ASoC: soc core add inline to handle card list initialzation
[firefly-linux-kernel-4.4.55.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int snd_soc_register_card(struct snd_soc_card *card);
62 static int snd_soc_unregister_card(struct snd_soc_card *card);
63 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
64
65 /*
66  * This is a timeout to do a DAPM powerdown after a stream is closed().
67  * It can be used to eliminate pops between different playback streams, e.g.
68  * between two audio tracks.
69  */
70 static int pmdown_time = 5000;
71 module_param(pmdown_time, int, 0);
72 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
73
74 /* codec register dump */
75 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
76 {
77         int ret, i, step = 1, count = 0;
78
79         if (!codec->driver->reg_cache_size)
80                 return 0;
81
82         if (codec->driver->reg_cache_step)
83                 step = codec->driver->reg_cache_step;
84
85         count += sprintf(buf, "%s registers\n", codec->name);
86         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
87                 if (codec->readable_register && !codec->readable_register(codec, i))
88                         continue;
89
90                 count += sprintf(buf + count, "%2x: ", i);
91                 if (count >= PAGE_SIZE - 1)
92                         break;
93
94                 if (codec->driver->display_register) {
95                         count += codec->driver->display_register(codec, buf + count,
96                                                          PAGE_SIZE - count, i);
97                 } else {
98                         /* If the read fails it's almost certainly due to
99                          * the register being volatile and the device being
100                          * powered off.
101                          */
102                         ret = snd_soc_read(codec, i);
103                         if (ret >= 0)
104                                 count += snprintf(buf + count,
105                                                   PAGE_SIZE - count,
106                                                   "%4x", ret);
107                         else
108                                 count += snprintf(buf + count,
109                                                   PAGE_SIZE - count,
110                                                   "<no data: %d>", ret);
111                 }
112
113                 if (count >= PAGE_SIZE - 1)
114                         break;
115
116                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
117                 if (count >= PAGE_SIZE - 1)
118                         break;
119         }
120
121         /* Truncate count; min() would cause a warning */
122         if (count >= PAGE_SIZE)
123                 count = PAGE_SIZE - 1;
124
125         return count;
126 }
127 static ssize_t codec_reg_show(struct device *dev,
128         struct device_attribute *attr, char *buf)
129 {
130         struct snd_soc_pcm_runtime *rtd =
131                         container_of(dev, struct snd_soc_pcm_runtime, dev);
132
133         return soc_codec_reg_show(rtd->codec, buf);
134 }
135
136 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
137
138 static ssize_t pmdown_time_show(struct device *dev,
139                                 struct device_attribute *attr, char *buf)
140 {
141         struct snd_soc_pcm_runtime *rtd =
142                         container_of(dev, struct snd_soc_pcm_runtime, dev);
143
144         return sprintf(buf, "%ld\n", rtd->pmdown_time);
145 }
146
147 static ssize_t pmdown_time_set(struct device *dev,
148                                struct device_attribute *attr,
149                                const char *buf, size_t count)
150 {
151         struct snd_soc_pcm_runtime *rtd =
152                         container_of(dev, struct snd_soc_pcm_runtime, dev);
153         int ret;
154
155         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
156         if (ret)
157                 return ret;
158
159         return count;
160 }
161
162 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
163
164 #ifdef CONFIG_DEBUG_FS
165 static int codec_reg_open_file(struct inode *inode, struct file *file)
166 {
167         file->private_data = inode->i_private;
168         return 0;
169 }
170
171 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
172                                size_t count, loff_t *ppos)
173 {
174         ssize_t ret;
175         struct snd_soc_codec *codec = file->private_data;
176         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
177         if (!buf)
178                 return -ENOMEM;
179         ret = soc_codec_reg_show(codec, buf);
180         if (ret >= 0)
181                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
182         kfree(buf);
183         return ret;
184 }
185
186 static ssize_t codec_reg_write_file(struct file *file,
187                 const char __user *user_buf, size_t count, loff_t *ppos)
188 {
189         char buf[32];
190         int buf_size;
191         char *start = buf;
192         unsigned long reg, value;
193         int step = 1;
194         struct snd_soc_codec *codec = file->private_data;
195
196         buf_size = min(count, (sizeof(buf)-1));
197         if (copy_from_user(buf, user_buf, buf_size))
198                 return -EFAULT;
199         buf[buf_size] = 0;
200
201         if (codec->driver->reg_cache_step)
202                 step = codec->driver->reg_cache_step;
203
204         while (*start == ' ')
205                 start++;
206         reg = simple_strtoul(start, &start, 16);
207         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
208                 return -EINVAL;
209         while (*start == ' ')
210                 start++;
211         if (strict_strtoul(start, 16, &value))
212                 return -EINVAL;
213
214         /* Userspace has been fiddling around behind the kernel's back */
215         add_taint(TAINT_USER);
216
217         snd_soc_write(codec, reg, value);
218         return buf_size;
219 }
220
221 static const struct file_operations codec_reg_fops = {
222         .open = codec_reg_open_file,
223         .read = codec_reg_read_file,
224         .write = codec_reg_write_file,
225         .llseek = default_llseek,
226 };
227
228 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
229 {
230         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
231
232         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
233                                                        debugfs_card_root);
234         if (!codec->debugfs_codec_root) {
235                 printk(KERN_WARNING
236                        "ASoC: Failed to create codec debugfs directory\n");
237                 return;
238         }
239
240         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
241                                                  codec->debugfs_codec_root,
242                                                  codec, &codec_reg_fops);
243         if (!codec->debugfs_reg)
244                 printk(KERN_WARNING
245                        "ASoC: Failed to create codec register debugfs file\n");
246
247         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
248                                                  codec->debugfs_codec_root);
249         if (!codec->dapm.debugfs_dapm)
250                 printk(KERN_WARNING
251                        "Failed to create DAPM debugfs directory\n");
252
253         snd_soc_dapm_debugfs_init(&codec->dapm);
254 }
255
256 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
257 {
258         debugfs_remove_recursive(codec->debugfs_codec_root);
259 }
260
261 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
262                                     size_t count, loff_t *ppos)
263 {
264         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
265         ssize_t len, ret = 0;
266         struct snd_soc_codec *codec;
267
268         if (!buf)
269                 return -ENOMEM;
270
271         list_for_each_entry(codec, &codec_list, list) {
272                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
273                                codec->name);
274                 if (len >= 0)
275                         ret += len;
276                 if (ret > PAGE_SIZE) {
277                         ret = PAGE_SIZE;
278                         break;
279                 }
280         }
281
282         if (ret >= 0)
283                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
284
285         kfree(buf);
286
287         return ret;
288 }
289
290 static const struct file_operations codec_list_fops = {
291         .read = codec_list_read_file,
292         .llseek = default_llseek,/* read accesses f_pos */
293 };
294
295 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
296                                   size_t count, loff_t *ppos)
297 {
298         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
299         ssize_t len, ret = 0;
300         struct snd_soc_dai *dai;
301
302         if (!buf)
303                 return -ENOMEM;
304
305         list_for_each_entry(dai, &dai_list, list) {
306                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
307                 if (len >= 0)
308                         ret += len;
309                 if (ret > PAGE_SIZE) {
310                         ret = PAGE_SIZE;
311                         break;
312                 }
313         }
314
315         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
316
317         kfree(buf);
318
319         return ret;
320 }
321
322 static const struct file_operations dai_list_fops = {
323         .read = dai_list_read_file,
324         .llseek = default_llseek,/* read accesses f_pos */
325 };
326
327 static ssize_t platform_list_read_file(struct file *file,
328                                        char __user *user_buf,
329                                        size_t count, loff_t *ppos)
330 {
331         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
332         ssize_t len, ret = 0;
333         struct snd_soc_platform *platform;
334
335         if (!buf)
336                 return -ENOMEM;
337
338         list_for_each_entry(platform, &platform_list, list) {
339                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
340                                platform->name);
341                 if (len >= 0)
342                         ret += len;
343                 if (ret > PAGE_SIZE) {
344                         ret = PAGE_SIZE;
345                         break;
346                 }
347         }
348
349         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
350
351         kfree(buf);
352
353         return ret;
354 }
355
356 static const struct file_operations platform_list_fops = {
357         .read = platform_list_read_file,
358         .llseek = default_llseek,/* read accesses f_pos */
359 };
360
361 static void soc_init_card_debugfs(struct snd_soc_card *card)
362 {
363         card->debugfs_card_root = debugfs_create_dir(card->name,
364                                                      snd_soc_debugfs_root);
365         if (!card->debugfs_card_root) {
366                 dev_warn(card->dev,
367                          "ASoC: Failed to create codec debugfs directory\n");
368                 return;
369         }
370
371         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
372                                                     card->debugfs_card_root,
373                                                     &card->pop_time);
374         if (!card->debugfs_pop_time)
375                 dev_warn(card->dev,
376                        "Failed to create pop time debugfs file\n");
377 }
378
379 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
380 {
381         debugfs_remove_recursive(card->debugfs_card_root);
382 }
383
384 #else
385
386 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
387 {
388 }
389
390 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
391 {
392 }
393
394 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
395 {
396 }
397
398 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
399 {
400 }
401 #endif
402
403 #ifdef CONFIG_SND_SOC_AC97_BUS
404 /* unregister ac97 codec */
405 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
406 {
407         if (codec->ac97->dev.bus)
408                 device_unregister(&codec->ac97->dev);
409         return 0;
410 }
411
412 /* stop no dev release warning */
413 static void soc_ac97_device_release(struct device *dev){}
414
415 /* register ac97 codec to bus */
416 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
417 {
418         int err;
419
420         codec->ac97->dev.bus = &ac97_bus_type;
421         codec->ac97->dev.parent = codec->card->dev;
422         codec->ac97->dev.release = soc_ac97_device_release;
423
424         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
425                      codec->card->snd_card->number, 0, codec->name);
426         err = device_register(&codec->ac97->dev);
427         if (err < 0) {
428                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
429                 codec->ac97->dev.bus = NULL;
430                 return err;
431         }
432         return 0;
433 }
434 #endif
435
436 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
437 {
438         struct snd_soc_pcm_runtime *rtd = substream->private_data;
439         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
440         struct snd_soc_dai *codec_dai = rtd->codec_dai;
441         int ret;
442
443         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
444                         rtd->dai_link->symmetric_rates) {
445                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
446                                 rtd->rate);
447
448                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
449                                                    SNDRV_PCM_HW_PARAM_RATE,
450                                                    rtd->rate,
451                                                    rtd->rate);
452                 if (ret < 0) {
453                         dev_err(&rtd->dev,
454                                 "Unable to apply rate symmetry constraint: %d\n", ret);
455                         return ret;
456                 }
457         }
458
459         return 0;
460 }
461
462 /*
463  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
464  * then initialized and any private data can be allocated. This also calls
465  * startup for the cpu DAI, platform, machine and codec DAI.
