ALSA: ctxfi: fix broken user-visible string
[firefly-linux-kernel-4.4.55.git] / sound / pci / ctxfi / ctvmem.c
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File    ctvmem.c
9  *
10  * @Brief
11  * This file contains the implementation of virtual memory management object
12  * for card device.
13  *
14  * @Author Liu Chun
15  * @Date Apr 1 2008
16  */
17
18 #include "ctvmem.h"
19 #include <linux/slab.h>
20 #include <linux/mm.h>
21 #include <linux/io.h>
22 #include <sound/pcm.h>
23
24 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
25 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
26
27 /* *
28  * Find or create vm block based on requested @size.
29  * @size must be page aligned.
30  * */
31 static struct ct_vm_block *
32 get_vm_block(struct ct_vm *vm, unsigned int size)
33 {
34         struct ct_vm_block *block = NULL, *entry;
35         struct list_head *pos;
36
37         size = CT_PAGE_ALIGN(size);
38         if (size > vm->size) {
39                 pr_err("ctxfi: Fail! No sufficient device virtual memory space available!\n");
40                 return NULL;
41         }
42
43         mutex_lock(&vm->lock);
44         list_for_each(pos, &vm->unused) {
45                 entry = list_entry(pos, struct ct_vm_block, list);
46                 if (entry->size >= size)
47                         break; /* found a block that is big enough */
48         }
49         if (pos == &vm->unused)
50                 goto out;
51
52         if (entry->size == size) {
53                 /* Move the vm node from unused list to used list directly */
54                 list_move(&entry->list, &vm->used);
55                 vm->size -= size;
56                 block = entry;
57                 goto out;
58         }
59
60         block = kzalloc(sizeof(*block), GFP_KERNEL);
61         if (!block)
62                 goto out;
63
64         block->addr = entry->addr;
65         block->size = size;
66         list_add(&block->list, &vm->used);
67         entry->addr += size;
68         entry->size -= size;
69         vm->size -= size;
70
71  out:
72         mutex_unlock(&vm->lock);
73         return block;
74 }
75
76 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
77 {
78         struct ct_vm_block *entry, *pre_ent;
79         struct list_head *pos, *pre;
80
81         block->size = CT_PAGE_ALIGN(block->size);
82
83         mutex_lock(&vm->lock);
84         list_del(&block->list);
85         vm->size += block->size;
86
87         list_for_each(pos, &vm->unused) {
88                 entry = list_entry(pos, struct ct_vm_block, list);
89                 if (entry->addr >= (block->addr + block->size))
90                         break; /* found a position */
91         }
92         if (pos == &vm->unused) {
93                 list_add_tail(&block->list, &vm->unused);
94                 entry = block;
95         } else {
96                 if ((block->addr + block->size) == entry->addr) {
97                         entry->addr = block->addr;
98                         entry->size += block->size;
99                         kfree(block);
100                 } else {
101                         __list_add(&block->list, pos->prev, pos);
102                         entry = block;
103                 }
104         }
105
106         pos = &entry->list;
107         pre = pos->prev;
108         while (pre != &vm->unused) {
109                 entry = list_entry(pos, struct ct_vm_block, list);
110                 pre_ent = list_entry(pre, struct ct_vm_block, list);
111                 if ((pre_ent->addr + pre_ent->size) > entry->addr)
112                         break;
113
114                 pre_ent->size += entry->size;
115                 list_del(pos);
116                 kfree(entry);
117                 pos = pre;
118                 pre = pos->prev;
119         }
120         mutex_unlock(&vm->lock);
121 }
122
123 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
124 static struct ct_vm_block *
125 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
126 {
127         struct ct_vm_block *block;
128         unsigned int pte_start;
129         unsigned i, pages;
130         unsigned long *ptp;
131
132         block = get_vm_block(vm, size);
133         if (block == NULL) {
134                 pr_err("ctxfi: No virtual memory block that is big enough to allocate!\n");
135                 return NULL;
136         }
137
138         ptp = (unsigned long *)vm->ptp[0].area;
139         pte_start = (block->addr >> CT_PAGE_SHIFT);
140         pages = block->size >> CT_PAGE_SHIFT;
141         for (i = 0; i < pages; i++) {
142                 unsigned long addr;
143                 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
144                 ptp[pte_start + i] = addr;
145         }
146
147         block->size = size;
148         return block;
149 }
150
151 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
152 {
153         /* do unmapping */
154         put_vm_block(vm, block);
155 }
156
157 /* *
158  * return the host physical addr of the @index-th device
159  * page table page on success, or ~0UL on failure.
160  * The first returned ~0UL indicates the termination.
161  * */
162 static dma_addr_t
163 ct_get_ptp_phys(struct ct_vm *vm, int index)
164 {
165         dma_addr_t addr;
166
167         addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
168
169         return addr;
170 }
171
172 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
173 {
174         struct ct_vm *vm;
175         struct ct_vm_block *block;
176         int i, err = 0;
177
178         *rvm = NULL;
179
180         vm = kzalloc(sizeof(*vm), GFP_KERNEL);
181         if (!vm)
182                 return -ENOMEM;
183
184         mutex_init(&vm->lock);
185
186         /* Allocate page table pages */
187         for (i = 0; i < CT_PTP_NUM; i++) {
188                 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
189                                           snd_dma_pci_data(pci),
190                                           PAGE_SIZE, &vm->ptp[i]);
191                 if (err < 0)
192                         break;
193         }
194         if (err < 0) {
195                 /* no page table pages are allocated */
196                 ct_vm_destroy(vm);
197                 return -ENOMEM;
198         }
199         vm->size = CT_ADDRS_PER_PAGE * i;
200         vm->map = ct_vm_map;
201         vm->unmap = ct_vm_unmap;
202         vm->get_ptp_phys = ct_get_ptp_phys;
203         INIT_LIST_HEAD(&vm->unused);
204         INIT_LIST_HEAD(&vm->used);
205         block = kzalloc(sizeof(*block), GFP_KERNEL);
206         if (NULL != block) {
207                 block->addr = 0;
208                 block->size = vm->size;
209                 list_add(&block->list, &vm->unused);
210         }
211
212         *rvm = vm;
213         return 0;
214 }
215
216 /* The caller must ensure no mapping pages are being used
217  * by hardware before calling this function */
218 void ct_vm_destroy(struct ct_vm *vm)
219 {
220         int i;
221         struct list_head *pos;
222         struct ct_vm_block *entry;
223
224         /* free used and unused list nodes */
225         while (!list_empty(&vm->used)) {
226                 pos = vm->used.next;
227                 list_del(pos);
228                 entry = list_entry(pos, struct ct_vm_block, list);
229                 kfree(entry);
230         }
231         while (!list_empty(&vm->unused)) {
232                 pos = vm->unused.next;
233                 list_del(pos);
234                 entry = list_entry(pos, struct ct_vm_block, list);
235                 kfree(entry);
236         }
237
238         /* free allocated page table pages */
239         for (i = 0; i < CT_PTP_NUM; i++)
240                 snd_dma_free_pages(&vm->ptp[i]);
241
242         vm->size = 0;
243
244         kfree(vm);
245 }