50b0804df904b28fe82928370ce0e445b034cfaf
[firefly-linux-kernel-4.4.55.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/info.h>
35 #include <sound/tlv.h>
36 #include "ymfpci.h"
37 #include <sound/asoundef.h>
38 #include <sound/mpu401.h>
39
40 #include <asm/io.h>
41 #include <asm/byteorder.h>
42
43 /*
44  *  common I/O routines
45  */
46
47 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
48
49 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
50 {
51         return readb(chip->reg_area_virt + offset);
52 }
53
54 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
55 {
56         writeb(val, chip->reg_area_virt + offset);
57 }
58
59 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
60 {
61         return readw(chip->reg_area_virt + offset);
62 }
63
64 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
65 {
66         writew(val, chip->reg_area_virt + offset);
67 }
68
69 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
70 {
71         return readl(chip->reg_area_virt + offset);
72 }
73
74 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
75 {
76         writel(val, chip->reg_area_virt + offset);
77 }
78
79 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
80 {
81         unsigned long end_time;
82         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
83         
84         end_time = jiffies + msecs_to_jiffies(750);
85         do {
86                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
87                         return 0;
88                 schedule_timeout_uninterruptible(1);
89         } while (time_before(jiffies, end_time));
90         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
91         return -EBUSY;
92 }
93
94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
95 {
96         struct snd_ymfpci *chip = ac97->private_data;
97         u32 cmd;
98         
99         snd_ymfpci_codec_ready(chip, 0);
100         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
101         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
102 }
103
104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
105 {
106         struct snd_ymfpci *chip = ac97->private_data;
107
108         if (snd_ymfpci_codec_ready(chip, 0))
109                 return ~0;
110         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
111         if (snd_ymfpci_codec_ready(chip, 0))
112                 return ~0;
113         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
114                 int i;
115                 for (i = 0; i < 600; i++)
116                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117         }
118         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
119 }
120
121 /*
122  *  Misc routines
123  */
124
125 static u32 snd_ymfpci_calc_delta(u32 rate)
126 {
127         switch (rate) {
128         case 8000:      return 0x02aaab00;
129         case 11025:     return 0x03accd00;
130         case 16000:     return 0x05555500;
131         case 22050:     return 0x07599a00;
132         case 32000:     return 0x0aaaab00;
133         case 44100:     return 0x0eb33300;
134         default:        return ((rate << 16) / 375) << 5;
135         }
136 }
137
138 static u32 def_rate[8] = {
139         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
140 };
141
142 static u32 snd_ymfpci_calc_lpfK(u32 rate)
143 {
144         u32 i;
145         static u32 val[8] = {
146                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
147                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
148         };
149         
150         if (rate == 44100)
151                 return 0x40000000;      /* FIXME: What's the right value? */
152         for (i = 0; i < 8; i++)
153                 if (rate <= def_rate[i])
154                         return val[i];
155         return val[0];
156 }
157
158 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
159 {
160         u32 i;
161         static u32 val[8] = {
162                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
163                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
164         };
165         
166         if (rate == 44100)
167                 return 0x370A0000;
168         for (i = 0; i < 8; i++)
169                 if (rate <= def_rate[i])
170                         return val[i];
171         return val[0];
172 }
173
174 /*
175  *  Hardware start management
176  */
177
178 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
179 {
180         unsigned long flags;
181
182         spin_lock_irqsave(&chip->reg_lock, flags);
183         if (chip->start_count++ > 0)
184                 goto __end;
185         snd_ymfpci_writel(chip, YDSXGR_MODE,
186                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
187         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
188       __end:
189         spin_unlock_irqrestore(&chip->reg_lock, flags);
190 }
191
192 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
193 {
194         unsigned long flags;
195         long timeout = 1000;
196
197         spin_lock_irqsave(&chip->reg_lock, flags);
198         if (--chip->start_count > 0)
199                 goto __end;
200         snd_ymfpci_writel(chip, YDSXGR_MODE,
201                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
202         while (timeout-- > 0) {
203                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
204                         break;
205         }
206         if (atomic_read(&chip->interrupt_sleep_count)) {
207                 atomic_set(&chip->interrupt_sleep_count, 0);
208                 wake_up(&chip->interrupt_sleep);
209         }
210       __end:
211         spin_unlock_irqrestore(&chip->reg_lock, flags);
212 }
213
214 /*
215  *  Playback voice management
216  */
217
218 static int voice_alloc(struct snd_ymfpci *chip,
219                        enum snd_ymfpci_voice_type type, int pair,
220                        struct snd_ymfpci_voice **rvoice)
221 {
222         struct snd_ymfpci_voice *voice, *voice2;
223         int idx;
224         
225         *rvoice = NULL;
226         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
227                 voice = &chip->voices[idx];
228                 voice2 = pair ? &chip->voices[idx+1] : NULL;
229                 if (voice->use || (voice2 && voice2->use))
230                         continue;
231                 voice->use = 1;
232                 if (voice2)
233                         voice2->use = 1;
234                 switch (type) {
235                 case YMFPCI_PCM:
236                         voice->pcm = 1;
237                         if (voice2)
238                                 voice2->pcm = 1;
239                         break;
240                 case YMFPCI_SYNTH:
241                         voice->synth = 1;
242                         break;
243                 case YMFPCI_MIDI:
244                         voice->midi = 1;
245                         break;
246                 }
247                 snd_ymfpci_hw_start(chip);
248                 if (voice2)
249                         snd_ymfpci_hw_start(chip);
250                 *rvoice = voice;
251                 return 0;
252         }
253         return -ENOMEM;
254 }
255
256 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
257                                   enum snd_ymfpci_voice_type type, int pair,
258                                   struct snd_ymfpci_voice **rvoice)
259 {
260         unsigned long flags;
261         int result;
262         
263         if (snd_BUG_ON(!rvoice))
264                 return -EINVAL;
265         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
266                 return -EINVAL;
267         
268         spin_lock_irqsave(&chip->voice_lock, flags);
269         for (;;) {
270                 result = voice_alloc(chip, type, pair, rvoice);
271                 if (result == 0 || type != YMFPCI_PCM)
272                         break;
273                 /* TODO: synth/midi voice deallocation */
274                 break;
275         }
276         spin_unlock_irqrestore(&chip->voice_lock, flags);       
277         return result;          
278 }
279
280 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
281 {
282         unsigned long flags;
283         
284         if (snd_BUG_ON(!pvoice))
285                 return -EINVAL;
286         snd_ymfpci_hw_stop(chip);
287         spin_lock_irqsave(&chip->voice_lock, flags);
288         if (pvoice->number == chip->src441_used) {
289                 chip->src441_used = -1;
290                 pvoice->ypcm->use_441_slot = 0;
291         }
292         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
293         pvoice->ypcm = NULL;
294         pvoice->interrupt = NULL;
295         spin_unlock_irqrestore(&chip->voice_lock, flags);
296         return 0;
297 }
298
299 /*
300  *  PCM part
301  */
302
303 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
304 {
305         struct snd_ymfpci_pcm *ypcm;
306         u32 pos, delta;
307         
308         if ((ypcm = voice->ypcm) == NULL)
309                 return;
310         if (ypcm->substream == NULL)
311                 return;
312         spin_lock(&chip->reg_lock);
313         if (ypcm->running) {
314                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
315                 if (pos < ypcm->last_pos)
316                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
317                 else
318                         delta = pos - ypcm->last_pos;
319                 ypcm->period_pos += delta;
320                 ypcm->last_pos = pos;
321                 if (ypcm->period_pos >= ypcm->period_size) {
322                         /*
323                         printk(KERN_DEBUG
324                                "done - active_bank = 0x%x, start = 0x%x\n",
325                                chip->active_bank,
326                                voice->bank[chip->active_bank].start);
327                         */
328                         ypcm->period_pos %= ypcm->period_size;
329                         spin_unlock(&chip->reg_lock);
330                         snd_pcm_period_elapsed(ypcm->substream);
331                         spin_lock(&chip->reg_lock);
332                 }
333
334                 if (unlikely(ypcm->update_pcm_vol)) {
335                         unsigned int subs = ypcm->substream->number;
336                         unsigned int next_bank = 1 - chip->active_bank;
337                         struct snd_ymfpci_playback_bank *bank;
338                         u32 volume;
339                         
340                         bank = &voice->bank[next_bank];
341                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
342                         bank->left_gain_end = volume;
343                         if (ypcm->output_rear)
344                                 bank->eff2_gain_end = volume;
345                         if (ypcm->voices[1])
