cdcd058fac08b67ab3591bee3017df8ee2675ee2
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *
36  * Released under the GPL v2. (and only v2, not any later version)
37  */
38
39 #include "perf.h"
40 #include "builtin.h"
41 #include "util/util.h"
42 #include "util/parse-options.h"
43 #include "util/parse-events.h"
44
45 #include <sys/prctl.h>
46 #include <math.h>
47
48 static struct perf_counter_attr default_attrs[MAX_COUNTERS] = {
49
50   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
51   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
52   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
54
55   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
56   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
57   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
59
60 };
61
62 #define MAX_RUN                 100
63
64 static int                      system_wide                     =  0;
65 static int                      verbose                         =  0;
66 static int                      nr_cpus                         =  0;
67 static int                      run_idx                         =  0;
68
69 static int                      run_count                       =  1;
70 static int                      inherit                         =  1;
71 static int                      scale                           =  1;
72 static int                      target_pid                      = -1;
73 static int                      null_run                        =  0;
74
75 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
76
77 static u64                      runtime_nsecs[MAX_RUN];
78 static u64                      walltime_nsecs[MAX_RUN];
79 static u64                      runtime_cycles[MAX_RUN];
80
81 static u64                      event_res[MAX_RUN][MAX_COUNTERS][3];
82 static u64                      event_scaled[MAX_RUN][MAX_COUNTERS];
83
84 static u64                      event_res_avg[MAX_COUNTERS][3];
85 static u64                      event_res_noise[MAX_COUNTERS][3];
86
87 static u64                      event_scaled_avg[MAX_COUNTERS];
88
89 static u64                      runtime_nsecs_avg;
90 static u64                      runtime_nsecs_noise;
91
92 static u64                      walltime_nsecs_avg;
93 static u64                      walltime_nsecs_noise;
94
95 static u64                      runtime_cycles_avg;
96 static u64                      runtime_cycles_noise;
97
98 #define ERR_PERF_OPEN \
99 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
100
101 static void create_perf_stat_counter(int counter)
102 {
103         struct perf_counter_attr *attr = attrs + counter;
104
105         if (scale)
106                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
107                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
108
109         if (system_wide) {
110                 int cpu;
111                 for (cpu = 0; cpu < nr_cpus; cpu++) {
112                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
113                         if (fd[cpu][counter] < 0 && verbose)
114                                 fprintf(stderr, ERR_PERF_OPEN, counter,
115                                         fd[cpu][counter], strerror(errno));
116                 }
117         } else {
118                 attr->inherit   = inherit;
119                 attr->disabled  = 1;
120
121                 fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
122                 if (fd[0][counter] < 0 && verbose)
123                         fprintf(stderr, ERR_PERF_OPEN, counter,
124                                 fd[0][counter], strerror(errno));
125         }
126 }
127
128 /*
129  * Does the counter have nsecs as a unit?
130  */
131 static inline int nsec_counter(int counter)
132 {
133         if (attrs[counter].type != PERF_TYPE_SOFTWARE)
134                 return 0;
135
136         if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
137                 return 1;
138
139         if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
140                 return 1;
141
142         return 0;
143 }
144
145 /*
146  * Read out the results of a single counter:
147  */
148 static void read_counter(int counter)
149 {
150         u64 *count, single_count[3];
151         ssize_t res;
152         int cpu, nv;
153         int scaled;
154
155         count = event_res[run_idx][counter];
156
157         count[0] = count[1] = count[2] = 0;
158
159         nv = scale ? 3 : 1;
160         for (cpu = 0; cpu < nr_cpus; cpu++) {
161                 if (fd[cpu][counter] < 0)
162                         continue;
163
164                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
165                 assert(res == nv * sizeof(u64));
166                 close(fd[cpu][counter]);
167                 fd[cpu][counter] = -1;
168
169                 count[0] += single_count[0];
170                 if (scale) {
171                         count[1] += single_count[1];
172                         count[2] += single_count[2];
173                 }
174         }
175
176         scaled = 0;
177         if (scale) {
178                 if (count[2] == 0) {
179                         event_scaled[run_idx][counter] = -1;
180                         count[0] = 0;
181                         return;
182                 }
183
184                 if (count[2] < count[1]) {
185                         event_scaled[run_idx][counter] = 1;
186                         count[0] = (unsigned long long)
187                                 ((double)count[0] * count[1] / count[2] + 0.5);
188                 }
