Merge branch 'for-2.6.38' into for-2.6.39
[firefly-linux-kernel-4.4.55.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* codec register dump */
73 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
74 {
75         int ret, i, step = 1, count = 0;
76
77         if (!codec->driver->reg_cache_size)
78                 return 0;
79
80         if (codec->driver->reg_cache_step)
81                 step = codec->driver->reg_cache_step;
82
83         count += sprintf(buf, "%s registers\n", codec->name);
84         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
85                 if (codec->readable_register && !codec->readable_register(codec, i))
86                         continue;
87
88                 count += sprintf(buf + count, "%2x: ", i);
89                 if (count >= PAGE_SIZE - 1)
90                         break;
91
92                 if (codec->driver->display_register) {
93                         count += codec->driver->display_register(codec, buf + count,
94                                                          PAGE_SIZE - count, i);
95                 } else {
96                         /* If the read fails it's almost certainly due to
97                          * the register being volatile and the device being
98                          * powered off.
99                          */
100                         ret = snd_soc_read(codec, i);
101                         if (ret >= 0)
102                                 count += snprintf(buf + count,
103                                                   PAGE_SIZE - count,
104                                                   "%4x", ret);
105                         else
106                                 count += snprintf(buf + count,
107                                                   PAGE_SIZE - count,
108                                                   "<no data: %d>", ret);
109                 }
110
111                 if (count >= PAGE_SIZE - 1)
112                         break;
113
114                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
115                 if (count >= PAGE_SIZE - 1)
116                         break;
117         }
118
119         /* Truncate count; min() would cause a warning */
120         if (count >= PAGE_SIZE)
121                 count = PAGE_SIZE - 1;
122
123         return count;
124 }
125 static ssize_t codec_reg_show(struct device *dev,
126         struct device_attribute *attr, char *buf)
127 {
128         struct snd_soc_pcm_runtime *rtd =
129                         container_of(dev, struct snd_soc_pcm_runtime, dev);
130
131         return soc_codec_reg_show(rtd->codec, buf);
132 }
133
134 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
135
136 static ssize_t pmdown_time_show(struct device *dev,
137                                 struct device_attribute *attr, char *buf)
138 {
139         struct snd_soc_pcm_runtime *rtd =
140                         container_of(dev, struct snd_soc_pcm_runtime, dev);
141
142         return sprintf(buf, "%ld\n", rtd->pmdown_time);
143 }
144
145 static ssize_t pmdown_time_set(struct device *dev,
146                                struct device_attribute *attr,
147                                const char *buf, size_t count)
148 {
149         struct snd_soc_pcm_runtime *rtd =
150                         container_of(dev, struct snd_soc_pcm_runtime, dev);
151         int ret;
152
153         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
154         if (ret)
155                 return ret;
156
157         return count;
158 }
159
160 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
161
162 #ifdef CONFIG_DEBUG_FS
163 static int codec_reg_open_file(struct inode *inode, struct file *file)
164 {
165         file->private_data = inode->i_private;
166         return 0;
167 }
168
169 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
170                                size_t count, loff_t *ppos)
171 {
172         ssize_t ret;
173         struct snd_soc_codec *codec = file->private_data;
174         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
175         if (!buf)
176                 return -ENOMEM;
177         ret = soc_codec_reg_show(codec, buf);
178         if (ret >= 0)
179                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
180         kfree(buf);
181         return ret;
182 }
183
184 static ssize_t codec_reg_write_file(struct file *file,
185                 const char __user *user_buf, size_t count, loff_t *ppos)
186 {
187         char buf[32];
188         int buf_size;
189         char *start = buf;
190         unsigned long reg, value;
191         int step = 1;
192         struct snd_soc_codec *codec = file->private_data;
193
194         buf_size = min(count, (sizeof(buf)-1));
195         if (copy_from_user(buf, user_buf, buf_size))
196                 return -EFAULT;
197         buf[buf_size] = 0;
198
199         if (codec->driver->reg_cache_step)
200                 step = codec->driver->reg_cache_step;
201
202         while (*start == ' ')
203                 start++;
204         reg = simple_strtoul(start, &start, 16);
205         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
206                 return -EINVAL;
207         while (*start == ' ')
208                 start++;
209         if (strict_strtoul(start, 16, &value))
210                 return -EINVAL;
211
212         /* Userspace has been fiddling around behind the kernel's back */
213         add_taint(TAINT_USER);
214
215         snd_soc_write(codec, reg, value);
216         return buf_size;
217 }
218
219 static const struct file_operations codec_reg_fops = {
220         .open = codec_reg_open_file,
221         .read = codec_reg_read_file,
222         .write = codec_reg_write_file,
223         .llseek = default_llseek,
224 };
225
226 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
227 {
228         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
229
230         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
231                                                        debugfs_card_root);
232         if (!codec->debugfs_codec_root) {
233                 printk(KERN_WARNING
234                        "ASoC: Failed to create codec debugfs directory\n");
235                 return;
236         }
237
238         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
239                                                  codec->debugfs_codec_root,
240                                                  codec, &codec_reg_fops);
241         if (!codec->debugfs_reg)
242                 printk(KERN_WARNING
243                        "ASoC: Failed to create codec register debugfs file\n");
244
245         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
246                                                  codec->debugfs_codec_root);
247         if (!codec->dapm.debugfs_dapm)
248                 printk(KERN_WARNING
249                        "Failed to create DAPM debugfs directory\n");
250
251         snd_soc_dapm_debugfs_init(&codec->dapm);
252 }
253
254 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
255 {
256         debugfs_remove_recursive(codec->debugfs_codec_root);
257 }
258
259 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
260                                     size_t count, loff_t *ppos)
261 {
262         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
263         ssize_t len, ret = 0;
264         struct snd_soc_codec *codec;
265
266         if (!buf)
267                 return -ENOMEM;
268
269         list_for_each_entry(codec, &codec_list, list) {
270                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
271                                codec->name);
272                 if (len >= 0)
273                         ret += len;
274                 if (ret > PAGE_SIZE) {
275                         ret = PAGE_SIZE;
276                         break;
277                 }
278         }
279
280         if (ret >= 0)
281                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
282
283         kfree(buf);
284
285         return ret;
286 }
287
288 static const struct file_operations codec_list_fops = {
289         .read = codec_list_read_file,
290         .llseek = default_llseek,/* read accesses f_pos */
291 };
292
293 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
294                                   size_t count, loff_t *ppos)
295 {
296         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
297         ssize_t len, ret = 0;
298         struct snd_soc_dai *dai;
299
300         if (!buf)
301                 return -ENOMEM;
302
303         list_for_each_entry(dai, &dai_list, list) {
304                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
305                 if (len >= 0)
306                         ret += len;
307                 if (ret > PAGE_SIZE) {
308                         ret = PAGE_SIZE;
309                         break;
310                 }
311         }
312
313         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
314
315         kfree(buf);
316
317         return ret;
318 }
319
320 static const struct file_operations dai_list_fops = {
321         .read = dai_list_read_file,
322         .llseek = default_llseek,/* read accesses f_pos */
323 };
324
325 static ssize_t platform_list_read_file(struct file *file,
326                                        char __user *user_buf,
327                                        size_t count, loff_t *ppos)
328 {
329         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
330         ssize_t len, ret = 0;
331         struct snd_soc_platform *platform;
332
333         if (!buf)
334                 return -ENOMEM;
335
336         list_for_each_entry(platform, &platform_list, list) {
337                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
338                                platform->name);
339                 if (len >= 0)
340                         ret += len;
341                 if (ret > PAGE_SIZE) {
342                         ret = PAGE_SIZE;
343                         break;
344                 }
345         }
346
347         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
348
349         kfree(buf);
350
351         return ret;
352 }
353
354 static const struct file_operations platform_list_fops = {
355         .read = platform_list_read_file,
356         .llseek = default_llseek,/* read accesses f_pos */
357 };
358
359 static void soc_init_card_debugfs(struct snd_soc_card *card)
360 {
361         card->debugfs_card_root = debugfs_create_dir(card->name,
362                                                      snd_soc_debugfs_root);
363         if (!card->debugfs_card_root) {
364                 dev_warn(card->dev,
365                          "ASoC: Failed to create codec debugfs directory\n");
366                 return;
367         }
368
369         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
370                                                     card->debugfs_card_root,
371                                                     &card->pop_time);
372         if (!card->debugfs_pop_time)
373                 dev_warn(card->dev,
374                        "Failed to create pop time debugfs file\n");
375 }
376
377 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
378 {
379         debugfs_remove_recursive(card->debugfs_card_root);
380 }
381
382 #else
383
384 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
385 {
386 }
387
388 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
389 {
390 }
391
392 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
393 {
394 }
395
396 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
397 {
398 }
399 #endif
400
401 #ifdef CONFIG_SND_SOC_AC97_BUS
402 /* unregister ac97 codec */
403 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
404 {
405         if (codec->ac97->dev.bus)
406                 device_unregister(&codec->ac97->dev);
407         return 0;
408 }
409
410 /* stop no dev release warning */
411 static void soc_ac97_device_release(struct device *dev){}
412
413 /* register ac97 codec to bus */
414 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
415 {
416         int err;
417
418         codec->ac97->dev.bus = &ac97_bus_type;
419         codec->ac97->dev.parent = codec->card->dev;
420         codec->ac97->dev.release = soc_ac97_device_release;
421
422         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
423                      codec->card->snd_card->number, 0, codec->name);
424         err = device_register(&codec->ac97->dev);
425         if (err < 0) {
426                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
427                 codec->ac97->dev.bus = NULL;
428                 return err;
429         }
430         return 0;
431 }
432 #endif
433
434 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
435 {
436         struct snd_soc_pcm_runtime *rtd = substream->private_data;
437         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
438         struct snd_soc_dai *codec_dai = rtd->codec_dai;
439         int ret;
440
441         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
442                         rtd->dai_link->symmetric_rates) {
443                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
444                                 rtd->rate);
445
446                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
447                                                    SNDRV_PCM_HW_PARAM_RATE,
448                                                    rtd->rate,
449                                                    rtd->rate);
450                 if (ret < 0) {
451                         dev_err(&rtd->dev,
452                                 "Unable to apply rate symmetry constraint: %d\n", ret);
453                         return ret;
454                 }
455         }
456
457         return 0;
458 }
459
460 /*
461  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
462  * then initialized and any private data can be allocated. This also calls
463  * startup for the cpu DAI, platform, machine and codec DAI.
