1 ; RUN: llc < %s -mattr=sse2 -mtriple=i386-unknown-linux-gnu | FileCheck %s
3 ; Source file looks something like this:
5 ; typedef int AAA[100][100];
7 ; void testCombineMultiplies(AAA a,int lll)
17 ; We want to make sure we don't generate 2 multiply instructions,
18 ; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
19 ; should combine the instructions in such a way to avoid the extra
22 ; Output looks roughly like this:
26 ; imull $400, %ecx, %edx # imm = 0x190
27 ; leal (%edx,%eax), %esi
28 ; movl $11, 2020(%esi,%ecx,4)
29 ; movl $22, 2080(%edx,%eax)
30 ; movl $33, 10080(%edx,%eax)
32 ; CHECK-LABEL: testCombineMultiplies
33 ; CHECK: imull $400, [[ARG1:%[a-z]+]], [[MUL:%[a-z]+]] # imm = 0x190
34 ; CHECK-NEXT: leal ([[MUL]],[[ARG2:%[a-z]+]]), [[LEA:%[a-z]+]]
35 ; CHECK-NEXT: movl $11, {{[0-9]+}}([[LEA]],[[ARG1]],4)
36 ; CHECK-NEXT: movl $22, {{[0-9]+}}([[MUL]],[[ARG2]])
37 ; CHECK-NEXT: movl $33, {{[0-9]+}}([[MUL]],[[ARG2]])
41 ; Function Attrs: nounwind
42 define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) {
44 %add = add nsw i32 %lll, 5
45 %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
46 store i32 11, i32* %arrayidx1, align 4
47 %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
48 store i32 22, i32* %arrayidx3, align 4
49 %add4 = add nsw i32 %lll, 25
50 %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
51 store i32 33, i32* %arrayidx6, align 4
56 ; Test for the same optimization on vector multiplies.
58 ; Source looks something like this:
60 ; typedef int v4int __attribute__((__vector_size__(16)));
64 ; void testCombineMultiplies_splat(v4int v1) {
65 ; v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
66 ; v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
67 ; x = (v1 + (v4int){ 11, 11, 11, 11 });
70 ; Output looks something like this:
72 ; testCombineMultiplies_splat: # @testCombineMultiplies_splat
74 ; movdqa .LCPI1_0, %xmm1 # xmm1 = [11,11,11,11]
76 ; movdqa .LCPI1_1, %xmm2 # xmm2 = [22,22,22,22]
77 ; pshufd $245, %xmm0, %xmm3 # xmm3 = xmm0[1,1,3,3]
78 ; pmuludq %xmm2, %xmm0
79 ; pshufd $232, %xmm0, %xmm0 # xmm0 = xmm0[0,2,2,3]
80 ; pmuludq %xmm2, %xmm3
81 ; pshufd $232, %xmm3, %xmm2 # xmm2 = xmm3[0,2,2,3]
82 ; punpckldq %xmm2, %xmm0 # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
83 ; movdqa .LCPI1_2, %xmm2 # xmm2 = [242,242,242,242]
85 ; paddd .LCPI1_3, %xmm0
91 ; Again, we want to make sure we don't generate two different multiplies.
92 ; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
93 ; pmuludq instructions), followed by two adds. Without this optimization, we'd
94 ; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
96 ; CHECK-LABEL: testCombineMultiplies_splat
97 ; CHECK: movdqa .LCPI1_0, [[C11:%xmm[0-9]]]
98 ; CHECK-NEXT: paddd %xmm0, [[C11]]
99 ; CHECK-NEXT: movdqa .LCPI1_1, [[C22:%xmm[0-9]]]
100 ; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
101 ; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
102 ; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
103 ; CHECK-NEXT: pmuludq [[C22]], [[T4:%xmm[0-9]]]
104 ; CHECK-NEXT: pshufd $232, [[T4]], [[T5:%xmm[0-9]]]
105 ; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
106 ; CHECK-NEXT: movdqa .LCPI1_2, [[C242:%xmm[0-9]]]
107 ; CHECK-NEXT: paddd [[T6]], [[C242]]
108 ; CHECK-NEXT: paddd .LCPI1_3, [[C726:%xmm[0-9]]]
109 ; CHECK-NEXT: movdqa [[C242]], v2
110 ; CHECK-NEXT: [[C726]], v3
111 ; CHECK-NEXT: [[C11]], x
114 @v2 = common global <4 x i32> zeroinitializer, align 16
115 @v3 = common global <4 x i32> zeroinitializer, align 16
116 @x = common global <4 x i32> zeroinitializer, align 16
118 ; Function Attrs: nounwind
119 define void @testCombineMultiplies_splat(<4 x i32> %v1) {
121 %add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
122 %mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
123 %add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
124 %mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
125 store <4 x i32> %mul1, <4 x i32>* @v2, align 16
126 store <4 x i32> %mul2, <4 x i32>* @v3, align 16
127 store <4 x i32> %add1, <4 x i32>* @x, align 16
131 ; Finally, check the non-splatted vector case. This is very similar
132 ; to the previous test case, except for the vector values.
134 ; CHECK-LABEL: testCombineMultiplies_non_splat
135 ; CHECK: movdqa .LCPI2_0, [[C11:%xmm[0-9]]]
136 ; CHECK-NEXT: paddd %xmm0, [[C11]]
137 ; CHECK-NEXT: movdqa .LCPI2_1, [[C22:%xmm[0-9]]]
138 ; CHECK-NEXT: pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
139 ; CHECK-NEXT: pmuludq [[C22]], [[T2:%xmm[0-9]]]
140 ; CHECK-NEXT: pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
141 ; CHECK-NEXT: pshufd $245, [[C22]], [[T7:%xmm[0-9]]]
142 ; CHECK-NEXT: pmuludq [[T1]], [[T7]]
143 ; CHECK-NEXT: pshufd $232, [[T7]], [[T5:%xmm[0-9]]]
144 ; CHECK-NEXT: punpckldq [[T5]], [[T6:%xmm[0-9]]]
145 ; CHECK-NEXT: movdqa .LCPI2_2, [[C242:%xmm[0-9]]]
146 ; CHECK-NEXT: paddd [[T6]], [[C242]]
147 ; CHECK-NEXT: paddd .LCPI2_3, [[C726:%xmm[0-9]]]
148 ; CHECK-NEXT: movdqa [[C242]], v2
149 ; CHECK-NEXT: [[C726]], v3
150 ; CHECK-NEXT: [[C11]], x
152 ; Function Attrs: nounwind
153 define void @testCombineMultiplies_non_splat(<4 x i32> %v1) {
155 %add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
156 %mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
157 %add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
158 %mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
159 store <4 x i32> %mul1, <4 x i32>* @v2, align 16
160 store <4 x i32> %mul2, <4 x i32>* @v3, align 16
161 store <4 x i32> %add1, <4 x i32>* @x, align 16