346                                 bank = &ypcm->voices[1]->bank[next_bank];
347                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
348                         bank->right_gain_end = volume;
349                         if (ypcm->output_rear)
350                                 bank->eff3_gain_end = volume;
351                         ypcm->update_pcm_vol--;
352                 }
353         }
354         spin_unlock(&chip->reg_lock);
355 }
356
357 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
358 {
359         struct snd_pcm_runtime *runtime = substream->runtime;
360         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
361         struct snd_ymfpci *chip = ypcm->chip;
362         u32 pos, delta;
363         
364         spin_lock(&chip->reg_lock);
365         if (ypcm->running) {
366                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
367                 if (pos < ypcm->last_pos)
368                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
369                 else
370                         delta = pos - ypcm->last_pos;
371                 ypcm->period_pos += delta;
372                 ypcm->last_pos = pos;
373                 if (ypcm->period_pos >= ypcm->period_size) {
374                         ypcm->period_pos %= ypcm->period_size;
375                         /*
376                         printk(KERN_DEBUG
377                                "done - active_bank = 0x%x, start = 0x%x\n",
378                                chip->active_bank,
379                                voice->bank[chip->active_bank].start);
380                         */
381                         spin_unlock(&chip->reg_lock);
382                         snd_pcm_period_elapsed(substream);
383                         spin_lock(&chip->reg_lock);
384                 }
385         }
386         spin_unlock(&chip->reg_lock);
387 }
388
389 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
390                                        int cmd)
391 {
392         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
393         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
394         struct snd_kcontrol *kctl = NULL;
395         int result = 0;
396
397         spin_lock(&chip->reg_lock);
398         if (ypcm->voices[0] == NULL) {
399                 result = -EINVAL;
400                 goto __unlock;
401         }
402         switch (cmd) {
403         case SNDRV_PCM_TRIGGER_START:
404         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
405         case SNDRV_PCM_TRIGGER_RESUME:
406                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
407                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
408                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
409                 ypcm->running = 1;
410                 break;
411         case SNDRV_PCM_TRIGGER_STOP:
412                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
413                         kctl = chip->pcm_mixer[substream->number].ctl;
414                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
415                 }
416                 /* fall through */
417         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
418         case SNDRV_PCM_TRIGGER_SUSPEND:
419                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
420                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
421                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
422                 ypcm->running = 0;
423                 break;
424         default:
425                 result = -EINVAL;
426                 break;
427         }
428       __unlock:
429         spin_unlock(&chip->reg_lock);
430         if (kctl)
431                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
432         return result;
433 }
434 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
435                                       int cmd)
436 {
437         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
438         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
439         int result = 0;
440         u32 tmp;
441
442         spin_lock(&chip->reg_lock);
443         switch (cmd) {
444         case SNDRV_PCM_TRIGGER_START:
445         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
446         case SNDRV_PCM_TRIGGER_RESUME:
447                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
448                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
449                 ypcm->running = 1;
450                 break;
451         case SNDRV_PCM_TRIGGER_STOP:
452         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
453         case SNDRV_PCM_TRIGGER_SUSPEND:
454                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
455                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
456                 ypcm->running = 0;
457                 break;
458         default:
459                 result = -EINVAL;
460                 break;
461         }
462         spin_unlock(&chip->reg_lock);
463         return result;
464 }
465
466 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
467 {
468         int err;
469
470         if (ypcm->voices[1] != NULL && voices < 2) {
471                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
472                 ypcm->voices[1] = NULL;
473         }
474         if (voices == 1 && ypcm->voices[0] != NULL)
475                 return 0;               /* already allocated */
476         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
477                 return 0;               /* already allocated */
478         if (voices > 1) {
479                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
480                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
481                         ypcm->voices[0] = NULL;
482                 }               
483         }
484         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
485         if (err < 0)
486                 return err;
487         ypcm->voices[0]->ypcm = ypcm;
488         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
489         if (voices > 1) {
490                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
491                 ypcm->voices[1]->ypcm = ypcm;
492         }
493         return 0;
494 }
495
496 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
497                                       struct snd_pcm_runtime *runtime,
498                                       int has_pcm_volume)
499 {
500         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
501         u32 format;
502         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
503         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
504         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
505         struct snd_ymfpci_playback_bank *bank;
506         unsigned int nbank;
507         u32 vol_left, vol_right;
508         u8 use_left, use_right;
509         unsigned long flags;
510
511         if (snd_BUG_ON(!voice))
512                 return;
513         if (runtime->channels == 1) {
514                 use_left = 1;
515                 use_right = 1;
516         } else {
517                 use_left = (voiceidx & 1) == 0;
518                 use_right = !use_left;
519         }
520         if (has_pcm_volume) {
521                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
522                                        [ypcm->substream->number].left << 15);
523                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
524                                         [ypcm->substream->number].right << 15);
525         } else {
526                 vol_left = cpu_to_le32(0x40000000);
527                 vol_right = cpu_to_le32(0x40000000);
528         }
529         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
530         format = runtime->channels == 2 ? 0x00010000 : 0;
531         if (snd_pcm_format_width(runtime->format) == 8)
532                 format |= 0x80000000;
533         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
534                  runtime->rate == 44100 && runtime->channels == 2 &&
535                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
536                                    ypcm->chip->src441_used == voice->number)) {
537                 ypcm->chip->src441_used = voice->number;
538                 ypcm->use_441_slot = 1;
539                 format |= 0x10000000;
540         }
541         if (ypcm->chip->src441_used == voice->number &&
542             (format & 0x10000000) == 0) {
543                 ypcm->chip->src441_used = -1;
544                 ypcm->use_441_slot = 0;
545         }
546         if (runtime->channels == 2 && (voiceidx & 1) != 0)
547                 format |= 1;
548         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
549         for (nbank = 0; nbank < 2; nbank++) {
550                 bank = &voice->bank[nbank];
551                 memset(bank, 0, sizeof(*bank));
552                 bank->format = cpu_to_le32(format);
553                 bank->base = cpu_to_le32(runtime->dma_addr);
554                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
555                 bank->lpfQ = cpu_to_le32(lpfQ);
556                 bank->delta =
557                 bank->delta_end = cpu_to_le32(delta);
558                 bank->lpfK =
559                 bank->lpfK_end = cpu_to_le32(lpfK);
560                 bank->eg_gain =
561                 bank->eg_gain_end = cpu_to_le32(0x40000000);
562
563                 if (ypcm->output_front) {
564                         if (use_left) {
565                                 bank->left_gain =
566                                 bank->left_gain_end = vol_left;
567                         }
568                         if (use_right) {
569                                 bank->right_gain =
570                                 bank->right_gain_end = vol_right;
571                         }
572                 }
573                 if (ypcm->output_rear) {
574                         if (!ypcm->swap_rear) {
575                                 if (use_left) {
576                                         bank->eff2_gain =
577                                         bank->eff2_gain_end = vol_left;
578                                 }
579                                 if (use_right) {
580                                         bank->eff3_gain =
581                                         bank->eff3_gain_end = vol_right;
582                                 }
583                         } else {
584                                 /* The SPDIF out channels seem to be swapped, so we have
585                                  * to swap them here, too.  The rear analog out channels
586                                  * will be wrong, but otherwise AC3 would not work.