464  */
465 static int soc_pcm_open(struct snd_pcm_substream *substream)
466 {
467         struct snd_soc_pcm_runtime *rtd = substream->private_data;
468         struct snd_pcm_runtime *runtime = substream->runtime;
469         struct snd_soc_platform *platform = rtd->platform;
470         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
471         struct snd_soc_dai *codec_dai = rtd->codec_dai;
472         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
473         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
474         int ret = 0;
475
476         mutex_lock(&pcm_mutex);
477
478         /* startup the audio subsystem */
479         if (cpu_dai->driver->ops->startup) {
480                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
481                 if (ret < 0) {
482                         printk(KERN_ERR "asoc: can't open interface %s\n",
483                                 cpu_dai->name);
484                         goto out;
485                 }
486         }
487
488         if (platform->driver->ops->open) {
489                 ret = platform->driver->ops->open(substream);
490                 if (ret < 0) {
491                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
492                         goto platform_err;
493                 }
494         }
495
496         if (codec_dai->driver->ops->startup) {
497                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
498                 if (ret < 0) {
499                         printk(KERN_ERR "asoc: can't open codec %s\n",
500                                 codec_dai->name);
501                         goto codec_dai_err;
502                 }
503         }
504
505         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
506                 ret = rtd->dai_link->ops->startup(substream);
507                 if (ret < 0) {
508                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
509                         goto machine_err;
510                 }
511         }
512
513         /* Check that the codec and cpu DAIs are compatible */
514         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
515                 runtime->hw.rate_min =
516                         max(codec_dai_drv->playback.rate_min,
517                             cpu_dai_drv->playback.rate_min);
518                 runtime->hw.rate_max =
519                         min(codec_dai_drv->playback.rate_max,
520                             cpu_dai_drv->playback.rate_max);
521                 runtime->hw.channels_min =
522                         max(codec_dai_drv->playback.channels_min,
523                                 cpu_dai_drv->playback.channels_min);
524                 runtime->hw.channels_max =
525                         min(codec_dai_drv->playback.channels_max,
526                                 cpu_dai_drv->playback.channels_max);
527                 runtime->hw.formats =
528                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
529                 runtime->hw.rates =
530                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
531                 if (codec_dai_drv->playback.rates
532                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
533                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
534                 if (cpu_dai_drv->playback.rates
535                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
536                         runtime->hw.rates |= codec_dai_drv->playback.rates;
537         } else {
538                 runtime->hw.rate_min =
539                         max(codec_dai_drv->capture.rate_min,
540                             cpu_dai_drv->capture.rate_min);
541                 runtime->hw.rate_max =
542                         min(codec_dai_drv->capture.rate_max,
543                             cpu_dai_drv->capture.rate_max);
544                 runtime->hw.channels_min =
545                         max(codec_dai_drv->capture.channels_min,
546                                 cpu_dai_drv->capture.channels_min);
547                 runtime->hw.channels_max =
548                         min(codec_dai_drv->capture.channels_max,
549                                 cpu_dai_drv->capture.channels_max);
550                 runtime->hw.formats =
551                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
552                 runtime->hw.rates =
553                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
554                 if (codec_dai_drv->capture.rates
555                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
556                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
557                 if (cpu_dai_drv->capture.rates
558                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
559                         runtime->hw.rates |= codec_dai_drv->capture.rates;
560         }
561
562         snd_pcm_limit_hw_rates(runtime);
563         if (!runtime->hw.rates) {
564                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
565                         codec_dai->name, cpu_dai->name);
566                 goto config_err;
567         }
568         if (!runtime->hw.formats) {
569                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
570                         codec_dai->name, cpu_dai->name);
571                 goto config_err;
572         }
573         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
574                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
575                                 codec_dai->name, cpu_dai->name);
576                 goto config_err;
577         }
578
579         /* Symmetry only applies if we've already got an active stream. */
580         if (cpu_dai->active || codec_dai->active) {
581                 ret = soc_pcm_apply_symmetry(substream);
582                 if (ret != 0)
583                         goto config_err;
584         }
585
586         pr_debug("asoc: %s <-> %s info:\n",
587                         codec_dai->name, cpu_dai->name);
588         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
589         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
590                  runtime->hw.channels_max);
591         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
592                  runtime->hw.rate_max);
593
594         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
595                 cpu_dai->playback_active++;
596                 codec_dai->playback_active++;
597         } else {
598                 cpu_dai->capture_active++;
599                 codec_dai->capture_active++;
600         }
601         cpu_dai->active++;
602         codec_dai->active++;
603         rtd->codec->active++;
604         mutex_unlock(&pcm_mutex);
605         return 0;
606
607 config_err:
608         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
609                 rtd->dai_link->ops->shutdown(substream);
610
611 machine_err:
612         if (codec_dai->driver->ops->shutdown)
613                 codec_dai->driver->ops->shutdown(substream, codec_dai);
614
615 codec_dai_err:
616         if (platform->driver->ops->close)
617                 platform->driver->ops->close(substream);
618
619 platform_err:
620         if (cpu_dai->driver->ops->shutdown)
621                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
622 out:
623         mutex_unlock(&pcm_mutex);
624         return ret;
625 }
626
627 /*
628  * Power down the audio subsystem pmdown_time msecs after close is called.
629  * This is to ensure there are no pops or clicks in between any music tracks
630  * due to DAPM power cycling.
631  */
632 static void close_delayed_work(struct work_struct *work)
633 {
634         struct snd_soc_pcm_runtime *rtd =
635                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
636         struct snd_soc_dai *codec_dai = rtd->codec_dai;
637
638         mutex_lock(&pcm_mutex);
639
640         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
641                  codec_dai->driver->playback.stream_name,
642                  codec_dai->playback_active ? "active" : "inactive",
643                  codec_dai->pop_wait ? "yes" : "no");
644
645         /* are we waiting on this codec DAI stream */
646         if (codec_dai->pop_wait == 1) {
647                 codec_dai->pop_wait = 0;
648                 snd_soc_dapm_stream_event(rtd,
649                         codec_dai->driver->playback.stream_name,
650                         SND_SOC_DAPM_STREAM_STOP);
651         }
652
653         mutex_unlock(&pcm_mutex);
654 }
655
656 /*
657  * Called by ALSA when a PCM substream is closed. Private data can be
658  * freed here. The cpu DAI, codec DAI, machine and platform are also
659  * shutdown.
660  */
661 static int soc_codec_close(struct snd_pcm_substream *substream)
662 {
663         struct snd_soc_pcm_runtime *rtd = substream->private_data;
664         struct snd_soc_platform *platform = rtd->platform;
665         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
666         struct snd_soc_dai *codec_dai = rtd->codec_dai;
667         struct snd_soc_codec *codec = rtd->codec;
668
669         mutex_lock(&pcm_mutex);
670
671         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
672                 cpu_dai->playback_active--;
673                 codec_dai->playback_active--;
674         } else {
675                 cpu_dai->capture_active--;
676                 codec_dai->capture_active--;
677         }
678
679         cpu_dai->active--;
680         codec_dai->active--;
681         codec->active--;
682
683         /* Muting the DAC suppresses artifacts caused during digital
684          * shutdown, for example from stopping clocks.
685          */
686         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
687                 snd_soc_dai_digital_mute(codec_dai, 1);
688
689         if (cpu_dai->driver->ops->shutdown)
690                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
691
692         if (codec_dai->driver->ops->shutdown)
693                 codec_dai->driver->ops->shutdown(substream, codec_dai);
694
695         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
696                 rtd->dai_link->ops->shutdown(substream);
697
698         if (platform->driver->ops->close)
699                 platform->driver->ops->close(substream);
700         cpu_dai->runtime = NULL;
701
702         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
703                 /* start delayed pop wq here for playback streams */
704                 codec_dai->pop_wait = 1;
705                 schedule_delayed_work(&rtd->delayed_work,
706                         msecs_to_jiffies(rtd->pmdown_time));
707         } else {
708                 /* capture streams can be powered down now */
709                 snd_soc_dapm_stream_event(rtd,
710                         codec_dai->driver->capture.stream_name,
711                         SND_SOC_DAPM_STREAM_STOP);
712         }
713
714         mutex_unlock(&pcm_mutex);
715         return 0;
716 }
717
718 /*
719  * Called by ALSA when the PCM substream is prepared, can set format, sample
720  * rate, etc.  This function is non atomic and can be called multiple times,
721  * it can refer to the runtime info.
722  */
723 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
724 {
725         struct snd_soc_pcm_runtime *rtd = substream->private_data;
726         struct snd_soc_platform *platform = rtd->platform;
727         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
728         struct snd_soc_dai *codec_dai = rtd->codec_dai;
729         int ret = 0;
730
731         mutex_lock(&pcm_mutex);
732
733         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
734                 ret = rtd->dai_link->ops->prepare(substream);
735                 if (ret < 0) {
736                         printk(KERN_ERR "asoc: machine prepare error\n");
737                         goto out;
738                 }
739         }
740
741         if (platform->driver->ops->prepare) {
742                 ret = platform->driver->ops->prepare(substream);
743                 if (ret < 0) {
744                         printk(KERN_ERR "asoc: platform prepare error\n");
745                         goto out;
746                 }
747         }
748
749         if (codec_dai->driver->ops->prepare) {
750                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
751                 if (ret < 0) {
752                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
753                         goto out;
754                 }
755         }
756
757         if (cpu_dai->driver->ops->prepare) {
758                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
759                 if (ret < 0) {
760                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
761                         goto out;
762                 }
763         }
764
765         /* cancel any delayed stream shutdown that is pending */
766         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
767             codec_dai->pop_wait) {
768                 codec_dai->pop_wait = 0;
769                 cancel_delayed_work(&rtd->delayed_work);
770         }
771
772         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
773                 snd_soc_dapm_stream_event(rtd,
774                                           codec_dai->driver->playback.stream_name,
775                                           SND_SOC_DAPM_STREAM_START);
776         else
777                 snd_soc_dapm_stream_event(rtd,
778                                           codec_dai->driver->capture.stream_name,
779                                           SND_SOC_DAPM_STREAM_START);
780
781         snd_soc_dai_digital_mute(codec_dai, 0);
782
783 out:
784         mutex_unlock(&pcm_mutex);
785         return ret;
786 }
787
788 /*
789  * Called by ALSA when the hardware params are set by application. This
790  * function can also be called multiple times and can allocate buffers
791  * (using snd_pcm_lib_* ). It's non-atomic.
792  */
793 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
794                                 struct snd_pcm_hw_params *params)
795 {
796         struct snd_soc_pcm_runtime *rtd = substream->private_data;
797         struct snd_soc_platform *platform = rtd->platform;
798         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
799         struct snd_soc_dai *codec_dai = rtd->codec_dai;
800         int ret = 0;
801
802         mutex_lock(&pcm_mutex);
803
804         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
805                 ret = rtd->dai_link->ops->hw_params(substream, params);
806                 if (ret < 0) {
807                         printk(KERN_ERR "asoc: machine hw_params failed\n");
808                         goto out;
809                 }
810         }
811
812         if (codec_dai->driver->ops->hw_params) {
813                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
814                 if (ret < 0) {
815                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
816                                 codec_dai->name);
817                         goto codec_err;
818                 }
819         }
820
821         if (cpu_dai->driver->ops->hw_params) {
822                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
823                 if (ret < 0) {
824                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
825                                 cpu_dai->name);
826                         goto interface_err;
827                 }
828         }
829
830         if (platform->driver->ops->hw_params) {
831                 ret = platform->driver->ops->hw_params(substream, params);
832                 if (ret < 0) {
833                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
834                                 platform->name);
835                         goto platform_err;
836                 }
837         }
838
839         rtd->rate = params_rate(params);
840
841 out:
842         mutex_unlock(&pcm_mutex);
843         return ret;
844
845 platform_err:
846         if (cpu_dai->driver->ops->hw_free)
847                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
848
849 interface_err:
850         if (codec_dai->driver->ops->hw_free)
851                 codec_dai->driver->ops->hw_free(substream, codec_dai);
852
853 codec_err:
854         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
855                 rtd->dai_link->ops->hw_free(substream);
856
857         mutex_unlock(&pcm_mutex);
858         return ret;
859 }
860
861 /*
862  * Frees resources allocated by hw_params, can be called multiple times
863  */
864 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
865 {
866         struct snd_soc_pcm_runtime *rtd = substream->private_data;
867         struct snd_soc_platform *platform = rtd->platform;
868         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
869         struct snd_soc_dai *codec_dai = rtd->codec_dai;
870         struct snd_soc_codec *codec = rtd->codec;
871
872         mutex_lock(&pcm_mutex);
873
874         /* apply codec digital mute */
875         if (!codec->active)
876                 snd_soc_dai_digital_mute(codec_dai, 1);
877
878         /* free any machine hw params */
879         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
880                 rtd->dai_link->ops->hw_free(substream);
881
882         /* free any DMA resources */
883         if (platform->driver->ops->hw_free)
884                 platform->driver->ops->hw_free(substream);
885
886         /* now free hw params for the DAIs  */
887         if (codec_dai->driver->ops->hw_free)
888                 codec_dai->driver->ops->hw_free(substream, codec_dai);
889
890         if (cpu_dai->driver->ops->hw_free)
891                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
892
893         mutex_unlock(&pcm_mutex);
894         return 0;
895 }
896
897 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
898 {
899         struct snd_soc_pcm_runtime *rtd = substream->private_data;
900         struct snd_soc_platform *platform = rtd->platform;
901         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
902         struct snd_soc_dai *codec_dai = rtd->codec_dai;
903         int ret;
904
905         if (codec_dai->driver->ops->trigger) {
906                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
907                 if (ret < 0)
908                         return ret;
909         }
910
911         if (platform->driver->ops->trigger) {
912                 ret = platform->driver->ops->trigger(substream, cmd);
913                 if (ret < 0)
914                         return ret;
915         }
916
917         if (cpu_dai->driver->ops->trigger) {
918                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
919                 if (ret < 0)
920                         return ret;
921         }
922         return 0;
923 }
924
925 /*
926  * soc level wrapper for pointer callback
927  * If cpu_dai, codec_dai, platform driver has the delay callback, than
928  * the runtime->delay will be updated accordingly.
929  */
930 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
931 {
932         struct snd_soc_pcm_runtime *rtd = substream->private_data;
933         struct snd_soc_platform *platform = rtd->platform;
934         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
935         struct snd_soc_dai *codec_dai = rtd->codec_dai;
936         struct snd_pcm_runtime *runtime = substream->runtime;
937         snd_pcm_uframes_t offset = 0;
938         snd_pcm_sframes_t delay = 0;
939
940         if (platform->driver->ops->pointer)
941                 offset = platform->driver->ops->pointer(substream);
942
943         if (cpu_dai->driver->ops->delay)
944                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
945
946         if (codec_dai->driver->ops->delay)
947                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
948
949         if (platform->driver->delay)
950                 delay += platform->driver->delay(substream, codec_dai);
951
952         runtime->delay = delay;
953
954         return offset;
955 }
956
957 /* ASoC PCM operations */
958 static struct snd_pcm_ops soc_pcm_ops = {
959         .open           = soc_pcm_open,
960         .close          = soc_codec_close,
961         .hw_params      = soc_pcm_hw_params,
962         .hw_free        = soc_pcm_hw_free,
963         .prepare        = soc_pcm_prepare,
964         .trigger        = soc_pcm_trigger,
965         .pointer        = soc_pcm_pointer,
966 };
967
968 #ifdef CONFIG_PM
969 /* powers down audio subsystem for suspend */
970 static int soc_suspend(struct device *dev)
971 {
972         struct platform_device *pdev = to_platform_device(dev);
973         struct snd_soc_card *card = platform_get_drvdata(pdev);
974         struct snd_soc_codec *codec;
975         int i;
976
977         /* If the initialization of this soc device failed, there is no codec
978          * associated with it. Just bail out in this case.
