perf stat: Fix verbose for perf stat
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *
36  * Released under the GPL v2. (and only v2, not any later version)
37  */
38
39 #include "perf.h"
40 #include "builtin.h"
41 #include "util/util.h"
42 #include "util/parse-options.h"
43 #include "util/parse-events.h"
44
45 #include <sys/prctl.h>
46 #include <math.h>
47
48 static struct perf_counter_attr default_attrs[MAX_COUNTERS] = {
49
50   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
51   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
52   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
54
55   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
56   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
57   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
59
60 };
61
62 static int                      system_wide                     =  0;
63 static int                      inherit                         =  1;
64 static int                      verbose                         =  0;
65
66 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
67
68 static int                      target_pid                      = -1;
69 static int                      nr_cpus                         =  0;
70 static unsigned int             page_size;
71
72 static int                      scale                           =  1;
73
74 static const unsigned int default_count[] = {
75         1000000,
76         1000000,
77           10000,
78           10000,
79         1000000,
80           10000,
81 };
82
83 #define MAX_RUN 100
84
85 static int                      run_count               =  1;
86 static int                      run_idx                 =  0;
87
88 static u64                      event_res[MAX_RUN][MAX_COUNTERS][3];
89 static u64                      event_scaled[MAX_RUN][MAX_COUNTERS];
90
91 //static u64                    event_hist[MAX_RUN][MAX_COUNTERS][3];
92
93
94 static u64                      runtime_nsecs[MAX_RUN];
95 static u64                      walltime_nsecs[MAX_RUN];
96 static u64                      runtime_cycles[MAX_RUN];
97
98 static u64                      event_res_avg[MAX_COUNTERS][3];
99 static u64                      event_res_noise[MAX_COUNTERS][3];
100
101 static u64                      event_scaled_avg[MAX_COUNTERS];
102
103 static u64                      runtime_nsecs_avg;
104 static u64                      runtime_nsecs_noise;
105
106 static u64                      walltime_nsecs_avg;
107 static u64                      walltime_nsecs_noise;
108
109 static u64                      runtime_cycles_avg;
110 static u64                      runtime_cycles_noise;
111
112
113 #define ERR_PERF_OPEN \
114 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
115
116 static void create_perf_stat_counter(int counter)
117 {
118         struct perf_counter_attr *attr = attrs + counter;
119
120         if (scale)
121                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
122                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
123
124         if (system_wide) {
125                 int cpu;
126                 for (cpu = 0; cpu < nr_cpus; cpu++) {
127                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
128                         if (fd[cpu][counter] < 0 && verbose)
129                                 fprintf(stderr, ERR_PERF_OPEN, counter,
130                                         fd[cpu][counter], strerror(errno));
131                 }
132         } else {
133                 attr->inherit   = inherit;
134                 attr->disabled  = 1;
135
136                 fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
137                 if (fd[0][counter] < 0 && verbose)
138                         fprintf(stderr, ERR_PERF_OPEN, counter,
139                                 fd[0][counter], strerror(errno));
140         }
141 }
142
143 /*
144  * Does the counter have nsecs as a unit?
145  */
146 static inline int nsec_counter(int counter)
147 {
148         if (attrs[counter].type != PERF_TYPE_SOFTWARE)
149                 return 0;
150
151         if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
152                 return 1;
153
154         if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
155                 return 1;
156
157         return 0;
158 }
159
160 /*
161  * Read out the results of a single counter:
162  */
163 static void read_counter(int counter)
164 {
165         u64 *count, single_count[3];
166         ssize_t res;
167         int cpu, nv;
168         int scaled;
169
170         count = event_res[run_idx][counter];
171
172         count[0] = count[1] = count[2] = 0;
173
174         nv = scale ? 3 : 1;
175         for (cpu = 0; cpu < nr_cpus; cpu++) {
176                 if (fd[cpu][counter] < 0)
177                         continue;
178
179                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
180                 assert(res == nv * sizeof(u64));
181                 close(fd[cpu][counter]);
182                 fd[cpu][counter] = -1;
183
184                 count[0] += single_count[0];
185                 if (scale) {
186                         count[1] += single_count[1];
187                         count[2] += single_count[2];
188                 }
189         }
190
191         scaled = 0;
192         if (scale) {
193                 if (count[2] == 0) {
194                         event_scaled[run_idx][counter] = -1;
195                         count[0] = 0;
196                         return;
197                 }
198
199                 if (count[2] < count[1]) {
200                         event_scaled[run_idx][counter] = 1;
