perf timechart: Get number of CPUs from perf header
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43
44 struct per_pid;
45 struct power_event;
46 struct wake_event;
47
48 struct timechart {
49         struct perf_tool        tool;
50         struct per_pid          *all_data;
51         struct power_event      *power_events;
52         struct wake_event       *wake_events;
53         int                     proc_num;
54         unsigned int            numcpus;
55         u64                     min_freq,       /* Lowest CPU frequency seen */
56                                 max_freq,       /* Highest CPU frequency seen */
57                                 turbo_frequency,
58                                 first_time, last_time;
59         bool                    power_only,
60                                 tasks_only,
61                                 with_backtrace;
62 };
63
64 struct per_pidcomm;
65 struct cpu_sample;
66
67 /*
68  * Datastructure layout:
69  * We keep an list of "pid"s, matching the kernels notion of a task struct.
70  * Each "pid" entry, has a list of "comm"s.
71  *      this is because we want to track different programs different, while
72  *      exec will reuse the original pid (by design).
73  * Each comm has a list of samples that will be used to draw
74  * final graph.
75  */
76
77 struct per_pid {
78         struct per_pid *next;
79
80         int             pid;
81         int             ppid;
82
83         u64             start_time;
84         u64             end_time;
85         u64             total_time;
86         int             display;
87
88         struct per_pidcomm *all;
89         struct per_pidcomm *current;
90 };
91
92
93 struct per_pidcomm {
94         struct per_pidcomm *next;
95
96         u64             start_time;
97         u64             end_time;
98         u64             total_time;
99
100         int             Y;
101         int             display;
102
103         long            state;
104         u64             state_since;
105
106         char            *comm;
107
108         struct cpu_sample *samples;
109 };
110
111 struct sample_wrapper {
112         struct sample_wrapper *next;
113
114         u64             timestamp;
115         unsigned char   data[0];
116 };
117
118 #define TYPE_NONE       0
119 #define TYPE_RUNNING    1
120 #define TYPE_WAITING    2
121 #define TYPE_BLOCKED    3
122
123 struct cpu_sample {
124         struct cpu_sample *next;
125
126         u64 start_time;
127         u64 end_time;
128         int type;
129         int cpu;
130         const char *backtrace;
131 };
132
133 #define CSTATE 1
134 #define PSTATE 2
135
136 struct power_event {
137         struct power_event *next;
138         int type;
139         int state;
140         u64 start_time;
141         u64 end_time;
142         int cpu;
143 };
144
145 struct wake_event {
146         struct wake_event *next;
147         int waker;
148         int wakee;
149         u64 time;
150         const char *backtrace;
151 };
152
153 struct process_filter {
154         char                    *name;
155         int                     pid;
156         struct process_filter   *next;
157 };
158
159 static struct process_filter *process_filter;
160
161
162 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
163 {
164         struct per_pid *cursor = tchart->all_data;
165
166         while (cursor) {
167                 if (cursor->pid == pid)
168                         return cursor;
169                 cursor = cursor->next;
170         }
171         cursor = zalloc(sizeof(*cursor));
172         assert(cursor != NULL);
173         cursor->pid = pid;
174         cursor->next = tchart->all_data;
175         tchart->all_data = cursor;
176         return cursor;
177 }
178
179 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
180 {
181         struct per_pid *p;
182         struct per_pidcomm *c;
183         p = find_create_pid(tchart, pid);
184         c = p->all;
185         while (c) {
186                 if (c->comm && strcmp(c->comm, comm) == 0) {
187                         p->current = c;
188                         return;
189                 }
190                 if (!c->comm) {
191                         c->comm = strdup(comm);
192                         p->current = c;
193                         return;
194                 }
195                 c = c->next;
196         }
197         c = zalloc(sizeof(*c));
198         assert(c != NULL);
199         c->comm = strdup(comm);
200         p->current = c;
201         c->next = p->all;
202         p->all = c;
203 }
204
205 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
206 {
207         struct per_pid *p, *pp;
208         p = find_create_pid(tchart, pid);
209         pp = find_create_pid(tchart, ppid);
210         p->ppid = ppid;
211         if (pp->current && pp->current->comm && !p->current)
212                 pid_set_comm(tchart, pid, pp->current->comm);
213
214         p->start_time = timestamp;
215         if (p->current) {
