perf timechart: Group figures and add title with details
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43
44 static int proc_num = 15;
45
46 static unsigned int     numcpus;
47 static u64              min_freq;       /* Lowest CPU frequency seen */
48 static u64              max_freq;       /* Highest CPU frequency seen */
49 static u64              turbo_frequency;
50
51 static u64              first_time, last_time;
52
53 static bool             power_only;
54 static bool             tasks_only;
55
56
57 struct per_pid;
58 struct per_pidcomm;
59
60 struct cpu_sample;
61 struct power_event;
62 struct wake_event;
63
64 struct sample_wrapper;
65
66 /*
67  * Datastructure layout:
68  * We keep an list of "pid"s, matching the kernels notion of a task struct.
69  * Each "pid" entry, has a list of "comm"s.
70  *      this is because we want to track different programs different, while
71  *      exec will reuse the original pid (by design).
72  * Each comm has a list of samples that will be used to draw
73  * final graph.
74  */
75
76 struct per_pid {
77         struct per_pid *next;
78
79         int             pid;
80         int             ppid;
81
82         u64             start_time;
83         u64             end_time;
84         u64             total_time;
85         int             display;
86
87         struct per_pidcomm *all;
88         struct per_pidcomm *current;
89 };
90
91
92 struct per_pidcomm {
93         struct per_pidcomm *next;
94
95         u64             start_time;
96         u64             end_time;
97         u64             total_time;
98
99         int             Y;
100         int             display;
101
102         long            state;
103         u64             state_since;
104
105         char            *comm;
106
107         struct cpu_sample *samples;
108 };
109
110 struct sample_wrapper {
111         struct sample_wrapper *next;
112
113         u64             timestamp;
114         unsigned char   data[0];
115 };
116
117 #define TYPE_NONE       0
118 #define TYPE_RUNNING    1
119 #define TYPE_WAITING    2
120 #define TYPE_BLOCKED    3
121
122 struct cpu_sample {
123         struct cpu_sample *next;
124
125         u64 start_time;
126         u64 end_time;
127         int type;
128         int cpu;
129 };
130
131 static struct per_pid *all_data;
132
133 #define CSTATE 1
134 #define PSTATE 2
135
136 struct power_event {
137         struct power_event *next;
138         int type;
139         int state;
140         u64 start_time;
141         u64 end_time;
142         int cpu;
143 };
144
145 struct wake_event {
146         struct wake_event *next;
147         int waker;
148         int wakee;
149         u64 time;
150 };
151
152 static struct power_event    *power_events;
153 static struct wake_event     *wake_events;
154
155 struct process_filter;
156 struct process_filter {
157         char                    *name;
158         int                     pid;
159         struct process_filter   *next;
160 };
161
162 static struct process_filter *process_filter;
163
164
165 static struct per_pid *find_create_pid(int pid)
166 {
167         struct per_pid *cursor = all_data;
168
169         while (cursor) {
170                 if (cursor->pid == pid)
171                         return cursor;
172                 cursor = cursor->next;
173         }
174         cursor = zalloc(sizeof(*cursor));
175         assert(cursor != NULL);
176         cursor->pid = pid;
177         cursor->next = all_data;
178         all_data = cursor;
179         return cursor;
180 }
181
182 static void pid_set_comm(int pid, char *comm)
183 {
184         struct per_pid *p;
185         struct per_pidcomm *c;
186         p = find_create_pid(pid);
187         c = p->all;
188         while (c) {
189                 if (c->comm && strcmp(c->comm, comm) == 0) {
190                         p->current = c;
191                         return;
192                 }
193                 if (!c->comm) {
194                         c->comm = strdup(comm);
195                         p->current = c;
196                         return;
197                 }
198                 c = c->next;
199         }
200         c = zalloc(sizeof(*c));
201         assert(c != NULL);
202         c->comm = strdup(comm);
203         p->current = c;
204         c->next = p->all;
205         p->all = c;
206 }
207
208 static void pid_fork(int pid, int ppid, u64 timestamp)
209 {
210         struct per_pid *p, *pp;
211         p = find_create_pid(pid);
212         pp = find_create_pid(ppid);
213         p->ppid = ppid;
214         if (pp->current && pp->current->comm && !p->current)
215                 pid_set_comm(pid, pp->current->comm);
216
217         p->start_time = timestamp;
218         if (p->current) {
219                 p->current->start_time = timestamp;
220                 p->current->state_since = timestamp;
221         }
222 }
223
224 static void pid_exit(int pid, u64 timestamp)
225 {
226         struct per_pid *p;
227         p = find_create_pid(pid);
228         p->end_time = timestamp;
229         if (p->current)
230                 p->current->end_time = timestamp;
231 }
232
233 static void
234 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
235 {
236         struct per_pid *p;
237         struct per_pidcomm *c;
238         struct cpu_sample *sample;
239
240         p = find_create_pid(pid);
241         c = p->current;
242         if (!c) {
243                 c = zalloc(sizeof(*c));
244                 assert(c != NULL);
245                 p->current = c;
246                 c->next = p->all;
247                 p->all = c;
248         }
249
