sk_buff *))
4780 {
4781         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4782 }
4783
4784 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4785 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4786                                            struct sk_buff *skb,
4787                                            const struct net_device *in,
4788                                            const struct net_device *out,
4789                                            int (*okfn)(struct sk_buff *))
4790 {
4791         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4792 }
4793 #endif  /* IPV6 */
4794
4795 #endif  /* CONFIG_NETFILTER */
4796
4797 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4798 {
4799         int err;
4800
4801         err = secondary_ops->netlink_send(sk, skb);
4802         if (err)
4803                 return err;
4804
4805         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4806                 err = selinux_nlmsg_perm(sk, skb);
4807
4808         return err;
4809 }
4810
4811 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4812 {
4813         int err;
4814         struct avc_audit_data ad;
4815
4816         err = secondary_ops->netlink_recv(skb, capability);
4817         if (err)
4818                 return err;
4819
4820         AVC_AUDIT_DATA_INIT(&ad, CAP);
4821         ad.u.cap = capability;
4822
4823         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4824                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4825 }
4826
4827 static int ipc_alloc_security(struct task_struct *task,
4828                               struct kern_ipc_perm *perm,
4829                               u16 sclass)
4830 {
4831         struct ipc_security_struct *isec;
4832         u32 sid;
4833
4834         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4835         if (!isec)
4836                 return -ENOMEM;
4837
4838         sid = task_sid(task);
4839         isec->sclass = sclass;
4840         isec->sid = sid;
4841         perm->security = isec;
4842
4843         return 0;
4844 }
4845
4846 static void ipc_free_security(struct kern_ipc_perm *perm)
4847 {
4848         struct ipc_security_struct *isec = perm->security;
4849         perm->security = NULL;
4850         kfree(isec);
4851 }
4852
4853 static int msg_msg_alloc_security(struct msg_msg *msg)
4854 {
4855         struct msg_security_struct *msec;
4856
4857         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4858         if (!msec)
4859                 return -ENOMEM;
4860
4861         msec->sid = SECINITSID_UNLABELED;
4862         msg->security = msec;
4863
4864         return 0;
4865 }
4866
4867 static void msg_msg_free_security(struct msg_msg *msg)
4868 {
4869         struct msg_security_struct *msec = msg->security;
4870
4871         msg->security = NULL;
4872         kfree(msec);
4873 }
4874
4875 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4876                         u32 perms)
4877 {
4878         struct ipc_security_struct *isec;
4879         struct avc_audit_data ad;
4880         u32 sid = current_sid();
4881
4882         isec = ipc_perms->security;
4883
4884         AVC_AUDIT_DATA_INIT(&ad, IPC);
4885         ad.u.ipc_id = ipc_perms->key;
4886
4887         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4888 }
4889
4890 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4891 {
4892         return msg_msg_alloc_security(msg);
4893 }
4894
4895 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4896 {
4897         msg_msg_free_security(msg);
4898 }
4899
4900 /* message queue security operations */
4901 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4902 {
4903         struct ipc_security_struct *isec;
4904         struct avc_audit_data ad;
4905         u32 sid = current_sid();
4906         int rc;
4907
4908         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4909         if (rc)
4910                 return rc;
4911
4912         isec = msq->q_perm.security;
4913
4914         AVC_AUDIT_DATA_INIT(&ad, IPC);
4915         ad.u.ipc_id = msq->q_perm.key;
4916
4917         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4918                           MSGQ__CREATE, &ad);
4919         if (rc) {
4920                 ipc_free_security(&msq->q_perm);
4921                 return rc;
4922         }
4923         return 0;
4924 }
4925
4926 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4927 {
4928         ipc_free_security(&msq->q_perm);
4929 }
4930
4931 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4932 {
4933         struct ipc_security_struct *isec;
4934         struct avc_audit_data ad;
4935         u32 sid = current_sid();
4936
4937         isec = msq->q_perm.security;
4938
4939         AVC_AUDIT_DATA_INIT(&ad, IPC);
4940         ad.u.ipc_id = msq->q_perm.key;
4941
4942         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4943                             MSGQ__ASSOCIATE, &ad);
4944 }
4945
4946 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4947 {
4948         int err;
4949         int perms;
4950
4951         switch (cmd) {
4952         case IPC_INFO:
4953         case MSG_INFO:
4954                 /* No specific object, just general system-wide information. */