216                 p->current->start_time = timestamp;
217                 p->current->state_since = timestamp;
218         }
219 }
220
221 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
222 {
223         struct per_pid *p;
224         p = find_create_pid(tchart, pid);
225         p->end_time = timestamp;
226         if (p->current)
227                 p->current->end_time = timestamp;
228 }
229
230 static void pid_put_sample(struct timechart *tchart, int pid, int type,
231                            unsigned int cpu, u64 start, u64 end,
232                            const char *backtrace)
233 {
234         struct per_pid *p;
235         struct per_pidcomm *c;
236         struct cpu_sample *sample;
237
238         p = find_create_pid(tchart, pid);
239         c = p->current;
240         if (!c) {
241                 c = zalloc(sizeof(*c));
242                 assert(c != NULL);
243                 p->current = c;
244                 c->next = p->all;
245                 p->all = c;
246         }
247
248         sample = zalloc(sizeof(*sample));
249         assert(sample != NULL);
250         sample->start_time = start;
251         sample->end_time = end;
252         sample->type = type;
253         sample->next = c->samples;
254         sample->cpu = cpu;
255         sample->backtrace = backtrace;
256         c->samples = sample;
257
258         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259                 c->total_time += (end-start);
260                 p->total_time += (end-start);
261         }
262
263         if (c->start_time == 0 || c->start_time > start)
264                 c->start_time = start;
265         if (p->start_time == 0 || p->start_time > start)
266                 p->start_time = start;
267 }
268
269 #define MAX_CPUS 4096
270
271 static u64 cpus_cstate_start_times[MAX_CPUS];
272 static int cpus_cstate_state[MAX_CPUS];
273 static u64 cpus_pstate_start_times[MAX_CPUS];
274 static u64 cpus_pstate_state[MAX_CPUS];
275
276 static int process_comm_event(struct perf_tool *tool,
277                               union perf_event *event,
278                               struct perf_sample *sample __maybe_unused,
279                               struct machine *machine __maybe_unused)
280 {
281         struct timechart *tchart = container_of(tool, struct timechart, tool);
282         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
283         return 0;
284 }
285
286 static int process_fork_event(struct perf_tool *tool,
287                               union perf_event *event,
288                               struct perf_sample *sample __maybe_unused,
289                               struct machine *machine __maybe_unused)
290 {
291         struct timechart *tchart = container_of(tool, struct timechart, tool);
292         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
293         return 0;
294 }
295
296 static int process_exit_event(struct perf_tool *tool,
297                               union perf_event *event,
298                               struct perf_sample *sample __maybe_unused,
299                               struct machine *machine __maybe_unused)
300 {
301         struct timechart *tchart = container_of(tool, struct timechart, tool);
302         pid_exit(tchart, event->fork.pid, event->fork.time);
303         return 0;
304 }
305
306 #ifdef SUPPORT_OLD_POWER_EVENTS
307 static int use_old_power_events;
308 #endif
309
310 static void c_state_start(int cpu, u64 timestamp, int state)
311 {
312         cpus_cstate_start_times[cpu] = timestamp;
313         cpus_cstate_state[cpu] = state;
314 }
315
316 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
317 {
318         struct power_event *pwr = zalloc(sizeof(*pwr));
319
320         if (!pwr)
321                 return;
322
323         pwr->state = cpus_cstate_state[cpu];
324         pwr->start_time = cpus_cstate_start_times[cpu];
325         pwr->end_time = timestamp;
326         pwr->cpu = cpu;
327         pwr->type = CSTATE;
328         pwr->next = tchart->power_events;
329
330         tchart->power_events = pwr;
331 }
332
333 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
334 {
335         struct power_event *pwr;
336
337         if (new_freq > 8000000) /* detect invalid data */
338                 return;
339
340         pwr = zalloc(sizeof(*pwr));
341         if (!pwr)
342                 return;
343
344         pwr->state = cpus_pstate_state[cpu];
345         pwr->start_time = cpus_pstate_start_times[cpu];
346         pwr->end_time = timestamp;
347         pwr->cpu = cpu;
348         pwr->type = PSTATE;
349         pwr->next = tchart->power_events;
350
351         if (!pwr->start_time)
352                 pwr->start_time = tchart->first_time;
353
354         tchart->power_events = pwr;
355
356         cpus_pstate_state[cpu] = new_freq;
357         cpus_pstate_start_times[cpu] = timestamp;
358
359         if ((u64)new_freq > tchart->max_freq)
360                 tchart->max_freq = new_freq;
361
362         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