979          */
980         if (list_empty(&card->codec_dev_list))
981                 return 0;
982
983         /* Due to the resume being scheduled into a workqueue we could
984         * suspend before that's finished - wait for it to complete.
985          */
986         snd_power_lock(card->snd_card);
987         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
988         snd_power_unlock(card->snd_card);
989
990         /* we're going to block userspace touching us until resume completes */
991         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
992
993         /* mute any active DACs */
994         for (i = 0; i < card->num_rtd; i++) {
995                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
996                 struct snd_soc_dai_driver *drv = dai->driver;
997
998                 if (card->rtd[i].dai_link->ignore_suspend)
999                         continue;
1000
1001                 if (drv->ops->digital_mute && dai->playback_active)
1002                         drv->ops->digital_mute(dai, 1);
1003         }
1004
1005         /* suspend all pcms */
1006         for (i = 0; i < card->num_rtd; i++) {
1007                 if (card->rtd[i].dai_link->ignore_suspend)
1008                         continue;
1009
1010                 snd_pcm_suspend_all(card->rtd[i].pcm);
1011         }
1012
1013         if (card->suspend_pre)
1014                 card->suspend_pre(pdev, PMSG_SUSPEND);
1015
1016         for (i = 0; i < card->num_rtd; i++) {
1017                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1018                 struct snd_soc_platform *platform = card->rtd[i].platform;
1019
1020                 if (card->rtd[i].dai_link->ignore_suspend)
1021                         continue;
1022
1023                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1024                         cpu_dai->driver->suspend(cpu_dai);
1025                 if (platform->driver->suspend && !platform->suspended) {
1026                         platform->driver->suspend(cpu_dai);
1027                         platform->suspended = 1;
1028                 }
1029         }
1030
1031         /* close any waiting streams and save state */
1032         for (i = 0; i < card->num_rtd; i++) {
1033                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1034                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1035         }
1036
1037         for (i = 0; i < card->num_rtd; i++) {
1038                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1039
1040                 if (card->rtd[i].dai_link->ignore_suspend)
1041                         continue;
1042
1043                 if (driver->playback.stream_name != NULL)
1044                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1045                                 SND_SOC_DAPM_STREAM_SUSPEND);
1046
1047                 if (driver->capture.stream_name != NULL)
1048                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1049                                 SND_SOC_DAPM_STREAM_SUSPEND);
1050         }
1051
1052         /* suspend all CODECs */
1053         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1054                 /* If there are paths active then the CODEC will be held with
1055                  * bias _ON and should not be suspended. */
1056                 if (!codec->suspended && codec->driver->suspend) {
1057                         switch (codec->dapm.bias_level) {
1058                         case SND_SOC_BIAS_STANDBY:
1059                         case SND_SOC_BIAS_OFF:
1060                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1061                                 codec->suspended = 1;
1062                                 break;
1063                         default:
1064                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1065                                 break;
1066                         }
1067                 }
1068         }
1069
1070         for (i = 0; i < card->num_rtd; i++) {
1071                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1072
1073                 if (card->rtd[i].dai_link->ignore_suspend)
1074                         continue;
1075
1076                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1077                         cpu_dai->driver->suspend(cpu_dai);
1078         }
1079
1080         if (card->suspend_post)
1081                 card->suspend_post(pdev, PMSG_SUSPEND);
1082
1083         return 0;
1084 }
1085
1086 /* deferred resume work, so resume can complete before we finished
1087  * setting our codec back up, which can be very slow on I2C
1088  */
1089 static void soc_resume_deferred(struct work_struct *work)
1090 {
1091         struct snd_soc_card *card =
1092                         container_of(work, struct snd_soc_card, deferred_resume_work);
1093         struct platform_device *pdev = to_platform_device(card->dev);
1094         struct snd_soc_codec *codec;
1095         int i;
1096
1097         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1098          * so userspace apps are blocked from touching us
1099          */
1100
1101         dev_dbg(card->dev, "starting resume work\n");
1102
1103         /* Bring us up into D2 so that DAPM starts enabling things */
1104         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1105
1106         if (card->resume_pre)
1107                 card->resume_pre(pdev);
1108
1109         /* resume AC97 DAIs */
1110         for (i = 0; i < card->num_rtd; i++) {
1111                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1112
1113                 if (card->rtd[i].dai_link->ignore_suspend)
1114                         continue;
1115
1116                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1117                         cpu_dai->driver->resume(cpu_dai);
1118         }
1119
1120         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1121                 /* If the CODEC was idle over suspend then it will have been
1122                  * left with bias OFF or STANDBY and suspended so we must now
1123                  * resume.  Otherwise the suspend was suppressed.
1124                  */
1125                 if (codec->driver->resume && codec->suspended) {
1126                         switch (codec->dapm.bias_level) {
1127                         case SND_SOC_BIAS_STANDBY:
1128                         case SND_SOC_BIAS_OFF:
1129                                 codec->driver->resume(codec);
1130                                 codec->suspended = 0;
1131                                 break;
1132                         default:
1133                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1134                                 break;
1135                         }
1136                 }
1137         }
1138
1139         for (i = 0; i < card->num_rtd; i++) {
1140                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1141
1142                 if (card->rtd[i].dai_link->ignore_suspend)
1143                         continue;
1144
1145                 if (driver->playback.stream_name != NULL)
1146                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1147                                 SND_SOC_DAPM_STREAM_RESUME);
1148
1149                 if (driver->capture.stream_name != NULL)
1150                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1151                                 SND_SOC_DAPM_STREAM_RESUME);
1152         }
1153
1154         /* unmute any active DACs */
1155         for (i = 0; i < card->num_rtd; i++) {
1156                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1157                 struct snd_soc_dai_driver *drv = dai->driver;
1158
1159                 if (card->rtd[i].dai_link->ignore_suspend)
1160                         continue;
1161
1162                 if (drv->ops->digital_mute && dai->playback_active)
1163                         drv->ops->digital_mute(dai, 0);
1164         }
1165
1166         for (i = 0; i < card->num_rtd; i++) {
1167                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1168                 struct snd_soc_platform *platform = card->rtd[i].platform;
1169
1170                 if (card->rtd[i].dai_link->ignore_suspend)
1171                         continue;
1172
1173                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1174                         cpu_dai->driver->resume(cpu_dai);
1175                 if (platform->driver->resume && platform->suspended) {
1176                         platform->driver->resume(cpu_dai);
1177                         platform->suspended = 0;
1178                 }
1179         }
1180
1181         if (card->resume_post)
1182                 card->resume_post(pdev);
1183
1184         dev_dbg(card->dev, "resume work completed\n");
1185
1186         /* userspace can access us now we are back as we were before */
1187         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1188 }
1189
1190 /* powers up audio subsystem after a suspend */
1191 static int soc_resume(struct device *dev)
1192 {
1193         struct platform_device *pdev = to_platform_device(dev);
1194         struct snd_soc_card *card = platform_get_drvdata(pdev);
1195         int i;
1196
1197         /* AC97 devices might have other drivers hanging off them so
1198          * need to resume immediately.  Other drivers don't have that
1199          * problem and may take a substantial amount of time to resume
1200          * due to I/O costs and anti-pop so handle them out of line.
1201          */
1202         for (i = 0; i < card->num_rtd; i++) {
1203                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1204                 if (cpu_dai->driver->ac97_control) {
1205                         dev_dbg(dev, "Resuming AC97 immediately\n");
1206                         soc_resume_deferred(&card->deferred_resume_work);
1207                 } else {
1208                         dev_dbg(dev, "Scheduling resume work\n");
1209                         if (!schedule_work(&card->deferred_resume_work))
1210                                 dev_err(dev, "resume work item may be lost\n");
1211                 }
1212         }
1213
1214         return 0;
1215 }
1216 #else
1217 #define soc_suspend     NULL
1218 #define soc_resume      NULL
1219 #endif
1220
1221 static struct snd_soc_dai_ops null_dai_ops = {
1222 };
1223
1224 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1225 {
1226         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1227         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1228         struct snd_soc_codec *codec;
1229         struct snd_soc_platform *platform;
1230         struct snd_soc_dai *codec_dai, *cpu_dai;
1231
1232         if (rtd->complete)
1233                 return 1;
1234         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1235
1236         /* do we already have the CPU DAI for this link ? */
1237         if (rtd->cpu_dai) {
1238                 goto find_codec;
1239         }
1240         /* no, then find CPU DAI from registered DAIs*/
1241         list_for_each_entry(cpu_dai, &dai_list, list) {
1242                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1243
1244                         if (!try_module_get(cpu_dai->dev->driver->owner))
1245                                 return -ENODEV;
1246
1247                         rtd->cpu_dai = cpu_dai;
1248                         goto find_codec;
1249                 }
1250         }
1251         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1252                         dai_link->cpu_dai_name);
1253
1254 find_codec:
1255         /* do we already have the CODEC for this link ? */
1256         if (rtd->codec) {
1257                 goto find_platform;
1258         }
1259
1260         /* no, then find CODEC from registered CODECs*/
1261         list_for_each_entry(codec, &codec_list, list) {
1262                 if (!strcmp(codec->name, dai_link->codec_name)) {
1263                         rtd->codec = codec;
1264
1265                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1266                         list_for_each_entry(codec_dai, &dai_list, list) {
1267                                 if (codec->dev == codec_dai->dev &&
1268                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1269                                         rtd->codec_dai = codec_dai;
1270                                         goto find_platform;
1271                                 }
1272                         }
1273                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1274                                         dai_link->codec_dai_name);
1275
1276                         goto find_platform;
1277                 }
1278         }
1279         dev_dbg(card->dev, "CODEC %s not registered\n",
1280                         dai_link->codec_name);
1281
1282 find_platform:
1283         /* do we already have the CODEC DAI for this link ? */
1284         if (rtd->platform) {
1285                 goto out;
1286         }
1287         /* no, then find CPU DAI from registered DAIs*/
1288         list_for_each_entry(platform, &platform_list, list) {
1289                 if (!strcmp(platform->name, dai_link->platform_name)) {
1290                         rtd->platform = platform;
1291                         goto out;
1292                 }
1293         }
1294
1295         dev_dbg(card->dev, "platform %s not registered\n",
1296                         dai_link->platform_name);
1297         return 0;
1298
1299 out:
1300         /* mark rtd as complete if we found all 4 of our client devices */
1301         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1302                 rtd->complete = 1;
1303                 card->num_rtd++;
1304         }
1305         return 1;
1306 }
1307
1308 static void soc_remove_codec(struct snd_soc_codec *codec)
1309 {
1310         int err;
1311
1312         if (codec->driver->remove) {
1313                 err = codec->driver->remove(codec);
1314                 if (err < 0)
1315                         dev_err(codec->dev,
1316                                 "asoc: failed to remove %s: %d\n",
1317                                 codec->name, err);
1318         }
1319
1320         /* Make sure all DAPM widgets are freed */
1321         snd_soc_dapm_free(&codec->dapm);
1322
1323         soc_cleanup_codec_debugfs(codec);
1324         codec->probed = 0;
1325         list_del(&codec->card_list);
1326         module_put(codec->dev->driver->owner);
1327 }
1328
1329 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1330 {
1331         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1332         struct snd_soc_codec *codec = rtd->codec;
1333         struct snd_soc_platform *platform = rtd->platform;
1334         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1335         int err;
1336
1337         /* unregister the rtd device */
1338         if (rtd->dev_registered) {
1339                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1340                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1341                 device_unregister(&rtd->dev);
1342                 rtd->dev_registered = 0;
1343         }
1344
1345         /* remove the CODEC DAI */
1346         if (codec_dai && codec_dai->probed) {
1347                 if (codec_dai->driver->remove) {
1348                         err = codec_dai->driver->remove(codec_dai);
1349                         if (err < 0)
1350                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351                 }
1352                 codec_dai->probed = 0;
1353                 list_del(&codec_dai->card_list);
1354         }
1355
1356         /* remove the platform */
1357         if (platform && platform->probed) {
1358                 if (platform->driver->remove) {
1359                         err = platform->driver->remove(platform);
1360                         if (err < 0)
1361                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362                 }
1363                 platform->probed = 0;
1364                 list_del(&platform->card_list);
1365                 module_put(platform->dev->driver->owner);
1366         }
1367
1368         /* remove the CODEC */
1369         if (codec && codec->probed)
1370                 soc_remove_codec(codec);
1371
1372         /* remove the cpu_dai */
1373         if (cpu_dai && cpu_dai->probed) {
1374                 if (cpu_dai->driver->remove) {
1375                         err = cpu_dai->driver->remove(cpu_dai);
1376                         if (err < 0)
1377                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1378                 }
1379                 cpu_dai->probed = 0;
1380                 list_del(&cpu_dai->card_list);
1381                 module_put(cpu_dai->dev->driver->owner);
1382         }
1383 }
1384
1385 static void soc_set_name_prefix(struct snd_soc_card *card,
1386                                 struct snd_soc_codec *codec)
1387 {
1388         int i;
1389
1390         if (card->codec_conf == NULL)
1391                 return;
1392
1393         for (i = 0; i < card->num_configs; i++) {
1394                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1395                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1396                         codec->name_prefix = map->name_prefix;