4955                 return task_has_system(current, SYSTEM__IPC_INFO);
4956         case IPC_STAT:
4957         case MSG_STAT:
4958                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4959                 break;
4960         case IPC_SET:
4961                 perms = MSGQ__SETATTR;
4962                 break;
4963         case IPC_RMID:
4964                 perms = MSGQ__DESTROY;
4965                 break;
4966         default:
4967                 return 0;
4968         }
4969
4970         err = ipc_has_perm(&msq->q_perm, perms);
4971         return err;
4972 }
4973
4974 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4975 {
4976         struct ipc_security_struct *isec;
4977         struct msg_security_struct *msec;
4978         struct avc_audit_data ad;
4979         u32 sid = current_sid();
4980         int rc;
4981
4982         isec = msq->q_perm.security;
4983         msec = msg->security;
4984
4985         /*
4986          * First time through, need to assign label to the message
4987          */
4988         if (msec->sid == SECINITSID_UNLABELED) {
4989                 /*
4990                  * Compute new sid based on current process and
4991                  * message queue this message will be stored in
4992                  */
4993                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4994                                              &msec->sid);
4995                 if (rc)
4996                         return rc;
4997         }
4998
4999         AVC_AUDIT_DATA_INIT(&ad, IPC);
5000         ad.u.ipc_id = msq->q_perm.key;
5001
5002         /* Can this process write to the queue? */
5003         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5004                           MSGQ__WRITE, &ad);
5005         if (!rc)
5006                 /* Can this process send the message */
5007                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5008                                   MSG__SEND, &ad);
5009         if (!rc)
5010                 /* Can the message be put in the queue? */
5011                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5012                                   MSGQ__ENQUEUE, &ad);
5013
5014         return rc;
5015 }
5016
5017 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5018                                     struct task_struct *target,
5019                                     long type, int mode)
5020 {
5021         struct ipc_security_struct *isec;
5022         struct msg_security_struct *msec;
5023         struct avc_audit_data ad;
5024         u32 sid = task_sid(target);
5025         int rc;
5026
5027         isec = msq->q_perm.security;
5028         msec = msg->security;
5029
5030         AVC_AUDIT_DATA_INIT(&ad, IPC);
5031         ad.u.ipc_id = msq->q_perm.key;
5032
5033         rc = avc_has_perm(sid, isec->sid,
5034                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5035         if (!rc)
5036                 rc = avc_has_perm(sid, msec->sid,
5037                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5038         return rc;
5039 }
5040
5041 /* Shared Memory security operations */
5042 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5043 {
5044         struct ipc_security_struct *isec;
5045         struct avc_audit_data ad;
5046         u32 sid = current_sid();
5047         int rc;
5048
5049         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5050         if (rc)
5051                 return rc;
5052
5053         isec = shp->shm_perm.security;
5054
5055         AVC_AUDIT_DATA_INIT(&ad, IPC);
5056         ad.u.ipc_id = shp->shm_perm.key;
5057
5058         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5059                           SHM__CREATE, &ad);
5060         if (rc) {
5061                 ipc_free_security(&shp->shm_perm);
5062                 return rc;
5063         }
5064         return 0;
5065 }
5066
5067 static void selinux_shm_free_security(struct shmid_kernel *shp)
5068 {
5069         ipc_free_security(&shp->shm_perm);
5070 }
5071
5072 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5073 {
5074         struct ipc_security_struct *isec;
5075         struct avc_audit_data ad;
5076         u32 sid = current_sid();
5077
5078         isec = shp->shm_perm.security;
5079
5080         AVC_AUDIT_DATA_INIT(&ad, IPC);
5081         ad.u.ipc_id = shp->shm_perm.key;
5082
5083         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5084                             SHM__ASSOCIATE, &ad);
5085 }
5086
5087 /* Note, at this point, shp is locked down */
5088 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5089 {
5090         int perms;
5091         int err;
5092
5093         switch (cmd) {
5094         case IPC_INFO:
5095         case SHM_INFO:
5096                 /* No specific object, just general system-wide information. */
5097                 return task_has_system(current, SYSTEM__IPC_INFO);
5098         case IPC_STAT:
5099         case SHM_STAT:
5100                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5101                 break;
5102         case IPC_SET:
5103                 perms = SHM__SETATTR;
5104                 break;
5105         case SHM_LOCK:
5106         case SHM_UNLOCK:
5107                 perms = SHM__LOCK;
5108                 break;
5109         case IPC_RMID:
5110                 perms = SHM__DESTROY;
5111                 break;
5112         default:
5113                 return 0;
5114         }
5115
5116         err = ipc_has_perm(&shp->shm_perm, perms);
5117         return err;
5118 }
5119
5120 static int selinux_shm_shmat(struct shmid_kernel *shp,
5121                              char __user *shmaddr, int shmflg)
5122 {
5123         u32 perms;
5124         int rc;
5125
5126         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5127         if (rc)
5128                 return rc;
5129
5130         if (shmflg & SHM_RDONLY)
5131                 perms = SHM__READ;
5132         else
5133                 perms = SHM__READ | SHM__WRITE;
5134
5135         return ipc_has_perm(&shp->shm_perm, perms);
5136 }
5137
5138 /* Semaphore security operations */
5139 static int selinux_sem_alloc_security(struct sem_array *sma)
5140 {
5141         struct ipc_security_struct *isec;
5142         struct avc_audit_data ad;
5143         u32 sid = current_sid();
5144         int rc;
5145
5146         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5147         if (rc)
5148                 return rc;
5149
5150         isec = sma->sem_perm.security;
5151
5152         AVC_AUDIT_DATA_INIT(&ad, IPC);
5153         ad.u.ipc_id = sma->sem_perm.key;
5154
5155         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5156                           SEM__CREATE, &ad);
5157         if (rc) {
5158                 ipc_free_security(&sma->sem_perm);
5159                 return rc;
5160         }
5161         return 0;
5162 }
5163
5164 static void selinux_sem_free_security(struct sem_array *sma)
5165 {
5166         ipc_free_security(&sma->sem_perm);
5167 }
5168
5169 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5170 {
5171         struct ipc_security_struct *isec;
5172         struct avc_audit_data ad;
5173         u32 sid = current_sid();
5174
5175         isec = sma->sem_perm.security;
5176
5177         AVC_AUDIT_DATA_INIT(&ad, IPC);
5178         ad.u.ipc_id = sma->sem_perm.key;
5179
5180         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5181                             SEM__ASSOCIATE, &ad);
5182 }
5183
5184 /* Note, at this point, sma is locked down */
5185 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5186 {
5187         int err;
5188         u32 perms;
5189
5190         switch (cmd) {
5191         case IPC_INFO:
5192         case SEM_INFO:
5193                 /* No specific object, just general system-wide information. */
5194                 return task_has_system(current, SYSTEM__IPC_INFO);
5195         case GETPID:
5196         case GETNCNT:
5197         case GETZCNT:
5198                 perms = SEM__GETATTR;
5199                 break;
5200         case GETVAL:
5201         case GETALL:
5202                 perms = SEM__READ;
5203                 break;
5204         case SETVAL:
5205         case SETALL:
5206                 perms = SEM__WRITE;
5207                 break;
5208         case IPC_RMID:
5209                 perms = SEM__DESTROY;
5210                 break;
5211         case IPC_SET:
5212                 perms = SEM__SETATTR;
5213                 break;
5214         case IPC_STAT:
5215         case SEM_STAT:
5216                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5217                 break;
5218         default:
5219                 return 0;
5220         }
5221
5222         err = ipc_has_perm(&sma->sem_perm, perms);
5223         return err;
5224 }
5225
5226 static int selinux_sem_semop(struct sem_array *sma,
5227                              struct sembuf *sops, unsigned nsops, int alter)
5228 {
5229         u32 perms;
5230
5231         if (alter)
5232                 perms = SEM__READ | SEM__WRITE;
5233         else
5234                 perms = SEM__READ;
5235
5236         return ipc_has_perm(&sma->sem_perm, perms);
5237 }
5238
5239 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5240 {
5241         u32 av = 0;
5242
5243         av = 0;
5244         if (flag & S_IRUGO)
5245                 av |= IPC__UNIX_READ;
5246         if (flag & S_IWUGO)
5247                 av |= IPC__UNIX_WRITE;
5248
5249         if (av == 0)
5250                 return 0;
5251
5252         return ipc_has_perm(ipcp, av);
5253 }
5254
5255 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5256 {
5257         struct ipc_security_struct *isec = ipcp->security;
5258         *secid = isec->sid;
5259 }
5260
5261 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5262 {
5263         if (inode)
5264                 inode_doinit_with_dentry(inode, dentry);
5265 }
5266
5267 static int selinux_getprocattr(struct task_struct *p,
5268                                char *name, char **value)
5269 {
5270         const struct task_security_struct *__tsec;
5271         u32 sid;
5272         int error;
5273         unsigned len;
5274
5275         if (current != p) {
5276                 error = current_has_perm(p, PROCESS__GETATTR);
5277                 if (error)
5278                         return error;
5279         }
5280
5281         rcu_read_lock();
5282         __tsec = __task_cred(p)->security;
5283