363                 tchart->min_freq = new_freq;
364
365         if (new_freq == tchart->max_freq - 1000)
366                 tchart->turbo_frequency = tchart->max_freq;
367 }
368
369 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
370                          int waker, int wakee, u8 flags, const char *backtrace)
371 {
372         struct per_pid *p;
373         struct wake_event *we = zalloc(sizeof(*we));
374
375         if (!we)
376                 return;
377
378         we->time = timestamp;
379         we->waker = waker;
380         we->backtrace = backtrace;
381
382         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
383                 we->waker = -1;
384
385         we->wakee = wakee;
386         we->next = tchart->wake_events;
387         tchart->wake_events = we;
388         p = find_create_pid(tchart, we->wakee);
389
390         if (p && p->current && p->current->state == TYPE_NONE) {
391                 p->current->state_since = timestamp;
392                 p->current->state = TYPE_WAITING;
393         }
394         if (p && p->current && p->current->state == TYPE_BLOCKED) {
395                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
396                                p->current->state_since, timestamp, NULL);
397                 p->current->state_since = timestamp;
398                 p->current->state = TYPE_WAITING;
399         }
400 }
401
402 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
403                          int prev_pid, int next_pid, u64 prev_state,
404                          const char *backtrace)
405 {
406         struct per_pid *p = NULL, *prev_p;
407
408         prev_p = find_create_pid(tchart, prev_pid);
409
410         p = find_create_pid(tchart, next_pid);
411
412         if (prev_p->current && prev_p->current->state != TYPE_NONE)
413                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
414                                prev_p->current->state_since, timestamp,
415                                backtrace);
416         if (p && p->current) {
417                 if (p->current->state != TYPE_NONE)
418                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
419                                        p->current->state_since, timestamp,
420                                        backtrace);
421
422                 p->current->state_since = timestamp;
423                 p->current->state = TYPE_RUNNING;
424         }
425
426         if (prev_p->current) {
427                 prev_p->current->state = TYPE_NONE;
428                 prev_p->current->state_since = timestamp;
429                 if (prev_state & 2)
430                         prev_p->current->state = TYPE_BLOCKED;
431                 if (prev_state == 0)
432                         prev_p->current->state = TYPE_WAITING;
433         }
434 }
435
436 static const char *cat_backtrace(union perf_event *event,
437                                  struct perf_sample *sample,
438                                  struct machine *machine)
439 {
440         struct addr_location al;
441         unsigned int i;
442         char *p = NULL;
443         size_t p_len;
444         u8 cpumode = PERF_RECORD_MISC_USER;
445         struct addr_location tal;
446         struct ip_callchain *chain = sample->callchain;
447         FILE *f = open_memstream(&p, &p_len);
448
449         if (!f) {
450                 perror("open_memstream error");
451                 return NULL;
452         }
453
454         if (!chain)
455                 goto exit;
456
457         if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
458                 fprintf(stderr, "problem processing %d event, skipping it.\n",
459                         event->header.type);
460                 goto exit;
461         }
462
463         for (i = 0; i < chain->nr; i++) {
464                 u64 ip;
465
466                 if (callchain_param.order == ORDER_CALLEE)
467                         ip = chain->ips[i];
468                 else
469                         ip = chain->ips[chain->nr - i - 1];
470
471                 if (ip >= PERF_CONTEXT_MAX) {
472                         switch (ip) {
473                         case PERF_CONTEXT_HV:
474                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
475                                 break;
476                         case PERF_CONTEXT_KERNEL:
477                                 cpumode = PERF_RECORD_MISC_KERNEL;
478                                 break;
479                         case PERF_CONTEXT_USER:
480                                 cpumode = PERF_RECORD_MISC_USER;
481                                 break;
482                         default:
483                                 pr_debug("invalid callchain context: "
484                                          "%"PRId64"\n", (s64) ip);
485
486                                 /*
487                                  * It seems the callchain is corrupted.
488                                  * Discard all.