201                         count[0] = (unsigned long long)
202                                 ((double)count[0] * count[1] / count[2] + 0.5);
203                 }
204         }
205         /*
206          * Save the full runtime - to allow normalization during printout:
207          */
208         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
209                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
210                 runtime_nsecs[run_idx] = count[0];
211         if (attrs[counter].type == PERF_TYPE_HARDWARE &&
212                 attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
213                 runtime_cycles[run_idx] = count[0];
214 }
215
216 static int run_perf_stat(int argc, const char **argv)
217 {
218         unsigned long long t0, t1;
219         int status = 0;
220         int counter;
221         int pid;
222
223         if (!system_wide)
224                 nr_cpus = 1;
225
226         for (counter = 0; counter < nr_counters; counter++)
227                 create_perf_stat_counter(counter);
228
229         /*
230          * Enable counters and exec the command:
231          */
232         t0 = rdclock();
233         prctl(PR_TASK_PERF_COUNTERS_ENABLE);
234
235         if ((pid = fork()) < 0)
236                 perror("failed to fork");
237
238         if (!pid) {
239                 if (execvp(argv[0], (char **)argv)) {
240                         perror(argv[0]);
241                         exit(-1);
242                 }
243         }
244
245         wait(&status);
246
247         prctl(PR_TASK_PERF_COUNTERS_DISABLE);
248         t1 = rdclock();
249
250         walltime_nsecs[run_idx] = t1 - t0;
251
252         for (counter = 0; counter < nr_counters; counter++)
253                 read_counter(counter);
254
255         return WEXITSTATUS(status);
256 }
257
258 static void print_noise(u64 *count, u64 *noise)
259 {
260         if (run_count > 1)
261                 fprintf(stderr, "   ( +- %7.3f%% )",
262                         (double)noise[0]/(count[0]+1)*100.0);
263 }
264
265 static void nsec_printout(int counter, u64 *count, u64 *noise)
266 {
267         double msecs = (double)count[0] / 1000000;
268
269         fprintf(stderr, " %14.6f  %-20s", msecs, event_name(counter));
270
271         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
272                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
273
274                 if (walltime_nsecs_avg)
275                         fprintf(stderr, " # %10.3f CPUs ",
276                                 (double)count[0] / (double)walltime_nsecs_avg);
277         }
278         print_noise(count, noise);
279 }
280
281 static void abs_printout(int counter, u64 *count, u64 *noise)
282 {
283         fprintf(stderr, " %14Ld  %-20s", count[0], event_name(counter));
284
285         if (runtime_cycles_avg &&
286                 attrs[counter].type == PERF_TYPE_HARDWARE &&
287                         attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
288
289                 fprintf(stderr, " # %10.3f IPC  ",
290                         (double)count[0] / (double)runtime_cycles_avg);
291         } else {
292                 if (runtime_nsecs_avg) {
293                         fprintf(stderr, " # %10.3f M/sec",
294                                 (double)count[0]/runtime_nsecs_avg*1000.0);
295                 }
296         }
297         print_noise(count, noise);
298 }
299
300 /*
301  * Print out the results of a single counter:
302  */
303 static void print_counter(int counter)
304 {
305         u64 *count, *noise;
306         int scaled;
307
308         count = event_res_avg[counter];
309         noise = event_res_noise[counter];
310         scaled = event_scaled_avg[counter];
311
312         if (scaled == -1) {
313                 fprintf(stderr, " %14s  %-20s\n",
314                         "<not counted>", event_name(counter));
315                 return;
316         }
317
318         if (nsec_counter(counter))
319                 nsec_printout(counter, count, noise);
320         else
321                 abs_printout(counter, count, noise);
322
323         if (scaled)
324                 fprintf(stderr, "  (scaled from %.2f%%)",
325                         (double) count[2] / count[1] * 100);
326
327         fprintf(stderr, "\n");
328 }
329
330 /*
331  * normalize_noise noise values down to stddev:
332  */
333 static void normalize_noise(u64 *val)
334 {
335         double res;
336
337         res = (double)*val / (run_count * sqrt((double)run_count));
338
339         *val = (u64)res;
340 }
341
342 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
343 {
344         *avg += *val;
345
346         if (verbose > 1)
347                 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
348 }
349 /*
350  * Calculate the averages and noises:
351  */
352 static void calc_avg(void)
353 {
354         int i, j;
355
356         if (verbose > 1)
357                 fprintf(stderr, "\n");
358
359         for (i = 0; i < run_count; i++) {
360                 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
361                 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
362                 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
363
364                 for (j = 0; j < nr_counters; j++) {
365                         update_avg("counter/0", j,
366                                 event_res_avg[j]+0, event_res[i][j]+0);
367                         update_avg("counter/1", j,
368                                 event_res_avg[j]+1, event_res[i][j]+1);
369                         update_avg("counter/2", j,
370                                 event_res_avg[j]+2, event_res[i][j]+2);