5284         if (!strcmp(name, "current"))
5285                 sid = __tsec->sid;
5286         else if (!strcmp(name, "prev"))
5287                 sid = __tsec->osid;
5288         else if (!strcmp(name, "exec"))
5289                 sid = __tsec->exec_sid;
5290         else if (!strcmp(name, "fscreate"))
5291                 sid = __tsec->create_sid;
5292         else if (!strcmp(name, "keycreate"))
5293                 sid = __tsec->keycreate_sid;
5294         else if (!strcmp(name, "sockcreate"))
5295                 sid = __tsec->sockcreate_sid;
5296         else
5297                 goto invalid;
5298         rcu_read_unlock();
5299
5300         if (!sid)
5301                 return 0;
5302
5303         error = security_sid_to_context(sid, value, &len);
5304         if (error)
5305                 return error;
5306         return len;
5307
5308 invalid:
5309         rcu_read_unlock();
5310         return -EINVAL;
5311 }
5312
5313 static int selinux_setprocattr(struct task_struct *p,
5314                                char *name, void *value, size_t size)
5315 {
5316         struct task_security_struct *tsec;
5317         struct task_struct *tracer;
5318         struct cred *new;
5319         u32 sid = 0, ptsid;
5320         int error;
5321         char *str = value;
5322
5323         if (current != p) {
5324                 /* SELinux only allows a process to change its own
5325                    security attributes. */
5326                 return -EACCES;
5327         }
5328
5329         /*
5330          * Basic control over ability to set these attributes at all.
5331          * current == p, but we'll pass them separately in case the
5332          * above restriction is ever removed.
5333          */
5334         if (!strcmp(name, "exec"))
5335                 error = current_has_perm(p, PROCESS__SETEXEC);
5336         else if (!strcmp(name, "fscreate"))
5337                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5338         else if (!strcmp(name, "keycreate"))
5339                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5340         else if (!strcmp(name, "sockcreate"))
5341                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5342         else if (!strcmp(name, "current"))
5343                 error = current_has_perm(p, PROCESS__SETCURRENT);
5344         else
5345                 error = -EINVAL;
5346         if (error)
5347                 return error;
5348
5349         /* Obtain a SID for the context, if one was specified. */
5350         if (size && str[1] && str[1] != '\n') {
5351                 if (str[size-1] == '\n') {
5352                         str[size-1] = 0;
5353                         size--;
5354                 }
5355                 error = security_context_to_sid(value, size, &sid);
5356                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5357                         if (!capable(CAP_MAC_ADMIN))
5358                                 return error;
5359                         error = security_context_to_sid_force(value, size,
5360                                                               &sid);
5361                 }
5362                 if (error)
5363                         return error;
5364         }
5365
5366         new = prepare_creds();
5367         if (!new)
5368                 return -ENOMEM;
5369
5370         /* Permission checking based on the specified context is
5371            performed during the actual operation (execve,
5372            open/mkdir/...), when we know the full context of the
5373            operation.  See selinux_bprm_set_creds for the execve
5374            checks and may_create for the file creation checks. The
5375            operation will then fail if the context is not permitted. */
5376         tsec = new->security;
5377         if (!strcmp(name, "exec")) {
5378                 tsec->exec_sid = sid;
5379         } else if (!strcmp(name, "fscreate")) {
5380                 tsec->create_sid = sid;
5381         } else if (!strcmp(name, "keycreate")) {
5382                 error = may_create_key(sid, p);
5383                 if (error)
5384                         goto abort_change;
5385                 tsec->keycreate_sid = sid;
5386         } else if (!strcmp(name, "sockcreate")) {
5387                 tsec->sockcreate_sid = sid;
5388         } else if (!strcmp(name, "current")) {
5389                 error = -EINVAL;
5390                 if (sid == 0)
5391                         goto abort_change;
5392
5393                 /* Only allow single threaded processes to change context */
5394                 error = -EPERM;
5395                 if (!is_single_threaded(p)) {
5396                         error = security_bounded_transition(tsec->sid, sid);
5397                         if (error)
5398                                 goto abort_change;
5399                 }
5400
5401                 /* Check permissions for the transition. */
5402                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5403                                      PROCESS__DYNTRANSITION, NULL);
5404                 if (error)
5405                         goto abort_change;
5406
5407                 /* Check for ptracing, and update the task SID if ok.