587                                  */
588                                 if (use_left) {
589                                         bank->eff3_gain =
590                                         bank->eff3_gain_end = vol_left;
591                                 }
592                                 if (use_right) {
593                                         bank->eff2_gain =
594                                         bank->eff2_gain_end = vol_right;
595                                 }
596                         }
597                 }
598         }
599 }
600
601 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
602 {
603         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
604                                 4096, &chip->ac3_tmp_base) < 0)
605                 return -ENOMEM;
606
607         chip->bank_effect[3][0]->base =
608         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
609         chip->bank_effect[3][0]->loop_end =
610         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
611         chip->bank_effect[4][0]->base =
612         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
613         chip->bank_effect[4][0]->loop_end =
614         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
615
616         spin_lock_irq(&chip->reg_lock);
617         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
618                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
619         spin_unlock_irq(&chip->reg_lock);
620         return 0;
621 }
622
623 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
624 {
625         spin_lock_irq(&chip->reg_lock);
626         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
627                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
628         spin_unlock_irq(&chip->reg_lock);
629         // snd_ymfpci_irq_wait(chip);
630         if (chip->ac3_tmp_base.area) {
631                 snd_dma_free_pages(&chip->ac3_tmp_base);
632                 chip->ac3_tmp_base.area = NULL;
633         }
634         return 0;
635 }
636
637 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
638                                          struct snd_pcm_hw_params *hw_params)
639 {
640         struct snd_pcm_runtime *runtime = substream->runtime;
641         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
642         int err;
643
644         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
645                 return err;
646         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
647                 return err;
648         return 0;
649 }
650
651 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
652 {
653         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
654         struct snd_pcm_runtime *runtime = substream->runtime;
655         struct snd_ymfpci_pcm *ypcm;
656         
657         if (runtime->private_data == NULL)
658                 return 0;
659         ypcm = runtime->private_data;
660
661         /* wait, until the PCI operations are not finished */
662         snd_ymfpci_irq_wait(chip);
663         snd_pcm_lib_free_pages(substream);
664         if (ypcm->voices[1]) {
665                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
666                 ypcm->voices[1] = NULL;
667         }
668         if (ypcm->voices[0]) {
669                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
670                 ypcm->voices[0] = NULL;
671         }
672         return 0;
673 }
674
675 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
676 {
677         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
678         struct snd_pcm_runtime *runtime = substream->runtime;
679         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
680         struct snd_kcontrol *kctl;
681         unsigned int nvoice;
682
683         ypcm->period_size = runtime->period_size;
684         ypcm->buffer_size = runtime->buffer_size;
685         ypcm->period_pos = 0;
686         ypcm->last_pos = 0;
687         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
688                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
689                                           substream->pcm == chip->pcm);
690
691         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
692                 kctl = chip->pcm_mixer[substream->number].ctl;
693                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
694                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
695         }
696         return 0;
697 }
698
699 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
700                                         struct snd_pcm_hw_params *hw_params)
701 {
702         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704
705 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
706 {
707         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
708
709         /* wait, until the PCI operations are not finished */
710         snd_ymfpci_irq_wait(chip);
711         return snd_pcm_lib_free_pages(substream);
712 }
713
714 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
715 {
716         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
717         struct snd_pcm_runtime *runtime = substream->runtime;
718         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
719         struct snd_ymfpci_capture_bank * bank;
720         int nbank;
721         u32 rate, format;
722
723         ypcm->period_size = runtime->period_size;
724         ypcm->buffer_size = runtime->buffer_size;
725         ypcm->period_pos = 0;
726         ypcm->last_pos = 0;
727         ypcm->shift = 0;
728         rate = ((48000 * 4096) / runtime->rate) - 1;
729         format = 0;
730         if (runtime->channels == 2) {
731                 format |= 2;
732                 ypcm->shift++;
733         }
734         if (snd_pcm_format_width(runtime->format) == 8)
735                 format |= 1;
736         else
737                 ypcm->shift++;
738         switch (ypcm->capture_bank_number) {
739         case 0:
740                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
741                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
742                 break;
743         case 1:
744                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
745                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
746                 break;
747         }
748         for (nbank = 0; nbank < 2; nbank++) {
749                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
750                 bank->base = cpu_to_le32(runtime->dma_addr);
751                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
752                 bank->start = 0;
753                 bank->num_of_loops = 0;
754         }
755         return 0;
756 }
757
758 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
759 {
760         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
761         struct snd_pcm_runtime *runtime = substream->runtime;
762         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
763         struct snd_ymfpci_voice *voice = ypcm->voices[0];
764
765         if (!(ypcm->running && voice))
766                 return 0;
767         return le32_to_cpu(voice->bank[chip->active_bank].start);
768 }
769
770 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
771 {
772         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
773         struct snd_pcm_runtime *runtime = substream->runtime;
774         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
775
776         if (!ypcm->running)
777                 return 0;
778         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
779 }
780
781 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
782 {
783         wait_queue_t wait;
784         int loops = 4;
785
786         while (loops-- > 0) {
787                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
788                         continue;
789                 init_waitqueue_entry(&wait, current);
790                 add_wait_queue(&chip->interrupt_sleep, &wait);
791                 atomic_inc(&chip->interrupt_sleep_count);
792                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
793                 remove_wait_queue(&chip->interrupt_sleep, &wait);
794         }
795 }
796
797 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
798 {
799         struct snd_ymfpci *chip = dev_id;
800         u32 status, nvoice, mode;
801         struct snd_ymfpci_voice *voice;
802
803         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
804         if (status & 0x80000000) {
805                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
806                 spin_lock(&chip->voice_lock);
807                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
808                         voice = &chip->voices[nvoice];
809                         if (voice->interrupt)
810                                 voice->interrupt(chip, voice);
811                 }
812                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
813                         if (chip->capture_substream[nvoice])
814                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
815                 }
816 #if 0
817                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
818                         if (chip->effect_substream[nvoice])
819                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
820                 }
821 #endif
822                 spin_unlock(&chip->voice_lock);
823                 spin_lock(&chip->reg_lock);
824                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
825                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
826                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
827                 spin_unlock(&chip->reg_lock);
828
829                 if (atomic_read(&chip->interrupt_sleep_count)) {
830                         atomic_set(&chip->interrupt_sleep_count, 0);
831                         wake_up(&chip->interrupt_sleep);
832                 }
833         }
834
835         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
836         if (status & 1) {
837                 if (chip->timer)
838                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
839         }
840         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
841
842         if (chip->rawmidi)
843                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
844         return IRQ_HANDLED;
845 }
846
847 static struct snd_pcm_hardware snd_ymfpci_playback =
848 {
849         .info =                 (SNDRV_PCM_INFO_MMAP |
850                                  SNDRV_PCM_INFO_MMAP_VALID | 
851                                  SNDRV_PCM_INFO_INTERLEAVED |
852                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
853                                  SNDRV_PCM_INFO_PAUSE |
854                                  SNDRV_PCM_INFO_RESUME),
855         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
856         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
857         .rate_min =             8000,
858         .rate_max =             48000,
859         .channels_min =         1,
860         .channels_max =         2,
861         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
862         .period_bytes_min =     64,
863         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
864         .periods_min =          3,
865         .periods_max =          1024,
866         .fifo_size =            0,
867 };
868
869 static struct snd_pcm_hardware snd_ymfpci_capture =
870 {
871         .info =                 (SNDRV_PCM_INFO_MMAP |
872                                  SNDRV_PCM_INFO_MMAP_VALID |
873                                  SNDRV_PCM_INFO_INTERLEAVED |
874                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
875                                  SNDRV_PCM_INFO_PAUSE |
876                                  SNDRV_PCM_INFO_RESUME),
877         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
878         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
879         .rate_min =             8000,
880         .rate_max =             48000,
881         .channels_min =         1,
882         .channels_max =         2,
883         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
884         .period_bytes_min =     64,
885         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
886         .periods_min =          3,
887         .periods_max =          1024,
888         .fifo_size =            0,
889 };
890
891 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
892 {
893         kfree(runtime->private_data);
894 }
895
896 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
897 {
898         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
899         struct snd_pcm_runtime *runtime = substream->runtime;
900         struct snd_ymfpci_pcm *ypcm;
901         int err;
902
903         runtime->hw = snd_ymfpci_playback;
904         /* FIXME? True value is 256/48 = 5.33333 ms */
905         err = snd_pcm_hw_constraint_minmax(runtime,
906                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
907                                            5334, UINT_MAX);