466  */
467 static int soc_pcm_open(struct snd_pcm_substream *substream)
468 {
469         struct snd_soc_pcm_runtime *rtd = substream->private_data;
470         struct snd_pcm_runtime *runtime = substream->runtime;
471         struct snd_soc_platform *platform = rtd->platform;
472         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
473         struct snd_soc_dai *codec_dai = rtd->codec_dai;
474         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
475         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
476         int ret = 0;
477
478         mutex_lock(&pcm_mutex);
479
480         /* startup the audio subsystem */
481         if (cpu_dai->driver->ops->startup) {
482                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
483                 if (ret < 0) {
484                         printk(KERN_ERR "asoc: can't open interface %s\n",
485                                 cpu_dai->name);
486                         goto out;
487                 }
488         }
489
490         if (platform->driver->ops->open) {
491                 ret = platform->driver->ops->open(substream);
492                 if (ret < 0) {
493                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
494                         goto platform_err;
495                 }
496         }
497
498         if (codec_dai->driver->ops->startup) {
499                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
500                 if (ret < 0) {
501                         printk(KERN_ERR "asoc: can't open codec %s\n",
502                                 codec_dai->name);
503                         goto codec_dai_err;
504                 }
505         }
506
507         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
508                 ret = rtd->dai_link->ops->startup(substream);
509                 if (ret < 0) {
510                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
511                         goto machine_err;
512                 }
513         }
514
515         /* Check that the codec and cpu DAIs are compatible */
516         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
517                 runtime->hw.rate_min =
518                         max(codec_dai_drv->playback.rate_min,
519                             cpu_dai_drv->playback.rate_min);
520                 runtime->hw.rate_max =
521                         min(codec_dai_drv->playback.rate_max,
522                             cpu_dai_drv->playback.rate_max);
523                 runtime->hw.channels_min =
524                         max(codec_dai_drv->playback.channels_min,
525                                 cpu_dai_drv->playback.channels_min);
526                 runtime->hw.channels_max =
527                         min(codec_dai_drv->playback.channels_max,
528                                 cpu_dai_drv->playback.channels_max);
529                 runtime->hw.formats =
530                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
531                 runtime->hw.rates =
532                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
533                 if (codec_dai_drv->playback.rates
534                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
535                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
536                 if (cpu_dai_drv->playback.rates
537                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
538                         runtime->hw.rates |= codec_dai_drv->playback.rates;
539         } else {
540                 runtime->hw.rate_min =
541                         max(codec_dai_drv->capture.rate_min,
542                             cpu_dai_drv->capture.rate_min);
543                 runtime->hw.rate_max =
544                         min(codec_dai_drv->capture.rate_max,
545                             cpu_dai_drv->capture.rate_max);
546                 runtime->hw.channels_min =
547                         max(codec_dai_drv->capture.channels_min,
548                                 cpu_dai_drv->capture.channels_min);
549                 runtime->hw.channels_max =
550                         min(codec_dai_drv->capture.channels_max,
551                                 cpu_dai_drv->capture.channels_max);
552                 runtime->hw.formats =
553                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
554                 runtime->hw.rates =
555                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
556                 if (codec_dai_drv->capture.rates
557                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
558                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
559                 if (cpu_dai_drv->capture.rates
560                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
561                         runtime->hw.rates |= codec_dai_drv->capture.rates;
562         }
563
564         snd_pcm_limit_hw_rates(runtime);
565         if (!runtime->hw.rates) {
566                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
567                         codec_dai->name, cpu_dai->name);
568                 goto config_err;
569         }
570         if (!runtime->hw.formats) {
571                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
572                         codec_dai->name, cpu_dai->name);
573                 goto config_err;
574         }
575         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
576                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
577                                 codec_dai->name, cpu_dai->name);
578                 goto config_err;
579         }
580
581         /* Symmetry only applies if we've already got an active stream. */
582         if (cpu_dai->active || codec_dai->active) {
583                 ret = soc_pcm_apply_symmetry(substream);
584                 if (ret != 0)
585                         goto config_err;
586         }
587
588         pr_debug("asoc: %s <-> %s info:\n",
589                         codec_dai->name, cpu_dai->name);
590         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
591         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
592                  runtime->hw.channels_max);
593         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
594                  runtime->hw.rate_max);
595
596         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
597                 cpu_dai->playback_active++;
598                 codec_dai->playback_active++;
599         } else {
600                 cpu_dai->capture_active++;
601                 codec_dai->capture_active++;
602         }
603         cpu_dai->active++;
604         codec_dai->active++;
605         rtd->codec->active++;
606         mutex_unlock(&pcm_mutex);
607         return 0;
608
609 config_err:
610         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
611                 rtd->dai_link->ops->shutdown(substream);
612
613 machine_err:
614         if (codec_dai->driver->ops->shutdown)
615                 codec_dai->driver->ops->shutdown(substream, codec_dai);
616
617 codec_dai_err:
618         if (platform->driver->ops->close)
619                 platform->driver->ops->close(substream);
620
621 platform_err:
622         if (cpu_dai->driver->ops->shutdown)
623                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
624 out:
625         mutex_unlock(&pcm_mutex);
626         return ret;
627 }
628
629 /*
630  * Power down the audio subsystem pmdown_time msecs after close is called.
631  * This is to ensure there are no pops or clicks in between any music tracks
632  * due to DAPM power cycling.
633  */
634 static void close_delayed_work(struct work_struct *work)
635 {
636         struct snd_soc_pcm_runtime *rtd =
637                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
638         struct snd_soc_dai *codec_dai = rtd->codec_dai;
639
640         mutex_lock(&pcm_mutex);
641
642         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
643                  codec_dai->driver->playback.stream_name,
644                  codec_dai->playback_active ? "active" : "inactive",
645                  codec_dai->pop_wait ? "yes" : "no");
646
647         /* are we waiting on this codec DAI stream */
648         if (codec_dai->pop_wait == 1) {
649                 codec_dai->pop_wait = 0;
650                 snd_soc_dapm_stream_event(rtd,
651                         codec_dai->driver->playback.stream_name,
652                         SND_SOC_DAPM_STREAM_STOP);
653         }
654
655         mutex_unlock(&pcm_mutex);
656 }
657
658 /*
659  * Called by ALSA when a PCM substream is closed. Private data can be
660  * freed here. The cpu DAI, codec DAI, machine and platform are also
661  * shutdown.
662  */
663 static int soc_codec_close(struct snd_pcm_substream *substream)
664 {
665         struct snd_soc_pcm_runtime *rtd = substream->private_data;
666         struct snd_soc_platform *platform = rtd->platform;
667         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
668         struct snd_soc_dai *codec_dai = rtd->codec_dai;
669         struct snd_soc_codec *codec = rtd->codec;
670
671         mutex_lock(&pcm_mutex);
672
673         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
674                 cpu_dai->playback_active--;
675                 codec_dai->playback_active--;
676         } else {
677                 cpu_dai->capture_active--;
678                 codec_dai->capture_active--;
679         }
680
681         cpu_dai->active--;
682         codec_dai->active--;
683         codec->active--;
684
685         /* Muting the DAC suppresses artifacts caused during digital
686          * shutdown, for example from stopping clocks.
687          */
688         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
689                 snd_soc_dai_digital_mute(codec_dai, 1);
690
691         if (cpu_dai->driver->ops->shutdown)
692                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
693
694         if (codec_dai->driver->ops->shutdown)
695                 codec_dai->driver->ops->shutdown(substream, codec_dai);
696
697         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
698                 rtd->dai_link->ops->shutdown(substream);
699
700         if (platform->driver->ops->close)
701                 platform->driver->ops->close(substream);
702         cpu_dai->runtime = NULL;
703
704         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
705                 /* start delayed pop wq here for playback streams */
706                 codec_dai->pop_wait = 1;
707                 schedule_delayed_work(&rtd->delayed_work,
708                         msecs_to_jiffies(rtd->pmdown_time));
709         } else {
710                 /* capture streams can be powered down now */
711                 snd_soc_dapm_stream_event(rtd,
712                         codec_dai->driver->capture.stream_name,
713                         SND_SOC_DAPM_STREAM_STOP);
714         }
715
716         mutex_unlock(&pcm_mutex);
717         return 0;
718 }
719
720 /*
721  * Called by ALSA when the PCM substream is prepared, can set format, sample
722  * rate, etc.  This function is non atomic and can be called multiple times,
723  * it can refer to the runtime info.
724  */
725 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
726 {
727         struct snd_soc_pcm_runtime *rtd = substream->private_data;
728         struct snd_soc_platform *platform = rtd->platform;
729         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
730         struct snd_soc_dai *codec_dai = rtd->codec_dai;
731         int ret = 0;
732
733         mutex_lock(&pcm_mutex);
734
735         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
736                 ret = rtd->dai_link->ops->prepare(substream);
737                 if (ret < 0) {
738                         printk(KERN_ERR "asoc: machine prepare error\n");
739                         goto out;
740                 }
741         }
742
743         if (platform->driver->ops->prepare) {
744                 ret = platform->driver->ops->prepare(substream);
745                 if (ret < 0) {
746                         printk(KERN_ERR "asoc: platform prepare error\n");
747                         goto out;
748                 }
749         }
750
751         if (codec_dai->driver->ops->prepare) {
752                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
753                 if (ret < 0) {
754                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
755                         goto out;
756                 }
757         }
758
759         if (cpu_dai->driver->ops->prepare) {
760                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
761                 if (ret < 0) {
762                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
763                         goto out;
764                 }
765         }
766
767         /* cancel any delayed stream shutdown that is pending */
768         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
769             codec_dai->pop_wait) {
770                 codec_dai->pop_wait = 0;
771                 cancel_delayed_work(&rtd->delayed_work);
772         }
773
774         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
775                 snd_soc_dapm_stream_event(rtd,
776                                           codec_dai->driver->playback.stream_name,
777                                           SND_SOC_DAPM_STREAM_START);
778         else
779                 snd_soc_dapm_stream_event(rtd,
780                                           codec_dai->driver->capture.stream_name,
781                                           SND_SOC_DAPM_STREAM_START);
782
783         snd_soc_dai_digital_mute(codec_dai, 0);
784
785 out:
786         mutex_unlock(&pcm_mutex);
787         return ret;
788 }
789
790 /*
791  * Called by ALSA when the hardware params are set by application. This
792  * function can also be called multiple times and can allocate buffers
793  * (using snd_pcm_lib_* ). It's non-atomic.
794  */
795 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
796                                 struct snd_pcm_hw_params *params)
797 {
798         struct snd_soc_pcm_runtime *rtd = substream->private_data;
799         struct snd_soc_platform *platform = rtd->platform;
800         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
801         struct snd_soc_dai *codec_dai = rtd->codec_dai;
802         int ret = 0;
803
804         mutex_lock(&pcm_mutex);
805
806         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
807                 ret = rtd->dai_link->ops->hw_params(substream, params);
808                 if (ret < 0) {
809                         printk(KERN_ERR "asoc: machine hw_params failed\n");
810                         goto out;
811                 }
812         }
813
814         if (codec_dai->driver->ops->hw_params) {
815                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
816                 if (ret < 0) {
817                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
818                                 codec_dai->name);
819                         goto codec_err;
820                 }
821         }
822
823         if (cpu_dai->driver->ops->hw_params) {
824                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
825                 if (ret < 0) {
826                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
827                                 cpu_dai->name);
828                         goto interface_err;
829                 }
830         }
831
832         if (platform->driver->ops->hw_params) {
833                 ret = platform->driver->ops->hw_params(substream, params);
834                 if (ret < 0) {
835                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
836                                 platform->name);
837                         goto platform_err;
838                 }
839         }
840
841         rtd->rate = params_rate(params);
842
843 out:
844         mutex_unlock(&pcm_mutex);
845         return ret;
846
847 platform_err:
848         if (cpu_dai->driver->ops->hw_free)
849                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
850
851 interface_err:
852         if (codec_dai->driver->ops->hw_free)
853                 codec_dai->driver->ops->hw_free(substream, codec_dai);
854
855 codec_err:
856         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
857                 rtd->dai_link->ops->hw_free(substream);
858
859         mutex_unlock(&pcm_mutex);
860         return ret;
861 }
862
863 /*
864  * Frees resources allocated by hw_params, can be called multiple times
865  */
866 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
867 {
868         struct snd_soc_pcm_runtime *rtd = substream->private_data;
869         struct snd_soc_platform *platform = rtd->platform;
870         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
871         struct snd_soc_dai *codec_dai = rtd->codec_dai;
872         struct snd_soc_codec *codec = rtd->codec;
873
874         mutex_lock(&pcm_mutex);
875
876         /* apply codec digital mute */
877         if (!codec->active)
878                 snd_soc_dai_digital_mute(codec_dai, 1);
879
880         /* free any machine hw params */
881         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
882                 rtd->dai_link->ops->hw_free(substream);
883
884         /* free any DMA resources */
885         if (platform->driver->ops->hw_free)
886                 platform->driver->ops->hw_free(substream);
887
888         /* now free hw params for the DAIs  */
889         if (codec_dai->driver->ops->hw_free)
890                 codec_dai->driver->ops->hw_free(substream, codec_dai);
891
892         if (cpu_dai->driver->ops->hw_free)
893                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
894
895         mutex_unlock(&pcm_mutex);
896         return 0;
897 }
898
899 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
900 {
901         struct snd_soc_pcm_runtime *rtd = substream->private_data;
902         struct snd_soc_platform *platform = rtd->platform;
903         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
904         struct snd_soc_dai *codec_dai = rtd->codec_dai;
905         int ret;
906
907         if (codec_dai->driver->ops->trigger) {
908                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
909                 if (ret < 0)
910                         return ret;
911         }
912
913         if (platform->driver->ops->trigger) {
914                 ret = platform->driver->ops->trigger(substream, cmd);
915                 if (ret < 0)
916                         return ret;
917         }
918
919         if (cpu_dai->driver->ops->trigger) {
920                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
921                 if (ret < 0)
922                         return ret;
923         }
924         return 0;
925 }
926
927 /*
928  * soc level wrapper for pointer callback
929  * If cpu_dai, codec_dai, platform driver has the delay callback, than
930  * the runtime->delay will be updated accordingly.