5408                    Otherwise, leave SID unchanged and fail. */
5409                 ptsid = 0;
5410                 task_lock(p);
5411                 tracer = tracehook_tracer_task(p);
5412                 if (tracer)
5413                         ptsid = task_sid(tracer);
5414                 task_unlock(p);
5415
5416                 if (tracer) {
5417                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5418                                              PROCESS__PTRACE, NULL);
5419                         if (error)
5420                                 goto abort_change;
5421                 }
5422
5423                 tsec->sid = sid;
5424         } else {
5425                 error = -EINVAL;
5426                 goto abort_change;
5427         }
5428
5429         commit_creds(new);
5430         return size;
5431
5432 abort_change:
5433         abort_creds(new);
5434         return error;
5435 }
5436
5437 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5438 {
5439         return security_sid_to_context(secid, secdata, seclen);
5440 }
5441
5442 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5443 {
5444         return security_context_to_sid(secdata, seclen, secid);
5445 }
5446
5447 static void selinux_release_secctx(char *secdata, u32 seclen)
5448 {
5449         kfree(secdata);
5450 }
5451
5452 #ifdef CONFIG_KEYS
5453
5454 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5455                              unsigned long flags)
5456 {
5457         const struct task_security_struct *tsec;
5458         struct key_security_struct *ksec;
5459
5460         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5461         if (!ksec)
5462                 return -ENOMEM;
5463
5464         tsec = cred->security;
5465         if (tsec->keycreate_sid)
5466                 ksec->sid = tsec->keycreate_sid;
5467         else
5468                 ksec->sid = tsec->sid;
5469
5470         k->security = ksec;
5471         return 0;
5472 }
5473
5474 static void selinux_key_free(struct key *k)
5475 {
5476         struct key_security_struct *ksec = k->security;
5477
5478         k->security = NULL;
5479         kfree(ksec);
5480 }
5481
5482 static int selinux_key_permission(key_ref_t key_ref,
5483                                   const struct cred *cred,
5484                                   key_perm_t perm)
5485 {
5486         struct key *key;
5487         struct key_security_struct *ksec;
5488         u32 sid;
5489
5490         /* if no specific permissions are requested, we skip the
5491            permission check. No serious, additional covert channels
5492            appear to be created. */
5493         if (perm == 0)
5494                 return 0;
5495
5496         sid = cred_sid(cred);
5497
5498         key = key_ref_to_ptr(key_ref);
5499         ksec = key->security;
5500
5501         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5502 }
5503
5504 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5505 {
5506         struct key_security_struct *ksec = key->security;
5507         char *context = NULL;
5508         unsigned len;
5509         int rc;
5510
5511         rc = security_sid_to_context(ksec->sid, &context, &len);
5512         if (!rc)
5513                 rc = len;
5514         *_buffer = context;
5515         return rc;
5516 }
5517
5518 #endif
5519
5520 static struct security_operations selinux_ops = {
5521         .name =                         "selinux",
5522
5523         .ptrace_may_access =            selinux_ptrace_may_access,
5524         .ptrace_traceme =               selinux_ptrace_traceme,
5525         .capget =                       selinux_capget,
5526         .capset =                       selinux_capset,
5527         .sysctl =                       selinux_sysctl,
5528         .capable =                      selinux_capable,
5529         .quotactl =                     selinux_quotactl,
5530         .quota_on =                     selinux_quota_on,
5531         .syslog =                       selinux_syslog,
5532         .vm_enough_memory =             selinux_vm_enough_memory,
5533
5534         .netlink_send =                 selinux_netlink_send,
5535         .netlink_recv =                 selinux_netlink_recv,
5536
5537         .bprm_set_creds =               selinux_bprm_set_creds,
5538         .bprm_committing_creds =        selinux_bprm_committing_creds,
5539         .bprm_committed_creds =         selinux_bprm_committed_creds,
5540         .bprm_secureexec =              selinux_bprm_secureexec,
5541
5542         .sb_alloc_security =            selinux_sb_alloc_security,
5543         .sb_free_security =             selinux_sb_free_security,
5544         .sb_copy_data =                 selinux_sb_copy_data,
5545         .sb_kern_mount =                selinux_sb_kern_mount,
5546         .sb_show_options =              selinux_sb_show_options,
5547         .sb_statfs =                    selinux_sb_statfs,
5548         .sb_mount =                     selinux_mount,
5549         .sb_umount =                    selinux_umount,
5550         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5551         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5552         .sb_parse_opts_str =            selinux_parse_opts_str,
5553
5554
5555         .inode_alloc_security =         selinux_inode_alloc_security,
5556         .inode_free_security =          selinux_inode_free_security,