908         if (err < 0)
909                 return err;
910         err = snd_pcm_hw_rule_noresample(runtime, 48000);
911         if (err < 0)
912                 return err;
913
914         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
915         if (ypcm == NULL)
916                 return -ENOMEM;
917         ypcm->chip = chip;
918         ypcm->type = PLAYBACK_VOICE;
919         ypcm->substream = substream;
920         runtime->private_data = ypcm;
921         runtime->private_free = snd_ymfpci_pcm_free_substream;
922         return 0;
923 }
924
925 /* call with spinlock held */
926 static void ymfpci_open_extension(struct snd_ymfpci *chip)
927 {
928         if (! chip->rear_opened) {
929                 if (! chip->spdif_opened) /* set AC3 */
930                         snd_ymfpci_writel(chip, YDSXGR_MODE,
931                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
932                 /* enable second codec (4CHEN) */
933                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
934                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
935         }
936 }
937
938 /* call with spinlock held */
939 static void ymfpci_close_extension(struct snd_ymfpci *chip)
940 {
941         if (! chip->rear_opened) {
942                 if (! chip->spdif_opened)
943                         snd_ymfpci_writel(chip, YDSXGR_MODE,
944                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
945                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
946                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
947         }
948 }
949
950 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
951 {
952         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
953         struct snd_pcm_runtime *runtime = substream->runtime;
954         struct snd_ymfpci_pcm *ypcm;
955         int err;
956         
957         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
958                 return err;
959         ypcm = runtime->private_data;
960         ypcm->output_front = 1;
961         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
962         ypcm->swap_rear = 0;
963         spin_lock_irq(&chip->reg_lock);
964         if (ypcm->output_rear) {
965                 ymfpci_open_extension(chip);
966                 chip->rear_opened++;
967         }
968         spin_unlock_irq(&chip->reg_lock);
969         return 0;
970 }
971
972 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
973 {
974         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
975         struct snd_pcm_runtime *runtime = substream->runtime;
976         struct snd_ymfpci_pcm *ypcm;
977         int err;
978         
979         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
980                 return err;
981         ypcm = runtime->private_data;
982         ypcm->output_front = 0;
983         ypcm->output_rear = 1;
984         ypcm->swap_rear = 1;
985         spin_lock_irq(&chip->reg_lock);
986         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
987                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
988         ymfpci_open_extension(chip);
989         chip->spdif_pcm_bits = chip->spdif_bits;
990         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
991         chip->spdif_opened++;
992         spin_unlock_irq(&chip->reg_lock);
993
994         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
995         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
996                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
997         return 0;
998 }
999
1000 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
1001 {
1002         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1003         struct snd_pcm_runtime *runtime = substream->runtime;
1004         struct snd_ymfpci_pcm *ypcm;
1005         int err;
1006         
1007         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
1008                 return err;
1009         ypcm = runtime->private_data;
1010         ypcm->output_front = 0;
1011         ypcm->output_rear = 1;
1012         ypcm->swap_rear = 0;
1013         spin_lock_irq(&chip->reg_lock);
1014         ymfpci_open_extension(chip);
1015         chip->rear_opened++;
1016         spin_unlock_irq(&chip->reg_lock);
1017         return 0;
1018 }
1019
1020 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1021                                    u32 capture_bank_number)
1022 {
1023         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1024         struct snd_pcm_runtime *runtime = substream->runtime;
1025         struct snd_ymfpci_pcm *ypcm;
1026         int err;
1027
1028         runtime->hw = snd_ymfpci_capture;
1029         /* FIXME? True value is 256/48 = 5.33333 ms */
1030         err = snd_pcm_hw_constraint_minmax(runtime,
1031                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1032                                            5334, UINT_MAX);
1033         if (err < 0)
1034                 return err;
1035         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1036         if (err < 0)
1037                 return err;
1038
1039         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1040         if (ypcm == NULL)
1041                 return -ENOMEM;
1042         ypcm->chip = chip;
1043         ypcm->type = capture_bank_number + CAPTURE_REC;
1044         ypcm->substream = substream;    
1045         ypcm->capture_bank_number = capture_bank_number;
1046         chip->capture_substream[capture_bank_number] = substream;
1047         runtime->private_data = ypcm;
1048         runtime->private_free = snd_ymfpci_pcm_free_substream;
1049         snd_ymfpci_hw_start(chip);
1050         return 0;
1051 }
1052
1053 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1054 {
1055         return snd_ymfpci_capture_open(substream, 0);
1056 }
1057
1058 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1059 {
1060         return snd_ymfpci_capture_open(substream, 1);
1061 }
1062
1063 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1064 {
1065         return 0;
1066 }
1067
1068 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1069 {
1070         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1071         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1072
1073         spin_lock_irq(&chip->reg_lock);
1074         if (ypcm->output_rear && chip->rear_opened > 0) {
1075                 chip->rear_opened--;
1076                 ymfpci_close_extension(chip);
1077         }
1078         spin_unlock_irq(&chip->reg_lock);
1079         return snd_ymfpci_playback_close_1(substream);
1080 }
1081
1082 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1083 {
1084         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1085
1086         spin_lock_irq(&chip->reg_lock);
1087         chip->spdif_opened = 0;
1088         ymfpci_close_extension(chip);
1089         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1090                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1091         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1092         spin_unlock_irq(&chip->reg_lock);
1093         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1094         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1095                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1096         return snd_ymfpci_playback_close_1(substream);
1097 }
1098
1099 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1100 {
1101         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1102
1103         spin_lock_irq(&chip->reg_lock);
1104         if (chip->rear_opened > 0) {
1105                 chip->rear_opened--;
1106                 ymfpci_close_extension(chip);
1107         }
1108         spin_unlock_irq(&chip->reg_lock);
1109         return snd_ymfpci_playback_close_1(substream);
1110 }
1111
1112 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1113 {
1114         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1115         struct snd_pcm_runtime *runtime = substream->runtime;
1116         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1117
1118         if (ypcm != NULL) {
1119                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1120                 snd_ymfpci_hw_stop(chip);
1121         }
1122         return 0;
1123 }
1124
1125 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1126         .open =                 snd_ymfpci_playback_open,
1127         .close =                snd_ymfpci_playback_close,
1128         .ioctl =                snd_pcm_lib_ioctl,
1129         .hw_params =            snd_ymfpci_playback_hw_params,
1130         .hw_free =              snd_ymfpci_playback_hw_free,
1131         .prepare =              snd_ymfpci_playback_prepare,
1132         .trigger =              snd_ymfpci_playback_trigger,
1133         .pointer =              snd_ymfpci_playback_pointer,
1134 };
1135
1136 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1137         .open =                 snd_ymfpci_capture_rec_open,
1138         .close =                snd_ymfpci_capture_close,
1139         .ioctl =                snd_pcm_lib_ioctl,
1140         .hw_params =            snd_ymfpci_capture_hw_params,
1141         .hw_free =              snd_ymfpci_capture_hw_free,
1142         .prepare =              snd_ymfpci_capture_prepare,
1143         .trigger =              snd_ymfpci_capture_trigger,
1144         .pointer =              snd_ymfpci_capture_pointer,
1145 };
1146
1147 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1148 {
1149         struct snd_pcm *pcm;
1150         int err;
1151
1152         if (rpcm)
1153                 *rpcm = NULL;
1154         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1155                 return err;
1156         pcm->private_data = chip;
1157
1158         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1159         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1160
1161         /* global setup */
1162         pcm->info_flags = 0;
1163         strcpy(pcm->name, "YMFPCI");
1164         chip->pcm = pcm;
1165
1166         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1167                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1168
1169         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1170                                      snd_pcm_std_chmaps, 2, 0, NULL);
1171         if (err < 0)
1172                 return err;
1173
1174         if (rpcm)
1175                 *rpcm = pcm;
1176         return 0;
1177 }
1178
1179 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1180         .open =                 snd_ymfpci_capture_ac97_open,
1181         .close =                snd_ymfpci_capture_close,
1182         .ioctl =                snd_pcm_lib_ioctl,
1183         .hw_params =            snd_ymfpci_capture_hw_params,
1184         .hw_free =              snd_ymfpci_capture_hw_free,
1185         .prepare =              snd_ymfpci_capture_prepare,
1186         .trigger =              snd_ymfpci_capture_trigger,
1187         .pointer =              snd_ymfpci_capture_pointer,
1188 };
1189
1190 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1191 {
1192         struct snd_pcm *pcm;
1193         int err;
1194
1195         if (rpcm)
1196                 *rpcm = NULL;
1197         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1198                 return err;
1199         pcm->private_data = chip;
1200
1201         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1202
1203         /* global setup */
1204         pcm->info_flags = 0;
1205         sprintf(pcm->name, "YMFPCI - %s",
1206                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1207         chip->pcm2 = pcm;
1208
1209         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1210                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1211
1212         if (rpcm)
1213                 *rpcm = pcm;
1214         return 0;
1215 }
1216
1217 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1218         .open =                 snd_ymfpci_playback_spdif_open,
1219         .close =                snd_ymfpci_playback_spdif_close,
1220         .ioctl =                snd_pcm_lib_ioctl,
1221         .hw_params =            snd_ymfpci_playback_hw_params,
1222         .hw_free =              snd_ymfpci_playback_hw_free,
1223         .prepare =              snd_ymfpci_playback_prepare,
1224         .trigger =              snd_ymfpci_playback_trigger,
1225         .pointer =              snd_ymfpci_playback_pointer,
1226 };
1227
1228 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1229 {
1230         struct snd_pcm *pcm;
1231         int err;
1232
1233         if (rpcm)
1234                 *rpcm = NULL;
1235         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1236                 return err;
1237         pcm->private_data = chip;
1238
1239         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1240
1241         /* global setup */
1242         pcm->info_flags = 0;
1243         strcpy(pcm->name, "YMFPCI - IEC958");
1244         chip->pcm_spdif = pcm;
1245
1246         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1247                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1248
