c5a290727a92f8b529e8fc81a28455f2c77ac386
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45
46 #include <sys/prctl.h>
47 #include <math.h>
48
49 static struct perf_counter_attr default_attrs[] = {
50
51   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
52   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
55
56   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
57   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
60
61 };
62
63 #define MAX_RUN                 100
64
65 static int                      system_wide                     =  0;
66 static int                      verbose                         =  0;
67 static int                      nr_cpus                         =  0;
68 static int                      run_idx                         =  0;
69
70 static int                      run_count                       =  1;
71 static int                      inherit                         =  1;
72 static int                      scale                           =  1;
73 static int                      target_pid                      = -1;
74 static int                      null_run                        =  0;
75
76 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
77
78 static u64                      runtime_nsecs[MAX_RUN];
79 static u64                      walltime_nsecs[MAX_RUN];
80 static u64                      runtime_cycles[MAX_RUN];
81
82 static u64                      event_res[MAX_RUN][MAX_COUNTERS][3];
83 static u64                      event_scaled[MAX_RUN][MAX_COUNTERS];
84
85 static u64                      event_res_avg[MAX_COUNTERS][3];
86 static u64                      event_res_noise[MAX_COUNTERS][3];
87
88 static u64                      event_scaled_avg[MAX_COUNTERS];
89
90 static u64                      runtime_nsecs_avg;
91 static u64                      runtime_nsecs_noise;
92
93 static u64                      walltime_nsecs_avg;
94 static u64                      walltime_nsecs_noise;
95
96 static u64                      runtime_cycles_avg;
97 static u64                      runtime_cycles_noise;
98
99 #define ERR_PERF_OPEN \
100 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
101
102 static void create_perf_stat_counter(int counter)
103 {
104         struct perf_counter_attr *attr = attrs + counter;
105
106         if (scale)
107                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
108                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
109
110         if (system_wide) {
111                 int cpu;
112                 for (cpu = 0; cpu < nr_cpus; cpu++) {
113                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
114                         if (fd[cpu][counter] < 0 && verbose)
115                                 fprintf(stderr, ERR_PERF_OPEN, counter,
116                                         fd[cpu][counter], strerror(errno));
117                 }
118         } else {
119                 attr->inherit   = inherit;
120                 attr->disabled  = 1;
121
122                 fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
123                 if (fd[0][counter] < 0 && verbose)
124                         fprintf(stderr, ERR_PERF_OPEN, counter,
125                                 fd[0][counter], strerror(errno));
126         }
127 }
128
129 /*
130  * Does the counter have nsecs as a unit?
131  */
132 static inline int nsec_counter(int counter)
133 {
134         if (attrs[counter].type != PERF_TYPE_SOFTWARE)
135                 return 0;
136
137         if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
138                 return 1;
139
140         if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
141                 return 1;
142
143         return 0;
144 }
145
146 /*
147  * Read out the results of a single counter:
148  */
149 static void read_counter(int counter)
150 {
151         u64 *count, single_count[3];
152         ssize_t res;
153         int cpu, nv;
154         int scaled;
155
156         count = event_res[run_idx][counter];
157
158         count[0] = count[1] = count[2] = 0;
159
160         nv = scale ? 3 : 1;
161         for (cpu = 0; cpu < nr_cpus; cpu++) {
162                 if (fd[cpu][counter] < 0)
163                         continue;
164
165                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
166                 assert(res == nv * sizeof(u64));
167                 close(fd[cpu][counter]);
168                 fd[cpu][counter] = -1;
169
170                 count[0] += single_count[0];
171                 if (scale) {
172                         count[1] += single_count[1];
173                         count[2] += single_count[2];
174                 }
175         }
176
177         scaled = 0;
178         if (scale) {
179                 if (count[2] == 0) {
180                         event_scaled[run_idx][counter] = -1;
181                         count[0] = 0;
182                         return;
183                 }
184
185                 if (count[2] < count[1]) {
186                         event_scaled[run_idx][counter] = 1;
187                         count[0] = (unsigned long long)
188                                 ((double)count[0] * count[1] / count[2] + 0.5);
189                 }
190         }
191         /*
192          * Save the full runtime - to allow normalization during printout:
193          */
194         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
195                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
196                 runtime_nsecs[run_idx] = count[0];
197         if (attrs[counter].type == PERF_TYPE_HARDWARE &&