1397                         break;
1398                 }
1399         }
1400 }
1401
1402 static int soc_probe_codec(struct snd_soc_card *card,
1403                            struct snd_soc_codec *codec)
1404 {
1405         int ret = 0;
1406
1407         codec->card = card;
1408         codec->dapm.card = card;
1409         soc_set_name_prefix(card, codec);
1410
1411         if (codec->driver->probe) {
1412                 ret = codec->driver->probe(codec);
1413                 if (ret < 0) {
1414                         dev_err(codec->dev,
1415                                 "asoc: failed to probe CODEC %s: %d\n",
1416                                 codec->name, ret);
1417                         return ret;
1418                 }
1419         }
1420
1421         soc_init_codec_debugfs(codec);
1422
1423         /* mark codec as probed and add to card codec list */
1424         if (!try_module_get(codec->dev->driver->owner))
1425                 return -ENODEV;
1426
1427         codec->probed = 1;
1428         list_add(&codec->card_list, &card->codec_dev_list);
1429         list_add(&codec->dapm.list, &card->dapm_list);
1430
1431         return ret;
1432 }
1433
1434 static void rtd_release(struct device *dev) {}
1435
1436 static int soc_post_component_init(struct snd_soc_card *card,
1437                                    struct snd_soc_codec *codec,
1438                                    int num, int dailess)
1439 {
1440         struct snd_soc_dai_link *dai_link = NULL;
1441         struct snd_soc_aux_dev *aux_dev = NULL;
1442         struct snd_soc_pcm_runtime *rtd;
1443         const char *temp, *name;
1444         int ret = 0;
1445
1446         if (!dailess) {
1447                 dai_link = &card->dai_link[num];
1448                 rtd = &card->rtd[num];
1449                 name = dai_link->name;
1450         } else {
1451                 aux_dev = &card->aux_dev[num];
1452                 rtd = &card->rtd_aux[num];
1453                 name = aux_dev->name;
1454         }
1455
1456         /* machine controls, routes and widgets are not prefixed */
1457         temp = codec->name_prefix;
1458         codec->name_prefix = NULL;
1459
1460         /* do machine specific initialization */
1461         if (!dailess && dai_link->init)
1462                 ret = dai_link->init(rtd);
1463         else if (dailess && aux_dev->init)
1464                 ret = aux_dev->init(&codec->dapm);
1465         if (ret < 0) {
1466                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1467                 return ret;
1468         }
1469         codec->name_prefix = temp;
1470
1471         /* Make sure all DAPM widgets are instantiated */
1472         snd_soc_dapm_new_widgets(&codec->dapm);
1473
1474         /* register the rtd device */
1475         rtd->codec = codec;
1476         rtd->card = card;
1477         rtd->dev.parent = card->dev;
1478         rtd->dev.release = rtd_release;
1479         rtd->dev.init_name = name;
1480         ret = device_register(&rtd->dev);
1481         if (ret < 0) {
1482                 dev_err(card->dev,
1483                         "asoc: failed to register runtime device: %d\n", ret);
1484                 return ret;
1485         }
1486         rtd->dev_registered = 1;
1487
1488         /* add DAPM sysfs entries for this codec */
1489         ret = snd_soc_dapm_sys_add(&rtd->dev);
1490         if (ret < 0)
1491                 dev_err(codec->dev,
1492                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1493                         ret);
1494
1495         /* add codec sysfs entries */
1496         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1497         if (ret < 0)
1498                 dev_err(codec->dev,
1499                         "asoc: failed to add codec sysfs files: %d\n", ret);
1500
1501         return 0;
1502 }
1503
1504 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1505 {
1506         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1507         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1508         struct snd_soc_codec *codec = rtd->codec;
1509         struct snd_soc_platform *platform = rtd->platform;
1510         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1511         int ret;
1512
1513         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1514
1515         /* config components */
1516         codec_dai->codec = codec;
1517         cpu_dai->platform = platform;
1518         codec_dai->card = card;
1519         cpu_dai->card = card;
1520
1521         /* set default power off timeout */
1522         rtd->pmdown_time = pmdown_time;
1523
1524         /* probe the cpu_dai */
1525         if (!cpu_dai->probed) {
1526                 if (cpu_dai->driver->probe) {
1527                         ret = cpu_dai->driver->probe(cpu_dai);
1528                         if (ret < 0) {
1529                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1530                                                 cpu_dai->name);
1531                                 return ret;
1532                         }
1533                 }
1534                 cpu_dai->probed = 1;
1535                 /* mark cpu_dai as probed and add to card cpu_dai list */
1536                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1537         }
1538
1539         /* probe the CODEC */
1540         if (!codec->probed) {
1541                 ret = soc_probe_codec(card, codec);
1542                 if (ret < 0)
1543                         return ret;
1544         }
1545
1546         /* probe the platform */
1547         if (!platform->probed) {
1548                 if (platform->driver->probe) {
1549                         ret = platform->driver->probe(platform);
1550                         if (ret < 0) {
1551                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1552                                                 platform->name);
1553                                 return ret;
1554                         }
1555                 }
1556                 /* mark platform as probed and add to card platform list */
1557
1558                 if (!try_module_get(platform->dev->driver->owner))
1559                         return -ENODEV;
1560
1561                 platform->probed = 1;
1562                 list_add(&platform->card_list, &card->platform_dev_list);
1563         }
1564
1565         /* probe the CODEC DAI */
1566         if (!codec_dai->probed) {
1567                 if (codec_dai->driver->probe) {
1568                         ret = codec_dai->driver->probe(codec_dai);
1569                         if (ret < 0) {
1570                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1571                                                 codec_dai->name);
1572                                 return ret;
1573                         }
1574                 }
1575
1576                 /* mark cpu_dai as probed and add to card cpu_dai list */
1577                 codec_dai->probed = 1;
1578                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1579         }
1580
1581         /* DAPM dai link stream work */
1582         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1583
1584         ret = soc_post_component_init(card, codec, num, 0);
1585         if (ret)
1586                 return ret;
1587
1588         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1589         if (ret < 0)
1590                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1591
1592         /* create the pcm */
1593         ret = soc_new_pcm(rtd, num);
1594         if (ret < 0) {
1595                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1596                 return ret;
1597         }
1598
1599         /* add platform data for AC97 devices */
1600         if (rtd->codec_dai->driver->ac97_control)
1601                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1602
1603         return 0;
1604 }
1605
1606 #ifdef CONFIG_SND_SOC_AC97_BUS
1607 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1608 {
1609         int ret;
1610
1611         /* Only instantiate AC97 if not already done by the adaptor
1612          * for the generic AC97 subsystem.
1613          */
1614         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1615                 /*
1616                  * It is possible that the AC97 device is already registered to
1617                  * the device subsystem. This happens when the device is created
1618                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1619                  * is the generic AC97 glue but others migh emerge.
1620                  *
1621                  * In those cases we don't try to register the device again.
1622                  */
1623                 if (!rtd->codec->ac97_created)
1624                         return 0;
1625
1626                 ret = soc_ac97_dev_register(rtd->codec);
1627                 if (ret < 0) {
1628                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1629                         return ret;
1630                 }
1631
1632                 rtd->codec->ac97_registered = 1;
1633         }
1634         return 0;
1635 }
1636
1637 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1638 {
1639         if (codec->ac97_registered) {
1640                 soc_ac97_dev_unregister(codec);
1641                 codec->ac97_registered = 0;
1642         }
1643 }
1644 #endif
1645
1646 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1647 {
1648         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1649         struct snd_soc_codec *codec;
1650         int ret = -ENODEV;
1651
1652         /* find CODEC from registered CODECs*/
1653         list_for_each_entry(codec, &codec_list, list) {
1654                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1655                         if (codec->probed) {
1656                                 dev_err(codec->dev,
1657                                         "asoc: codec already probed");
1658                                 ret = -EBUSY;
1659                                 goto out;
1660                         }
1661                         goto found;
1662                 }
1663         }
1664         /* codec not found */
1665         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1666         goto out;
1667
1668 found:
1669         if (!try_module_get(codec->dev->driver->owner))
1670                 return -ENODEV;
1671
1672         ret = soc_probe_codec(card, codec);
1673         if (ret < 0)
1674                 return ret;
1675
1676         ret = soc_post_component_init(card, codec, num, 1);
1677
1678 out:
1679         return ret;
1680 }
1681
1682 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1683 {
1684         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1685         struct snd_soc_codec *codec = rtd->codec;
1686
1687         /* unregister the rtd device */
1688         if (rtd->dev_registered) {
1689                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1690                 device_unregister(&rtd->dev);
1691                 rtd->dev_registered = 0;
1692         }
1693
1694         if (codec && codec->probed)
1695                 soc_remove_codec(codec);
1696 }
1697
1698 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1699                                     enum snd_soc_compress_type compress_type)
1700 {
1701         int ret;
1702
1703         if (codec->cache_init)
1704                 return 0;
1705
1706         /* override the compress_type if necessary */
1707         if (compress_type && codec->compress_type != compress_type)
1708                 codec->compress_type = compress_type;
1709         ret = snd_soc_cache_init(codec);
1710         if (ret < 0) {
1711                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1712                         ret);
1713                 return ret;
1714         }
1715         codec->cache_init = 1;
1716         return 0;
1717 }
1718
1719 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1720 {
1721         struct platform_device *pdev = to_platform_device(card->dev);
1722         struct snd_soc_codec *codec;
1723         struct snd_soc_codec_conf *codec_conf;
1724         enum snd_soc_compress_type compress_type;
1725         int ret, i;
1726
1727         mutex_lock(&card->mutex);
1728
1729         if (card->instantiated) {
1730                 mutex_unlock(&card->mutex);
1731                 return;
1732         }
1733
1734         /* bind DAIs */
1735         for (i = 0; i < card->num_links; i++)
1736                 soc_bind_dai_link(card, i);
1737
1738         /* bind completed ? */
1739         if (card->num_rtd != card->num_links) {
1740                 mutex_unlock(&card->mutex);
1741                 return;
1742         }
1743
1744         /* initialize the register cache for each available codec */
1745         list_for_each_entry(codec, &codec_list, list) {
1746                 if (codec->cache_init)
1747                         continue;
1748                 /* by default we don't override the compress_type */
1749                 compress_type = 0;
1750                 /* check to see if we need to override the compress_type */
1751                 for (i = 0; i < card->num_configs; ++i) {
1752                         codec_conf = &card->codec_conf[i];
1753                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1754                                 compress_type = codec_conf->compress_type;
1755                                 if (compress_type && compress_type
1756                                     != codec->compress_type)
1757                                         break;
1758                         }
1759                 }
1760                 ret = snd_soc_init_codec_cache(codec, compress_type);
1761                 if (ret < 0) {
1762                         mutex_unlock(&card->mutex);
1763                         return;
1764                 }
1765         }
1766
1767         /* card bind complete so register a sound card */
1768         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1769                         card->owner, 0, &card->snd_card);
1770         if (ret < 0) {
1771                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1772                         card->name);
1773                 mutex_unlock(&card->mutex);
1774                 return;
1775         }
1776         card->snd_card->dev = card->dev;
1777
1778 #ifdef CONFIG_PM
1779         /* deferred resume work */
1780         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1781 #endif
1782
1783         /* initialise the sound card only once */
1784         if (card->probe) {
1785                 ret = card->probe(pdev);
1786                 if (ret < 0)
1787                         goto card_probe_error;
1788         }
1789
1790         for (i = 0; i < card->num_links; i++) {
1791                 ret = soc_probe_dai_link(card, i);
1792                 if (ret < 0) {
1793                         pr_err("asoc: failed to instantiate card %s: %d\n",
1794                                card->name, ret);
1795                         goto probe_dai_err;
1796                 }
1797         }
1798
1799         for (i = 0; i < card->num_aux_devs; i++) {
1800                 ret = soc_probe_aux_dev(card, i);
1801                 if (ret < 0) {
1802                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1803                                card->name, ret);
1804                         goto probe_aux_dev_err;
1805                 }
1806         }
1807
1808         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1809                  "%s",  card->name);
1810         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1811                  "%s", card->name);
1812
1813         ret = snd_card_register(card->snd_card);
1814         if (ret < 0) {
1815                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1816                 goto probe_aux_dev_err;
1817         }
1818
1819 #ifdef CONFIG_SND_SOC_AC97_BUS
1820         /* register any AC97 codecs */
1821         for (i = 0; i < card->num_rtd; i++) {
1822                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1823                 if (ret < 0) {
1824                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1825                         while (--i >= 0)
1826                                 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1827                         goto probe_aux_dev_err;
1828                 }
1829         }
1830 #endif
1831
1832         card->instantiated = 1;
1833         mutex_unlock(&card->mutex);
1834         return;
1835
1836 probe_aux_dev_err:
1837         for (i = 0; i < card->num_aux_devs; i++)
1838                 soc_remove_aux_dev(card, i);
1839
1840 probe_dai_err:
1841         for (i = 0; i < card->num_links; i++)
1842                 soc_remove_dai_link(card, i);
1843
1844 card_probe_error:
1845         if (card->remove)
1846                 card->remove(pdev);
1847
1848         snd_card_free(card->snd_card);
1849
1850         mutex_unlock(&card->mutex);
1851 }
1852
1853 /*
1854  * Attempt to initialise any uninitialised cards.  Must be called with
1855  * client_mutex.