5557         .inode_init_security =          selinux_inode_init_security,
5558         .inode_create =                 selinux_inode_create,
5559         .inode_link =                   selinux_inode_link,
5560         .inode_unlink =                 selinux_inode_unlink,
5561         .inode_symlink =                selinux_inode_symlink,
5562         .inode_mkdir =                  selinux_inode_mkdir,
5563         .inode_rmdir =                  selinux_inode_rmdir,
5564         .inode_mknod =                  selinux_inode_mknod,
5565         .inode_rename =                 selinux_inode_rename,
5566         .inode_readlink =               selinux_inode_readlink,
5567         .inode_follow_link =            selinux_inode_follow_link,
5568         .inode_permission =             selinux_inode_permission,
5569         .inode_setattr =                selinux_inode_setattr,
5570         .inode_getattr =                selinux_inode_getattr,
5571         .inode_setxattr =               selinux_inode_setxattr,
5572         .inode_post_setxattr =          selinux_inode_post_setxattr,
5573         .inode_getxattr =               selinux_inode_getxattr,
5574         .inode_listxattr =              selinux_inode_listxattr,
5575         .inode_removexattr =            selinux_inode_removexattr,
5576         .inode_getsecurity =            selinux_inode_getsecurity,
5577         .inode_setsecurity =            selinux_inode_setsecurity,
5578         .inode_listsecurity =           selinux_inode_listsecurity,
5579         .inode_need_killpriv =          selinux_inode_need_killpriv,
5580         .inode_killpriv =               selinux_inode_killpriv,
5581         .inode_getsecid =               selinux_inode_getsecid,
5582
5583         .file_permission =              selinux_file_permission,
5584         .file_alloc_security =          selinux_file_alloc_security,
5585         .file_free_security =           selinux_file_free_security,
5586         .file_ioctl =                   selinux_file_ioctl,
5587         .file_mmap =                    selinux_file_mmap,
5588         .file_mprotect =                selinux_file_mprotect,
5589         .file_lock =                    selinux_file_lock,
5590         .file_fcntl =                   selinux_file_fcntl,
5591         .file_set_fowner =              selinux_file_set_fowner,
5592         .file_send_sigiotask =          selinux_file_send_sigiotask,
5593         .file_receive =                 selinux_file_receive,
5594
5595         .dentry_open =                  selinux_dentry_open,
5596
5597         .task_create =                  selinux_task_create,
5598         .cred_free =                    selinux_cred_free,
5599         .cred_prepare =                 selinux_cred_prepare,
5600         .kernel_act_as =                selinux_kernel_act_as,
5601         .kernel_create_files_as =       selinux_kernel_create_files_as,
5602         .task_setuid =                  selinux_task_setuid,
5603         .task_fix_setuid =              selinux_task_fix_setuid,
5604         .task_setgid =                  selinux_task_setgid,
5605         .task_setpgid =                 selinux_task_setpgid,
5606         .task_getpgid =                 selinux_task_getpgid,
5607         .task_getsid =                  selinux_task_getsid,
5608         .task_getsecid =                selinux_task_getsecid,
5609         .task_setgroups =               selinux_task_setgroups,
5610         .task_setnice =                 selinux_task_setnice,
5611         .task_setioprio =               selinux_task_setioprio,
5612         .task_getioprio =               selinux_task_getioprio,
5613         .task_setrlimit =               selinux_task_setrlimit,
5614         .task_setscheduler =            selinux_task_setscheduler,
5615         .task_getscheduler =            selinux_task_getscheduler,
5616         .task_movememory =              selinux_task_movememory,
5617         .task_kill =                    selinux_task_kill,
5618         .task_wait =                    selinux_task_wait,
5619         .task_prctl =                   selinux_task_prctl,
5620         .task_to_inode =                selinux_task_to_inode,
5621
5622         .ipc_permission =               selinux_ipc_permission,
5623         .ipc_getsecid =                 selinux_ipc_getsecid,
5624
5625         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5626         .msg_msg_free_security =        selinux_msg_msg_free_security,
5627
5628         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5629         .msg_queue_free_security =      selinux_msg_queue_free_security,
5630         .msg_queue_associate =          selinux_msg_queue_associate,
5631         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5632         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5633         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5634
5635         .shm_alloc_security =           selinux_shm_alloc_security,
5636         .shm_free_security =            selinux_shm_free_security,
5637         .shm_associate =                selinux_shm_associate,
5638         .shm_shmctl =                   selinux_shm_shmctl,
5639         .shm_shmat =                    selinux_shm_shmat,
5640
5641         .sem_alloc_security =           selinux_sem_alloc_security,
5642         .sem_free_security =            selinux_sem_free_security,