198                 attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
199                 runtime_cycles[run_idx] = count[0];
200 }
201
202 static int run_perf_stat(int argc, const char **argv)
203 {
204         unsigned long long t0, t1;
205         int status = 0;
206         int counter;
207         int pid;
208
209         if (!system_wide)
210                 nr_cpus = 1;
211
212         for (counter = 0; counter < nr_counters; counter++)
213                 create_perf_stat_counter(counter);
214
215         /*
216          * Enable counters and exec the command:
217          */
218         t0 = rdclock();
219         prctl(PR_TASK_PERF_COUNTERS_ENABLE);
220
221         if ((pid = fork()) < 0)
222                 perror("failed to fork");
223
224         if (!pid) {
225                 if (execvp(argv[0], (char **)argv)) {
226                         perror(argv[0]);
227                         exit(-1);
228                 }
229         }
230
231         wait(&status);
232
233         prctl(PR_TASK_PERF_COUNTERS_DISABLE);
234         t1 = rdclock();
235
236         walltime_nsecs[run_idx] = t1 - t0;
237
238         for (counter = 0; counter < nr_counters; counter++)
239                 read_counter(counter);
240
241         return WEXITSTATUS(status);
242 }
243
244 static void print_noise(u64 *count, u64 *noise)
245 {
246         if (run_count > 1)
247                 fprintf(stderr, "   ( +- %7.3f%% )",
248                         (double)noise[0]/(count[0]+1)*100.0);
249 }
250
251 static void nsec_printout(int counter, u64 *count, u64 *noise)
252 {
253         double msecs = (double)count[0] / 1000000;
254
255         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
256
257         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
258                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
259
260                 if (walltime_nsecs_avg)
261                         fprintf(stderr, " # %10.3f CPUs ",
262                                 (double)count[0] / (double)walltime_nsecs_avg);
263         }
264         print_noise(count, noise);
265 }
266
267 static void abs_printout(int counter, u64 *count, u64 *noise)
268 {
269         fprintf(stderr, " %14Ld  %-24s", count[0], event_name(counter));
270
271         if (runtime_cycles_avg &&
272                 attrs[counter].type == PERF_TYPE_HARDWARE &&
273                         attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
274
275                 fprintf(stderr, " # %10.3f IPC  ",
276                         (double)count[0] / (double)runtime_cycles_avg);
277         } else {
278                 if (runtime_nsecs_avg) {
279                         fprintf(stderr, " # %10.3f M/sec",
280                                 (double)count[0]/runtime_nsecs_avg*1000.0);
281                 }
282         }
283         print_noise(count, noise);
284 }
285
286 /*
287  * Print out the results of a single counter:
288  */
289 static void print_counter(int counter)
290 {
291         u64 *count, *noise;
292         int scaled;
293
294         count = event_res_avg[counter];
295         noise = event_res_noise[counter];
296         scaled = event_scaled_avg[counter];
297
298         if (scaled == -1) {
299                 fprintf(stderr, " %14s  %-24s\n",
300                         "<not counted>", event_name(counter));
301                 return;
302         }
303
304         if (nsec_counter(counter))
305                 nsec_printout(counter, count, noise);
306         else
307                 abs_printout(counter, count, noise);
308
309         if (scaled)
310                 fprintf(stderr, "  (scaled from %.2f%%)",
311                         (double) count[2] / count[1] * 100);
312
313         fprintf(stderr, "\n");
314 }
315
316 /*
317  * normalize_noise noise values down to stddev:
318  */
319 static void normalize_noise(u64 *val)
320 {
321         double res;
322
323         res = (double)*val / (run_count * sqrt((double)run_count));
324
325         *val = (u64)res;
326 }
327
328 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
329 {
330         *avg += *val;
331
332         if (verbose > 1)
333                 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
334 }
335 /*
336  * Calculate the averages and noises:
337  */
338 static void calc_avg(void)
339 {
340         int i, j;
341
342         if (verbose > 1)
343                 fprintf(stderr, "\n");
344
345         for (i = 0; i < run_count; i++) {
346                 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
347                 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
348                 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
349
350                 for (j = 0; j < nr_counters; j++) {
351                         update_avg("counter/0", j,
352                                 event_res_avg[j]+0, event_res[i][j]+0);
353                         update_avg("counter/1", j,
354                                 event_res_avg[j]+1, event_res[i][j]+1);
355                         update_avg("counter/2", j,
356                                 event_res_avg[j]+2, event_res[i][j]+2);
357                         if (event_scaled[i][j] != -1)
358                                 update_avg("scaled", j,
359                                         event_scaled_avg + j, event_scaled[i]+j);
360                         else
361                                 event_scaled_avg[j] = -1;
362                 }
363         }
364         runtime_nsecs_avg /= run_count;
365         walltime_nsecs_avg /= run_count;
366         runtime_cycles_avg /= run_count;
367
368         for (j = 0; j < nr_counters; j++) {