1856  */
1857 static void snd_soc_instantiate_cards(void)
1858 {
1859         struct snd_soc_card *card;
1860         list_for_each_entry(card, &card_list, list)
1861                 snd_soc_instantiate_card(card);
1862 }
1863
1864 /* probes a new socdev */
1865 static int soc_probe(struct platform_device *pdev)
1866 {
1867         struct snd_soc_card *card = platform_get_drvdata(pdev);
1868         int ret = 0;
1869
1870         /*
1871          * no card, so machine driver should be registering card
1872          * we should not be here in that case so ret error
1873          */
1874         if (!card)
1875                 return -EINVAL;
1876
1877         /* Bodge while we unpick instantiation */
1878         card->dev = &pdev->dev;
1879         snd_soc_initialize_card_lists(card);
1880
1881         ret = snd_soc_register_card(card);
1882         if (ret != 0) {
1883                 dev_err(&pdev->dev, "Failed to register card\n");
1884                 return ret;
1885         }
1886
1887         return 0;
1888 }
1889
1890 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1891 {
1892         struct platform_device *pdev = to_platform_device(card->dev);
1893         int i;
1894
1895         /* make sure any delayed work runs */
1896         for (i = 0; i < card->num_rtd; i++) {
1897                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1898                 flush_delayed_work_sync(&rtd->delayed_work);
1899         }
1900
1901         /* remove auxiliary devices */
1902         for (i = 0; i < card->num_aux_devs; i++)
1903                 soc_remove_aux_dev(card, i);
1904
1905         /* remove and free each DAI */
1906         for (i = 0; i < card->num_rtd; i++)
1907                 soc_remove_dai_link(card, i);
1908
1909         soc_cleanup_card_debugfs(card);
1910
1911         /* remove the card */
1912         if (card->remove)
1913                 card->remove(pdev);
1914
1915         kfree(card->rtd);
1916         snd_card_free(card->snd_card);
1917         return 0;
1918
1919 }
1920
1921 /* removes a socdev */
1922 static int soc_remove(struct platform_device *pdev)
1923 {
1924         struct snd_soc_card *card = platform_get_drvdata(pdev);
1925
1926         snd_soc_unregister_card(card);
1927         return 0;
1928 }
1929
1930 static int soc_poweroff(struct device *dev)
1931 {
1932         struct platform_device *pdev = to_platform_device(dev);
1933         struct snd_soc_card *card = platform_get_drvdata(pdev);
1934         int i;
1935
1936         if (!card->instantiated)
1937                 return 0;
1938
1939         /* Flush out pmdown_time work - we actually do want to run it
1940          * now, we're shutting down so no imminent restart. */
1941         for (i = 0; i < card->num_rtd; i++) {
1942                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1943                 flush_delayed_work_sync(&rtd->delayed_work);
1944         }
1945
1946         snd_soc_dapm_shutdown(card);
1947
1948         return 0;
1949 }
1950
1951 static const struct dev_pm_ops soc_pm_ops = {
1952         .suspend = soc_suspend,
1953         .resume = soc_resume,
1954         .poweroff = soc_poweroff,
1955 };
1956
1957 /* ASoC platform driver */
1958 static struct platform_driver soc_driver = {
1959         .driver         = {
1960                 .name           = "soc-audio",
1961                 .owner          = THIS_MODULE,
1962                 .pm             = &soc_pm_ops,
1963         },
1964         .probe          = soc_probe,
1965         .remove         = soc_remove,
1966 };
1967
1968 /* create a new pcm */
1969 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1970 {
1971         struct snd_soc_codec *codec = rtd->codec;
1972         struct snd_soc_platform *platform = rtd->platform;
1973         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1974         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1975         struct snd_pcm *pcm;
1976         char new_name[64];
1977         int ret = 0, playback = 0, capture = 0;
1978
1979         /* check client and interface hw capabilities */
1980         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1981                         rtd->dai_link->stream_name, codec_dai->name, num);
1982
1983         if (codec_dai->driver->playback.channels_min)
1984                 playback = 1;
1985         if (codec_dai->driver->capture.channels_min)
1986                 capture = 1;
1987
1988         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1989         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1990                         num, playback, capture, &pcm);
1991         if (ret < 0) {
1992                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1993                 return ret;
1994         }
1995
1996         rtd->pcm = pcm;
1997         pcm->private_data = rtd;
1998         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1999         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2000         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2001         soc_pcm_ops.copy = platform->driver->ops->copy;
2002         soc_pcm_ops.silence = platform->driver->ops->silence;
2003         soc_pcm_ops.ack = platform->driver->ops->ack;
2004         soc_pcm_ops.page = platform->driver->ops->page;
2005
2006         if (playback)
2007                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2008
2009         if (capture)
2010                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2011
2012         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2013         if (ret < 0) {
2014                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2015                 return ret;
2016         }
2017
2018         pcm->private_free = platform->driver->pcm_free;
2019         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2020                 cpu_dai->name);
2021         return ret;
2022 }
2023
2024 /**
2025  * snd_soc_codec_volatile_register: Report if a register is volatile.
2026  *
2027  * @codec: CODEC to query.
2028  * @reg: Register to query.
2029  *
2030  * Boolean function indiciating if a CODEC register is volatile.
2031  */
2032 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2033 {
2034         if (codec->volatile_register)
2035                 return codec->volatile_register(codec, reg);
2036         else
2037                 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2040
2041 /**
2042  * snd_soc_new_ac97_codec - initailise AC97 device
2043  * @codec: audio codec
2044  * @ops: AC97 bus operations
2045  * @num: AC97 codec number
2046  *
2047  * Initialises AC97 codec resources for use by ad-hoc devices only.
2048  */
2049 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2050         struct snd_ac97_bus_ops *ops, int num)
2051 {
2052         mutex_lock(&codec->mutex);
2053
2054         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2055         if (codec->ac97 == NULL) {
2056                 mutex_unlock(&codec->mutex);
2057                 return -ENOMEM;
2058         }
2059
2060         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2061         if (codec->ac97->bus == NULL) {
2062                 kfree(codec->ac97);
2063                 codec->ac97 = NULL;
2064                 mutex_unlock(&codec->mutex);
2065                 return -ENOMEM;
2066         }
2067
2068         codec->ac97->bus->ops = ops;
2069         codec->ac97->num = num;
2070
2071         /*
2072          * Mark the AC97 device to be created by us. This way we ensure that the
2073          * device will be registered with the device subsystem later on.
2074          */
2075         codec->ac97_created = 1;
2076
2077         mutex_unlock(&codec->mutex);
2078         return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2081
2082 /**
2083  * snd_soc_free_ac97_codec - free AC97 codec device
2084  * @codec: audio codec
2085  *
2086  * Frees AC97 codec device resources.
2087  */
2088 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2089 {
2090         mutex_lock(&codec->mutex);
2091 #ifdef CONFIG_SND_SOC_AC97_BUS
2092         soc_unregister_ac97_dai_link(codec);
2093 #endif
2094         kfree(codec->ac97->bus);
2095         kfree(codec->ac97);
2096         codec->ac97 = NULL;
2097         codec->ac97_created = 0;
2098         mutex_unlock(&codec->mutex);
2099 }
2100 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2101
2102 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2103 {
2104         unsigned int ret;
2105
2106         ret = codec->read(codec, reg);
2107         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2108         trace_snd_soc_reg_read(codec, reg, ret);
2109
2110         return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(snd_soc_read);
2113
2114 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2115                            unsigned int reg, unsigned int val)
2116 {
2117         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2118         trace_snd_soc_reg_write(codec, reg, val);
2119         return codec->write(codec, reg, val);
2120 }
2121 EXPORT_SYMBOL_GPL(snd_soc_write);
2122
2123 /**
2124  * snd_soc_update_bits - update codec register bits
2125  * @codec: audio codec
2126  * @reg: codec register
2127  * @mask: register mask
2128  * @value: new value
2129  *
2130  * Writes new register value.
2131  *
2132  * Returns 1 for change, 0 for no change, or negative error code.
2133  */
2134 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2135                                 unsigned int mask, unsigned int value)
2136 {
2137         int change;
2138         unsigned int old, new;
2139         int ret;
2140
2141         ret = snd_soc_read(codec, reg);
2142         if (ret < 0)
2143                 return ret;
2144
2145         old = ret;
2146         new = (old & ~mask) | value;
2147         change = old != new;
2148         if (change) {
2149                 ret = snd_soc_write(codec, reg, new);
2150                 if (ret < 0)
2151                         return ret;
2152         }
2153
2154         return change;
2155 }
2156 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2157
2158 /**
2159  * snd_soc_update_bits_locked - update codec register bits
2160  * @codec: audio codec
2161  * @reg: codec register
2162  * @mask: register mask
2163  * @value: new value
2164  *
2165  * Writes new register value, and takes the codec mutex.
2166  *
2167  * Returns 1 for change else 0.
2168  */
2169 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2170                                unsigned short reg, unsigned int mask,
2171                                unsigned int value)
2172 {
2173         int change;
2174
2175         mutex_lock(&codec->mutex);
2176         change = snd_soc_update_bits(codec, reg, mask, value);
2177         mutex_unlock(&codec->mutex);
2178
2179         return change;
2180 }
2181 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2182
2183 /**
2184  * snd_soc_test_bits - test register for change
2185  * @codec: audio codec
2186  * @reg: codec register
2187  * @mask: register mask
2188  * @value: new value
2189  *
2190  * Tests a register with a new value and checks if the new value is
2191  * different from the old value.
2192  *
2193  * Returns 1 for change else 0.
2194  */
2195 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2196                                 unsigned int mask, unsigned int value)
2197 {
2198         int change;
2199         unsigned int old, new;
2200
2201         old = snd_soc_read(codec, reg);
2202         new = (old & ~mask) | value;
2203         change = old != new;
2204
2205         return change;
2206 }
2207 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2208
2209 /**
2210  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2211  * @substream: the pcm substream
2212  * @hw: the hardware parameters
2213  *
2214  * Sets the substream runtime hardware parameters.
2215  */
2216 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2217         const struct snd_pcm_hardware *hw)
2218 {
2219         struct snd_pcm_runtime *runtime = substream->runtime;
2220         runtime->hw.info = hw->info;
2221         runtime->hw.formats = hw->formats;
2222         runtime->hw.period_bytes_min = hw->period_bytes_min;
2223         runtime->hw.period_bytes_max = hw->period_bytes_max;
2224         runtime->hw.periods_min = hw->periods_min;
2225         runtime->hw.periods_max = hw->periods_max;
2226         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2227         runtime->hw.fifo_size = hw->fifo_size;
2228         return 0;
2229 }
2230 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2231
2232 /**
2233  * snd_soc_cnew - create new control
2234  * @_template: control template
2235  * @data: control private data
2236  * @long_name: control long name
2237  *
2238  * Create a new mixer control from a template control.
2239  *
2240  * Returns 0 for success, else error.
2241  */
2242 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2243         void *data, char *long_name)
2244 {
2245         struct snd_kcontrol_new template;
2246
2247         memcpy(&template, _template, sizeof(template));
2248         if (long_name)
2249                 template.name = long_name;
2250         template.index = 0;
2251
2252         return snd_ctl_new1(&template, data);
2253 }
2254 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2255
2256 /**
2257  * snd_soc_add_controls - add an array of controls to a codec.
2258  * Convienience function to add a list of controls. Many codecs were
2259  * duplicating this code.
2260  *
2261  * @codec: codec to add controls to
2262  * @controls: array of controls to add
2263  * @num_controls: number of elements in the array
2264  *
2265  * Return 0 for success, else error.