931  */
932 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
933 {
934         struct snd_soc_pcm_runtime *rtd = substream->private_data;
935         struct snd_soc_platform *platform = rtd->platform;
936         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
937         struct snd_soc_dai *codec_dai = rtd->codec_dai;
938         struct snd_pcm_runtime *runtime = substream->runtime;
939         snd_pcm_uframes_t offset = 0;
940         snd_pcm_sframes_t delay = 0;
941
942         if (platform->driver->ops->pointer)
943                 offset = platform->driver->ops->pointer(substream);
944
945         if (cpu_dai->driver->ops->delay)
946                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
947
948         if (codec_dai->driver->ops->delay)
949                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
950
951         if (platform->driver->delay)
952                 delay += platform->driver->delay(substream, codec_dai);
953
954         runtime->delay = delay;
955
956         return offset;
957 }
958
959 /* ASoC PCM operations */
960 static struct snd_pcm_ops soc_pcm_ops = {
961         .open           = soc_pcm_open,
962         .close          = soc_codec_close,
963         .hw_params      = soc_pcm_hw_params,
964         .hw_free        = soc_pcm_hw_free,
965         .prepare        = soc_pcm_prepare,
966         .trigger        = soc_pcm_trigger,
967         .pointer        = soc_pcm_pointer,
968 };
969
970 #ifdef CONFIG_PM
971 /* powers down audio subsystem for suspend */
972 static int soc_suspend(struct device *dev)
973 {
974         struct platform_device *pdev = to_platform_device(dev);
975         struct snd_soc_card *card = platform_get_drvdata(pdev);
976         struct snd_soc_codec *codec;
977         int i;
978
979         /* If the initialization of this soc device failed, there is no codec
980          * associated with it. Just bail out in this case.
981          */
982         if (list_empty(&card->codec_dev_list))
983                 return 0;
984
985         /* Due to the resume being scheduled into a workqueue we could
986         * suspend before that's finished - wait for it to complete.
987          */
988         snd_power_lock(card->snd_card);
989         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
990         snd_power_unlock(card->snd_card);
991
992         /* we're going to block userspace touching us until resume completes */
993         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
994
995         /* mute any active DACs */
996         for (i = 0; i < card->num_rtd; i++) {
997                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
998                 struct snd_soc_dai_driver *drv = dai->driver;
999
1000                 if (card->rtd[i].dai_link->ignore_suspend)
1001                         continue;
1002
1003                 if (drv->ops->digital_mute && dai->playback_active)
1004                         drv->ops->digital_mute(dai, 1);
1005         }
1006
1007         /* suspend all pcms */
1008         for (i = 0; i < card->num_rtd; i++) {
1009                 if (card->rtd[i].dai_link->ignore_suspend)
1010                         continue;
1011
1012                 snd_pcm_suspend_all(card->rtd[i].pcm);
1013         }
1014
1015         if (card->suspend_pre)
1016                 card->suspend_pre(pdev, PMSG_SUSPEND);
1017
1018         for (i = 0; i < card->num_rtd; i++) {
1019                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1020                 struct snd_soc_platform *platform = card->rtd[i].platform;
1021
1022                 if (card->rtd[i].dai_link->ignore_suspend)
1023                         continue;
1024
1025                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1026                         cpu_dai->driver->suspend(cpu_dai);
1027                 if (platform->driver->suspend && !platform->suspended) {
1028                         platform->driver->suspend(cpu_dai);
1029                         platform->suspended = 1;
1030                 }
1031         }
1032
1033         /* close any waiting streams and save state */
1034         for (i = 0; i < card->num_rtd; i++) {
1035                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1036                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1037         }
1038
1039         for (i = 0; i < card->num_rtd; i++) {
1040                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1041
1042                 if (card->rtd[i].dai_link->ignore_suspend)
1043                         continue;
1044
1045                 if (driver->playback.stream_name != NULL)
1046                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1047                                 SND_SOC_DAPM_STREAM_SUSPEND);
1048
1049                 if (driver->capture.stream_name != NULL)
1050                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1051                                 SND_SOC_DAPM_STREAM_SUSPEND);
1052         }
1053
1054         /* suspend all CODECs */
1055         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1056                 /* If there are paths active then the CODEC will be held with
1057                  * bias _ON and should not be suspended. */
1058                 if (!codec->suspended && codec->driver->suspend) {
1059                         switch (codec->dapm.bias_level) {
1060                         case SND_SOC_BIAS_STANDBY:
1061                         case SND_SOC_BIAS_OFF:
1062                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1063                                 codec->suspended = 1;
1064                                 break;
1065                         default:
1066                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1067                                 break;
1068                         }
1069                 }
1070         }
1071
1072         for (i = 0; i < card->num_rtd; i++) {
1073                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1074
1075                 if (card->rtd[i].dai_link->ignore_suspend)
1076                         continue;
1077
1078                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1079                         cpu_dai->driver->suspend(cpu_dai);
1080         }
1081
1082         if (card->suspend_post)
1083                 card->suspend_post(pdev, PMSG_SUSPEND);
1084
1085         return 0;
1086 }
1087
1088 /* deferred resume work, so resume can complete before we finished
1089  * setting our codec back up, which can be very slow on I2C
1090  */
1091 static void soc_resume_deferred(struct work_struct *work)
1092 {
1093         struct snd_soc_card *card =
1094                         container_of(work, struct snd_soc_card, deferred_resume_work);
1095         struct platform_device *pdev = to_platform_device(card->dev);
1096         struct snd_soc_codec *codec;
1097         int i;
1098
1099         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1100          * so userspace apps are blocked from touching us
1101          */
1102
1103         dev_dbg(card->dev, "starting resume work\n");
1104
1105         /* Bring us up into D2 so that DAPM starts enabling things */
1106         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1107
1108         if (card->resume_pre)
1109                 card->resume_pre(pdev);
1110
1111         /* resume AC97 DAIs */
1112         for (i = 0; i < card->num_rtd; i++) {
1113                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1114
1115                 if (card->rtd[i].dai_link->ignore_suspend)
1116                         continue;
1117
1118                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1119                         cpu_dai->driver->resume(cpu_dai);
1120         }
1121
1122         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1123                 /* If the CODEC was idle over suspend then it will have been
1124                  * left with bias OFF or STANDBY and suspended so we must now
1125                  * resume.  Otherwise the suspend was suppressed.
1126                  */
1127                 if (codec->driver->resume && codec->suspended) {
1128                         switch (codec->dapm.bias_level) {
1129                         case SND_SOC_BIAS_STANDBY:
1130                         case SND_SOC_BIAS_OFF:
1131                                 codec->driver->resume(codec);
1132                                 codec->suspended = 0;
1133                                 break;
1134                         default:
1135                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1136                                 break;
1137                         }
1138                 }
1139         }
1140
1141         for (i = 0; i < card->num_rtd; i++) {
1142                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1143
1144                 if (card->rtd[i].dai_link->ignore_suspend)
1145                         continue;
1146
1147                 if (driver->playback.stream_name != NULL)
1148                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1149                                 SND_SOC_DAPM_STREAM_RESUME);
1150
1151                 if (driver->capture.stream_name != NULL)
1152                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1153                                 SND_SOC_DAPM_STREAM_RESUME);
1154         }
1155
1156         /* unmute any active DACs */
1157         for (i = 0; i < card->num_rtd; i++) {
1158                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1159                 struct snd_soc_dai_driver *drv = dai->driver;
1160
1161                 if (card->rtd[i].dai_link->ignore_suspend)
1162                         continue;
1163
1164                 if (drv->ops->digital_mute && dai->playback_active)
1165                         drv->ops->digital_mute(dai, 0);
1166         }
1167
1168         for (i = 0; i < card->num_rtd; i++) {
1169                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1170                 struct snd_soc_platform *platform = card->rtd[i].platform;
1171
1172                 if (card->rtd[i].dai_link->ignore_suspend)
1173                         continue;
1174
1175                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1176                         cpu_dai->driver->resume(cpu_dai);
1177                 if (platform->driver->resume && platform->suspended) {
1178                         platform->driver->resume(cpu_dai);
1179                         platform->suspended = 0;
1180                 }
1181         }
1182
1183         if (card->resume_post)
1184                 card->resume_post(pdev);
1185
1186         dev_dbg(card->dev, "resume work completed\n");
1187
1188         /* userspace can access us now we are back as we were before */
1189         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1190 }
1191
1192 /* powers up audio subsystem after a suspend */
1193 static int soc_resume(struct device *dev)
1194 {
1195         struct platform_device *pdev = to_platform_device(dev);
1196         struct snd_soc_card *card = platform_get_drvdata(pdev);
1197         int i;
1198
1199         /* AC97 devices might have other drivers hanging off them so
1200          * need to resume immediately.  Other drivers don't have that
1201          * problem and may take a substantial amount of time to resume
1202          * due to I/O costs and anti-pop so handle them out of line.
1203          */
1204         for (i = 0; i < card->num_rtd; i++) {
1205                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1206                 if (cpu_dai->driver->ac97_control) {
1207                         dev_dbg(dev, "Resuming AC97 immediately\n");
1208                         soc_resume_deferred(&card->deferred_resume_work);
1209                 } else {
1210                         dev_dbg(dev, "Scheduling resume work\n");
1211                         if (!schedule_work(&card->deferred_resume_work))
1212                                 dev_err(dev, "resume work item may be lost\n");
1213                 }
1214         }
1215
1216         return 0;
1217 }
1218 #else
1219 #define soc_suspend     NULL
1220 #define soc_resume      NULL
1221 #endif
1222
1223 static struct snd_soc_dai_ops null_dai_ops = {
1224 };
1225
1226 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1227 {
1228         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1229         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1230         struct snd_soc_codec *codec;
1231         struct snd_soc_platform *platform;
1232         struct snd_soc_dai *codec_dai, *cpu_dai;
1233
1234         if (rtd->complete)
1235                 return 1;
1236         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1237
1238         /* do we already have the CPU DAI for this link ? */
1239         if (rtd->cpu_dai) {
1240                 goto find_codec;
1241         }
1242         /* no, then find CPU DAI from registered DAIs*/
1243         list_for_each_entry(cpu_dai, &dai_list, list) {
1244                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1245
1246                         if (!try_module_get(cpu_dai->dev->driver->owner))
1247                                 return -ENODEV;
1248
1249                         rtd->cpu_dai = cpu_dai;
1250                         goto find_codec;
1251                 }
1252         }
1253         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1254                         dai_link->cpu_dai_name);
1255
1256 find_codec:
1257         /* do we already have the CODEC for this link ? */
1258         if (rtd->codec) {
1259                 goto find_platform;
1260         }
1261
1262         /* no, then find CODEC from registered CODECs*/
1263         list_for_each_entry(codec, &codec_list, list) {
1264                 if (!strcmp(codec->name, dai_link->codec_name)) {
1265                         rtd->codec = codec;
1266
1267                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1268                         list_for_each_entry(codec_dai, &dai_list, list) {
1269                                 if (codec->dev == codec_dai->dev &&
1270                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1271                                         rtd->codec_dai = codec_dai;
1272                                         goto find_platform;
1273                                 }
1274                         }
1275                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1276                                         dai_link->codec_dai_name);
1277
1278                         goto find_platform;
1279                 }
1280         }
1281         dev_dbg(card->dev, "CODEC %s not registered\n",
1282                         dai_link->codec_name);
1283
1284 find_platform:
1285         /* do we already have the CODEC DAI for this link ? */
1286         if (rtd->platform) {
1287                 goto out;
1288         }
1289         /* no, then find CPU DAI from registered DAIs*/
1290         list_for_each_entry(platform, &platform_list, list) {
1291                 if (!strcmp(platform->name, dai_link->platform_name)) {
1292                         rtd->platform = platform;
1293                         goto out;
1294                 }
1295         }
1296
1297         dev_dbg(card->dev, "platform %s not registered\n",
1298                         dai_link->platform_name);
1299         return 0;
1300
1301 out:
1302         /* mark rtd as complete if we found all 4 of our client devices */
1303         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1304                 rtd->complete = 1;
1305                 card->num_rtd++;
1306         }
1307         return 1;
1308 }
1309
1310 static void soc_remove_codec(struct snd_soc_codec *codec)
1311 {
1312         int err;
1313
1314         if (codec->driver->remove) {
1315                 err = codec->driver->remove(codec);
1316                 if (err < 0)
1317                         dev_err(codec->dev,
1318                                 "asoc: failed to remove %s: %d\n",
1319                                 codec->name, err);
1320         }
1321
1322         /* Make sure all DAPM widgets are freed */
1323         snd_soc_dapm_free(&codec->dapm);
1324
1325         soc_cleanup_codec_debugfs(codec);
1326         codec->probed = 0;
1327         list_del(&codec->card_list);
1328         module_put(codec->dev->driver->owner);
1329 }
1330
1331 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1332 {
1333         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1334         struct snd_soc_codec *codec = rtd->codec;
1335         struct snd_soc_platform *platform = rtd->platform;
1336         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1337         int err;
1338
1339         /* unregister the rtd device */
1340         if (rtd->dev_registered) {
1341                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1342                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1343                 device_unregister(&rtd->dev);
1344                 rtd->dev_registered = 0;
1345         }
1346
1347         /* remove the CODEC DAI */
1348         if (codec_dai && codec_dai->probed) {
1349                 if (codec_dai->driver->remove) {
1350                         err = codec_dai->driver->remove(codec_dai);
1351                         if (err < 0)
1352                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1353                 }
1354                 codec_dai->probed = 0;
1355                 list_del(&codec_dai->card_list);
1356         }
1357
1358         /* remove the platform */
1359         if (platform && platform->probed) {
1360                 if (platform->driver->remove) {
1361                         err = platform->driver->remove(platform);
1362                         if (err < 0)
1363                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1364                 }
1365                 platform->probed = 0;
1366                 list_del(&platform->card_list);
1367                 module_put(platform->dev->driver->owner);
1368         }
1369
1370         /* remove the CODEC */
1371         if (codec && codec->probed)
1372                 soc_remove_codec(codec);
1373