1249         if (rpcm)
1250                 *rpcm = pcm;
1251         return 0;
1252 }
1253
1254 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1255         .open =                 snd_ymfpci_playback_4ch_open,
1256         .close =                snd_ymfpci_playback_4ch_close,
1257         .ioctl =                snd_pcm_lib_ioctl,
1258         .hw_params =            snd_ymfpci_playback_hw_params,
1259         .hw_free =              snd_ymfpci_playback_hw_free,
1260         .prepare =              snd_ymfpci_playback_prepare,
1261         .trigger =              snd_ymfpci_playback_trigger,
1262         .pointer =              snd_ymfpci_playback_pointer,
1263 };
1264
1265 static const struct snd_pcm_chmap_elem surround_map[] = {
1266         { .channels = 1,
1267           .map = { SNDRV_CHMAP_UNKNOWN } },
1268         { .channels = 2,
1269           .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1270         { }
1271 };
1272
1273 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1274 {
1275         struct snd_pcm *pcm;
1276         int err;
1277
1278         if (rpcm)
1279                 *rpcm = NULL;
1280         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1281                 return err;
1282         pcm->private_data = chip;
1283
1284         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1285
1286         /* global setup */
1287         pcm->info_flags = 0;
1288         strcpy(pcm->name, "YMFPCI - Rear PCM");
1289         chip->pcm_4ch = pcm;
1290
1291         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1292                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1293
1294         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1295                                      surround_map, 2, 0, NULL);
1296         if (err < 0)
1297                 return err;
1298
1299         if (rpcm)
1300                 *rpcm = pcm;
1301         return 0;
1302 }
1303
1304 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1305 {
1306         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1307         uinfo->count = 1;
1308         return 0;
1309 }
1310
1311 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1312                                         struct snd_ctl_elem_value *ucontrol)
1313 {
1314         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1315
1316         spin_lock_irq(&chip->reg_lock);
1317         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1318         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1319         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1320         spin_unlock_irq(&chip->reg_lock);
1321         return 0;
1322 }
1323
1324 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1325                                          struct snd_ctl_elem_value *ucontrol)
1326 {
1327         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1328         unsigned int val;
1329         int change;
1330
1331         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1332               (ucontrol->value.iec958.status[1] << 8);
1333         spin_lock_irq(&chip->reg_lock);
1334         change = chip->spdif_bits != val;
1335         chip->spdif_bits = val;
1336         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1337                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1338         spin_unlock_irq(&chip->reg_lock);
1339         return change;
1340 }
1341
1342 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1343 {
1344         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1345         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1346         .info =         snd_ymfpci_spdif_default_info,
1347         .get =          snd_ymfpci_spdif_default_get,
1348         .put =          snd_ymfpci_spdif_default_put
1349 };
1350
1351 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1352 {
1353         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1354         uinfo->count = 1;
1355         return 0;
1356 }
1357
1358 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1359                                       struct snd_ctl_elem_value *ucontrol)
1360 {
1361         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1362
1363         spin_lock_irq(&chip->reg_lock);
1364         ucontrol->value.iec958.status[0] = 0x3e;
1365         ucontrol->value.iec958.status[1] = 0xff;
1366         spin_unlock_irq(&chip->reg_lock);
1367         return 0;
1368 }
1369
1370 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1371 {
1372         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1373         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1374         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1375         .info =         snd_ymfpci_spdif_mask_info,
1376         .get =          snd_ymfpci_spdif_mask_get,
1377 };
1378
1379 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1380 {
1381         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1382         uinfo->count = 1;
1383         return 0;
1384 }
1385
1386 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1387                                         struct snd_ctl_elem_value *ucontrol)
1388 {
1389         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1390
1391         spin_lock_irq(&chip->reg_lock);
1392         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1393         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1394         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1395         spin_unlock_irq(&chip->reg_lock);
1396         return 0;
1397 }
1398
1399 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1400                                         struct snd_ctl_elem_value *ucontrol)
1401 {
1402         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1403         unsigned int val;
1404         int change;
1405
1406         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1407               (ucontrol->value.iec958.status[1] << 8);
1408         spin_lock_irq(&chip->reg_lock);
1409         change = chip->spdif_pcm_bits != val;
1410         chip->spdif_pcm_bits = val;
1411         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1412                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1413         spin_unlock_irq(&chip->reg_lock);
1414         return change;
1415 }
1416
1417 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1418 {
1419         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1420         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1421         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1422         .info =         snd_ymfpci_spdif_stream_info,
1423         .get =          snd_ymfpci_spdif_stream_get,
1424         .put =          snd_ymfpci_spdif_stream_put
1425 };
1426
1427 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1428 {
1429         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1430
1431         return snd_ctl_enum_info(info, 1, 3, texts);
1432 }
1433
1434 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1435 {
1436         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1437         u16 reg;
1438
1439         spin_lock_irq(&chip->reg_lock);
1440         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1441         spin_unlock_irq(&chip->reg_lock);
1442         if (!(reg & 0x100))
1443                 value->value.enumerated.item[0] = 0;
1444         else
1445                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1446         return 0;
1447 }
1448
1449 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1450 {
1451         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1452         u16 reg, old_reg;
1453
1454         spin_lock_irq(&chip->reg_lock);
1455         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1456         if (value->value.enumerated.item[0] == 0)
1457                 reg = old_reg & ~0x100;
1458         else
1459                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1460         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1461         spin_unlock_irq(&chip->reg_lock);
1462         return reg != old_reg;
1463 }
1464
1465 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1466         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1467         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1468         .name =         "Direct Recording Source",
1469         .info =         snd_ymfpci_drec_source_info,
1470         .get =          snd_ymfpci_drec_source_get,
1471         .put =          snd_ymfpci_drec_source_put
1472 };
1473
1474 /*
1475  *  Mixer controls
1476  */
1477
1478 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1479 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1480   .info = snd_ymfpci_info_single, \
1481   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1482   .private_value = ((reg) | ((shift) << 16)) }
1483
1484 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1485
1486 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1487                                  struct snd_ctl_elem_value *ucontrol)
1488 {
1489         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1490         int reg = kcontrol->private_value & 0xffff;
1491         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1492         unsigned int mask = 1;
1493         
1494         switch (reg) {
1495         case YDSXGR_SPDIFOUTCTRL: break;
1496         case YDSXGR_SPDIFINCTRL: break;
1497         default: return -EINVAL;
1498         }
1499         ucontrol->value.integer.value[0] =
1500                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1501         return 0;
1502 }
1503
1504 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1505                                  struct snd_ctl_elem_value *ucontrol)
1506 {
1507         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1508         int reg = kcontrol->private_value & 0xffff;
1509         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1510         unsigned int mask = 1;
1511         int change;
1512         unsigned int val, oval;
1513         
1514         switch (reg) {
1515         case YDSXGR_SPDIFOUTCTRL: break;
1516         case YDSXGR_SPDIFINCTRL: break;
1517         default: return -EINVAL;
1518         }
1519         val = (ucontrol->value.integer.value[0] & mask);
1520         val <<= shift;
1521         spin_lock_irq(&chip->reg_lock);
1522         oval = snd_ymfpci_readl(chip, reg);
1523         val = (oval & ~(mask << shift)) | val;
1524         change = val != oval;
1525         snd_ymfpci_writel(chip, reg, val);
1526         spin_unlock_irq(&chip->reg_lock);
1527         return change;
1528 }
1529
1530 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1531
1532 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1533 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1534   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1535   .info = snd_ymfpci_info_double, \
1536   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1537   .private_value = reg, \
1538   .tlv = { .p = db_scale_native } }
1539
1540 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1541 {
1542         unsigned int reg = kcontrol->private_value;
1543
1544         if (reg < 0x80 || reg >= 0xc0)
1545                 return -EINVAL;
1546         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1547         uinfo->count = 2;
1548         uinfo->value.integer.min = 0;
1549         uinfo->value.integer.max = 16383;
1550         return 0;
1551 }
1552
1553 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1554 {
1555         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1556         unsigned int reg = kcontrol->private_value;
1557         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1558         unsigned int val;
1559         
1560         if (reg < 0x80 || reg >= 0xc0)
1561                 return -EINVAL;
1562         spin_lock_irq(&chip->reg_lock);
1563         val = snd_ymfpci_readl(chip, reg);
1564         spin_unlock_irq(&chip->reg_lock);
1565         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1566         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1567         return 0;
1568 }
1569
1570 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1571 {
1572         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1573         unsigned int reg = kcontrol->private_value;
1574         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1575         int change;
1576         unsigned int val1, val2, oval;
1577         
1578         if (reg < 0x80 || reg >= 0xc0)
1579                 return -EINVAL;
1580         val1 = ucontrol->value.integer.value[0] & mask;
1581         val2 = ucontrol->value.integer.value[1] & mask;
1582         val1 <<= shift_left;
1583         val2 <<= shift_right;
1584         spin_lock_irq(&chip->reg_lock);
1585         oval = snd_ymfpci_readl(chip, reg);
1586         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1587         change = val1 != oval;
1588         snd_ymfpci_writel(chip, reg, val1);
1589         spin_unlock_irq(&chip->reg_lock);
1590         return change;
1591 }
1592
1593 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1594                                        struct snd_ctl_elem_value *ucontrol)