2266  */
2267 int snd_soc_add_controls(struct snd_soc_codec *codec,
2268         const struct snd_kcontrol_new *controls, int num_controls)
2269 {
2270         struct snd_card *card = codec->card->snd_card;
2271         char prefixed_name[44], *name;
2272         int err, i;
2273
2274         for (i = 0; i < num_controls; i++) {
2275                 const struct snd_kcontrol_new *control = &controls[i];
2276                 if (codec->name_prefix) {
2277                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2278                                  codec->name_prefix, control->name);
2279                         name = prefixed_name;
2280                 } else {
2281                         name = control->name;
2282                 }
2283                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2284                 if (err < 0) {
2285                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2286                                 codec->name, name, err);
2287                         return err;
2288                 }
2289         }
2290
2291         return 0;
2292 }
2293 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2294
2295 /**
2296  * snd_soc_info_enum_double - enumerated double mixer info callback
2297  * @kcontrol: mixer control
2298  * @uinfo: control element information
2299  *
2300  * Callback to provide information about a double enumerated
2301  * mixer control.
2302  *
2303  * Returns 0 for success.
2304  */
2305 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2306         struct snd_ctl_elem_info *uinfo)
2307 {
2308         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2309
2310         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2311         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2312         uinfo->value.enumerated.items = e->max;
2313
2314         if (uinfo->value.enumerated.item > e->max - 1)
2315                 uinfo->value.enumerated.item = e->max - 1;
2316         strcpy(uinfo->value.enumerated.name,
2317                 e->texts[uinfo->value.enumerated.item]);
2318         return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2321
2322 /**
2323  * snd_soc_get_enum_double - enumerated double mixer get callback
2324  * @kcontrol: mixer control
2325  * @ucontrol: control element information
2326  *
2327  * Callback to get the value of a double enumerated mixer.
2328  *
2329  * Returns 0 for success.
2330  */
2331 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2332         struct snd_ctl_elem_value *ucontrol)
2333 {
2334         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2335         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2336         unsigned int val, bitmask;
2337
2338         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2339                 ;
2340         val = snd_soc_read(codec, e->reg);
2341         ucontrol->value.enumerated.item[0]
2342                 = (val >> e->shift_l) & (bitmask - 1);
2343         if (e->shift_l != e->shift_r)
2344                 ucontrol->value.enumerated.item[1] =
2345                         (val >> e->shift_r) & (bitmask - 1);
2346
2347         return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2350
2351 /**
2352  * snd_soc_put_enum_double - enumerated double mixer put callback
2353  * @kcontrol: mixer control
2354  * @ucontrol: control element information
2355  *
2356  * Callback to set the value of a double enumerated mixer.
2357  *
2358  * Returns 0 for success.
2359  */
2360 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2361         struct snd_ctl_elem_value *ucontrol)
2362 {
2363         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2364         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2365         unsigned int val;
2366         unsigned int mask, bitmask;
2367
2368         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2369                 ;
2370         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2371                 return -EINVAL;
2372         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2373         mask = (bitmask - 1) << e->shift_l;
2374         if (e->shift_l != e->shift_r) {
2375                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2376                         return -EINVAL;
2377                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2378                 mask |= (bitmask - 1) << e->shift_r;
2379         }
2380
2381         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2382 }
2383 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2384
2385 /**
2386  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2387  * @kcontrol: mixer control
2388  * @ucontrol: control element information
2389  *
2390  * Callback to get the value of a double semi enumerated mixer.
2391  *
2392  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2393  * used for handling bitfield coded enumeration for example.
2394  *
2395  * Returns 0 for success.
2396  */
2397 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2398         struct snd_ctl_elem_value *ucontrol)
2399 {
2400         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2401         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2402         unsigned int reg_val, val, mux;
2403
2404         reg_val = snd_soc_read(codec, e->reg);
2405         val = (reg_val >> e->shift_l) & e->mask;
2406         for (mux = 0; mux < e->max; mux++) {
2407                 if (val == e->values[mux])
2408                         break;
2409         }
2410         ucontrol->value.enumerated.item[0] = mux;
2411         if (e->shift_l != e->shift_r) {
2412                 val = (reg_val >> e->shift_r) & e->mask;
2413                 for (mux = 0; mux < e->max; mux++) {
2414                         if (val == e->values[mux])
2415                                 break;
2416                 }
2417                 ucontrol->value.enumerated.item[1] = mux;
2418         }
2419
2420         return 0;
2421 }
2422 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2423
2424 /**
2425  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2426  * @kcontrol: mixer control
2427  * @ucontrol: control element information
2428  *
2429  * Callback to set the value of a double semi enumerated mixer.
2430  *
2431  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2432  * used for handling bitfield coded enumeration for example.
2433  *
2434  * Returns 0 for success.
2435  */
2436 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2437         struct snd_ctl_elem_value *ucontrol)
2438 {
2439         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2440         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2441         unsigned int val;
2442         unsigned int mask;
2443
2444         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2445                 return -EINVAL;
2446         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2447         mask = e->mask << e->shift_l;
2448         if (e->shift_l != e->shift_r) {
2449                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2450                         return -EINVAL;
2451                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2452                 mask |= e->mask << e->shift_r;
2453         }
2454
2455         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2456 }
2457 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2458
2459 /**
2460  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2461  * @kcontrol: mixer control
2462  * @uinfo: control element information
2463  *
2464  * Callback to provide information about an external enumerated
2465  * single mixer.
2466  *
2467  * Returns 0 for success.
2468  */
2469 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2470         struct snd_ctl_elem_info *uinfo)
2471 {
2472         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2473
2474         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2475         uinfo->count = 1;
2476         uinfo->value.enumerated.items = e->max;
2477
2478         if (uinfo->value.enumerated.item > e->max - 1)
2479                 uinfo->value.enumerated.item = e->max - 1;
2480         strcpy(uinfo->value.enumerated.name,
2481                 e->texts[uinfo->value.enumerated.item]);
2482         return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2485
2486 /**
2487  * snd_soc_info_volsw_ext - external single mixer info callback
2488  * @kcontrol: mixer control
2489  * @uinfo: control element information
2490  *
2491  * Callback to provide information about a single external mixer control.
2492  *
2493  * Returns 0 for success.
2494  */
2495 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2496         struct snd_ctl_elem_info *uinfo)
2497 {
2498         int max = kcontrol->private_value;
2499
2500         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2501                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2502         else
2503                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2504
2505         uinfo->count = 1;
2506         uinfo->value.integer.min = 0;
2507         uinfo->value.integer.max = max;
2508         return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2511
2512 /**
2513  * snd_soc_info_volsw - single mixer info callback
2514  * @kcontrol: mixer control
2515  * @uinfo: control element information
2516  *
2517  * Callback to provide information about a single mixer control.
2518  *
2519  * Returns 0 for success.
2520  */
2521 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2522         struct snd_ctl_elem_info *uinfo)
2523 {
2524         struct soc_mixer_control *mc =
2525                 (struct soc_mixer_control *)kcontrol->private_value;
2526         int platform_max;
2527         unsigned int shift = mc->shift;
2528         unsigned int rshift = mc->rshift;
2529
2530         if (!mc->platform_max)
2531                 mc->platform_max = mc->max;
2532         platform_max = mc->platform_max;
2533
2534         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2535                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2536         else
2537                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2538
2539         uinfo->count = shift == rshift ? 1 : 2;
2540         uinfo->value.integer.min = 0;
2541         uinfo->value.integer.max = platform_max;
2542         return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2545
2546 /**
2547  * snd_soc_get_volsw - single mixer get callback
2548  * @kcontrol: mixer control
2549  * @ucontrol: control element information
2550  *
2551  * Callback to get the value of a single mixer control.
2552  *
2553  * Returns 0 for success.
2554  */
2555 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2556         struct snd_ctl_elem_value *ucontrol)
2557 {
2558         struct soc_mixer_control *mc =
2559                 (struct soc_mixer_control *)kcontrol->private_value;
2560         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2561         unsigned int reg = mc->reg;
2562         unsigned int shift = mc->shift;
2563         unsigned int rshift = mc->rshift;
2564         int max = mc->max;
2565         unsigned int mask = (1 << fls(max)) - 1;
2566         unsigned int invert = mc->invert;
2567
2568         ucontrol->value.integer.value[0] =
2569                 (snd_soc_read(codec, reg) >> shift) & mask;
2570         if (shift != rshift)
2571                 ucontrol->value.integer.value[1] =
2572                         (snd_soc_read(codec, reg) >> rshift) & mask;
2573         if (invert) {
2574                 ucontrol->value.integer.value[0] =
2575                         max - ucontrol->value.integer.value[0];
2576                 if (shift != rshift)
2577                         ucontrol->value.integer.value[1] =
2578                                 max - ucontrol->value.integer.value[1];
2579         }
2580
2581         return 0;
2582 }
2583 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2584
2585 /**
2586  * snd_soc_put_volsw - single mixer put callback
2587  * @kcontrol: mixer control
2588  * @ucontrol: control element information
2589  *
2590  * Callback to set the value of a single mixer control.
2591  *
2592  * Returns 0 for success.
2593  */
2594 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2595         struct snd_ctl_elem_value *ucontrol)
2596 {
2597         struct soc_mixer_control *mc =
2598                 (struct soc_mixer_control *)kcontrol->private_value;
2599         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2600         unsigned int reg = mc->reg;
2601         unsigned int shift = mc->shift;
2602         unsigned int rshift = mc->rshift;
2603         int max = mc->max;
2604         unsigned int mask = (1 << fls(max)) - 1;
2605         unsigned int invert = mc->invert;
2606         unsigned int val, val2, val_mask;
2607
2608         val = (ucontrol->value.integer.value[0] & mask);
2609         if (invert)
2610                 val = max - val;
2611         val_mask = mask << shift;
2612         val = val << shift;
2613         if (shift != rshift) {
2614                 val2 = (ucontrol->value.integer.value[1] & mask);
2615                 if (invert)
2616                         val2 = max - val2;
2617                 val_mask |= mask << rshift;
2618                 val |= val2 << rshift;
2619         }
2620         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2621 }
2622 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2623
2624 /**
2625  * snd_soc_info_volsw_2r - double mixer info callback
2626  * @kcontrol: mixer control
2627  * @uinfo: control element information
2628  *
2629  * Callback to provide information about a double mixer control that
2630  * spans 2 codec registers.
2631  *
2632  * Returns 0 for success.
2633  */
2634 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2635         struct snd_ctl_elem_info *uinfo)
2636 {
2637         struct soc_mixer_control *mc =
2638                 (struct soc_mixer_control *)kcontrol->private_value;
2639         int platform_max;
2640
2641         if (!mc->platform_max)
2642                 mc->platform_max = mc->max;
2643         platform_max = mc->platform_max;
2644
2645         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2646                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2647         else
2648                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2649
2650         uinfo->count = 2;
2651         uinfo->value.integer.min = 0;
2652         uinfo->value.integer.max = platform_max;
2653         return 0;
2654 }
2655 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2656
2657 /**
2658  * snd_soc_get_volsw_2r - double mixer get callback
2659  * @kcontrol: mixer control
2660  * @ucontrol: control element information
2661  *
2662  * Callback to get the value of a double mixer control that spans 2 registers.
2663  *
2664  * Returns 0 for success.
2665  */
2666 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2667         struct snd_ctl_elem_value *ucontrol)
2668 {
2669         struct soc_mixer_control *mc =
2670                 (struct soc_mixer_control *)kcontrol->private_value;
2671         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2672         unsigned int reg = mc->reg;
2673         unsigned int reg2 = mc->rreg;
2674         unsigned int shift = mc->shift;
2675         int max = mc->max;
2676         unsigned int mask = (1 << fls(max)) - 1;
2677         unsigned int invert = mc->invert;
2678
2679         ucontrol->value.integer.value[0] =
2680                 (snd_soc_read(codec, reg) >> shift) & mask;
2681         ucontrol->value.integer.value[1] =
2682                 (snd_soc_read(codec, reg2) >> shift) & mask;
2683         if (invert) {
2684                 ucontrol->value.integer.value[0] =
2685                         max - ucontrol->value.integer.value[0];
2686                 ucontrol->value.integer.value[1] =
2687                         max - ucontrol->value.integer.value[1];
2688         }
2689
2690         return 0;
2691 }
2692 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2693
2694 /**
2695  * snd_soc_put_volsw_2r - double mixer set callback
2696  * @kcontrol: mixer control
2697  * @ucontrol: control element information
2698  *
2699  * Callback to set the value of a double mixer control that spans 2 registers.
2700  *
2701  * Returns 0 for success.