1374         /* remove the cpu_dai */
1375         if (cpu_dai && cpu_dai->probed) {
1376                 if (cpu_dai->driver->remove) {
1377                         err = cpu_dai->driver->remove(cpu_dai);
1378                         if (err < 0)
1379                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1380                 }
1381                 cpu_dai->probed = 0;
1382                 list_del(&cpu_dai->card_list);
1383                 module_put(cpu_dai->dev->driver->owner);
1384         }
1385 }
1386
1387 static void soc_set_name_prefix(struct snd_soc_card *card,
1388                                 struct snd_soc_codec *codec)
1389 {
1390         int i;
1391
1392         if (card->codec_conf == NULL)
1393                 return;
1394
1395         for (i = 0; i < card->num_configs; i++) {
1396                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1397                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1398                         codec->name_prefix = map->name_prefix;
1399                         break;
1400                 }
1401         }
1402 }
1403
1404 static int soc_probe_codec(struct snd_soc_card *card,
1405                            struct snd_soc_codec *codec)
1406 {
1407         int ret = 0;
1408
1409         codec->card = card;
1410         codec->dapm.card = card;
1411         soc_set_name_prefix(card, codec);
1412
1413         if (codec->driver->probe) {
1414                 ret = codec->driver->probe(codec);
1415                 if (ret < 0) {
1416                         dev_err(codec->dev,
1417                                 "asoc: failed to probe CODEC %s: %d\n",
1418                                 codec->name, ret);
1419                         return ret;
1420                 }
1421         }
1422
1423         soc_init_codec_debugfs(codec);
1424
1425         /* mark codec as probed and add to card codec list */
1426         if (!try_module_get(codec->dev->driver->owner))
1427                 return -ENODEV;
1428
1429         codec->probed = 1;
1430         list_add(&codec->card_list, &card->codec_dev_list);
1431         list_add(&codec->dapm.list, &card->dapm_list);
1432
1433         return ret;
1434 }
1435
1436 static void rtd_release(struct device *dev) {}
1437
1438 static int soc_post_component_init(struct snd_soc_card *card,
1439                                    struct snd_soc_codec *codec,
1440                                    int num, int dailess)
1441 {
1442         struct snd_soc_dai_link *dai_link = NULL;
1443         struct snd_soc_aux_dev *aux_dev = NULL;
1444         struct snd_soc_pcm_runtime *rtd;
1445         const char *temp, *name;
1446         int ret = 0;
1447
1448         if (!dailess) {
1449                 dai_link = &card->dai_link[num];
1450                 rtd = &card->rtd[num];
1451                 name = dai_link->name;
1452         } else {
1453                 aux_dev = &card->aux_dev[num];
1454                 rtd = &card->rtd_aux[num];
1455                 name = aux_dev->name;
1456         }
1457
1458         /* machine controls, routes and widgets are not prefixed */
1459         temp = codec->name_prefix;
1460         codec->name_prefix = NULL;
1461
1462         /* do machine specific initialization */
1463         if (!dailess && dai_link->init)
1464                 ret = dai_link->init(rtd);
1465         else if (dailess && aux_dev->init)
1466                 ret = aux_dev->init(&codec->dapm);
1467         if (ret < 0) {
1468                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1469                 return ret;
1470         }
1471         codec->name_prefix = temp;
1472
1473         /* Make sure all DAPM widgets are instantiated */
1474         snd_soc_dapm_new_widgets(&codec->dapm);
1475         snd_soc_dapm_sync(&codec->dapm);
1476
1477         /* register the rtd device */
1478         rtd->codec = codec;
1479         rtd->card = card;
1480         rtd->dev.parent = card->dev;
1481         rtd->dev.release = rtd_release;
1482         rtd->dev.init_name = name;
1483         ret = device_register(&rtd->dev);
1484         if (ret < 0) {
1485                 dev_err(card->dev,
1486                         "asoc: failed to register runtime device: %d\n", ret);
1487                 return ret;
1488         }
1489         rtd->dev_registered = 1;
1490
1491         /* add DAPM sysfs entries for this codec */
1492         ret = snd_soc_dapm_sys_add(&rtd->dev);
1493         if (ret < 0)
1494                 dev_err(codec->dev,
1495                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1496                         ret);
1497
1498         /* add codec sysfs entries */
1499         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1500         if (ret < 0)
1501                 dev_err(codec->dev,
1502                         "asoc: failed to add codec sysfs files: %d\n", ret);
1503
1504         return 0;
1505 }
1506
1507 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1508 {
1509         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1510         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1511         struct snd_soc_codec *codec = rtd->codec;
1512         struct snd_soc_platform *platform = rtd->platform;
1513         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1514         int ret;
1515
1516         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1517
1518         /* config components */
1519         codec_dai->codec = codec;
1520         cpu_dai->platform = platform;
1521         codec_dai->card = card;
1522         cpu_dai->card = card;
1523
1524         /* set default power off timeout */
1525         rtd->pmdown_time = pmdown_time;
1526
1527         /* probe the cpu_dai */
1528         if (!cpu_dai->probed) {
1529                 if (cpu_dai->driver->probe) {
1530                         ret = cpu_dai->driver->probe(cpu_dai);
1531                         if (ret < 0) {
1532                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1533                                                 cpu_dai->name);
1534                                 return ret;
1535                         }
1536                 }
1537                 cpu_dai->probed = 1;
1538                 /* mark cpu_dai as probed and add to card cpu_dai list */
1539                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1540         }
1541
1542         /* probe the CODEC */
1543         if (!codec->probed) {
1544                 ret = soc_probe_codec(card, codec);
1545                 if (ret < 0)
1546                         return ret;
1547         }
1548
1549         /* probe the platform */
1550         if (!platform->probed) {
1551                 if (platform->driver->probe) {
1552                         ret = platform->driver->probe(platform);
1553                         if (ret < 0) {
1554                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1555                                                 platform->name);
1556                                 return ret;
1557                         }
1558                 }
1559                 /* mark platform as probed and add to card platform list */
1560
1561                 if (!try_module_get(platform->dev->driver->owner))
1562                         return -ENODEV;
1563
1564                 platform->probed = 1;
1565                 list_add(&platform->card_list, &card->platform_dev_list);
1566         }
1567
1568         /* probe the CODEC DAI */
1569         if (!codec_dai->probed) {
1570                 if (codec_dai->driver->probe) {
1571                         ret = codec_dai->driver->probe(codec_dai);
1572                         if (ret < 0) {
1573                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1574                                                 codec_dai->name);
1575                                 return ret;
1576                         }
1577                 }
1578
1579                 /* mark cpu_dai as probed and add to card cpu_dai list */
1580                 codec_dai->probed = 1;
1581                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1582         }
1583
1584         /* DAPM dai link stream work */
1585         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1586
1587         ret = soc_post_component_init(card, codec, num, 0);
1588         if (ret)
1589                 return ret;
1590
1591         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1592         if (ret < 0)
1593                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1594
1595         /* create the pcm */
1596         ret = soc_new_pcm(rtd, num);
1597         if (ret < 0) {
1598                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1599                 return ret;
1600         }
1601
1602         /* add platform data for AC97 devices */
1603         if (rtd->codec_dai->driver->ac97_control)
1604                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1605
1606         return 0;
1607 }
1608
1609 #ifdef CONFIG_SND_SOC_AC97_BUS
1610 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1611 {
1612         int ret;
1613
1614         /* Only instantiate AC97 if not already done by the adaptor
1615          * for the generic AC97 subsystem.
1616          */
1617         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1618                 /*
1619                  * It is possible that the AC97 device is already registered to
1620                  * the device subsystem. This happens when the device is created
1621                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1622                  * is the generic AC97 glue but others migh emerge.
1623                  *
1624                  * In those cases we don't try to register the device again.
1625                  */
1626                 if (!rtd->codec->ac97_created)
1627                         return 0;
1628
1629                 ret = soc_ac97_dev_register(rtd->codec);
1630                 if (ret < 0) {
1631                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1632                         return ret;
1633                 }
1634
1635                 rtd->codec->ac97_registered = 1;
1636         }
1637         return 0;
1638 }
1639
1640 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1641 {
1642         if (codec->ac97_registered) {
1643                 soc_ac97_dev_unregister(codec);
1644                 codec->ac97_registered = 0;
1645         }
1646 }
1647 #endif
1648
1649 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1650 {
1651         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1652         struct snd_soc_codec *codec;
1653         int ret = -ENODEV;
1654
1655         /* find CODEC from registered CODECs*/
1656         list_for_each_entry(codec, &codec_list, list) {
1657                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1658                         if (codec->probed) {
1659                                 dev_err(codec->dev,
1660                                         "asoc: codec already probed");
1661                                 ret = -EBUSY;
1662                                 goto out;
1663                         }
1664                         goto found;
1665                 }
1666         }
1667         /* codec not found */
1668         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1669         goto out;
1670
1671 found:
1672         if (!try_module_get(codec->dev->driver->owner))
1673                 return -ENODEV;
1674
1675         ret = soc_probe_codec(card, codec);
1676         if (ret < 0)
1677                 return ret;
1678
1679         ret = soc_post_component_init(card, codec, num, 1);
1680
1681 out:
1682         return ret;
1683 }
1684
1685 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1686 {
1687         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1688         struct snd_soc_codec *codec = rtd->codec;
1689
1690         /* unregister the rtd device */
1691         if (rtd->dev_registered) {
1692                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1693                 device_unregister(&rtd->dev);
1694                 rtd->dev_registered = 0;
1695         }
1696
1697         if (codec && codec->probed)
1698                 soc_remove_codec(codec);
1699 }
1700
1701 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1702                                     enum snd_soc_compress_type compress_type)
1703 {
1704         int ret;
1705
1706         if (codec->cache_init)
1707                 return 0;
1708
1709         /* override the compress_type if necessary */
1710         if (compress_type && codec->compress_type != compress_type)
1711                 codec->compress_type = compress_type;
1712         ret = snd_soc_cache_init(codec);
1713         if (ret < 0) {
1714                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1715                         ret);
1716                 return ret;
1717         }
1718         codec->cache_init = 1;
1719         return 0;
1720 }
1721
1722 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1723 {
1724         struct platform_device *pdev = to_platform_device(card->dev);
1725         struct snd_soc_codec *codec;
1726         struct snd_soc_codec_conf *codec_conf;
1727         enum snd_soc_compress_type compress_type;
1728         int ret, i;
1729
1730         mutex_lock(&card->mutex);
1731
1732         if (card->instantiated) {
1733                 mutex_unlock(&card->mutex);
1734                 return;
1735         }
1736
1737         /* bind DAIs */
1738         for (i = 0; i < card->num_links; i++)
1739                 soc_bind_dai_link(card, i);
1740
1741         /* bind completed ? */
1742         if (card->num_rtd != card->num_links) {
1743                 mutex_unlock(&card->mutex);
1744                 return;
1745         }
1746
1747         /* initialize the register cache for each available codec */
1748         list_for_each_entry(codec, &codec_list, list) {
1749                 if (codec->cache_init)
1750                         continue;
1751                 /* by default we don't override the compress_type */
1752                 compress_type = 0;
1753                 /* check to see if we need to override the compress_type */
1754                 for (i = 0; i < card->num_configs; ++i) {
1755                         codec_conf = &card->codec_conf[i];
1756                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1757                                 compress_type = codec_conf->compress_type;
1758                                 if (compress_type && compress_type
1759                                     != codec->compress_type)
1760                                         break;
1761                         }
1762                 }
1763                 ret = snd_soc_init_codec_cache(codec, compress_type);
1764                 if (ret < 0) {
1765                         mutex_unlock(&card->mutex);
1766                         return;
1767                 }
1768         }
1769
1770         /* card bind complete so register a sound card */
1771         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1772                         card->owner, 0, &card->snd_card);
1773         if (ret < 0) {
1774                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1775                         card->name);
1776                 mutex_unlock(&card->mutex);
1777                 return;
1778         }
1779         card->snd_card->dev = card->dev;
1780
1781 #ifdef CONFIG_PM
1782         /* deferred resume work */
1783         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1784 #endif
1785
1786         /* initialise the sound card only once */
1787         if (card->probe) {
1788                 ret = card->probe(pdev);
1789                 if (ret < 0)
1790                         goto card_probe_error;
1791         }
1792
1793         for (i = 0; i < card->num_links; i++) {
1794                 ret = soc_probe_dai_link(card, i);
1795                 if (ret < 0) {
1796                         pr_err("asoc: failed to instantiate card %s: %d\n",
1797                                card->name, ret);
1798                         goto probe_dai_err;
1799                 }
1800         }
1801
1802         for (i = 0; i < card->num_aux_devs; i++) {
1803                 ret = soc_probe_aux_dev(card, i);
1804                 if (ret < 0) {
1805                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1806                                card->name, ret);
1807                         goto probe_aux_dev_err;
1808                 }
1809         }
1810
1811         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1812                  "%s",  card->name);
1813         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1814                  "%s", card->name);
1815
1816         ret = snd_card_register(card->snd_card);
1817         if (ret < 0) {
1818                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1819                 goto probe_aux_dev_err;
1820         }
1821
1822 #ifdef CONFIG_SND_SOC_AC97_BUS
1823         /* register any AC97 codecs */
1824         for (i = 0; i < card->num_rtd; i++) {
1825                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1826                 if (ret < 0) {
1827                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1828                         while (--i >= 0)
1829                                 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1830                         goto probe_aux_dev_err;
1831                 }
1832         }
1833 #endif
1834
1835         card->instantiated = 1;
1836         mutex_unlock(&card->mutex);
1837         return;
1838
1839 probe_aux_dev_err:
1840         for (i = 0; i < card->num_aux_devs; i++)
1841                 soc_remove_aux_dev(card, i);
1842
1843 probe_dai_err:
1844         for (i = 0; i < card->num_links; i++)
1845                 soc_remove_dai_link(card, i);
1846
1847 card_probe_error:
1848         if (card->remove)
1849                 card->remove(pdev);
1850
1851         snd_card_free(card->snd_card);
1852
1853         mutex_unlock(&card->mutex);
1854 }
1855
1856 /*
1857  * Attempt to initialise any uninitialised cards.  Must be called with
1858  * client_mutex.