1595 {
1596         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1597         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1598         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1599         int change;
1600         unsigned int value, oval;
1601         
1602         value = ucontrol->value.integer.value[0] & 0x3fff;
1603         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1604         spin_lock_irq(&chip->reg_lock);
1605         oval = snd_ymfpci_readl(chip, reg);
1606         change = value != oval;
1607         snd_ymfpci_writel(chip, reg, value);
1608         snd_ymfpci_writel(chip, reg2, value);
1609         spin_unlock_irq(&chip->reg_lock);
1610         return change;
1611 }
1612
1613 /*
1614  * 4ch duplication
1615  */
1616 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1617
1618 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1619 {
1620         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1621         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1622         return 0;
1623 }
1624
1625 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1626 {
1627         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1628         int change;
1629         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1630         if (change)
1631                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1632         return change;
1633 }
1634
1635 static struct snd_kcontrol_new snd_ymfpci_dup4ch __devinitdata = {
1636         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1637         .name = "4ch Duplication",
1638         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1639         .info = snd_ymfpci_info_dup4ch,
1640         .get = snd_ymfpci_get_dup4ch,
1641         .put = snd_ymfpci_put_dup4ch,
1642 };
1643
1644 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1645 {
1646         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1647         .name = "Wave Playback Volume",
1648         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1649                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1650         .info = snd_ymfpci_info_double,
1651         .get = snd_ymfpci_get_double,
1652         .put = snd_ymfpci_put_nativedacvol,
1653         .private_value = YDSXGR_NATIVEDACOUTVOL,
1654         .tlv = { .p = db_scale_native },
1655 },
1656 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1657 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1658 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1659 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1660 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1661 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1662 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1663 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1664 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1665 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1666 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1667 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1668 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1669 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1670 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1671 };
1672
1673
1674 /*
1675  * GPIO
1676  */
1677
1678 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1679 {
1680         u16 reg, mode;
1681         unsigned long flags;
1682
1683         spin_lock_irqsave(&chip->reg_lock, flags);
1684         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1685         reg &= ~(1 << (pin + 8));
1686         reg |= (1 << pin);
1687         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1688         /* set the level mode for input line */
1689         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1690         mode &= ~(3 << (pin * 2));
1691         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1692         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1693         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1694         spin_unlock_irqrestore(&chip->reg_lock, flags);
1695         return (mode >> pin) & 1;
1696 }
1697
1698 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1699 {
1700         u16 reg;
1701         unsigned long flags;
1702
1703         spin_lock_irqsave(&chip->reg_lock, flags);
1704         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1705         reg &= ~(1 << pin);
1706         reg &= ~(1 << (pin + 8));
1707         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1708         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1709         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1710         spin_unlock_irqrestore(&chip->reg_lock, flags);
1711
1712         return 0;
1713 }
1714
1715 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1716
1717 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1718 {
1719         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1720         int pin = (int)kcontrol->private_value;
1721         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1722         return 0;
1723 }
1724
1725 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1726 {
1727         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1728         int pin = (int)kcontrol->private_value;
1729
1730         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1731                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1732                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1733                 return 1;
1734         }
1735         return 0;
1736 }
1737
1738 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1739         .name = "Shared Rear/Line-In Switch",
1740         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1741         .info = snd_ymfpci_gpio_sw_info,
1742         .get = snd_ymfpci_gpio_sw_get,
1743         .put = snd_ymfpci_gpio_sw_put,
1744         .private_value = 2,
1745 };
1746
1747 /*
1748  * PCM voice volume
1749  */
1750
1751 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1752                                    struct snd_ctl_elem_info *uinfo)
1753 {
1754         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1755         uinfo->count = 2;
1756         uinfo->value.integer.min = 0;
1757         uinfo->value.integer.max = 0x8000;
1758         return 0;
1759 }
1760
1761 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1762                                   struct snd_ctl_elem_value *ucontrol)
1763 {
1764         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1765         unsigned int subs = kcontrol->id.subdevice;
1766
1767         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1768         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1769         return 0;
1770 }
1771
1772 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1773                                   struct snd_ctl_elem_value *ucontrol)
1774 {
1775         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1776         unsigned int subs = kcontrol->id.subdevice;
1777         struct snd_pcm_substream *substream;
1778         unsigned long flags;
1779
1780         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1781             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1782                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1783                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1784                 if (chip->pcm_mixer[subs].left > 0x8000)
1785                         chip->pcm_mixer[subs].left = 0x8000;
1786                 if (chip->pcm_mixer[subs].right > 0x8000)
1787                         chip->pcm_mixer[subs].right = 0x8000;
1788
1789                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1790                 spin_lock_irqsave(&chip->voice_lock, flags);
1791                 if (substream->runtime && substream->runtime->private_data) {
1792                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1793                         if (!ypcm->use_441_slot)
1794                                 ypcm->update_pcm_vol = 2;
1795                 }
1796                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1797                 return 1;
1798         }
1799         return 0;
1800 }
1801
1802 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1803         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1804         .name = "PCM Playback Volume",
1805         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1806                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1807         .info = snd_ymfpci_pcm_vol_info,
1808         .get = snd_ymfpci_pcm_vol_get,
1809         .put = snd_ymfpci_pcm_vol_put,
1810 };
1811
1812
1813 /*
1814  *  Mixer routines
1815  */
1816
1817 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1818 {
1819         struct snd_ymfpci *chip = bus->private_data;
1820         chip->ac97_bus = NULL;
1821 }
1822
1823 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1824 {
1825         struct snd_ymfpci *chip = ac97->private_data;
1826         chip->ac97 = NULL;
1827 }
1828
1829 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1830 {
1831         struct snd_ac97_template ac97;
1832         struct snd_kcontrol *kctl;
1833         struct snd_pcm_substream *substream;
1834         unsigned int idx;
1835         int err;
1836         static struct snd_ac97_bus_ops ops = {
1837                 .write = snd_ymfpci_codec_write,
1838                 .read = snd_ymfpci_codec_read,
1839         };
1840
1841         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1842                 return err;
1843         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1844         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1845
1846         memset(&ac97, 0, sizeof(ac97));
1847         ac97.private_data = chip;
1848         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1849         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1850                 return err;
1851
1852         /* to be sure */
1853         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1854                              AC97_EA_VRA|AC97_EA_VRM, 0);
1855
1856         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1857                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1858                         return err;
1859         }
1860         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1861                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1862                 err = snd_ctl_add(chip->card, kctl);
1863                 if (err < 0)
1864                         return err;
1865         }
1866
1867         /* add S/PDIF control */
1868         if (snd_BUG_ON(!chip->pcm_spdif))
1869                 return -ENXIO;
1870         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1871                 return err;
1872         kctl->id.device = chip->pcm_spdif->device;
1873         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1874                 return err;
1875         kctl->id.device = chip->pcm_spdif->device;
1876         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1877                 return err;
1878         kctl->id.device = chip->pcm_spdif->device;
1879         chip->spdif_pcm_ctl = kctl;
1880
1881         /* direct recording source */
1882         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1883             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1884                 return err;
1885
1886         /*
1887          * shared rear/line-in
1888          */
1889         if (rear_switch) {
1890                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1891                         return err;
1892         }
1893
1894         /* per-voice volume */
1895         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1896         for (idx = 0; idx < 32; ++idx) {
1897                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1898                 if (!kctl)
1899                         return -ENOMEM;
1900                 kctl->id.device = chip->pcm->device;
1901                 kctl->id.subdevice = idx;
1902                 kctl->private_value = (unsigned long)substream;
1903                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1904                         return err;
1905                 chip->pcm_mixer[idx].left = 0x8000;
1906                 chip->pcm_mixer[idx].right = 0x8000;
1907                 chip->pcm_mixer[idx].ctl = kctl;
1908                 substream = substream->next;
1909         }
1910
1911         return 0;
1912 }
1913
1914
1915 /*
1916  * timer
1917  */
1918
1919 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1920 {
1921         struct snd_ymfpci *chip;
1922         unsigned long flags;
1923         unsigned int count;
1924
1925         chip = snd_timer_chip(timer);
1926         spin_lock_irqsave(&chip->reg_lock, flags);
1927         if (timer->sticks > 1) {
1928                 chip->timer_ticks = timer->sticks;
1929                 count = timer->sticks - 1;
1930         } else {
1931                 /*
1932                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1933                  * counting two ticks for each interrupt.