2702  */
2703 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2704         struct snd_ctl_elem_value *ucontrol)
2705 {
2706         struct soc_mixer_control *mc =
2707                 (struct soc_mixer_control *)kcontrol->private_value;
2708         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2709         unsigned int reg = mc->reg;
2710         unsigned int reg2 = mc->rreg;
2711         unsigned int shift = mc->shift;
2712         int max = mc->max;
2713         unsigned int mask = (1 << fls(max)) - 1;
2714         unsigned int invert = mc->invert;
2715         int err;
2716         unsigned int val, val2, val_mask;
2717
2718         val_mask = mask << shift;
2719         val = (ucontrol->value.integer.value[0] & mask);
2720         val2 = (ucontrol->value.integer.value[1] & mask);
2721
2722         if (invert) {
2723                 val = max - val;
2724                 val2 = max - val2;
2725         }
2726
2727         val = val << shift;
2728         val2 = val2 << shift;
2729
2730         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2731         if (err < 0)
2732                 return err;
2733
2734         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2735         return err;
2736 }
2737 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2738
2739 /**
2740  * snd_soc_info_volsw_s8 - signed mixer info callback
2741  * @kcontrol: mixer control
2742  * @uinfo: control element information
2743  *
2744  * Callback to provide information about a signed mixer control.
2745  *
2746  * Returns 0 for success.
2747  */
2748 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2749         struct snd_ctl_elem_info *uinfo)
2750 {
2751         struct soc_mixer_control *mc =
2752                 (struct soc_mixer_control *)kcontrol->private_value;
2753         int platform_max;
2754         int min = mc->min;
2755
2756         if (!mc->platform_max)
2757                 mc->platform_max = mc->max;
2758         platform_max = mc->platform_max;
2759
2760         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2761         uinfo->count = 2;
2762         uinfo->value.integer.min = 0;
2763         uinfo->value.integer.max = platform_max - min;
2764         return 0;
2765 }
2766 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2767
2768 /**
2769  * snd_soc_get_volsw_s8 - signed mixer get callback
2770  * @kcontrol: mixer control
2771  * @ucontrol: control element information
2772  *
2773  * Callback to get the value of a signed mixer control.
2774  *
2775  * Returns 0 for success.
2776  */
2777 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2778         struct snd_ctl_elem_value *ucontrol)
2779 {
2780         struct soc_mixer_control *mc =
2781                 (struct soc_mixer_control *)kcontrol->private_value;
2782         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2783         unsigned int reg = mc->reg;
2784         int min = mc->min;
2785         int val = snd_soc_read(codec, reg);
2786
2787         ucontrol->value.integer.value[0] =
2788                 ((signed char)(val & 0xff))-min;
2789         ucontrol->value.integer.value[1] =
2790                 ((signed char)((val >> 8) & 0xff))-min;
2791         return 0;
2792 }
2793 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2794
2795 /**
2796  * snd_soc_put_volsw_sgn - signed mixer put callback
2797  * @kcontrol: mixer control
2798  * @ucontrol: control element information
2799  *
2800  * Callback to set the value of a signed mixer control.
2801  *
2802  * Returns 0 for success.
2803  */
2804 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2805         struct snd_ctl_elem_value *ucontrol)
2806 {
2807         struct soc_mixer_control *mc =
2808                 (struct soc_mixer_control *)kcontrol->private_value;
2809         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2810         unsigned int reg = mc->reg;
2811         int min = mc->min;
2812         unsigned int val;
2813
2814         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2815         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2816
2817         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2818 }
2819 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2820
2821 /**
2822  * snd_soc_limit_volume - Set new limit to an existing volume control.
2823  *
2824  * @codec: where to look for the control
2825  * @name: Name of the control
2826  * @max: new maximum limit
2827  *
2828  * Return 0 for success, else error.
2829  */
2830 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2831         const char *name, int max)
2832 {
2833         struct snd_card *card = codec->card->snd_card;
2834         struct snd_kcontrol *kctl;
2835         struct soc_mixer_control *mc;
2836         int found = 0;
2837         int ret = -EINVAL;
2838
2839         /* Sanity check for name and max */
2840         if (unlikely(!name || max <= 0))
2841                 return -EINVAL;
2842
2843         list_for_each_entry(kctl, &card->controls, list) {
2844                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2845                         found = 1;
2846                         break;
2847                 }
2848         }
2849         if (found) {
2850                 mc = (struct soc_mixer_control *)kctl->private_value;
2851                 if (max <= mc->max) {
2852                         mc->platform_max = max;
2853                         ret = 0;
2854                 }
2855         }
2856         return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2859
2860 /**
2861  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2862  *  mixer info callback
2863  * @kcontrol: mixer control
2864  * @uinfo: control element information
2865  *
2866  * Returns 0 for success.
2867  */
2868 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2869                         struct snd_ctl_elem_info *uinfo)
2870 {
2871         struct soc_mixer_control *mc =
2872                 (struct soc_mixer_control *)kcontrol->private_value;
2873         int max = mc->max;
2874         int min = mc->min;
2875
2876         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2877         uinfo->count = 2;
2878         uinfo->value.integer.min = 0;
2879         uinfo->value.integer.max = max-min;
2880
2881         return 0;
2882 }
2883 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2884
2885 /**
2886  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2887  *  mixer get callback
2888  * @kcontrol: mixer control
2889  * @uinfo: control element information
2890  *
2891  * Returns 0 for success.
2892  */
2893 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2894                         struct snd_ctl_elem_value *ucontrol)
2895 {
2896         struct soc_mixer_control *mc =
2897                 (struct soc_mixer_control *)kcontrol->private_value;
2898         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2899         unsigned int mask = (1<<mc->shift)-1;
2900         int min = mc->min;
2901         int val = snd_soc_read(codec, mc->reg) & mask;
2902         int valr = snd_soc_read(codec, mc->rreg) & mask;
2903
2904         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2905         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2906         return 0;
2907 }
2908 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2909
2910 /**
2911  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2912  *  mixer put callback
2913  * @kcontrol: mixer control
2914  * @uinfo: control element information
2915  *
2916  * Returns 0 for success.
2917  */
2918 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2919                         struct snd_ctl_elem_value *ucontrol)
2920 {
2921         struct soc_mixer_control *mc =
2922                 (struct soc_mixer_control *)kcontrol->private_value;
2923         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2924         unsigned int mask = (1<<mc->shift)-1;
2925         int min = mc->min;
2926         int ret;
2927         unsigned int val, valr, oval, ovalr;
2928
2929         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2930         val &= mask;
2931         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2932         valr &= mask;
2933
2934         oval = snd_soc_read(codec, mc->reg) & mask;
2935         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2936
2937         ret = 0;
2938         if (oval != val) {
2939                 ret = snd_soc_write(codec, mc->reg, val);
2940                 if (ret < 0)
2941                         return ret;
2942         }
2943         if (ovalr != valr) {
2944                 ret = snd_soc_write(codec, mc->rreg, valr);
2945                 if (ret < 0)
2946                         return ret;
2947         }
2948
2949         return 0;
2950 }
2951 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2952
2953 /**
2954  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2955  * @dai: DAI
2956  * @clk_id: DAI specific clock ID
2957  * @freq: new clock frequency in Hz
2958  * @dir: new clock direction - input/output.
2959  *
2960  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2961  */
2962 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2963         unsigned int freq, int dir)
2964 {
2965         if (dai->driver && dai->driver->ops->set_sysclk)
2966                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2967         else
2968                 return -EINVAL;
2969 }
2970 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2971
2972 /**
2973  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2974  * @dai: DAI
2975  * @div_id: DAI specific clock divider ID
2976  * @div: new clock divisor.
2977  *
2978  * Configures the clock dividers. This is used to derive the best DAI bit and
2979  * frame clocks from the system or master clock. It's best to set the DAI bit
2980  * and frame clocks as low as possible to save system power.
2981  */
2982 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2983         int div_id, int div)
2984 {
2985         if (dai->driver && dai->driver->ops->set_clkdiv)
2986                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2987         else
2988                 return -EINVAL;
2989 }
2990 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2991
2992 /**
2993  * snd_soc_dai_set_pll - configure DAI PLL.
2994  * @dai: DAI
2995  * @pll_id: DAI specific PLL ID
2996  * @source: DAI specific source for the PLL
2997  * @freq_in: PLL input clock frequency in Hz
2998  * @freq_out: requested PLL output clock frequency in Hz
2999  *
3000  * Configures and enables PLL to generate output clock based on input clock.
3001  */
3002 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3003         unsigned int freq_in, unsigned int freq_out)
3004 {
3005         if (dai->driver && dai->driver->ops->set_pll)
3006                 return dai->driver->ops->set_pll(dai, pll_id, source,
3007                                          freq_in, freq_out);
3008         else
3009                 return -EINVAL;
3010 }
3011 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3012
3013 /**
3014  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3015  * @dai: DAI
3016  * @fmt: SND_SOC_DAIFMT_ format value.
3017  *
3018  * Configures the DAI hardware format and clocking.
3019  */
3020 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3021 {
3022         if (dai->driver && dai->driver->ops->set_fmt)
3023                 return dai->driver->ops->set_fmt(dai, fmt);
3024         else
3025                 return -EINVAL;
3026 }
3027 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3028
3029 /**
3030  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3031  * @dai: DAI
3032  * @tx_mask: bitmask representing active TX slots.
3033  * @rx_mask: bitmask representing active RX slots.
3034  * @slots: Number of slots in use.
3035  * @slot_width: Width in bits for each slot.
3036  *
3037  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3038  * specific.
3039  */
3040 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3041         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3042 {
3043         if (dai->driver && dai->driver->ops->set_tdm_slot)
3044                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3045                                 slots, slot_width);
3046         else
3047                 return -EINVAL;
3048 }
3049 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3050
3051 /**
3052  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3053  * @dai: DAI
3054  * @tx_num: how many TX channels
3055  * @tx_slot: pointer to an array which imply the TX slot number channel
3056  *           0~num-1 uses
3057  * @rx_num: how many RX channels
3058  * @rx_slot: pointer to an array which imply the RX slot number channel
3059  *           0~num-1 uses
3060  *
3061  * configure the relationship between channel number and TDM slot number.
3062  */
3063 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3064         unsigned int tx_num, unsigned int *tx_slot,
3065         unsigned int rx_num, unsigned int *rx_slot)
3066 {
3067         if (dai->driver && dai->driver->ops->set_channel_map)
3068                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3069                         rx_num, rx_slot);
3070         else
3071                 return -EINVAL;
3072 }
3073 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3074
3075 /**
3076  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3077  * @dai: DAI
3078  * @tristate: tristate enable
3079  *
3080  * Tristates the DAI so that others can use it.
3081  */
3082 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3083 {
3084         if (dai->driver && dai->driver->ops->set_tristate)
3085                 return dai->driver->ops->set_tristate(dai, tristate);
3086         else
3087                 return -EINVAL;
3088 }
3089 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3090
3091 /**
3092  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3093  * @dai: DAI
3094  * @mute: mute enable
3095  *
3096  * Mutes the DAI DAC.
3097  */
3098 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3099 {
3100         if (dai->driver && dai->driver->ops->digital_mute)
3101                 return dai->driver->ops->digital_mute(dai, mute);
3102         else
3103                 return -EINVAL;
3104 }
3105 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3106
3107 /**
3108  * snd_soc_register_card - Register a card with the ASoC core
3109  *
3110  * @card: Card to register
3111  *
3112  */
3113 int snd_soc_register_card(struct snd_soc_card *card)
3114 {
3115         int i;
3116
3117         if (!card->name || !card->dev)
3118                 return -EINVAL;
3119
3120         soc_init_card_debugfs(card);
3121
3122         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3123                             (card->num_links + card->num_aux_devs),
3124                             GFP_KERNEL);
3125         if (card->rtd == NULL)
3126                 return -ENOMEM;
3127         card->rtd_aux = &card->rtd[card->num_links];
3128
3129         for (i = 0; i < card->num_links; i++)
3130                 card->rtd[i].dai_link = &card->dai_link[i];
3131
3132         INIT_LIST_HEAD(&card->list);
3133         card->instantiated = 0;
3134         mutex_init(&card->mutex);
3135
3136         mutex_lock(&client_mutex);
3137         list_add(&card->list, &card_list);
3138         snd_soc_instantiate_cards();
3139         mutex_unlock(&client_mutex);
3140
3141         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3142
3143         return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3146
3147 /**
3148  * snd_soc_unregister_card - Unregister a card with the ASoC core
3149  *
3150  * @card: Card to unregister
3151  *
3152  */
3153 int snd_soc_unregister_card(struct snd_soc_card *card)
3154 {
3155         if (card->instantiated)
3156                 soc_cleanup_card_resources(card);
3157         mutex_lock(&client_mutex);
3158         list_del(&card->list);
3159         mutex_unlock(&client_mutex);
3160         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3161
3162         return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3165
3166 /*
3167  * Simplify DAI link configuration by removing ".-1" from device names
3168  * and sanitizing names.