1859  */
1860 static void snd_soc_instantiate_cards(void)
1861 {
1862         struct snd_soc_card *card;
1863         list_for_each_entry(card, &card_list, list)
1864                 snd_soc_instantiate_card(card);
1865 }
1866
1867 /* probes a new socdev */
1868 static int soc_probe(struct platform_device *pdev)
1869 {
1870         struct snd_soc_card *card = platform_get_drvdata(pdev);
1871         int ret = 0;
1872
1873         /* Bodge while we unpick instantiation */
1874         card->dev = &pdev->dev;
1875         snd_soc_initialize_card_lists(card);
1876
1877         ret = snd_soc_register_card(card);
1878         if (ret != 0) {
1879                 dev_err(&pdev->dev, "Failed to register card\n");
1880                 return ret;
1881         }
1882
1883         return 0;
1884 }
1885
1886 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1887 {
1888         struct platform_device *pdev = to_platform_device(card->dev);
1889         int i;
1890
1891         /* make sure any delayed work runs */
1892         for (i = 0; i < card->num_rtd; i++) {
1893                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1894                 flush_delayed_work_sync(&rtd->delayed_work);
1895         }
1896
1897         /* remove auxiliary devices */
1898         for (i = 0; i < card->num_aux_devs; i++)
1899                 soc_remove_aux_dev(card, i);
1900
1901         /* remove and free each DAI */
1902         for (i = 0; i < card->num_rtd; i++)
1903                 soc_remove_dai_link(card, i);
1904
1905         soc_cleanup_card_debugfs(card);
1906
1907         /* remove the card */
1908         if (card->remove)
1909                 card->remove(pdev);
1910
1911         kfree(card->rtd);
1912         snd_card_free(card->snd_card);
1913         return 0;
1914
1915 }
1916
1917 /* removes a socdev */
1918 static int soc_remove(struct platform_device *pdev)
1919 {
1920         struct snd_soc_card *card = platform_get_drvdata(pdev);
1921
1922         snd_soc_unregister_card(card);
1923         return 0;
1924 }
1925
1926 static int soc_poweroff(struct device *dev)
1927 {
1928         struct platform_device *pdev = to_platform_device(dev);
1929         struct snd_soc_card *card = platform_get_drvdata(pdev);
1930         int i;
1931
1932         if (!card->instantiated)
1933                 return 0;
1934
1935         /* Flush out pmdown_time work - we actually do want to run it
1936          * now, we're shutting down so no imminent restart. */
1937         for (i = 0; i < card->num_rtd; i++) {
1938                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1939                 flush_delayed_work_sync(&rtd->delayed_work);
1940         }
1941
1942         snd_soc_dapm_shutdown(card);
1943
1944         return 0;
1945 }
1946
1947 static const struct dev_pm_ops soc_pm_ops = {
1948         .suspend = soc_suspend,
1949         .resume = soc_resume,
1950         .poweroff = soc_poweroff,
1951 };
1952
1953 /* ASoC platform driver */
1954 static struct platform_driver soc_driver = {
1955         .driver         = {
1956                 .name           = "soc-audio",
1957                 .owner          = THIS_MODULE,
1958                 .pm             = &soc_pm_ops,
1959         },
1960         .probe          = soc_probe,
1961         .remove         = soc_remove,
1962 };
1963
1964 /* create a new pcm */
1965 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1966 {
1967         struct snd_soc_codec *codec = rtd->codec;
1968         struct snd_soc_platform *platform = rtd->platform;
1969         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1970         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1971         struct snd_pcm *pcm;
1972         char new_name[64];
1973         int ret = 0, playback = 0, capture = 0;
1974
1975         /* check client and interface hw capabilities */
1976         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1977                         rtd->dai_link->stream_name, codec_dai->name, num);
1978
1979         if (codec_dai->driver->playback.channels_min)
1980                 playback = 1;
1981         if (codec_dai->driver->capture.channels_min)
1982                 capture = 1;
1983
1984         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1985         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1986                         num, playback, capture, &pcm);
1987         if (ret < 0) {
1988                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1989                 return ret;
1990         }
1991
1992         rtd->pcm = pcm;
1993         pcm->private_data = rtd;
1994         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1995         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1996         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1997         soc_pcm_ops.copy = platform->driver->ops->copy;
1998         soc_pcm_ops.silence = platform->driver->ops->silence;
1999         soc_pcm_ops.ack = platform->driver->ops->ack;
2000         soc_pcm_ops.page = platform->driver->ops->page;
2001
2002         if (playback)
2003                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2004
2005         if (capture)
2006                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2007
2008         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2009         if (ret < 0) {
2010                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2011                 return ret;
2012         }
2013
2014         pcm->private_free = platform->driver->pcm_free;
2015         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2016                 cpu_dai->name);
2017         return ret;
2018 }
2019
2020 /**
2021  * snd_soc_codec_volatile_register: Report if a register is volatile.
2022  *
2023  * @codec: CODEC to query.
2024  * @reg: Register to query.
2025  *
2026  * Boolean function indiciating if a CODEC register is volatile.
2027  */
2028 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2029 {
2030         if (codec->volatile_register)
2031                 return codec->volatile_register(codec, reg);
2032         else
2033                 return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2036
2037 /**
2038  * snd_soc_new_ac97_codec - initailise AC97 device
2039  * @codec: audio codec
2040  * @ops: AC97 bus operations
2041  * @num: AC97 codec number
2042  *
2043  * Initialises AC97 codec resources for use by ad-hoc devices only.
2044  */
2045 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2046         struct snd_ac97_bus_ops *ops, int num)
2047 {
2048         mutex_lock(&codec->mutex);
2049
2050         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2051         if (codec->ac97 == NULL) {
2052                 mutex_unlock(&codec->mutex);
2053                 return -ENOMEM;
2054         }
2055
2056         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2057         if (codec->ac97->bus == NULL) {
2058                 kfree(codec->ac97);
2059                 codec->ac97 = NULL;
2060                 mutex_unlock(&codec->mutex);
2061                 return -ENOMEM;
2062         }
2063
2064         codec->ac97->bus->ops = ops;
2065         codec->ac97->num = num;
2066
2067         /*
2068          * Mark the AC97 device to be created by us. This way we ensure that the
2069          * device will be registered with the device subsystem later on.
2070          */
2071         codec->ac97_created = 1;
2072
2073         mutex_unlock(&codec->mutex);
2074         return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2077
2078 /**
2079  * snd_soc_free_ac97_codec - free AC97 codec device
2080  * @codec: audio codec
2081  *
2082  * Frees AC97 codec device resources.
2083  */
2084 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2085 {
2086         mutex_lock(&codec->mutex);
2087 #ifdef CONFIG_SND_SOC_AC97_BUS
2088         soc_unregister_ac97_dai_link(codec);
2089 #endif
2090         kfree(codec->ac97->bus);
2091         kfree(codec->ac97);
2092         codec->ac97 = NULL;
2093         codec->ac97_created = 0;
2094         mutex_unlock(&codec->mutex);
2095 }
2096 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2097
2098 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2099 {
2100         unsigned int ret;
2101
2102         ret = codec->read(codec, reg);
2103         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2104         trace_snd_soc_reg_read(codec, reg, ret);
2105
2106         return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(snd_soc_read);
2109
2110 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2111                            unsigned int reg, unsigned int val)
2112 {
2113         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2114         trace_snd_soc_reg_write(codec, reg, val);
2115         return codec->write(codec, reg, val);
2116 }
2117 EXPORT_SYMBOL_GPL(snd_soc_write);
2118
2119 /**
2120  * snd_soc_update_bits - update codec register bits
2121  * @codec: audio codec
2122  * @reg: codec register
2123  * @mask: register mask
2124  * @value: new value
2125  *
2126  * Writes new register value.
2127  *
2128  * Returns 1 for change, 0 for no change, or negative error code.
2129  */
2130 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2131                                 unsigned int mask, unsigned int value)
2132 {
2133         int change;
2134         unsigned int old, new;
2135         int ret;
2136
2137         ret = snd_soc_read(codec, reg);
2138         if (ret < 0)
2139                 return ret;
2140
2141         old = ret;
2142         new = (old & ~mask) | value;
2143         change = old != new;
2144         if (change) {
2145                 ret = snd_soc_write(codec, reg, new);
2146                 if (ret < 0)
2147                         return ret;
2148         }
2149
2150         return change;
2151 }
2152 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2153
2154 /**
2155  * snd_soc_update_bits_locked - update codec register bits
2156  * @codec: audio codec
2157  * @reg: codec register
2158  * @mask: register mask
2159  * @value: new value
2160  *
2161  * Writes new register value, and takes the codec mutex.
2162  *
2163  * Returns 1 for change else 0.
2164  */
2165 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2166                                unsigned short reg, unsigned int mask,
2167                                unsigned int value)
2168 {
2169         int change;
2170
2171         mutex_lock(&codec->mutex);
2172         change = snd_soc_update_bits(codec, reg, mask, value);
2173         mutex_unlock(&codec->mutex);
2174
2175         return change;
2176 }
2177 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2178
2179 /**
2180  * snd_soc_test_bits - test register for change
2181  * @codec: audio codec
2182  * @reg: codec register
2183  * @mask: register mask
2184  * @value: new value
2185  *
2186  * Tests a register with a new value and checks if the new value is
2187  * different from the old value.
2188  *
2189  * Returns 1 for change else 0.
2190  */
2191 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2192                                 unsigned int mask, unsigned int value)
2193 {
2194         int change;
2195         unsigned int old, new;
2196
2197         old = snd_soc_read(codec, reg);
2198         new = (old & ~mask) | value;
2199         change = old != new;
2200
2201         return change;
2202 }
2203 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2204
2205 /**
2206  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2207  * @substream: the pcm substream
2208  * @hw: the hardware parameters
2209  *
2210  * Sets the substream runtime hardware parameters.
2211  */
2212 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2213         const struct snd_pcm_hardware *hw)
2214 {
2215         struct snd_pcm_runtime *runtime = substream->runtime;
2216         runtime->hw.info = hw->info;
2217         runtime->hw.formats = hw->formats;
2218         runtime->hw.period_bytes_min = hw->period_bytes_min;
2219         runtime->hw.period_bytes_max = hw->period_bytes_max;
2220         runtime->hw.periods_min = hw->periods_min;
2221         runtime->hw.periods_max = hw->periods_max;
2222         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2223         runtime->hw.fifo_size = hw->fifo_size;
2224         return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2227
2228 /**
2229  * snd_soc_cnew - create new control
2230  * @_template: control template
2231  * @data: control private data
2232  * @long_name: control long name
2233  *
2234  * Create a new mixer control from a template control.
2235  *
2236  * Returns 0 for success, else error.
2237  */
2238 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2239         void *data, char *long_name)
2240 {
2241         struct snd_kcontrol_new template;
2242
2243         memcpy(&template, _template, sizeof(template));
2244         if (long_name)
2245                 template.name = long_name;
2246         template.index = 0;
2247
2248         return snd_ctl_new1(&template, data);
2249 }
2250 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2251
2252 /**
2253  * snd_soc_add_controls - add an array of controls to a codec.
2254  * Convienience function to add a list of controls. Many codecs were
2255  * duplicating this code.
2256  *
2257  * @codec: codec to add controls to
2258  * @controls: array of controls to add
2259  * @num_controls: number of elements in the array
2260  *
2261  * Return 0 for success, else error.