189         }
190         /*
191          * Save the full runtime - to allow normalization during printout:
192          */
193         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
194                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
195                 runtime_nsecs[run_idx] = count[0];
196         if (attrs[counter].type == PERF_TYPE_HARDWARE &&
197                 attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
198                 runtime_cycles[run_idx] = count[0];
199 }
200
201 static int run_perf_stat(int argc, const char **argv)
202 {
203         unsigned long long t0, t1;
204         int status = 0;
205         int counter;
206         int pid;
207
208         if (!system_wide)
209                 nr_cpus = 1;
210
211         for (counter = 0; counter < nr_counters; counter++)
212                 create_perf_stat_counter(counter);
213
214         /*
215          * Enable counters and exec the command:
216          */
217         t0 = rdclock();
218         prctl(PR_TASK_PERF_COUNTERS_ENABLE);
219
220         if ((pid = fork()) < 0)
221                 perror("failed to fork");
222
223         if (!pid) {
224                 if (execvp(argv[0], (char **)argv)) {
225                         perror(argv[0]);
226                         exit(-1);
227                 }
228         }
229
230         wait(&status);
231
232         prctl(PR_TASK_PERF_COUNTERS_DISABLE);
233         t1 = rdclock();
234
235         walltime_nsecs[run_idx] = t1 - t0;
236
237         for (counter = 0; counter < nr_counters; counter++)
238                 read_counter(counter);
239
240         return WEXITSTATUS(status);
241 }
242
243 static void print_noise(u64 *count, u64 *noise)
244 {
245         if (run_count > 1)
246                 fprintf(stderr, "   ( +- %7.3f%% )",
247                         (double)noise[0]/(count[0]+1)*100.0);
248 }
249
250 static void nsec_printout(int counter, u64 *count, u64 *noise)
251 {
252         double msecs = (double)count[0] / 1000000;
253
254         fprintf(stderr, " %14.6f  %-20s", msecs, event_name(counter));
255
256         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
257                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
258
259                 if (walltime_nsecs_avg)
260                         fprintf(stderr, " # %10.3f CPUs ",
261                                 (double)count[0] / (double)walltime_nsecs_avg);
262         }
263         print_noise(count, noise);
264 }
265
266 static void abs_printout(int counter, u64 *count, u64 *noise)
267 {
268         fprintf(stderr, " %14Ld  %-20s", count[0], event_name(counter));
269
270         if (runtime_cycles_avg &&
271                 attrs[counter].type == PERF_TYPE_HARDWARE &&
272                         attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
273
274                 fprintf(stderr, " # %10.3f IPC  ",
275                         (double)count[0] / (double)runtime_cycles_avg);
276         } else {
277                 if (runtime_nsecs_avg) {
278                         fprintf(stderr, " # %10.3f M/sec",
279                                 (double)count[0]/runtime_nsecs_avg*1000.0);
280                 }
281         }
282         print_noise(count, noise);
283 }
284
285 /*
286  * Print out the results of a single counter:
287  */
288 static void print_counter(int counter)
289 {
290         u64 *count, *noise;
291         int scaled;
292
293         count = event_res_avg[counter];
294         noise = event_res_noise[counter];
295         scaled = event_scaled_avg[counter];
296
297         if (scaled == -1) {
298                 fprintf(stderr, " %14s  %-20s\n",
299                         "<not counted>", event_name(counter));
300                 return;
301         }
302
303         if (nsec_counter(counter))
304                 nsec_printout(counter, count, noise);
305         else
306                 abs_printout(counter, count, noise);
307
308         if (scaled)
309                 fprintf(stderr, "  (scaled from %.2f%%)",
310                         (double) count[2] / count[1] * 100);
311
312         fprintf(stderr, "\n");
313 }
314
315 /*
316  * normalize_noise noise values down to stddev:
317  */
318 static void normalize_noise(u64 *val)
319 {
320         double res;
321
322         res = (double)*val / (run_count * sqrt((double)run_count));
323
324         *val = (u64)res;
325 }
326
327 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
328 {
329         *avg += *val;
330
331         if (verbose > 1)
332                 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
333 }
334 /*
335  * Calculate the averages and noises:
336  */
337 static void calc_avg(void)
338 {
339         int i, j;
340
341         if (verbose > 1)
342                 fprintf(stderr, "\n");
343
344         for (i = 0; i < run_count; i++) {
345                 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
346                 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
347                 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
348
349                 for (j = 0; j < nr_counters; j++) {
350                         update_avg("counter/0", j,
351                                 event_res_avg[j]+0, event_res[i][j]+0);
352                         update_avg("counter/1", j,
353                                 event_res_avg[j]+1, event_res[i][j]+1);
354                         update_avg("counter/2", j,
355                                 event_res_avg[j]+2, event_res[i][j]+2);
356                         update_avg("scaled", j,