489                                  */
490                                 free(p);
491                                 p = NULL;
492                                 goto exit;
493                         }
494                         continue;
495                 }
496
497                 tal.filtered = false;
498                 thread__find_addr_location(al.thread, machine, cpumode,
499                                            MAP__FUNCTION, ip, &tal);
500
501                 if (tal.sym)
502                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503                                 tal.sym->name);
504                 else
505                         fprintf(f, "..... %016" PRIx64 "\n", ip);
506         }
507
508 exit:
509         fclose(f);
510
511         return p;
512 }
513
514 typedef int (*tracepoint_handler)(struct timechart *tchart,
515                                   struct perf_evsel *evsel,
516                                   struct perf_sample *sample,
517                                   const char *backtrace);
518
519 static int process_sample_event(struct perf_tool *tool,
520                                 union perf_event *event,
521                                 struct perf_sample *sample,
522                                 struct perf_evsel *evsel,
523                                 struct machine *machine)
524 {
525         struct timechart *tchart = container_of(tool, struct timechart, tool);
526
527         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
528                 if (!tchart->first_time || tchart->first_time > sample->time)
529                         tchart->first_time = sample->time;
530                 if (tchart->last_time < sample->time)
531                         tchart->last_time = sample->time;
532         }
533
534         if (evsel->handler != NULL) {
535                 tracepoint_handler f = evsel->handler;
536                 return f(tchart, evsel, sample,
537                          cat_backtrace(event, sample, machine));
538         }
539
540         return 0;
541 }
542
543 static int
544 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545                         struct perf_evsel *evsel,
546                         struct perf_sample *sample,
547                         const char *backtrace __maybe_unused)
548 {
549         u32 state = perf_evsel__intval(evsel, sample, "state");
550         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
551
552         if (state == (u32)PWR_EVENT_EXIT)
553                 c_state_end(tchart, cpu_id, sample->time);
554         else
555                 c_state_start(cpu_id, sample->time, state);
556         return 0;
557 }
558
559 static int
560 process_sample_cpu_frequency(struct timechart *tchart,
561                              struct perf_evsel *evsel,
562                              struct perf_sample *sample,
563                              const char *backtrace __maybe_unused)
564 {
565         u32 state = perf_evsel__intval(evsel, sample, "state");
566         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
567
568         p_state_change(tchart, cpu_id, sample->time, state);
569         return 0;
570 }
571
572 static int
573 process_sample_sched_wakeup(struct timechart *tchart,
574                             struct perf_evsel *evsel,
575                             struct perf_sample *sample,
576                             const char *backtrace)
577 {
578         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579         int waker = perf_evsel__intval(evsel, sample, "common_pid");
580         int wakee = perf_evsel__intval(evsel, sample, "pid");
581
582         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
583         return 0;
584 }
585
586 static int
587 process_sample_sched_switch(struct timechart *tchart,
588                             struct perf_evsel *evsel,
589                             struct perf_sample *sample,
590                             const char *backtrace)
591 {
592         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
595
596         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597                      prev_state, backtrace);
598         return 0;
599 }
600
601 #ifdef SUPPORT_OLD_POWER_EVENTS
602 static int
603 process_sample_power_start(struct timechart *tchart __maybe_unused,
604                            struct perf_evsel *evsel,
605                            struct perf_sample *sample,
606                            const char *backtrace __maybe_unused)
607 {
608         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609         u64 value = perf_evsel__intval(evsel, sample, "value");
610
611         c_state_start(cpu_id, sample->time, value);
612         return 0;
613 }
614
615 static int
616 process_sample_power_end(struct timechart *tchart,
617                          struct perf_evsel *evsel __maybe_unused,
618                          struct perf_sample *sample,
619                          const char *backtrace __maybe_unused)
620 {
621         c_state_end(tchart, sample->cpu, sample->time);
622         return 0;
623 }
624
625 static int
626 process_sample_power_frequency(struct timechart *tchart,
627                                struct perf_evsel *evsel,
628                                struct perf_sample *sample,
629                                const char *backtrace __maybe_unused)
630 {
631         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632         u64 value = perf_evsel__intval(evsel, sample, "value");
633
634         p_state_change(tchart, cpu_id, sample->time, value);
635         return 0;
636 }
637 #endif /* SUPPORT_OLD_POWER_EVENTS */
638
639 /*
640  * After the last sample we need to wrap up the current C/P state
641  * and close out each CPU for these.