369                 event_res_avg[j][0] /= run_count;
370                 event_res_avg[j][1] /= run_count;
371                 event_res_avg[j][2] /= run_count;
372         }
373
374         for (i = 0; i < run_count; i++) {
375                 runtime_nsecs_noise +=
376                         abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
377                 walltime_nsecs_noise +=
378                         abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
379                 runtime_cycles_noise +=
380                         abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
381
382                 for (j = 0; j < nr_counters; j++) {
383                         event_res_noise[j][0] +=
384                                 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
385                         event_res_noise[j][1] +=
386                                 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
387                         event_res_noise[j][2] +=
388                                 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
389                 }
390         }
391
392         normalize_noise(&runtime_nsecs_noise);
393         normalize_noise(&walltime_nsecs_noise);
394         normalize_noise(&runtime_cycles_noise);
395
396         for (j = 0; j < nr_counters; j++) {
397                 normalize_noise(&event_res_noise[j][0]);
398                 normalize_noise(&event_res_noise[j][1]);
399                 normalize_noise(&event_res_noise[j][2]);
400         }
401 }
402
403 static void print_stat(int argc, const char **argv)
404 {
405         int i, counter;
406
407         calc_avg();
408
409         fflush(stdout);
410
411         fprintf(stderr, "\n");
412         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
413
414         for (i = 1; i < argc; i++)
415                 fprintf(stderr, " %s", argv[i]);
416
417         fprintf(stderr, "\'");
418         if (run_count > 1)
419                 fprintf(stderr, " (%d runs)", run_count);
420         fprintf(stderr, ":\n\n");
421
422         for (counter = 0; counter < nr_counters; counter++)
423                 print_counter(counter);
424
425         fprintf(stderr, "\n");
426         fprintf(stderr, " %14.9f  seconds time elapsed",
427                         (double)walltime_nsecs_avg/1e9);
428         if (run_count > 1) {
429                 fprintf(stderr, "   ( +- %7.3f%% )",
430                         100.0*(double)walltime_nsecs_noise/(double)walltime_nsecs_avg);
431         }
432         fprintf(stderr, "\n\n");
433 }
434
435 static volatile int signr = -1;
436
437 static void skip_signal(int signo)
438 {
439         signr = signo;
440 }
441
442 static void sig_atexit(void)
443 {
444         if (signr == -1)
445                 return;
446
447         signal(signr, SIG_DFL);
448         kill(getpid(), signr);
449 }
450
451 static const char * const stat_usage[] = {
452         "perf stat [<options>] <command>",
453         NULL
454 };
455
456 static const struct option options[] = {
457         OPT_CALLBACK('e', "event", NULL, "event",
458                      "event selector. use 'perf list' to list available events",
459                      parse_events),
460         OPT_BOOLEAN('i', "inherit", &inherit,
461                     "child tasks inherit counters"),
462         OPT_INTEGER('p', "pid", &target_pid,
463                     "stat events on existing pid"),
464         OPT_BOOLEAN('a', "all-cpus", &system_wide,
465                     "system-wide collection from all CPUs"),
466         OPT_BOOLEAN('S', "scale", &scale,
467                     "scale/normalize counters"),
468         OPT_BOOLEAN('v', "verbose", &verbose,
469                     "be more verbose (show counter open errors, etc)"),
470         OPT_INTEGER('r', "repeat", &run_count,
471                     "repeat command and print average + stddev (max: 100)"),
472         OPT_BOOLEAN('n', "null", &null_run,
473                     "null run - dont start any counters"),
474         OPT_END()
475 };
476
477 int cmd_stat(int argc, const char **argv, const char *prefix)
478 {
479         int status;
480
481         argc = parse_options(argc, argv, options, stat_usage, 0);
482         if (!argc)
483                 usage_with_options(stat_usage, options);
484         if (run_count <= 0 || run_count > MAX_RUN)
485                 usage_with_options(stat_usage, options);
486
487         /* Set attrs and nr_counters if no event is selected and !null_run */
488         if (!null_run && !nr_counters) {
489                 memcpy(attrs, default_attrs, sizeof(default_attrs));
490                 nr_counters = ARRAY_SIZE(default_attrs);
491         }
492
493         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
494         assert(nr_cpus <= MAX_NR_CPUS);
495         assert(nr_cpus >= 0);
496
497         /*
498          * We dont want to block the signals - that would cause
499          * child tasks to inherit that and Ctrl-C would not work.
500          * What we want is for Ctrl-C to work in the exec()-ed
501          * task, but being ignored by perf stat itself:
502          */
503         atexit(sig_atexit);
504         signal(SIGINT,  skip_signal);
505         signal(SIGALRM, skip_signal);
506         signal(SIGABRT, skip_signal);
507
508         status = 0;
509         for (run_idx = 0; run_idx < run_count; run_idx++) {
510                 if (run_count != 1 && verbose)
511                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
512                 status = run_perf_stat(argc, argv);
513         }
514
515         print_stat(argc, argv);
516
517         return status;
518 }