3169  */
3170 static char *fmt_single_name(struct device *dev, int *id)
3171 {
3172         char *found, name[NAME_SIZE];
3173         int id1, id2;
3174
3175         if (dev_name(dev) == NULL)
3176                 return NULL;
3177
3178         strlcpy(name, dev_name(dev), NAME_SIZE);
3179
3180         /* are we a "%s.%d" name (platform and SPI components) */
3181         found = strstr(name, dev->driver->name);
3182         if (found) {
3183                 /* get ID */
3184                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3185
3186                         /* discard ID from name if ID == -1 */
3187                         if (*id == -1)
3188                                 found[strlen(dev->driver->name)] = '\0';
3189                 }
3190
3191         } else {
3192                 /* I2C component devices are named "bus-addr"  */
3193                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3194                         char tmp[NAME_SIZE];
3195
3196                         /* create unique ID number from I2C addr and bus */
3197                         *id = ((id1 & 0xffff) << 16) + id2;
3198
3199                         /* sanitize component name for DAI link creation */
3200                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3201                         strlcpy(name, tmp, NAME_SIZE);
3202                 } else
3203                         *id = 0;
3204         }
3205
3206         return kstrdup(name, GFP_KERNEL);
3207 }
3208
3209 /*
3210  * Simplify DAI link naming for single devices with multiple DAIs by removing
3211  * any ".-1" and using the DAI name (instead of device name).
3212  */
3213 static inline char *fmt_multiple_name(struct device *dev,
3214                 struct snd_soc_dai_driver *dai_drv)
3215 {
3216         if (dai_drv->name == NULL) {
3217                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3218                                 dev_name(dev));
3219                 return NULL;
3220         }
3221
3222         return kstrdup(dai_drv->name, GFP_KERNEL);
3223 }
3224
3225 /**
3226  * snd_soc_register_dai - Register a DAI with the ASoC core
3227  *
3228  * @dai: DAI to register
3229  */
3230 int snd_soc_register_dai(struct device *dev,
3231                 struct snd_soc_dai_driver *dai_drv)
3232 {
3233         struct snd_soc_dai *dai;
3234
3235         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3236
3237         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3238         if (dai == NULL)
3239                         return -ENOMEM;
3240
3241         /* create DAI component name */
3242         dai->name = fmt_single_name(dev, &dai->id);
3243         if (dai->name == NULL) {
3244                 kfree(dai);
3245                 return -ENOMEM;
3246         }
3247
3248         dai->dev = dev;
3249         dai->driver = dai_drv;
3250         if (!dai->driver->ops)
3251                 dai->driver->ops = &null_dai_ops;
3252
3253         mutex_lock(&client_mutex);
3254         list_add(&dai->list, &dai_list);
3255         snd_soc_instantiate_cards();
3256         mutex_unlock(&client_mutex);
3257
3258         pr_debug("Registered DAI '%s'\n", dai->name);
3259
3260         return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3263
3264 /**
3265  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3266  *
3267  * @dai: DAI to unregister
3268  */
3269 void snd_soc_unregister_dai(struct device *dev)
3270 {
3271         struct snd_soc_dai *dai;
3272
3273         list_for_each_entry(dai, &dai_list, list) {
3274                 if (dev == dai->dev)
3275                         goto found;
3276         }
3277         return;
3278
3279 found:
3280         mutex_lock(&client_mutex);
3281         list_del(&dai->list);
3282         mutex_unlock(&client_mutex);
3283
3284         pr_debug("Unregistered DAI '%s'\n", dai->name);
3285         kfree(dai->name);
3286         kfree(dai);
3287 }
3288 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3289
3290 /**
3291  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3292  *
3293  * @dai: Array of DAIs to register
3294  * @count: Number of DAIs
3295  */
3296 int snd_soc_register_dais(struct device *dev,
3297                 struct snd_soc_dai_driver *dai_drv, size_t count)
3298 {
3299         struct snd_soc_dai *dai;
3300         int i, ret = 0;
3301
3302         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3303
3304         for (i = 0; i < count; i++) {
3305
3306                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3307                 if (dai == NULL) {
3308                         ret = -ENOMEM;
3309                         goto err;
3310                 }
3311
3312                 /* create DAI component name */
3313                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3314                 if (dai->name == NULL) {
3315                         kfree(dai);
3316                         ret = -EINVAL;
3317                         goto err;
3318                 }
3319
3320                 dai->dev = dev;
3321                 dai->driver = &dai_drv[i];
3322                 if (dai->driver->id)
3323                         dai->id = dai->driver->id;
3324                 else
3325                         dai->id = i;
3326                 if (!dai->driver->ops)
3327                         dai->driver->ops = &null_dai_ops;
3328
3329                 mutex_lock(&client_mutex);
3330                 list_add(&dai->list, &dai_list);
3331                 mutex_unlock(&client_mutex);
3332
3333                 pr_debug("Registered DAI '%s'\n", dai->name);
3334         }
3335
3336         mutex_lock(&client_mutex);
3337         snd_soc_instantiate_cards();
3338         mutex_unlock(&client_mutex);
3339         return 0;
3340
3341 err:
3342         for (i--; i >= 0; i--)
3343                 snd_soc_unregister_dai(dev);
3344
3345         return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3348
3349 /**
3350  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3351  *
3352  * @dai: Array of DAIs to unregister
3353  * @count: Number of DAIs
3354  */
3355 void snd_soc_unregister_dais(struct device *dev, size_t count)
3356 {
3357         int i;
3358
3359         for (i = 0; i < count; i++)
3360                 snd_soc_unregister_dai(dev);
3361 }
3362 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3363
3364 /**
3365  * snd_soc_register_platform - Register a platform with the ASoC core
3366  *
3367  * @platform: platform to register
3368  */
3369 int snd_soc_register_platform(struct device *dev,
3370                 struct snd_soc_platform_driver *platform_drv)
3371 {
3372         struct snd_soc_platform *platform;
3373
3374         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3375
3376         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3377         if (platform == NULL)
3378                         return -ENOMEM;
3379
3380         /* create platform component name */
3381         platform->name = fmt_single_name(dev, &platform->id);
3382         if (platform->name == NULL) {
3383                 kfree(platform);
3384                 return -ENOMEM;
3385         }
3386
3387         platform->dev = dev;
3388         platform->driver = platform_drv;
3389
3390         mutex_lock(&client_mutex);
3391         list_add(&platform->list, &platform_list);
3392         snd_soc_instantiate_cards();
3393         mutex_unlock(&client_mutex);
3394
3395         pr_debug("Registered platform '%s'\n", platform->name);
3396
3397         return 0;
3398 }
3399 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3400
3401 /**
3402  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3403  *
3404  * @platform: platform to unregister
3405  */
3406 void snd_soc_unregister_platform(struct device *dev)
3407 {
3408         struct snd_soc_platform *platform;
3409
3410         list_for_each_entry(platform, &platform_list, list) {
3411                 if (dev == platform->dev)
3412                         goto found;
3413         }
3414         return;
3415
3416 found:
3417         mutex_lock(&client_mutex);
3418         list_del(&platform->list);
3419         mutex_unlock(&client_mutex);
3420
3421         pr_debug("Unregistered platform '%s'\n", platform->name);
3422         kfree(platform->name);
3423         kfree(platform);
3424 }
3425 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3426
3427 static u64 codec_format_map[] = {
3428         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3429         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3430         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3431         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3432         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3433         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3434         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3435         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3436         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3437         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3438         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3439         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3440         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3441         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3442         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3443         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3444 };
3445
3446 /* Fix up the DAI formats for endianness: codecs don't actually see
3447  * the endianness of the data but we're using the CPU format
3448  * definitions which do need to include endianness so we ensure that
3449  * codec DAIs always have both big and little endian variants set.
3450  */
3451 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3452 {
3453         int i;
3454
3455         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3456                 if (stream->formats & codec_format_map[i])
3457                         stream->formats |= codec_format_map[i];
3458 }
3459
3460 /**
3461  * snd_soc_register_codec - Register a codec with the ASoC core
3462  *
3463  * @codec: codec to register
3464  */
3465 int snd_soc_register_codec(struct device *dev,
3466                            const struct snd_soc_codec_driver *codec_drv,
3467                            struct snd_soc_dai_driver *dai_drv,
3468                            int num_dai)
3469 {
3470         size_t reg_size;
3471         struct snd_soc_codec *codec;
3472         int ret, i;
3473
3474         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3475
3476         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3477         if (codec == NULL)
3478                 return -ENOMEM;
3479
3480         /* create CODEC component name */
3481         codec->name = fmt_single_name(dev, &codec->id);
3482         if (codec->name == NULL) {
3483                 kfree(codec);
3484                 return -ENOMEM;
3485         }
3486
3487         if (codec_drv->compress_type)
3488                 codec->compress_type = codec_drv->compress_type;
3489         else
3490                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3491
3492         codec->write = codec_drv->write;
3493         codec->read = codec_drv->read;
3494         codec->volatile_register = codec_drv->volatile_register;
3495         codec->readable_register = codec_drv->readable_register;
3496         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3497         codec->dapm.dev = dev;
3498         codec->dapm.codec = codec;
3499         codec->dev = dev;
3500         codec->driver = codec_drv;
3501         codec->num_dai = num_dai;
3502         mutex_init(&codec->mutex);
3503
3504         /* allocate CODEC register cache */
3505         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3506                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3507                 codec->reg_size = reg_size;
3508                 /* it is necessary to make a copy of the default register cache
3509                  * because in the case of using a compression type that requires
3510                  * the default register cache to be marked as __devinitconst the
3511                  * kernel might have freed the array by the time we initialize
3512                  * the cache.
3513                  */
3514                 if (codec_drv->reg_cache_default) {
3515                         codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3516                                                       reg_size, GFP_KERNEL);
3517                         if (!codec->reg_def_copy) {
3518                                 ret = -ENOMEM;
3519                                 goto fail;
3520                         }
3521                 }
3522         }
3523
3524         if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3525                 if (!codec->volatile_register)
3526                         codec->volatile_register = snd_soc_default_volatile_register;
3527                 if (!codec->readable_register)
3528                         codec->readable_register = snd_soc_default_readable_register;
3529         }
3530
3531         for (i = 0; i < num_dai; i++) {
3532                 fixup_codec_formats(&dai_drv[i].playback);
3533                 fixup_codec_formats(&dai_drv[i].capture);
3534         }
3535
3536         /* register any DAIs */
3537         if (num_dai) {
3538                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3539                 if (ret < 0)
3540                         goto fail;
3541         }
3542
3543         mutex_lock(&client_mutex);
3544         list_add(&codec->list, &codec_list);
3545         snd_soc_instantiate_cards();
3546         mutex_unlock(&client_mutex);
3547
3548         pr_debug("Registered codec '%s'\n", codec->name);
3549         return 0;
3550
3551 fail:
3552         kfree(codec->reg_def_copy);
3553         codec->reg_def_copy = NULL;
3554         kfree(codec->name);
3555         kfree(codec);
3556         return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3559
3560 /**
3561  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3562  *
3563  * @codec: codec to unregister
3564  */
3565 void snd_soc_unregister_codec(struct device *dev)
3566 {
3567         struct snd_soc_codec *codec;
3568         int i;
3569
3570         list_for_each_entry(codec, &codec_list, list) {
3571                 if (dev == codec->dev)
3572                         goto found;
3573         }
3574         return;
3575
3576 found:
3577         if (codec->num_dai)
3578                 for (i = 0; i < codec->num_dai; i++)
3579                         snd_soc_unregister_dai(dev);
3580
3581         mutex_lock(&client_mutex);
3582         list_del(&codec->list);
3583         mutex_unlock(&client_mutex);
3584
3585         pr_debug("Unregistered codec '%s'\n", codec->name);
3586
3587         snd_soc_cache_exit(codec);
3588         kfree(codec->reg_def_copy);
3589         kfree(codec->name);
3590         kfree(codec);
3591 }
3592 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3593
3594 static int __init snd_soc_init(void)
3595 {
3596 #ifdef CONFIG_DEBUG_FS
3597         snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3598         if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3599                 printk(KERN_WARNING
3600                        "ASoC: Failed to create debugfs directory\n");
3601                 snd_soc_debugfs_root = NULL;
3602         }
3603
3604         if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3605                                  &codec_list_fops))
3606                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3607
3608         if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3609                                  &dai_list_fops))
3610                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3611
3612         if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3613                                  &platform_list_fops))
3614                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3615 #endif
3616
3617         return platform_driver_register(&soc_driver);
3618 }
3619 module_init(snd_soc_init);
3620
3621 static void __exit snd_soc_exit(void)
3622 {
3623 #ifdef CONFIG_DEBUG_FS
3624         debugfs_remove_recursive(snd_soc_debugfs_root);
3625 #endif
3626         platform_driver_unregister(&soc_driver);
3627 }
3628 module_exit(snd_soc_exit);
3629
3630 /* Module information */
3631 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3632 MODULE_DESCRIPTION("ALSA SoC Core");
3633 MODULE_LICENSE("GPL");
3634 MODULE_ALIAS("platform:soc-audio");