642  */
643 static void end_sample_processing(struct timechart *tchart)
644 {
645         u64 cpu;
646         struct power_event *pwr;
647
648         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
649                 /* C state */
650 #if 0
651                 pwr = zalloc(sizeof(*pwr));
652                 if (!pwr)
653                         return;
654
655                 pwr->state = cpus_cstate_state[cpu];
656                 pwr->start_time = cpus_cstate_start_times[cpu];
657                 pwr->end_time = tchart->last_time;
658                 pwr->cpu = cpu;
659                 pwr->type = CSTATE;
660                 pwr->next = tchart->power_events;
661
662                 tchart->power_events = pwr;
663 #endif
664                 /* P state */
665
666                 pwr = zalloc(sizeof(*pwr));
667                 if (!pwr)
668                         return;
669
670                 pwr->state = cpus_pstate_state[cpu];
671                 pwr->start_time = cpus_pstate_start_times[cpu];
672                 pwr->end_time = tchart->last_time;
673                 pwr->cpu = cpu;
674                 pwr->type = PSTATE;
675                 pwr->next = tchart->power_events;
676
677                 if (!pwr->start_time)
678                         pwr->start_time = tchart->first_time;
679                 if (!pwr->state)
680                         pwr->state = tchart->min_freq;
681                 tchart->power_events = pwr;
682         }
683 }
684
685 /*
686  * Sort the pid datastructure
687  */
688 static void sort_pids(struct timechart *tchart)
689 {
690         struct per_pid *new_list, *p, *cursor, *prev;
691         /* sort by ppid first, then by pid, lowest to highest */
692
693         new_list = NULL;
694
695         while (tchart->all_data) {
696                 p = tchart->all_data;
697                 tchart->all_data = p->next;
698                 p->next = NULL;
699
700                 if (new_list == NULL) {
701                         new_list = p;
702                         p->next = NULL;
703                         continue;
704                 }
705                 prev = NULL;
706                 cursor = new_list;
707                 while (cursor) {
708                         if (cursor->ppid > p->ppid ||
709                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710                                 /* must insert before */
711                                 if (prev) {
712                                         p->next = prev->next;
713                                         prev->next = p;
714                                         cursor = NULL;
715                                         continue;
716                                 } else {
717                                         p->next = new_list;
718                                         new_list = p;
719                                         cursor = NULL;
720                                         continue;
721                                 }
722                         }
723
724                         prev = cursor;
725                         cursor = cursor->next;
726                         if (!cursor)
727                                 prev->next = p;
728                 }
729         }
730         tchart->all_data = new_list;
731 }
732
733
734 static void draw_c_p_states(struct timechart *tchart)
735 {
736         struct power_event *pwr;
737         pwr = tchart->power_events;
738
739         /*
740          * two pass drawing so that the P state bars are on top of the C state blocks
741          */
742         while (pwr) {
743                 if (pwr->type == CSTATE)
744                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745                 pwr = pwr->next;
746         }
747
748         pwr = tchart->power_events;
749         while (pwr) {
750                 if (pwr->type == PSTATE) {
751                         if (!pwr->state)
752                                 pwr->state = tchart->min_freq;
753                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
754                 }
755                 pwr = pwr->next;
756         }
757 }
758
759 static void draw_wakeups(struct timechart *tchart)
760 {
761         struct wake_event *we;
762         struct per_pid *p;
763         struct per_pidcomm *c;
764
765         we = tchart->wake_events;
766         while (we) {
767                 int from = 0, to = 0;
768                 char *task_from = NULL, *task_to = NULL;
769
770                 /* locate the column of the waker and wakee */
771                 p = tchart->all_data;
772                 while (p) {
773                         if (p->pid == we->waker || p->pid == we->wakee) {
774                                 c = p->all;
775                                 while (c) {
776                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
777                                                 if (p->pid == we->waker && !from) {
778                                                         from = c->Y;
779                                                         task_from = strdup(c->comm);
780                                                 }
781                                                 if (p->pid == we->wakee && !to) {
782                                                         to = c->Y;
783                                                         task_to = strdup(c->comm);
784                                                 }
785                                         }
786                                         c = c->next;
787                                 }
788                                 c = p->all;
789                                 while (c) {
790                                         if (p->pid == we->waker && !from) {
791                                                 from = c->Y;
792                                                 task_from = strdup(c->comm);
793                                         }
794                                         if (p->pid == we->wakee && !to) {
795                                                 to = c->Y;
796                                                 task_to = strdup(c->comm);
797                                         }
798                                         c = c->next;
799                                 }
800                         }
801                         p = p->next;