357                                 event_scaled_avg + j, event_scaled[i]+j);
358                 }
359         }
360         runtime_nsecs_avg /= run_count;
361         walltime_nsecs_avg /= run_count;
362         runtime_cycles_avg /= run_count;
363
364         for (j = 0; j < nr_counters; j++) {
365                 event_res_avg[j][0] /= run_count;
366                 event_res_avg[j][1] /= run_count;
367                 event_res_avg[j][2] /= run_count;
368         }
369
370         for (i = 0; i < run_count; i++) {
371                 runtime_nsecs_noise +=
372                         abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
373                 walltime_nsecs_noise +=
374                         abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
375                 runtime_cycles_noise +=
376                         abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
377
378                 for (j = 0; j < nr_counters; j++) {
379                         event_res_noise[j][0] +=
380                                 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
381                         event_res_noise[j][1] +=
382                                 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
383                         event_res_noise[j][2] +=
384                                 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
385                 }
386         }
387
388         normalize_noise(&runtime_nsecs_noise);
389         normalize_noise(&walltime_nsecs_noise);
390         normalize_noise(&runtime_cycles_noise);
391
392         for (j = 0; j < nr_counters; j++) {
393                 normalize_noise(&event_res_noise[j][0]);
394                 normalize_noise(&event_res_noise[j][1]);
395                 normalize_noise(&event_res_noise[j][2]);
396         }
397 }
398
399 static void print_stat(int argc, const char **argv)
400 {
401         int i, counter;
402
403         calc_avg();
404
405         fflush(stdout);
406
407         fprintf(stderr, "\n");
408         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
409
410         for (i = 1; i < argc; i++)
411                 fprintf(stderr, " %s", argv[i]);
412
413         fprintf(stderr, "\'");
414         if (run_count > 1)
415                 fprintf(stderr, " (%d runs)", run_count);
416         fprintf(stderr, ":\n\n");
417
418         for (counter = 0; counter < nr_counters; counter++)
419                 print_counter(counter);
420
421
422         fprintf(stderr, "\n");
423         fprintf(stderr, " %14.9f  seconds time elapsed.\n",
424                         (double)walltime_nsecs_avg/1e9);
425         fprintf(stderr, "\n");
426 }
427
428 static volatile int signr = -1;
429
430 static void skip_signal(int signo)
431 {
432         signr = signo;
433 }
434
435 static void sig_atexit(void)
436 {
437         if (signr == -1)
438                 return;
439
440         signal(signr, SIG_DFL);
441         kill(getpid(), signr);
442 }
443
444 static const char * const stat_usage[] = {
445         "perf stat [<options>] <command>",
446         NULL
447 };
448
449 static const struct option options[] = {
450         OPT_CALLBACK('e', "event", NULL, "event",
451                      "event selector. use 'perf list' to list available events",
452                      parse_events),
453         OPT_BOOLEAN('i', "inherit", &inherit,
454                     "child tasks inherit counters"),
455         OPT_INTEGER('p', "pid", &target_pid,
456                     "stat events on existing pid"),
457         OPT_BOOLEAN('a', "all-cpus", &system_wide,
458                     "system-wide collection from all CPUs"),
459         OPT_BOOLEAN('S', "scale", &scale,
460                     "scale/normalize counters"),
461         OPT_BOOLEAN('v', "verbose", &verbose,
462                     "be more verbose (show counter open errors, etc)"),
463         OPT_INTEGER('r', "repeat", &run_count,
464                     "repeat command and print average + stddev (max: 100)"),
465         OPT_BOOLEAN('n', "null", &null_run,
466                     "null run - dont start any counters"),
467         OPT_END()
468 };
469
470 int cmd_stat(int argc, const char **argv, const char *prefix)
471 {
472         int status;
473
474         memcpy(attrs, default_attrs, sizeof(attrs));
475
476         argc = parse_options(argc, argv, options, stat_usage, 0);
477         if (!argc)
478                 usage_with_options(stat_usage, options);
479         if (run_count <= 0 || run_count > MAX_RUN)
480                 usage_with_options(stat_usage, options);
481
482         if (!null_run && !nr_counters)
483                 nr_counters = 8;
484
485         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
486         assert(nr_cpus <= MAX_NR_CPUS);
487         assert(nr_cpus >= 0);
488
489         /*
490          * We dont want to block the signals - that would cause
491          * child tasks to inherit that and Ctrl-C would not work.
492          * What we want is for Ctrl-C to work in the exec()-ed
493          * task, but being ignored by perf stat itself:
494          */
495         atexit(sig_atexit);
496         signal(SIGINT,  skip_signal);
497         signal(SIGALRM, skip_signal);
498         signal(SIGABRT, skip_signal);
499
500         status = 0;
501         for (run_idx = 0; run_idx < run_count; run_idx++) {
502                 if (run_count != 1 && verbose)
503                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
504                 status = run_perf_stat(argc, argv);
505         }
506
507         print_stat(argc, argv);
508
509         return status;
510 }