371                         update_avg("scaled", j,
372                                 event_scaled_avg + j, event_scaled[i]+j);
373                 }
374         }
375         runtime_nsecs_avg /= run_count;
376         walltime_nsecs_avg /= run_count;
377         runtime_cycles_avg /= run_count;
378
379         for (j = 0; j < nr_counters; j++) {
380                 event_res_avg[j][0] /= run_count;
381                 event_res_avg[j][1] /= run_count;
382                 event_res_avg[j][2] /= run_count;
383         }
384
385         for (i = 0; i < run_count; i++) {
386                 runtime_nsecs_noise +=
387                         abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
388                 walltime_nsecs_noise +=
389                         abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
390                 runtime_cycles_noise +=
391                         abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
392
393                 for (j = 0; j < nr_counters; j++) {
394                         event_res_noise[j][0] +=
395                                 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
396                         event_res_noise[j][1] +=
397                                 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
398                         event_res_noise[j][2] +=
399                                 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
400                 }
401         }
402
403         normalize_noise(&runtime_nsecs_noise);
404         normalize_noise(&walltime_nsecs_noise);
405         normalize_noise(&runtime_cycles_noise);
406
407         for (j = 0; j < nr_counters; j++) {
408                 normalize_noise(&event_res_noise[j][0]);
409                 normalize_noise(&event_res_noise[j][1]);
410                 normalize_noise(&event_res_noise[j][2]);
411         }
412 }
413
414 static void print_stat(int argc, const char **argv)
415 {
416         int i, counter;
417
418         calc_avg();
419
420         fflush(stdout);
421
422         fprintf(stderr, "\n");
423         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
424
425         for (i = 1; i < argc; i++)
426                 fprintf(stderr, " %s", argv[i]);
427
428         fprintf(stderr, "\'");
429         if (run_count > 1)
430                 fprintf(stderr, " (%d runs)", run_count);
431         fprintf(stderr, ":\n\n");
432
433         for (counter = 0; counter < nr_counters; counter++)
434                 print_counter(counter);
435
436
437         fprintf(stderr, "\n");
438         fprintf(stderr, " %14.9f  seconds time elapsed.\n",
439                         (double)walltime_nsecs_avg/1e9);
440         fprintf(stderr, "\n");
441 }
442
443 static volatile int signr = -1;
444
445 static void skip_signal(int signo)
446 {
447         signr = signo;
448 }
449
450 static void sig_atexit(void)
451 {
452         if (signr == -1)
453                 return;
454
455         signal(signr, SIG_DFL);
456         kill(getpid(), signr);
457 }
458
459 static const char * const stat_usage[] = {
460         "perf stat [<options>] <command>",
461         NULL
462 };
463
464 static const struct option options[] = {
465         OPT_CALLBACK('e', "event", NULL, "event",
466                      "event selector. use 'perf list' to list available events",
467                      parse_events),
468         OPT_BOOLEAN('i', "inherit", &inherit,
469                     "child tasks inherit counters"),
470         OPT_INTEGER('p', "pid", &target_pid,
471                     "stat events on existing pid"),
472         OPT_BOOLEAN('a', "all-cpus", &system_wide,
473                             "system-wide collection from all CPUs"),
474         OPT_BOOLEAN('S', "scale", &scale,
475                             "scale/normalize counters"),
476         OPT_BOOLEAN('v', "verbose", &verbose,
477                     "be more verbose (show counter open errors, etc)"),
478         OPT_INTEGER('r', "repeat", &run_count,
479                     "repeat command and print average + stddev (max: 100)"),
480         OPT_END()
481 };
482
483 int cmd_stat(int argc, const char **argv, const char *prefix)
484 {
485         int status;
486
487         page_size = sysconf(_SC_PAGE_SIZE);
488
489         memcpy(attrs, default_attrs, sizeof(attrs));
490
491         argc = parse_options(argc, argv, options, stat_usage, 0);
492         if (!argc)
493                 usage_with_options(stat_usage, options);
494         if (run_count <= 0 || run_count > MAX_RUN)
495                 usage_with_options(stat_usage, options);
496
497         if (!nr_counters)
498                 nr_counters = 8;
499
500         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
501         assert(nr_cpus <= MAX_NR_CPUS);
502         assert(nr_cpus >= 0);
503
504         /*
505          * We dont want to block the signals - that would cause
506          * child tasks to inherit that and Ctrl-C would not work.
507          * What we want is for Ctrl-C to work in the exec()-ed
508          * task, but being ignored by perf stat itself:
509          */
510         atexit(sig_atexit);
511         signal(SIGINT,  skip_signal);
512         signal(SIGALRM, skip_signal);
513         signal(SIGABRT, skip_signal);
514
515         status = 0;
516         for (run_idx = 0; run_idx < run_count; run_idx++) {
517                 if (run_count != 1 && verbose)
518                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx+1);
519                 status = run_perf_stat(argc, argv);
520         }
521
522         print_stat(argc, argv);
523
524         return status;
525 }