1934                  */
1935                 chip->timer_ticks = 2;
1936                 count = 2 - 1;
1937         }
1938         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1939         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1940         spin_unlock_irqrestore(&chip->reg_lock, flags);
1941         return 0;
1942 }
1943
1944 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1945 {
1946         struct snd_ymfpci *chip;
1947         unsigned long flags;
1948
1949         chip = snd_timer_chip(timer);
1950         spin_lock_irqsave(&chip->reg_lock, flags);
1951         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1952         spin_unlock_irqrestore(&chip->reg_lock, flags);
1953         return 0;
1954 }
1955
1956 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1957                                                unsigned long *num, unsigned long *den)
1958 {
1959         *num = 1;
1960         *den = 96000;
1961         return 0;
1962 }
1963
1964 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1965         .flags = SNDRV_TIMER_HW_AUTO,
1966         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1967         .ticks = 0x10000,
1968         .start = snd_ymfpci_timer_start,
1969         .stop = snd_ymfpci_timer_stop,
1970         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1971 };
1972
1973 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1974 {
1975         struct snd_timer *timer = NULL;
1976         struct snd_timer_id tid;
1977         int err;
1978
1979         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1980         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1981         tid.card = chip->card->number;
1982         tid.device = device;
1983         tid.subdevice = 0;
1984         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1985                 strcpy(timer->name, "YMFPCI timer");
1986                 timer->private_data = chip;
1987                 timer->hw = snd_ymfpci_timer_hw;
1988         }
1989         chip->timer = timer;
1990         return err;
1991 }
1992
1993
1994 /*
1995  *  proc interface
1996  */
1997
1998 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1999                                  struct snd_info_buffer *buffer)
2000 {
2001         struct snd_ymfpci *chip = entry->private_data;
2002         int i;
2003         
2004         snd_iprintf(buffer, "YMFPCI\n\n");
2005         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
2006                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
2007 }
2008
2009 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
2010 {
2011         struct snd_info_entry *entry;
2012         
2013         if (! snd_card_proc_new(card, "ymfpci", &entry))
2014                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
2015         return 0;
2016 }
2017
2018 /*
2019  *  initialization routines
2020  */
2021
2022 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
2023 {
2024         u8 cmd;
2025
2026         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
2027 #if 0 // force to reset
2028         if (cmd & 0x03) {
2029 #endif
2030                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2031                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
2032                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2033                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2034                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2035 #if 0
2036         }
2037 #endif
2038 }
2039
2040 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2041 {
2042         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2043 }
2044
2045 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2046 {
2047         u32 val;
2048         int timeout = 1000;
2049
2050         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2051         if (val)
2052                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2053         while (timeout-- > 0) {
2054                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2055                 if ((val & 0x00000002) == 0)
2056                         break;
2057         }
2058 }
2059
2060 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2061 {
2062         int err, is_1e;
2063         const char *name;
2064
2065         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2066                                &chip->pci->dev);
2067         if (err >= 0) {
2068                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2069                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2070                         err = -EINVAL;
2071                 }
2072         }
2073         if (err < 0)
2074                 return err;
2075         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2076                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2077                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2078                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2079         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2080         err = request_firmware(&chip->controller_microcode, name,
2081                                &chip->pci->dev);
2082         if (err >= 0) {
2083                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2084                         snd_printk(KERN_ERR "controller microcode"
2085                                    " has wrong size\n");
2086                         err = -EINVAL;
2087                 }
2088         }
2089         if (err < 0)
2090                 return err;
2091         return 0;
2092 }
2093
2094 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2095 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2096 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2097
2098 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2099 {
2100         int i;
2101         u16 ctrl;
2102         const __le32 *inst;
2103
2104         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2105         snd_ymfpci_disable_dsp(chip);
2106         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2107         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2108         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2109         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2110         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2111         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2112         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2113         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2114         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2115
2116         /* setup DSP instruction code */
2117         inst = (const __le32 *)chip->dsp_microcode->data;
2118         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2119                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2120                                   le32_to_cpu(inst[i]));
2121
2122         /* setup control instruction code */
2123         inst = (const __le32 *)chip->controller_microcode->data;
2124         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2125                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2126                                   le32_to_cpu(inst[i]));
2127
2128         snd_ymfpci_enable_dsp(chip);
2129 }
2130
2131 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2132 {
2133         long size, playback_ctrl_size;
2134         int voice, bank, reg;
2135         u8 *ptr;
2136         dma_addr_t ptr_addr;
2137
2138         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2139         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2140         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2141         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2142         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2143         
2144         size = ALIGN(playback_ctrl_size, 0x100) +
2145                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2146                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2147                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2148                chip->work_size;
2149         /* work_ptr must be aligned to 256 bytes, but it's already
2150            covered with the kernel page allocation mechanism */
2151         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2152                                 size, &chip->work_ptr) < 0) 
2153                 return -ENOMEM;
2154         ptr = chip->work_ptr.area;
2155         ptr_addr = chip->work_ptr.addr;
2156         memset(ptr, 0, size);   /* for sure */
2157
2158         chip->bank_base_playback = ptr;
2159         chip->bank_base_playback_addr = ptr_addr;
2160         chip->ctrl_playback = (u32 *)ptr;
2161         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2162         ptr += ALIGN(playback_ctrl_size, 0x100);
2163         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2164         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2165                 chip->voices[voice].number = voice;
2166                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2167                 chip->voices[voice].bank_addr = ptr_addr;
2168                 for (bank = 0; bank < 2; bank++) {
2169                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2170                         ptr += chip->bank_size_playback;
2171                         ptr_addr += chip->bank_size_playback;
2172                 }
2173         }
2174         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2175         ptr_addr = ALIGN(ptr_addr, 0x100);
2176         chip->bank_base_capture = ptr;
2177         chip->bank_base_capture_addr = ptr_addr;
2178         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2179                 for (bank = 0; bank < 2; bank++) {
2180                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2181                         ptr += chip->bank_size_capture;
2182                         ptr_addr += chip->bank_size_capture;
2183                 }
2184         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2185         ptr_addr = ALIGN(ptr_addr, 0x100);
2186         chip->bank_base_effect = ptr;
2187         chip->bank_base_effect_addr = ptr_addr;
2188         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2189                 for (bank = 0; bank < 2; bank++) {
2190                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2191                         ptr += chip->bank_size_effect;
2192                         ptr_addr += chip->bank_size_effect;
2193                 }
2194         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2195         ptr_addr = ALIGN(ptr_addr, 0x100);
2196         chip->work_base = ptr;
2197         chip->work_base_addr = ptr_addr;
2198         
2199         snd_BUG_ON(ptr + chip->work_size !=
2200                    chip->work_ptr.area + chip->work_ptr.bytes);
2201
2202         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2203         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2204         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2205         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2206         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2207
2208         /* S/PDIF output initialization */
2209         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2210         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2211         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2212
2213         /* S/PDIF input initialization */
2214         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2215
2216         /* digital mixer setup */
2217         for (reg = 0x80; reg < 0xc0; reg += 4)
2218                 snd_ymfpci_writel(chip, reg, 0);
2219         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2220         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2221         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2222         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2223         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2224         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2225         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2226         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2227         
2228         return 0;
2229 }
2230
2231 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2232 {
2233         u16 ctrl;
2234
2235         if (snd_BUG_ON(!chip))
2236                 return -EINVAL;
2237
2238         if (chip->res_reg_area) {       /* don't touch busy hardware */
2239                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2240                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2241                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2242                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2243                 snd_ymfpci_disable_dsp(chip);
2244                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2245                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2246                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2247                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2248                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2249                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2250                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2251         }
2252
2253         snd_ymfpci_ac3_done(chip);
2254
2255         /* Set PCI device to D3 state */
2256 #if 0
2257         /* FIXME: temporarily disabled, otherwise we cannot fire up
2258          * the chip again unless reboot.  ACPI bug?