5643         .sem_associate =                selinux_sem_associate,
5644         .sem_semctl =                   selinux_sem_semctl,
5645         .sem_semop =                    selinux_sem_semop,
5646
5647         .d_instantiate =                selinux_d_instantiate,
5648
5649         .getprocattr =                  selinux_getprocattr,
5650         .setprocattr =                  selinux_setprocattr,
5651
5652         .secid_to_secctx =              selinux_secid_to_secctx,
5653         .secctx_to_secid =              selinux_secctx_to_secid,
5654         .release_secctx =               selinux_release_secctx,
5655
5656         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5657         .unix_may_send =                selinux_socket_unix_may_send,
5658
5659         .socket_create =                selinux_socket_create,
5660         .socket_post_create =           selinux_socket_post_create,
5661         .socket_bind =                  selinux_socket_bind,
5662         .socket_connect =               selinux_socket_connect,
5663         .socket_listen =                selinux_socket_listen,
5664         .socket_accept =                selinux_socket_accept,
5665         .socket_sendmsg =               selinux_socket_sendmsg,
5666         .socket_recvmsg =               selinux_socket_recvmsg,
5667         .socket_getsockname =           selinux_socket_getsockname,
5668         .socket_getpeername =           selinux_socket_getpeername,
5669         .socket_getsockopt =            selinux_socket_getsockopt,
5670         .socket_setsockopt =            selinux_socket_setsockopt,
5671         .socket_shutdown =              selinux_socket_shutdown,
5672         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5673         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5674         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5675         .sk_alloc_security =            selinux_sk_alloc_security,
5676         .sk_free_security =             selinux_sk_free_security,
5677         .sk_clone_security =            selinux_sk_clone_security,
5678         .sk_getsecid =                  selinux_sk_getsecid,
5679         .sock_graft =                   selinux_sock_graft,
5680         .inet_conn_request =            selinux_inet_conn_request,
5681         .inet_csk_clone =               selinux_inet_csk_clone,
5682         .inet_conn_established =        selinux_inet_conn_established,
5683         .req_classify_flow =            selinux_req_classify_flow,
5684
5685 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5686         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5687         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5688         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5689         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5690         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5691         .xfrm_state_free_security =     selinux_xfrm_state_free,
5692         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5693         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5694         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5695         .xfrm_decode_session =          selinux_xfrm_decode_session,
5696 #endif
5697
5698 #ifdef CONFIG_KEYS
5699         .key_alloc =                    selinux_key_alloc,
5700         .key_free =                     selinux_key_free,
5701         .key_permission =               selinux_key_permission,
5702         .key_getsecurity =              selinux_key_getsecurity,
5703 #endif
5704
5705 #ifdef CONFIG_AUDIT
5706         .audit_rule_init =              selinux_audit_rule_init,
5707         .audit_rule_known =             selinux_audit_rule_known,
5708         .audit_rule_match =             selinux_audit_rule_match,
5709         .audit_rule_free =              selinux_audit_rule_free,
5710 #endif
5711 };
5712
5713 static __init int selinux_init(void)
5714 {
5715         if (!security_module_enable(&selinux_ops)) {
5716                 selinux_enabled = 0;
5717                 return 0;
5718         }
5719
5720         if (!selinux_enabled) {
5721                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5722                 return 0;
5723         }
5724
5725         printk(KERN_INFO "SELinux:  Initializing.\n");
5726
5727         /* Set the security state for the initial task. */
5728         cred_init_security();
5729
5730         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5731                                             sizeof(struct inode_security_struct),
5732                                             0, SLAB_PANIC, NULL);
5733         avc_init();
5734
5735         secondary_ops = security_ops;
5736         if (!secondary_ops)
5737                 panic("SELinux: No initial security operations\n");
5738         if (register_security(&selinux_ops))
5739                 panic("SELinux: Unable to register with kernel.\n");
5740
5741         if (selinux_enforcing)
5742                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5743         else
5744                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5745
5746         return 0;
5747 }
5748
5749 void selinux_complete_init(void)
5750 {
5751         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5752
5753         /* Set up any superblocks initialized prior to the policy load. */