2262  */
2263 int snd_soc_add_controls(struct snd_soc_codec *codec,
2264         const struct snd_kcontrol_new *controls, int num_controls)
2265 {
2266         struct snd_card *card = codec->card->snd_card;
2267         char prefixed_name[44], *name;
2268         int err, i;
2269
2270         for (i = 0; i < num_controls; i++) {
2271                 const struct snd_kcontrol_new *control = &controls[i];
2272                 if (codec->name_prefix) {
2273                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2274                                  codec->name_prefix, control->name);
2275                         name = prefixed_name;
2276                 } else {
2277                         name = control->name;
2278                 }
2279                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2280                 if (err < 0) {
2281                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2282                                 codec->name, name, err);
2283                         return err;
2284                 }
2285         }
2286
2287         return 0;
2288 }
2289 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2290
2291 /**
2292  * snd_soc_info_enum_double - enumerated double mixer info callback
2293  * @kcontrol: mixer control
2294  * @uinfo: control element information
2295  *
2296  * Callback to provide information about a double enumerated
2297  * mixer control.
2298  *
2299  * Returns 0 for success.
2300  */
2301 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2302         struct snd_ctl_elem_info *uinfo)
2303 {
2304         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2305
2306         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2307         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2308         uinfo->value.enumerated.items = e->max;
2309
2310         if (uinfo->value.enumerated.item > e->max - 1)
2311                 uinfo->value.enumerated.item = e->max - 1;
2312         strcpy(uinfo->value.enumerated.name,
2313                 e->texts[uinfo->value.enumerated.item]);
2314         return 0;
2315 }
2316 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2317
2318 /**
2319  * snd_soc_get_enum_double - enumerated double mixer get callback
2320  * @kcontrol: mixer control
2321  * @ucontrol: control element information
2322  *
2323  * Callback to get the value of a double enumerated mixer.
2324  *
2325  * Returns 0 for success.
2326  */
2327 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2328         struct snd_ctl_elem_value *ucontrol)
2329 {
2330         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2331         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2332         unsigned int val, bitmask;
2333
2334         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2335                 ;
2336         val = snd_soc_read(codec, e->reg);
2337         ucontrol->value.enumerated.item[0]
2338                 = (val >> e->shift_l) & (bitmask - 1);
2339         if (e->shift_l != e->shift_r)
2340                 ucontrol->value.enumerated.item[1] =
2341                         (val >> e->shift_r) & (bitmask - 1);
2342
2343         return 0;
2344 }
2345 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2346
2347 /**
2348  * snd_soc_put_enum_double - enumerated double mixer put callback
2349  * @kcontrol: mixer control
2350  * @ucontrol: control element information
2351  *
2352  * Callback to set the value of a double enumerated mixer.
2353  *
2354  * Returns 0 for success.
2355  */
2356 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2357         struct snd_ctl_elem_value *ucontrol)
2358 {
2359         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2360         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2361         unsigned int val;
2362         unsigned int mask, bitmask;
2363
2364         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2365                 ;
2366         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2367                 return -EINVAL;
2368         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2369         mask = (bitmask - 1) << e->shift_l;
2370         if (e->shift_l != e->shift_r) {
2371                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2372                         return -EINVAL;
2373                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2374                 mask |= (bitmask - 1) << e->shift_r;
2375         }
2376
2377         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2378 }
2379 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2380
2381 /**
2382  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2383  * @kcontrol: mixer control
2384  * @ucontrol: control element information
2385  *
2386  * Callback to get the value of a double semi enumerated mixer.
2387  *
2388  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2389  * used for handling bitfield coded enumeration for example.
2390  *
2391  * Returns 0 for success.
2392  */
2393 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2394         struct snd_ctl_elem_value *ucontrol)
2395 {
2396         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2397         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2398         unsigned int reg_val, val, mux;
2399
2400         reg_val = snd_soc_read(codec, e->reg);
2401         val = (reg_val >> e->shift_l) & e->mask;
2402         for (mux = 0; mux < e->max; mux++) {
2403                 if (val == e->values[mux])
2404                         break;
2405         }
2406         ucontrol->value.enumerated.item[0] = mux;
2407         if (e->shift_l != e->shift_r) {
2408                 val = (reg_val >> e->shift_r) & e->mask;
2409                 for (mux = 0; mux < e->max; mux++) {
2410                         if (val == e->values[mux])
2411                                 break;
2412                 }
2413                 ucontrol->value.enumerated.item[1] = mux;
2414         }
2415
2416         return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2419
2420 /**
2421  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2422  * @kcontrol: mixer control
2423  * @ucontrol: control element information
2424  *
2425  * Callback to set the value of a double semi enumerated mixer.
2426  *
2427  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2428  * used for handling bitfield coded enumeration for example.
2429  *
2430  * Returns 0 for success.
2431  */
2432 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2433         struct snd_ctl_elem_value *ucontrol)
2434 {
2435         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2436         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2437         unsigned int val;
2438         unsigned int mask;
2439
2440         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2441                 return -EINVAL;
2442         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2443         mask = e->mask << e->shift_l;
2444         if (e->shift_l != e->shift_r) {
2445                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2446                         return -EINVAL;
2447                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2448                 mask |= e->mask << e->shift_r;
2449         }
2450
2451         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2452 }
2453 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2454
2455 /**
2456  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2457  * @kcontrol: mixer control
2458  * @uinfo: control element information
2459  *
2460  * Callback to provide information about an external enumerated
2461  * single mixer.
2462  *
2463  * Returns 0 for success.
2464  */
2465 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2466         struct snd_ctl_elem_info *uinfo)
2467 {
2468         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2469
2470         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2471         uinfo->count = 1;
2472         uinfo->value.enumerated.items = e->max;
2473
2474         if (uinfo->value.enumerated.item > e->max - 1)
2475                 uinfo->value.enumerated.item = e->max - 1;
2476         strcpy(uinfo->value.enumerated.name,
2477                 e->texts[uinfo->value.enumerated.item]);
2478         return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2481
2482 /**
2483  * snd_soc_info_volsw_ext - external single mixer info callback
2484  * @kcontrol: mixer control
2485  * @uinfo: control element information
2486  *
2487  * Callback to provide information about a single external mixer control.
2488  *
2489  * Returns 0 for success.
2490  */
2491 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2492         struct snd_ctl_elem_info *uinfo)
2493 {
2494         int max = kcontrol->private_value;
2495
2496         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2497                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2498         else
2499                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2500
2501         uinfo->count = 1;
2502         uinfo->value.integer.min = 0;
2503         uinfo->value.integer.max = max;
2504         return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2507
2508 /**
2509  * snd_soc_info_volsw - single mixer info callback
2510  * @kcontrol: mixer control
2511  * @uinfo: control element information
2512  *
2513  * Callback to provide information about a single mixer control.
2514  *
2515  * Returns 0 for success.
2516  */
2517 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2518         struct snd_ctl_elem_info *uinfo)
2519 {
2520         struct soc_mixer_control *mc =
2521                 (struct soc_mixer_control *)kcontrol->private_value;
2522         int platform_max;
2523         unsigned int shift = mc->shift;
2524         unsigned int rshift = mc->rshift;
2525
2526         if (!mc->platform_max)
2527                 mc->platform_max = mc->max;
2528         platform_max = mc->platform_max;
2529
2530         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2531                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2532         else
2533                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2534
2535         uinfo->count = shift == rshift ? 1 : 2;
2536         uinfo->value.integer.min = 0;
2537         uinfo->value.integer.max = platform_max;
2538         return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2541
2542 /**
2543  * snd_soc_get_volsw - single mixer get callback
2544  * @kcontrol: mixer control
2545  * @ucontrol: control element information
2546  *
2547  * Callback to get the value of a single mixer control.
2548  *
2549  * Returns 0 for success.
2550  */
2551 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2552         struct snd_ctl_elem_value *ucontrol)
2553 {
2554         struct soc_mixer_control *mc =
2555                 (struct soc_mixer_control *)kcontrol->private_value;
2556         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2557         unsigned int reg = mc->reg;
2558         unsigned int shift = mc->shift;
2559         unsigned int rshift = mc->rshift;
2560         int max = mc->max;
2561         unsigned int mask = (1 << fls(max)) - 1;
2562         unsigned int invert = mc->invert;
2563
2564         ucontrol->value.integer.value[0] =
2565                 (snd_soc_read(codec, reg) >> shift) & mask;
2566         if (shift != rshift)
2567                 ucontrol->value.integer.value[1] =
2568                         (snd_soc_read(codec, reg) >> rshift) & mask;
2569         if (invert) {
2570                 ucontrol->value.integer.value[0] =
2571                         max - ucontrol->value.integer.value[0];
2572                 if (shift != rshift)
2573                         ucontrol->value.integer.value[1] =
2574                                 max - ucontrol->value.integer.value[1];
2575         }
2576
2577         return 0;
2578 }
2579 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2580
2581 /**
2582  * snd_soc_put_volsw - single mixer put callback
2583  * @kcontrol: mixer control
2584  * @ucontrol: control element information
2585  *
2586  * Callback to set the value of a single mixer control.
2587  *
2588  * Returns 0 for success.
2589  */
2590 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2591         struct snd_ctl_elem_value *ucontrol)
2592 {
2593         struct soc_mixer_control *mc =
2594                 (struct soc_mixer_control *)kcontrol->private_value;
2595         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2596         unsigned int reg = mc->reg;
2597         unsigned int shift = mc->shift;
2598         unsigned int rshift = mc->rshift;
2599         int max = mc->max;
2600         unsigned int mask = (1 << fls(max)) - 1;
2601         unsigned int invert = mc->invert;
2602         unsigned int val, val2, val_mask;
2603
2604         val = (ucontrol->value.integer.value[0] & mask);
2605         if (invert)
2606                 val = max - val;
2607         val_mask = mask << shift;
2608         val = val << shift;
2609         if (shift != rshift) {
2610                 val2 = (ucontrol->value.integer.value[1] & mask);
2611                 if (invert)
2612                         val2 = max - val2;
2613                 val_mask |= mask << rshift;
2614                 val |= val2 << rshift;
2615         }
2616         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2617 }
2618 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2619
2620 /**
2621  * snd_soc_info_volsw_2r - double mixer info callback
2622  * @kcontrol: mixer control
2623  * @uinfo: control element information
2624  *
2625  * Callback to provide information about a double mixer control that
2626  * spans 2 codec registers.
2627  *
2628  * Returns 0 for success.
2629  */
2630 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2631         struct snd_ctl_elem_info *uinfo)
2632 {
2633         struct soc_mixer_control *mc =
2634                 (struct soc_mixer_control *)kcontrol->private_value;
2635         int platform_max;
2636
2637         if (!mc->platform_max)
2638                 mc->platform_max = mc->max;
2639         platform_max = mc->platform_max;
2640
2641         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2642                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2643         else
2644                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2645
2646         uinfo->count = 2;
2647         uinfo->value.integer.min = 0;
2648         uinfo->value.integer.max = platform_max;
2649         return 0;
2650 }
2651 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2652
2653 /**
2654  * snd_soc_get_volsw_2r - double mixer get callback
2655  * @kcontrol: mixer control
2656  * @ucontrol: control element information
2657  *
2658  * Callback to get the value of a double mixer control that spans 2 registers.
2659  *
2660  * Returns 0 for success.
2661  */
2662 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2663         struct snd_ctl_elem_value *ucontrol)
2664 {
2665         struct soc_mixer_control *mc =
2666                 (struct soc_mixer_control *)kcontrol->private_value;
2667         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2668         unsigned int reg = mc->reg;
2669         unsigned int reg2 = mc->rreg;
2670         unsigned int shift = mc->shift;
2671         int max = mc->max;
2672         unsigned int mask = (1 << fls(max)) - 1;
2673         unsigned int invert = mc->invert;
2674
2675         ucontrol->value.integer.value[0] =
2676                 (snd_soc_read(codec, reg) >> shift) & mask;
2677         ucontrol->value.integer.value[1] =
2678                 (snd_soc_read(codec, reg2) >> shift) & mask;
2679         if (invert) {
2680                 ucontrol->value.integer.value[0] =
2681                         max - ucontrol->value.integer.value[0];
2682                 ucontrol->value.integer.value[1] =
2683                         max - ucontrol->value.integer.value[1];
2684         }
2685
2686         return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2689
2690 /**
2691  * snd_soc_put_volsw_2r - double mixer set callback
2692  * @kcontrol: mixer control
2693  * @ucontrol: control element information
2694  *
2695  * Callback to set the value of a double mixer control that spans 2 registers.
2696  *
2697  * Returns 0 for success.