2259          */
2260         pci_set_power_state(chip->pci, 3);
2261 #endif
2262
2263 #ifdef CONFIG_PM_SLEEP
2264         vfree(chip->saved_regs);
2265 #endif
2266         if (chip->irq >= 0)
2267                 free_irq(chip->irq, chip);
2268         release_and_free_resource(chip->mpu_res);
2269         release_and_free_resource(chip->fm_res);
2270         snd_ymfpci_free_gameport(chip);
2271         if (chip->reg_area_virt)
2272                 iounmap(chip->reg_area_virt);
2273         if (chip->work_ptr.area)
2274                 snd_dma_free_pages(&chip->work_ptr);
2275         
2276         release_and_free_resource(chip->res_reg_area);
2277
2278         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2279         
2280         pci_disable_device(chip->pci);
2281         release_firmware(chip->dsp_microcode);
2282         release_firmware(chip->controller_microcode);
2283         kfree(chip);
2284         return 0;
2285 }
2286
2287 static int snd_ymfpci_dev_free(struct snd_device *device)
2288 {
2289         struct snd_ymfpci *chip = device->device_data;
2290         return snd_ymfpci_free(chip);
2291 }
2292
2293 #ifdef CONFIG_PM_SLEEP
2294 static int saved_regs_index[] = {
2295         /* spdif */
2296         YDSXGR_SPDIFOUTCTRL,
2297         YDSXGR_SPDIFOUTSTATUS,
2298         YDSXGR_SPDIFINCTRL,
2299         /* volumes */
2300         YDSXGR_PRIADCLOOPVOL,
2301         YDSXGR_NATIVEDACINVOL,
2302         YDSXGR_NATIVEDACOUTVOL,
2303         YDSXGR_BUF441OUTVOL,
2304         YDSXGR_NATIVEADCINVOL,
2305         YDSXGR_SPDIFLOOPVOL,
2306         YDSXGR_SPDIFOUTVOL,
2307         YDSXGR_ZVOUTVOL,
2308         YDSXGR_LEGACYOUTVOL,
2309         /* address bases */
2310         YDSXGR_PLAYCTRLBASE,
2311         YDSXGR_RECCTRLBASE,
2312         YDSXGR_EFFCTRLBASE,
2313         YDSXGR_WORKBASE,
2314         /* capture set up */
2315         YDSXGR_MAPOFREC,
2316         YDSXGR_RECFORMAT,
2317         YDSXGR_RECSLOTSR,
2318         YDSXGR_ADCFORMAT,
2319         YDSXGR_ADCSLOTSR,
2320 };
2321 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2322
2323 static int snd_ymfpci_suspend(struct device *dev)
2324 {
2325         struct pci_dev *pci = to_pci_dev(dev);
2326         struct snd_card *card = dev_get_drvdata(dev);
2327         struct snd_ymfpci *chip = card->private_data;
2328         unsigned int i;
2329         
2330         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2331         snd_pcm_suspend_all(chip->pcm);
2332         snd_pcm_suspend_all(chip->pcm2);
2333         snd_pcm_suspend_all(chip->pcm_spdif);
2334         snd_pcm_suspend_all(chip->pcm_4ch);
2335         snd_ac97_suspend(chip->ac97);
2336         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2337                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2338         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2339         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2340                              &chip->saved_dsxg_legacy);
2341         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2342                              &chip->saved_dsxg_elegacy);
2343         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2344         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2345         snd_ymfpci_disable_dsp(chip);
2346         pci_disable_device(pci);
2347         pci_save_state(pci);
2348         pci_set_power_state(pci, PCI_D3hot);
2349         return 0;
2350 }
2351
2352 static int snd_ymfpci_resume(struct device *dev)
2353 {
2354         struct pci_dev *pci = to_pci_dev(dev);
2355         struct snd_card *card = dev_get_drvdata(dev);
2356         struct snd_ymfpci *chip = card->private_data;
2357         unsigned int i;
2358
2359         pci_set_power_state(pci, PCI_D0);
2360         pci_restore_state(pci);
2361         if (pci_enable_device(pci) < 0) {
2362                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2363                        "disabling device\n");
2364                 snd_card_disconnect(card);
2365                 return -EIO;
2366         }
2367         pci_set_master(pci);
2368         snd_ymfpci_aclink_reset(pci);
2369         snd_ymfpci_codec_ready(chip, 0);
2370         snd_ymfpci_download_image(chip);
2371         udelay(100);
2372
2373         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2374                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2375
2376         snd_ac97_resume(chip->ac97);
2377
2378         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2379                               chip->saved_dsxg_legacy);
2380         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2381                               chip->saved_dsxg_elegacy);
2382
2383         /* start hw again */
2384         if (chip->start_count > 0) {
2385                 spin_lock_irq(&chip->reg_lock);
2386                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2387                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2388                 spin_unlock_irq(&chip->reg_lock);
2389         }
2390         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2391         return 0;
2392 }
2393
2394 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2395 #endif /* CONFIG_PM_SLEEP */
2396
2397 int __devinit snd_ymfpci_create(struct snd_card *card,
2398                                 struct pci_dev * pci,
2399                                 unsigned short old_legacy_ctrl,
2400                                 struct snd_ymfpci ** rchip)
2401 {
2402         struct snd_ymfpci *chip;
2403         int err;
2404         static struct snd_device_ops ops = {
2405                 .dev_free =     snd_ymfpci_dev_free,
2406         };
2407         
2408         *rchip = NULL;
2409
2410         /* enable PCI device */
2411         if ((err = pci_enable_device(pci)) < 0)
2412                 return err;
2413
2414         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2415         if (chip == NULL) {
2416                 pci_disable_device(pci);
2417                 return -ENOMEM;
2418         }
2419         chip->old_legacy_ctrl = old_legacy_ctrl;
2420         spin_lock_init(&chip->reg_lock);
2421         spin_lock_init(&chip->voice_lock);
2422         init_waitqueue_head(&chip->interrupt_sleep);
2423         atomic_set(&chip->interrupt_sleep_count, 0);
2424         chip->card = card;
2425         chip->pci = pci;
2426         chip->irq = -1;
2427         chip->device_id = pci->device;
2428         chip->rev = pci->revision;
2429         chip->reg_area_phys = pci_resource_start(pci, 0);
2430         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2431         pci_set_master(pci);
2432         chip->src441_used = -1;
2433
2434         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2435                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2436                 snd_ymfpci_free(chip);
2437                 return -EBUSY;
2438         }
2439         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2440                         KBUILD_MODNAME, chip)) {
2441                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2442                 snd_ymfpci_free(chip);
2443                 return -EBUSY;
2444         }
2445         chip->irq = pci->irq;
2446
2447         snd_ymfpci_aclink_reset(pci);
2448         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2449                 snd_ymfpci_free(chip);
2450                 return -EIO;
2451         }
2452
2453         err = snd_ymfpci_request_firmware(chip);
2454         if (err < 0) {
2455                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2456                 snd_ymfpci_free(chip);
2457                 return err;
2458         }
2459         snd_ymfpci_download_image(chip);
2460
2461         udelay(100); /* seems we need a delay after downloading image.. */
2462
2463         if (snd_ymfpci_memalloc(chip) < 0) {
2464                 snd_ymfpci_free(chip);
2465                 return -EIO;
2466         }
2467
2468         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2469                 snd_ymfpci_free(chip);
2470                 return err;
2471         }
2472
2473 #ifdef CONFIG_PM_SLEEP
2474         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2475         if (chip->saved_regs == NULL) {
2476                 snd_ymfpci_free(chip);
2477                 return -ENOMEM;
2478         }
2479 #endif
2480
2481         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2482                 snd_ymfpci_free(chip);
2483                 return err;
2484         }
2485
2486         snd_ymfpci_proc_init(card, chip);
2487
2488         snd_card_set_dev(card, &pci->dev);
2489
2490         *rchip = chip;
2491         return 0;
2492 }