802                 }
803
804                 if (!task_from) {
805                         task_from = malloc(40);
806                         sprintf(task_from, "[%i]", we->waker);
807                 }
808                 if (!task_to) {
809                         task_to = malloc(40);
810                         sprintf(task_to, "[%i]", we->wakee);
811                 }
812
813                 if (we->waker == -1)
814                         svg_interrupt(we->time, to, we->backtrace);
815                 else if (from && to && abs(from - to) == 1)
816                         svg_wakeline(we->time, from, to, we->backtrace);
817                 else
818                         svg_partial_wakeline(we->time, from, task_from, to,
819                                              task_to, we->backtrace);
820                 we = we->next;
821
822                 free(task_from);
823                 free(task_to);
824         }
825 }
826
827 static void draw_cpu_usage(struct timechart *tchart)
828 {
829         struct per_pid *p;
830         struct per_pidcomm *c;
831         struct cpu_sample *sample;
832         p = tchart->all_data;
833         while (p) {
834                 c = p->all;
835                 while (c) {
836                         sample = c->samples;
837                         while (sample) {
838                                 if (sample->type == TYPE_RUNNING) {
839                                         svg_process(sample->cpu,
840                                                     sample->start_time,
841                                                     sample->end_time,
842                                                     p->pid,
843                                                     "sample",
844                                                     c->comm,
845                                                     sample->backtrace);
846                                 }
847
848                                 sample = sample->next;
849                         }
850                         c = c->next;
851                 }
852                 p = p->next;
853         }
854 }
855
856 static void draw_process_bars(struct timechart *tchart)
857 {
858         struct per_pid *p;
859         struct per_pidcomm *c;
860         struct cpu_sample *sample;
861         int Y = 0;
862
863         Y = 2 * tchart->numcpus + 2;
864
865         p = tchart->all_data;
866         while (p) {
867                 c = p->all;
868                 while (c) {
869                         if (!c->display) {
870                                 c->Y = 0;
871                                 c = c->next;
872                                 continue;
873                         }
874
875                         svg_box(Y, c->start_time, c->end_time, "process");
876                         sample = c->samples;
877                         while (sample) {
878                                 if (sample->type == TYPE_RUNNING)
879                                         svg_running(Y, sample->cpu,
880                                                     sample->start_time,
881                                                     sample->end_time,
882                                                     sample->backtrace);
883                                 if (sample->type == TYPE_BLOCKED)
884                                         svg_blocked(Y, sample->cpu,
885                                                     sample->start_time,
886                                                     sample->end_time,
887                                                     sample->backtrace);
888                                 if (sample->type == TYPE_WAITING)
889                                         svg_waiting(Y, sample->cpu,
890                                                     sample->start_time,
891                                                     sample->end_time,
892                                                     sample->backtrace);
893                                 sample = sample->next;
894                         }
895
896                         if (c->comm) {
897                                 char comm[256];
898                                 if (c->total_time > 5000000000) /* 5 seconds */
899                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
900                                 else
901                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
902
903                                 svg_text(Y, c->start_time, comm);
904                         }
905                         c->Y = Y;
906                         Y++;
907                         c = c->next;
908                 }
909                 p = p->next;
910         }
911 }
912
913 static void add_process_filter(const char *string)
914 {
915         int pid = strtoull(string, NULL, 10);
916         struct process_filter *filt = malloc(sizeof(*filt));
917
918         if (!filt)
919                 return;
920
921         filt->name = strdup(string);
922         filt->pid  = pid;
923         filt->next = process_filter;
924
925         process_filter = filt;
926 }
927
928 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
929 {
930         struct process_filter *filt;
931         if (!process_filter)
932                 return 1;
933
934         filt = process_filter;
935         while (filt) {
936                 if (filt->pid && p->pid == filt->pid)
937                         return 1;
938                 if (strcmp(filt->name, c->comm) == 0)
939                         return 1;
940                 filt = filt->next;
941         }
942         return 0;
943 }
944
945 static int determine_display_tasks_filtered(struct timechart *tchart)
946 {
947         struct per_pid *p;
948         struct per_pidcomm *c;
949         int count = 0;
950
951         p = tchart->all_data;
952         while (p) {
953                 p->display = 0;
954                 if (p->start_time == 1)
955                         p->start_time = tchart->first_time;
956
957                 /* no exit marker, task kept running to the end */
958                 if (p->end_time == 0)
959                         p->end_time = tchart->last_time;
960
961                 c = p->all;
962
963                 while (c) {
964                         c->display = 0;
965
966                         if (c->start_time == 1)
967                                 c->start_time = tchart->first_time;