2698  */
2699 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2700         struct snd_ctl_elem_value *ucontrol)
2701 {
2702         struct soc_mixer_control *mc =
2703                 (struct soc_mixer_control *)kcontrol->private_value;
2704         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2705         unsigned int reg = mc->reg;
2706         unsigned int reg2 = mc->rreg;
2707         unsigned int shift = mc->shift;
2708         int max = mc->max;
2709         unsigned int mask = (1 << fls(max)) - 1;
2710         unsigned int invert = mc->invert;
2711         int err;
2712         unsigned int val, val2, val_mask;
2713
2714         val_mask = mask << shift;
2715         val = (ucontrol->value.integer.value[0] & mask);
2716         val2 = (ucontrol->value.integer.value[1] & mask);
2717
2718         if (invert) {
2719                 val = max - val;
2720                 val2 = max - val2;
2721         }
2722
2723         val = val << shift;
2724         val2 = val2 << shift;
2725
2726         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2727         if (err < 0)
2728                 return err;
2729
2730         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2731         return err;
2732 }
2733 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2734
2735 /**
2736  * snd_soc_info_volsw_s8 - signed mixer info callback
2737  * @kcontrol: mixer control
2738  * @uinfo: control element information
2739  *
2740  * Callback to provide information about a signed mixer control.
2741  *
2742  * Returns 0 for success.
2743  */
2744 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2745         struct snd_ctl_elem_info *uinfo)
2746 {
2747         struct soc_mixer_control *mc =
2748                 (struct soc_mixer_control *)kcontrol->private_value;
2749         int platform_max;
2750         int min = mc->min;
2751
2752         if (!mc->platform_max)
2753                 mc->platform_max = mc->max;
2754         platform_max = mc->platform_max;
2755
2756         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2757         uinfo->count = 2;
2758         uinfo->value.integer.min = 0;
2759         uinfo->value.integer.max = platform_max - min;
2760         return 0;
2761 }
2762 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2763
2764 /**
2765  * snd_soc_get_volsw_s8 - signed mixer get callback
2766  * @kcontrol: mixer control
2767  * @ucontrol: control element information
2768  *
2769  * Callback to get the value of a signed mixer control.
2770  *
2771  * Returns 0 for success.
2772  */
2773 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2774         struct snd_ctl_elem_value *ucontrol)
2775 {
2776         struct soc_mixer_control *mc =
2777                 (struct soc_mixer_control *)kcontrol->private_value;
2778         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2779         unsigned int reg = mc->reg;
2780         int min = mc->min;
2781         int val = snd_soc_read(codec, reg);
2782
2783         ucontrol->value.integer.value[0] =
2784                 ((signed char)(val & 0xff))-min;
2785         ucontrol->value.integer.value[1] =
2786                 ((signed char)((val >> 8) & 0xff))-min;
2787         return 0;
2788 }
2789 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2790
2791 /**
2792  * snd_soc_put_volsw_sgn - signed mixer put callback
2793  * @kcontrol: mixer control
2794  * @ucontrol: control element information
2795  *
2796  * Callback to set the value of a signed mixer control.
2797  *
2798  * Returns 0 for success.
2799  */
2800 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2801         struct snd_ctl_elem_value *ucontrol)
2802 {
2803         struct soc_mixer_control *mc =
2804                 (struct soc_mixer_control *)kcontrol->private_value;
2805         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2806         unsigned int reg = mc->reg;
2807         int min = mc->min;
2808         unsigned int val;
2809
2810         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2811         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2812
2813         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2814 }
2815 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2816
2817 /**
2818  * snd_soc_limit_volume - Set new limit to an existing volume control.
2819  *
2820  * @codec: where to look for the control
2821  * @name: Name of the control
2822  * @max: new maximum limit
2823  *
2824  * Return 0 for success, else error.
2825  */
2826 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2827         const char *name, int max)
2828 {
2829         struct snd_card *card = codec->card->snd_card;
2830         struct snd_kcontrol *kctl;
2831         struct soc_mixer_control *mc;
2832         int found = 0;
2833         int ret = -EINVAL;
2834
2835         /* Sanity check for name and max */
2836         if (unlikely(!name || max <= 0))
2837                 return -EINVAL;
2838
2839         list_for_each_entry(kctl, &card->controls, list) {
2840                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2841                         found = 1;
2842                         break;
2843                 }
2844         }
2845         if (found) {
2846                 mc = (struct soc_mixer_control *)kctl->private_value;
2847                 if (max <= mc->max) {
2848                         mc->platform_max = max;
2849                         ret = 0;
2850                 }
2851         }
2852         return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2855
2856 /**
2857  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2858  *  mixer info callback
2859  * @kcontrol: mixer control
2860  * @uinfo: control element information
2861  *
2862  * Returns 0 for success.
2863  */
2864 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2865                         struct snd_ctl_elem_info *uinfo)
2866 {
2867         struct soc_mixer_control *mc =
2868                 (struct soc_mixer_control *)kcontrol->private_value;
2869         int max = mc->max;
2870         int min = mc->min;
2871
2872         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2873         uinfo->count = 2;
2874         uinfo->value.integer.min = 0;
2875         uinfo->value.integer.max = max-min;
2876
2877         return 0;
2878 }
2879 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2880
2881 /**
2882  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2883  *  mixer get callback
2884  * @kcontrol: mixer control
2885  * @uinfo: control element information
2886  *
2887  * Returns 0 for success.
2888  */
2889 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2890                         struct snd_ctl_elem_value *ucontrol)
2891 {
2892         struct soc_mixer_control *mc =
2893                 (struct soc_mixer_control *)kcontrol->private_value;
2894         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2895         unsigned int mask = (1<<mc->shift)-1;
2896         int min = mc->min;
2897         int val = snd_soc_read(codec, mc->reg) & mask;
2898         int valr = snd_soc_read(codec, mc->rreg) & mask;
2899
2900         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2901         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2902         return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2905
2906 /**
2907  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2908  *  mixer put callback
2909  * @kcontrol: mixer control
2910  * @uinfo: control element information
2911  *
2912  * Returns 0 for success.
2913  */
2914 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2915                         struct snd_ctl_elem_value *ucontrol)
2916 {
2917         struct soc_mixer_control *mc =
2918                 (struct soc_mixer_control *)kcontrol->private_value;
2919         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2920         unsigned int mask = (1<<mc->shift)-1;
2921         int min = mc->min;
2922         int ret;
2923         unsigned int val, valr, oval, ovalr;
2924
2925         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2926         val &= mask;
2927         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2928         valr &= mask;
2929
2930         oval = snd_soc_read(codec, mc->reg) & mask;
2931         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2932
2933         ret = 0;
2934         if (oval != val) {
2935                 ret = snd_soc_write(codec, mc->reg, val);
2936                 if (ret < 0)
2937                         return ret;
2938         }
2939         if (ovalr != valr) {
2940                 ret = snd_soc_write(codec, mc->rreg, valr);
2941                 if (ret < 0)
2942                         return ret;
2943         }
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2948
2949 /**
2950  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2951  * @dai: DAI
2952  * @clk_id: DAI specific clock ID
2953  * @freq: new clock frequency in Hz
2954  * @dir: new clock direction - input/output.
2955  *
2956  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2957  */
2958 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2959         unsigned int freq, int dir)
2960 {
2961         if (dai->driver && dai->driver->ops->set_sysclk)
2962                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2963         else
2964                 return -EINVAL;
2965 }
2966 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2967
2968 /**
2969  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2970  * @dai: DAI
2971  * @div_id: DAI specific clock divider ID
2972  * @div: new clock divisor.
2973  *
2974  * Configures the clock dividers. This is used to derive the best DAI bit and
2975  * frame clocks from the system or master clock. It's best to set the DAI bit
2976  * and frame clocks as low as possible to save system power.
2977  */
2978 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2979         int div_id, int div)
2980 {
2981         if (dai->driver && dai->driver->ops->set_clkdiv)
2982                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2983         else
2984                 return -EINVAL;
2985 }
2986 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2987
2988 /**
2989  * snd_soc_dai_set_pll - configure DAI PLL.
2990  * @dai: DAI
2991  * @pll_id: DAI specific PLL ID
2992  * @source: DAI specific source for the PLL
2993  * @freq_in: PLL input clock frequency in Hz
2994  * @freq_out: requested PLL output clock frequency in Hz
2995  *
2996  * Configures and enables PLL to generate output clock based on input clock.
2997  */
2998 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2999         unsigned int freq_in, unsigned int freq_out)
3000 {
3001         if (dai->driver && dai->driver->ops->set_pll)
3002                 return dai->driver->ops->set_pll(dai, pll_id, source,
3003                                          freq_in, freq_out);
3004         else
3005                 return -EINVAL;
3006 }
3007 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3008
3009 /**
3010  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3011  * @dai: DAI
3012  * @fmt: SND_SOC_DAIFMT_ format value.
3013  *
3014  * Configures the DAI hardware format and clocking.
3015  */
3016 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3017 {
3018         if (dai->driver && dai->driver->ops->set_fmt)
3019                 return dai->driver->ops->set_fmt(dai, fmt);
3020         else
3021                 return -EINVAL;
3022 }
3023 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3024
3025 /**
3026  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3027  * @dai: DAI
3028  * @tx_mask: bitmask representing active TX slots.
3029  * @rx_mask: bitmask representing active RX slots.
3030  * @slots: Number of slots in use.
3031  * @slot_width: Width in bits for each slot.
3032  *
3033  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3034  * specific.
3035  */
3036 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3037         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3038 {
3039         if (dai->driver && dai->driver->ops->set_tdm_slot)
3040                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3041                                 slots, slot_width);
3042         else
3043                 return -EINVAL;
3044 }
3045 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3046
3047 /**
3048  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3049  * @dai: DAI
3050  * @tx_num: how many TX channels
3051  * @tx_slot: pointer to an array which imply the TX slot number channel
3052  *           0~num-1 uses
3053  * @rx_num: how many RX channels
3054  * @rx_slot: pointer to an array which imply the RX slot number channel
3055  *           0~num-1 uses
3056  *
3057  * configure the relationship between channel number and TDM slot number.
3058  */
3059 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3060         unsigned int tx_num, unsigned int *tx_slot,
3061         unsigned int rx_num, unsigned int *rx_slot)
3062 {
3063         if (dai->driver && dai->driver->ops->set_channel_map)
3064                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3065                         rx_num, rx_slot);
3066         else
3067                 return -EINVAL;
3068 }
3069 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3070
3071 /**
3072  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3073  * @dai: DAI
3074  * @tristate: tristate enable
3075  *
3076  * Tristates the DAI so that others can use it.
3077  */
3078 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3079 {
3080         if (dai->driver && dai->driver->ops->set_tristate)
3081                 return dai->driver->ops->set_tristate(dai, tristate);
3082         else
3083                 return -EINVAL;
3084 }
3085 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3086
3087 /**
3088  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3089  * @dai: DAI
3090  * @mute: mute enable
3091  *
3092  * Mutes the DAI DAC.
3093  */
3094 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3095 {
3096         if (dai->driver && dai->driver->ops->digital_mute)
3097                 return dai->driver->ops->digital_mute(dai, mute);
3098         else
3099                 return -EINVAL;
3100 }
3101 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3102
3103 /**
3104  * snd_soc_register_card - Register a card with the ASoC core
3105  *
3106  * @card: Card to register
3107  *
3108  * Note that currently this is an internal only function: it will be
3109  * exposed to machine drivers after further backporting of ASoC v2
3110  * registration APIs.
3111  */
3112 static int snd_soc_register_card(struct snd_soc_card *card)
3113 {
3114         int i;
3115
3116         if (!card->name || !card->dev)
3117                 return -EINVAL;
3118
3119         soc_init_card_debugfs(card);
3120
3121         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3122                             (card->num_links + card->num_aux_devs),
3123                             GFP_KERNEL);
3124         if (card->rtd == NULL)
3125                 return -ENOMEM;
3126         card->rtd_aux = &card->rtd[card->num_links];
3127
3128         for (i = 0; i < card->num_links; i++)
3129                 card->rtd[i].dai_link = &card->dai_link[i];
3130
3131         INIT_LIST_HEAD(&card->list);
3132         card->instantiated = 0;
3133         mutex_init(&card->mutex);
3134
3135         mutex_lock(&client_mutex);
3136         list_add(&card->list, &card_list);
3137         snd_soc_instantiate_cards();
3138         mutex_unlock(&client_mutex);
3139
3140         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3141
3142         return 0;
3143 }
3144
3145 /**
3146  * snd_soc_unregister_card - Unregister a card with the ASoC core
3147  *
3148  * @card: Card to unregister
3149  *
3150  * Note that currently this is an internal only function: it will be
3151  * exposed to machine drivers after further backporting of ASoC v2
3152  * registration APIs.
3153  */
3154 static int snd_soc_unregister_card(struct snd_soc_card *card)
3155 {
3156         if (card->instantiated)
3157                 soc_cleanup_card_resources(card);
3158         mutex_lock(&client_mutex);
3159         list_del(&card->list);
3160         mutex_unlock(&client_mutex);
3161         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3162
3163         return 0;
3164 }
3165
3166 /*
3167  * Simplify DAI link configuration by removing ".-1" from device names
3168  * and sanitizing names.