5754         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5755         spin_lock(&sb_lock);
5756         spin_lock(&sb_security_lock);
5757 next_sb:
5758         if (!list_empty(&superblock_security_head)) {
5759                 struct superblock_security_struct *sbsec =
5760                                 list_entry(superblock_security_head.next,
5761                                            struct superblock_security_struct,
5762                                            list);
5763                 struct super_block *sb = sbsec->sb;
5764                 sb->s_count++;
5765                 spin_unlock(&sb_security_lock);
5766                 spin_unlock(&sb_lock);
5767                 down_read(&sb->s_umount);
5768                 if (sb->s_root)
5769                         superblock_doinit(sb, NULL);
5770                 drop_super(sb);
5771                 spin_lock(&sb_lock);
5772                 spin_lock(&sb_security_lock);
5773                 list_del_init(&sbsec->list);
5774                 goto next_sb;
5775         }
5776         spin_unlock(&sb_security_lock);
5777         spin_unlock(&sb_lock);
5778 }
5779
5780 /* SELinux requires early initialization in order to label
5781    all processes and objects when they are created. */
5782 security_initcall(selinux_init);
5783
5784 #if defined(CONFIG_NETFILTER)
5785
5786 static struct nf_hook_ops selinux_ipv4_ops[] = {
5787         {
5788                 .hook =         selinux_ipv4_postroute,
5789                 .owner =        THIS_MODULE,
5790                 .pf =           PF_INET,
5791                 .hooknum =      NF_INET_POST_ROUTING,
5792                 .priority =     NF_IP_PRI_SELINUX_LAST,
5793         },
5794         {
5795                 .hook =         selinux_ipv4_forward,
5796                 .owner =        THIS_MODULE,
5797                 .pf =           PF_INET,
5798                 .hooknum =      NF_INET_FORWARD,
5799                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5800         },
5801         {
5802                 .hook =         selinux_ipv4_output,
5803                 .owner =        THIS_MODULE,
5804                 .pf =           PF_INET,
5805                 .hooknum =      NF_INET_LOCAL_OUT,
5806                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5807         }
5808 };
5809
5810 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5811
5812 static struct nf_hook_ops selinux_ipv6_ops[] = {
5813         {
5814                 .hook =         selinux_ipv6_postroute,
5815                 .owner =        THIS_MODULE,
5816                 .pf =           PF_INET6,
5817                 .hooknum =      NF_INET_POST_ROUTING,
5818                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5819         },
5820         {
5821                 .hook =         selinux_ipv6_forward,
5822                 .owner =        THIS_MODULE,
5823                 .pf =           PF_INET6,
5824                 .hooknum =      NF_INET_FORWARD,
5825                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5826         }
5827 };
5828
5829 #endif  /* IPV6 */
5830
5831 static int __init selinux_nf_ip_init(void)
5832 {
5833         int err = 0;
5834
5835         if (!selinux_enabled)
5836                 goto out;
5837
5838         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5839
5840         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5841         if (err)
5842                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5843
5844 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5845         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5846         if (err)
5847                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5848 #endif  /* IPV6 */
5849
5850 out:
5851         return err;
5852 }
5853
5854 __initcall(selinux_nf_ip_init);
5855
5856 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5857 static void selinux_nf_ip_exit(void)
5858 {
5859         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5860
5861         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5862 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5863         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5864 #endif  /* IPV6 */
5865 }
5866 #endif
5867
5868 #else /* CONFIG_NETFILTER */
5869
5870 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5871 #define selinux_nf_ip_exit()
5872 #endif
5873
5874 #endif /* CONFIG_NETFILTER */
5875
5876 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5877 static int selinux_disabled;
5878
5879 int selinux_disable(void)
5880 {
5881         extern void exit_sel_fs(void);
5882
5883         if (ss_initialized) {
5884                 /* Not permitted after initial policy load. */
5885                 return -EINVAL;
5886         }
5887
5888         if (selinux_disabled) {
5889                 /* Only do this once. */
5890                 return -EINVAL;
5891         }
5892
5893         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5894
5895         selinux_disabled = 1;
5896         selinux_enabled = 0;
5897
5898         /* Reset security_ops to the secondary module, dummy or capability. */
5899         security_ops = secondary_ops;
5900
5901         /* Unregister netfilter hooks. */
5902         selinux_nf_ip_exit();
5903
5904         /* Unregister selinuxfs. */
5905         exit_sel_fs();
5906
5907         return 0;
5908 }
5909 #endif