968
969                         if (passes_filter(p, c)) {
970                                 c->display = 1;
971                                 p->display = 1;
972                                 count++;
973                         }
974
975                         if (c->end_time == 0)
976                                 c->end_time = tchart->last_time;
977
978                         c = c->next;
979                 }
980                 p = p->next;
981         }
982         return count;
983 }
984
985 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
986 {
987         struct per_pid *p;
988         struct per_pidcomm *c;
989         int count = 0;
990
991         if (process_filter)
992                 return determine_display_tasks_filtered(tchart);
993
994         p = tchart->all_data;
995         while (p) {
996                 p->display = 0;
997                 if (p->start_time == 1)
998                         p->start_time = tchart->first_time;
999
1000                 /* no exit marker, task kept running to the end */
1001                 if (p->end_time == 0)
1002                         p->end_time = tchart->last_time;
1003                 if (p->total_time >= threshold)
1004                         p->display = 1;
1005
1006                 c = p->all;
1007
1008                 while (c) {
1009                         c->display = 0;
1010
1011                         if (c->start_time == 1)
1012                                 c->start_time = tchart->first_time;
1013
1014                         if (c->total_time >= threshold) {
1015                                 c->display = 1;
1016                                 count++;
1017                         }
1018
1019                         if (c->end_time == 0)
1020                                 c->end_time = tchart->last_time;
1021
1022                         c = c->next;
1023                 }
1024                 p = p->next;
1025         }
1026         return count;
1027 }
1028
1029
1030
1031 #define TIME_THRESH 10000000
1032
1033 static void write_svg_file(struct timechart *tchart, const char *filename)
1034 {
1035         u64 i;
1036         int count;
1037         int thresh = TIME_THRESH;
1038
1039         if (tchart->power_only)
1040                 tchart->proc_num = 0;
1041
1042         /* We'd like to show at least proc_num tasks;
1043          * be less picky if we have fewer */
1044         do {
1045                 count = determine_display_tasks(tchart, thresh);
1046                 thresh /= 10;
1047         } while (!process_filter && thresh && count < tchart->proc_num);
1048
1049         open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1050
1051         svg_time_grid();
1052         svg_legenda();
1053
1054         for (i = 0; i < tchart->numcpus; i++)
1055                 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1056
1057         draw_cpu_usage(tchart);
1058         if (tchart->proc_num)
1059                 draw_process_bars(tchart);
1060         if (!tchart->tasks_only)
1061                 draw_c_p_states(tchart);
1062         if (tchart->proc_num)
1063                 draw_wakeups(tchart);
1064
1065         svg_close();
1066 }
1067
1068 static int process_header(struct perf_file_section *section __maybe_unused,
1069                           struct perf_header *ph,
1070                           int feat,
1071                           int fd __maybe_unused,
1072                           void *data)
1073 {
1074         struct timechart *tchart = data;
1075
1076         switch (feat) {
1077         case HEADER_NRCPUS:
1078                 tchart->numcpus = ph->env.nr_cpus_avail;
1079                 break;
1080         default:
1081                 break;
1082         }
1083
1084         return 0;
1085 }
1086
1087 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1088 {
1089         const struct perf_evsel_str_handler power_tracepoints[] = {
1090                 { "power:cpu_idle",             process_sample_cpu_idle },
1091                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1092                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1093                 { "sched:sched_switch",         process_sample_sched_switch },
1094 #ifdef SUPPORT_OLD_POWER_EVENTS
1095                 { "power:power_start",          process_sample_power_start },
1096                 { "power:power_end",            process_sample_power_end },
1097                 { "power:power_frequency",      process_sample_power_frequency },
1098 #endif
1099         };
1100         struct perf_data_file file = {
1101                 .path = input_name,
1102                 .mode = PERF_DATA_MODE_READ,
1103         };
1104
1105         struct perf_session *session = perf_session__new(&file, false,
1106                                                          &tchart->tool);
1107         int ret = -EINVAL;
1108
1109         if (session == NULL)
1110                 return -ENOMEM;
1111
1112         (void)perf_header__process_sections(&session->header,
1113                                             perf_data_file__fd(session->file),
1114                                             tchart,
1115                                             process_header);
1116
1117         if (!perf_session__has_traces(session, "timechart record"))
1118                 goto out_delete;
1119
1120         if (perf_session__set_tracepoints_handlers(session,
1121                                                    power_tracepoints)) {
1122                 pr_err("Initializing session tracepoint handlers failed\n");
1123                 goto out_delete;
1124         }
1125
1126         ret = perf_session__process_events(session, &tchart->tool);
1127         if (ret)
1128                 goto out_delete;
1129
1130         end_sample_processing(tchart);
1131
1132         sort_pids(tchart);
1133
1134         write_svg_file(tchart, output_name);
1135
1136         pr_info("Written %2.1f seconds of trace to %s.\n",
1137                 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1138 out_delete:
1139         perf_session__delete(session);
1140         return ret;
1141 }
1142
1143 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1144 {
1145         unsigned int rec_argc, i, j;
1146         const char **rec_argv;
1147         const char **p;
1148         unsigned int record_elems;
1149
1150         const char * const common_args[] = {