3169  */
3170 static char *fmt_single_name(struct device *dev, int *id)
3171 {
3172         char *found, name[NAME_SIZE];
3173         int id1, id2;
3174
3175         if (dev_name(dev) == NULL)
3176                 return NULL;
3177
3178         strlcpy(name, dev_name(dev), NAME_SIZE);
3179
3180         /* are we a "%s.%d" name (platform and SPI components) */
3181         found = strstr(name, dev->driver->name);
3182         if (found) {
3183                 /* get ID */
3184                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3185
3186                         /* discard ID from name if ID == -1 */
3187                         if (*id == -1)
3188                                 found[strlen(dev->driver->name)] = '\0';
3189                 }
3190
3191         } else {
3192                 /* I2C component devices are named "bus-addr"  */
3193                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3194                         char tmp[NAME_SIZE];
3195
3196                         /* create unique ID number from I2C addr and bus */
3197                         *id = ((id1 & 0xffff) << 16) + id2;
3198
3199                         /* sanitize component name for DAI link creation */
3200                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3201                         strlcpy(name, tmp, NAME_SIZE);
3202                 } else
3203                         *id = 0;
3204         }
3205
3206         return kstrdup(name, GFP_KERNEL);
3207 }
3208
3209 /*
3210  * Simplify DAI link naming for single devices with multiple DAIs by removing
3211  * any ".-1" and using the DAI name (instead of device name).
3212  */
3213 static inline char *fmt_multiple_name(struct device *dev,
3214                 struct snd_soc_dai_driver *dai_drv)
3215 {
3216         if (dai_drv->name == NULL) {
3217                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3218                                 dev_name(dev));
3219                 return NULL;
3220         }
3221
3222         return kstrdup(dai_drv->name, GFP_KERNEL);
3223 }
3224
3225 /**
3226  * snd_soc_register_dai - Register a DAI with the ASoC core
3227  *
3228  * @dai: DAI to register
3229  */
3230 int snd_soc_register_dai(struct device *dev,
3231                 struct snd_soc_dai_driver *dai_drv)
3232 {
3233         struct snd_soc_dai *dai;
3234
3235         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3236
3237         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3238         if (dai == NULL)
3239                         return -ENOMEM;
3240
3241         /* create DAI component name */
3242         dai->name = fmt_single_name(dev, &dai->id);
3243         if (dai->name == NULL) {
3244                 kfree(dai);
3245                 return -ENOMEM;
3246         }
3247
3248         dai->dev = dev;
3249         dai->driver = dai_drv;
3250         if (!dai->driver->ops)
3251                 dai->driver->ops = &null_dai_ops;
3252
3253         mutex_lock(&client_mutex);
3254         list_add(&dai->list, &dai_list);
3255         snd_soc_instantiate_cards();
3256         mutex_unlock(&client_mutex);
3257
3258         pr_debug("Registered DAI '%s'\n", dai->name);
3259
3260         return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3263
3264 /**
3265  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3266  *
3267  * @dai: DAI to unregister
3268  */
3269 void snd_soc_unregister_dai(struct device *dev)
3270 {
3271         struct snd_soc_dai *dai;
3272
3273         list_for_each_entry(dai, &dai_list, list) {
3274                 if (dev == dai->dev)
3275                         goto found;
3276         }
3277         return;
3278
3279 found:
3280         mutex_lock(&client_mutex);
3281         list_del(&dai->list);
3282         mutex_unlock(&client_mutex);
3283
3284         pr_debug("Unregistered DAI '%s'\n", dai->name);
3285         kfree(dai->name);
3286         kfree(dai);
3287 }
3288 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3289
3290 /**
3291  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3292  *
3293  * @dai: Array of DAIs to register
3294  * @count: Number of DAIs
3295  */
3296 int snd_soc_register_dais(struct device *dev,
3297                 struct snd_soc_dai_driver *dai_drv, size_t count)
3298 {
3299         struct snd_soc_dai *dai;
3300         int i, ret = 0;
3301
3302         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3303
3304         for (i = 0; i < count; i++) {
3305
3306                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3307                 if (dai == NULL) {
3308                         ret = -ENOMEM;
3309                         goto err;
3310                 }
3311
3312                 /* create DAI component name */
3313                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3314                 if (dai->name == NULL) {
3315                         kfree(dai);
3316                         ret = -EINVAL;
3317                         goto err;
3318                 }
3319
3320                 dai->dev = dev;
3321                 dai->driver = &dai_drv[i];
3322                 if (dai->driver->id)
3323                         dai->id = dai->driver->id;
3324                 else
3325                         dai->id = i;
3326                 if (!dai->driver->ops)
3327                         dai->driver->ops = &null_dai_ops;
3328
3329                 mutex_lock(&client_mutex);
3330                 list_add(&dai->list, &dai_list);
3331                 mutex_unlock(&client_mutex);
3332
3333                 pr_debug("Registered DAI '%s'\n", dai->name);
3334         }
3335
3336         mutex_lock(&client_mutex);
3337         snd_soc_instantiate_cards();
3338         mutex_unlock(&client_mutex);
3339         return 0;
3340
3341 err:
3342         for (i--; i >= 0; i--)
3343                 snd_soc_unregister_dai(dev);
3344
3345         return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3348
3349 /**
3350  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3351  *
3352  * @dai: Array of DAIs to unregister
3353  * @count: Number of DAIs
3354  */
3355 void snd_soc_unregister_dais(struct device *dev, size_t count)
3356 {
3357         int i;
3358
3359         for (i = 0; i < count; i++)
3360                 snd_soc_unregister_dai(dev);
3361 }
3362 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3363
3364 /**
3365  * snd_soc_register_platform - Register a platform with the ASoC core
3366  *
3367  * @platform: platform to register
3368  */
3369 int snd_soc_register_platform(struct device *dev,
3370                 struct snd_soc_platform_driver *platform_drv)
3371 {
3372         struct snd_soc_platform *platform;
3373
3374         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3375
3376         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3377         if (platform == NULL)
3378                         return -ENOMEM;
3379
3380         /* create platform component name */
3381         platform->name = fmt_single_name(dev, &platform->id);
3382         if (platform->name == NULL) {
3383                 kfree(platform);
3384                 return -ENOMEM;
3385         }
3386
3387         platform->dev = dev;
3388         platform->driver = platform_drv;
3389
3390         mutex_lock(&client_mutex);
3391         list_add(&platform->list, &platform_list);
3392         snd_soc_instantiate_cards();
3393         mutex_unlock(&client_mutex);
3394
3395         pr_debug("Registered platform '%s'\n", platform->name);
3396
3397         return 0;
3398 }
3399 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3400
3401 /**
3402  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3403  *
3404  * @platform: platform to unregister
3405  */
3406 void snd_soc_unregister_platform(struct device *dev)
3407 {
3408         struct snd_soc_platform *platform;
3409
3410         list_for_each_entry(platform, &platform_list, list) {
3411                 if (dev == platform->dev)
3412                         goto found;
3413         }
3414         return;
3415
3416 found:
3417         mutex_lock(&client_mutex);
3418         list_del(&platform->list);
3419         mutex_unlock(&client_mutex);
3420
3421         pr_debug("Unregistered platform '%s'\n", platform->name);
3422         kfree(platform->name);
3423         kfree(platform);
3424 }
3425 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3426
3427 static u64 codec_format_map[] = {
3428         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3429         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3430         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3431         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3432         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3433         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3434         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3435         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3436         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3437         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3438         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3439         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3440         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3441         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3442         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3443         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3444 };
3445
3446 /* Fix up the DAI formats for endianness: codecs don't actually see
3447  * the endianness of the data but we're using the CPU format
3448  * definitions which do need to include endianness so we ensure that
3449  * codec DAIs always have both big and little endian variants set.
3450  */
3451 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3452 {
3453         int i;
3454
3455         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3456                 if (stream->formats & codec_format_map[i])
3457                         stream->formats |= codec_format_map[i];
3458 }
3459
3460 /**
3461  * snd_soc_register_codec - Register a codec with the ASoC core
3462  *
3463  * @codec: codec to register
3464  */
3465 int snd_soc_register_codec(struct device *dev,
3466                            const struct snd_soc_codec_driver *codec_drv,
3467                            struct snd_soc_dai_driver *dai_drv,
3468                            int num_dai)
3469 {
3470         size_t reg_size;
3471         struct snd_soc_codec *codec;
3472         int ret, i;
3473
3474         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3475
3476         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3477         if (codec == NULL)
3478                 return -ENOMEM;
3479
3480         /* create CODEC component name */
3481         codec->name = fmt_single_name(dev, &codec->id);
3482         if (codec->name == NULL) {
3483                 kfree(codec);
3484                 return -ENOMEM;
3485         }
3486
3487         if (codec_drv->compress_type)
3488                 codec->compress_type = codec_drv->compress_type;
3489         else
3490                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3491
3492         codec->write = codec_drv->write;
3493         codec->read = codec_drv->read;
3494         codec->volatile_register = codec_drv->volatile_register;
3495         codec->readable_register = codec_drv->readable_register;
3496         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3497         codec->dapm.dev = dev;
3498         codec->dapm.codec = codec;
3499         codec->dev = dev;
3500         codec->driver = codec_drv;
3501         codec->num_dai = num_dai;
3502         mutex_init(&codec->mutex);
3503
3504         /* allocate CODEC register cache */
3505         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3506                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3507                 codec->reg_size = reg_size;
3508                 /* it is necessary to make a copy of the default register cache
3509                  * because in the case of using a compression type that requires
3510                  * the default register cache to be marked as __devinitconst the
3511                  * kernel might have freed the array by the time we initialize
3512                  * the cache.
3513                  */
3514                 if (codec_drv->reg_cache_default) {
3515                         codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3516                                                       reg_size, GFP_KERNEL);
3517                         if (!codec->reg_def_copy) {
3518                                 ret = -ENOMEM;
3519                                 goto fail;
3520                         }
3521                 }
3522         }
3523
3524         if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3525                 if (!codec->volatile_register)
3526                         codec->volatile_register = snd_soc_default_volatile_register;
3527                 if (!codec->readable_register)
3528                         codec->readable_register = snd_soc_default_readable_register;
3529         }
3530
3531         for (i = 0; i < num_dai; i++) {
3532                 fixup_codec_formats(&dai_drv[i].playback);
3533                 fixup_codec_formats(&dai_drv[i].capture);
3534         }
3535
3536         /* register any DAIs */
3537         if (num_dai) {
3538                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3539                 if (ret < 0)
3540                         goto fail;
3541         }
3542
3543         mutex_lock(&client_mutex);
3544         list_add(&codec->list, &codec_list);
3545         snd_soc_instantiate_cards();
3546         mutex_unlock(&client_mutex);
3547
3548         pr_debug("Registered codec '%s'\n", codec->name);
3549         return 0;
3550
3551 fail:
3552         kfree(codec->reg_def_copy);
3553         codec->reg_def_copy = NULL;
3554         kfree(codec->name);
3555         kfree(codec);
3556         return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3559
3560 /**
3561  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3562  *
3563  * @codec: codec to unregister
3564  */
3565 void snd_soc_unregister_codec(struct device *dev)
3566 {
3567         struct snd_soc_codec *codec;
3568         int i;
3569
3570         list_for_each_entry(codec, &codec_list, list) {
3571                 if (dev == codec->dev)
3572                         goto found;
3573         }
3574         return;
3575
3576 found:
3577         if (codec->num_dai)
3578                 for (i = 0; i < codec->num_dai; i++)
3579                         snd_soc_unregister_dai(dev);
3580
3581         mutex_lock(&client_mutex);
3582         list_del(&codec->list);
3583         mutex_unlock(&client_mutex);
3584
3585         pr_debug("Unregistered codec '%s'\n", codec->name);
3586
3587         snd_soc_cache_exit(codec);
3588         kfree(codec->reg_def_copy);
3589         kfree(codec->name);
3590         kfree(codec);
3591 }
3592 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3593
3594 static int __init snd_soc_init(void)
3595 {
3596 #ifdef CONFIG_DEBUG_FS
3597         snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3598         if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3599                 printk(KERN_WARNING
3600                        "ASoC: Failed to create debugfs directory\n");
3601                 snd_soc_debugfs_root = NULL;
3602         }
3603
3604         if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3605                                  &codec_list_fops))
3606                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3607
3608         if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3609                                  &dai_list_fops))
3610                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3611
3612         if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3613                                  &platform_list_fops))
3614                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3615 #endif
3616
3617         return platform_driver_register(&soc_driver);
3618 }
3619 module_init(snd_soc_init);
3620
3621 static void __exit snd_soc_exit(void)
3622 {
3623 #ifdef CONFIG_DEBUG_FS
3624         debugfs_remove_recursive(snd_soc_debugfs_root);
3625 #endif
3626         platform_driver_unregister(&soc_driver);
3627 }
3628 module_exit(snd_soc_exit);
3629
3630 /* Module information */
3631 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3632 MODULE_DESCRIPTION("ALSA SoC Core");
3633 MODULE_LICENSE("GPL");
3634 MODULE_ALIAS("platform:soc-audio");