1151                 "record", "-a", "-R", "-c", "1",
1152         };
1153         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1154
1155         const char * const backtrace_args[] = {
1156                 "-g",
1157         };
1158         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1159
1160         const char * const power_args[] = {
1161                 "-e", "power:cpu_frequency",
1162                 "-e", "power:cpu_idle",
1163         };
1164         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1165
1166         const char * const old_power_args[] = {
1167 #ifdef SUPPORT_OLD_POWER_EVENTS
1168                 "-e", "power:power_start",
1169                 "-e", "power:power_end",
1170                 "-e", "power:power_frequency",
1171 #endif
1172         };
1173         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1174
1175         const char * const tasks_args[] = {
1176                 "-e", "sched:sched_wakeup",
1177                 "-e", "sched:sched_switch",
1178         };
1179         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1180
1181 #ifdef SUPPORT_OLD_POWER_EVENTS
1182         if (!is_valid_tracepoint("power:cpu_idle") &&
1183             is_valid_tracepoint("power:power_start")) {
1184                 use_old_power_events = 1;
1185                 power_args_nr = 0;
1186         } else {
1187                 old_power_args_nr = 0;
1188         }
1189 #endif
1190
1191         if (tchart->power_only)
1192                 tasks_args_nr = 0;
1193
1194         if (tchart->tasks_only) {
1195                 power_args_nr = 0;
1196                 old_power_args_nr = 0;
1197         }
1198
1199         if (!tchart->with_backtrace)
1200                 backtrace_args_no = 0;
1201
1202         record_elems = common_args_nr + tasks_args_nr +
1203                 power_args_nr + old_power_args_nr + backtrace_args_no;
1204
1205         rec_argc = record_elems + argc;
1206         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1207
1208         if (rec_argv == NULL)
1209                 return -ENOMEM;
1210
1211         p = rec_argv;
1212         for (i = 0; i < common_args_nr; i++)
1213                 *p++ = strdup(common_args[i]);
1214
1215         for (i = 0; i < backtrace_args_no; i++)
1216                 *p++ = strdup(backtrace_args[i]);
1217
1218         for (i = 0; i < tasks_args_nr; i++)
1219                 *p++ = strdup(tasks_args[i]);
1220
1221         for (i = 0; i < power_args_nr; i++)
1222                 *p++ = strdup(power_args[i]);
1223
1224         for (i = 0; i < old_power_args_nr; i++)
1225                 *p++ = strdup(old_power_args[i]);
1226
1227         for (j = 1; j < (unsigned int)argc; j++)
1228                 *p++ = argv[j];
1229
1230         return cmd_record(rec_argc, rec_argv, NULL);
1231 }
1232
1233 static int
1234 parse_process(const struct option *opt __maybe_unused, const char *arg,
1235               int __maybe_unused unset)
1236 {
1237         if (arg)
1238                 add_process_filter(arg);
1239         return 0;
1240 }
1241
1242 int cmd_timechart(int argc, const char **argv,
1243                   const char *prefix __maybe_unused)
1244 {
1245         struct timechart tchart = {
1246                 .tool = {
1247                         .comm            = process_comm_event,
1248                         .fork            = process_fork_event,
1249                         .exit            = process_exit_event,
1250                         .sample          = process_sample_event,
1251                         .ordered_samples = true,
1252                 },
1253                 .proc_num = 15,
1254         };
1255         const char *output_name = "output.svg";
1256         const struct option timechart_options[] = {
1257         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1258         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1259         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1260         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1261         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1262                     "output processes data only"),
1263         OPT_CALLBACK('p', "process", NULL, "process",
1264                       "process selector. Pass a pid or process name.",
1265                        parse_process),
1266         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1267                     "Look for files with symbols relative to this directory"),
1268         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1269                     "min. number of tasks to print"),
1270         OPT_END()
1271         };
1272         const char * const timechart_usage[] = {
1273                 "perf timechart [<options>] {record}",
1274                 NULL
1275         };
1276
1277         const struct option record_options[] = {
1278         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1279         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1280                     "output processes data only"),
1281         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1282         OPT_END()
1283         };
1284         const char * const record_usage[] = {
1285                 "perf timechart record [<options>]",
1286                 NULL
1287         };
1288         argc = parse_options(argc, argv, timechart_options, timechart_usage,
1289                         PARSE_OPT_STOP_AT_NON_OPTION);
1290
1291         if (tchart.power_only && tchart.tasks_only) {
1292                 pr_err("-P and -T options cannot be used at the same time.\n");
1293                 return -1;
1294         }
1295
1296         symbol__init();
1297
1298         if (argc && !strncmp(argv[0], "rec", 3)) {
1299                 argc = parse_options(argc, argv, record_options, record_usage,
1300                                      PARSE_OPT_STOP_AT_NON_OPTION);
1301
1302                 if (tchart.power_only && tchart.tasks_only) {
1303                         pr_err("-P and -T options cannot be used at the same time.\n");
1304                         return -1;
1305                 }
1306
1307                 return timechart__record(&tchart, argc, argv);
1308         } else if (argc)
1309                 usage_with_options(timechart_usage, timechart_options);
1310
1311         setup_pager();
1312
1313         return __cmd_timechart(&tchart, output_name);
1314 }