250         sample = zalloc(sizeof(*sample));
251         assert(sample != NULL);
252         sample->start_time = start;
253         sample->end_time = end;
254         sample->type = type;
255         sample->next = c->samples;
256         sample->cpu = cpu;
257         c->samples = sample;
258
259         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260                 c->total_time += (end-start);
261                 p->total_time += (end-start);
262         }
263
264         if (c->start_time == 0 || c->start_time > start)
265                 c->start_time = start;
266         if (p->start_time == 0 || p->start_time > start)
267                 p->start_time = start;
268 }
269
270 #define MAX_CPUS 4096
271
272 static u64 cpus_cstate_start_times[MAX_CPUS];
273 static int cpus_cstate_state[MAX_CPUS];
274 static u64 cpus_pstate_start_times[MAX_CPUS];
275 static u64 cpus_pstate_state[MAX_CPUS];
276
277 static int process_comm_event(struct perf_tool *tool __maybe_unused,
278                               union perf_event *event,
279                               struct perf_sample *sample __maybe_unused,
280                               struct machine *machine __maybe_unused)
281 {
282         pid_set_comm(event->comm.tid, event->comm.comm);
283         return 0;
284 }
285
286 static int process_fork_event(struct perf_tool *tool __maybe_unused,
287                               union perf_event *event,
288                               struct perf_sample *sample __maybe_unused,
289                               struct machine *machine __maybe_unused)
290 {
291         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
292         return 0;
293 }
294
295 static int process_exit_event(struct perf_tool *tool __maybe_unused,
296                               union perf_event *event,
297                               struct perf_sample *sample __maybe_unused,
298                               struct machine *machine __maybe_unused)
299 {
300         pid_exit(event->fork.pid, event->fork.time);
301         return 0;
302 }
303
304 struct trace_entry {
305         unsigned short          type;
306         unsigned char           flags;
307         unsigned char           preempt_count;
308         int                     pid;
309         int                     lock_depth;
310 };
311
312 #ifdef SUPPORT_OLD_POWER_EVENTS
313 static int use_old_power_events;
314 struct power_entry_old {
315         struct trace_entry te;
316         u64     type;
317         u64     value;
318         u64     cpu_id;
319 };
320 #endif
321
322 struct power_processor_entry {
323         struct trace_entry te;
324         u32     state;
325         u32     cpu_id;
326 };
327
328 #define TASK_COMM_LEN 16
329 struct wakeup_entry {
330         struct trace_entry te;
331         char comm[TASK_COMM_LEN];
332         int   pid;
333         int   prio;
334         int   success;
335 };
336
337 struct sched_switch {
338         struct trace_entry te;
339         char prev_comm[TASK_COMM_LEN];
340         int  prev_pid;
341         int  prev_prio;
342         long prev_state; /* Arjan weeps. */
343         char next_comm[TASK_COMM_LEN];
344         int  next_pid;
345         int  next_prio;
346 };
347
348 static void c_state_start(int cpu, u64 timestamp, int state)
349 {
350         cpus_cstate_start_times[cpu] = timestamp;
351         cpus_cstate_state[cpu] = state;
352 }
353
354 static void c_state_end(int cpu, u64 timestamp)
355 {
356         struct power_event *pwr = zalloc(sizeof(*pwr));
357
358         if (!pwr)
359                 return;
360
361         pwr->state = cpus_cstate_state[cpu];
362         pwr->start_time = cpus_cstate_start_times[cpu];
363         pwr->end_time = timestamp;
364         pwr->cpu = cpu;
365         pwr->type = CSTATE;
366         pwr->next = power_events;
367
368         power_events = pwr;
369 }
370
371 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
372 {
373         struct power_event *pwr;
374
375         if (new_freq > 8000000) /* detect invalid data */
376                 return;
377
378         pwr = zalloc(sizeof(*pwr));
379         if (!pwr)
380                 return;
381
382         pwr->state = cpus_pstate_state[cpu];
383         pwr->start_time = cpus_pstate_start_times[cpu];
384         pwr->end_time = timestamp;
385         pwr->cpu = cpu;
386         pwr->type = PSTATE;
387         pwr->next = power_events;
388
389         if (!pwr->start_time)
390                 pwr->start_time = first_time;
391
392         power_events = pwr;
393
394         cpus_pstate_state[cpu] = new_freq;
395         cpus_pstate_start_times[cpu] = timestamp;
396
397         if ((u64)new_freq > max_freq)
398                 max_freq = new_freq;
399
400         if (new_freq < min_freq || min_freq == 0)
401                 min_freq = new_freq;
402
403         if (new_freq == max_freq - 1000)
404                         turbo_frequency = max_freq;
405 }
406
407 static void
408 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
409 {
410         struct per_pid *p;
411         struct wakeup_entry *wake = (void *)te;
412         struct wake_event *we = zalloc(sizeof(*we));
413
414         if (!we)
415                 return;
416
417         we->time = timestamp;
418         we->waker = pid;
419
420         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
421                 we->waker = -1;
422
423         we->wakee = wake->pid;
424         we->next = wake_events;
425         wake_events = we;
426         p = find_create_pid(we->wakee);
427
428         if (p && p->current && p->current->state == TYPE_NONE) {
429                 p->current->state_since = timestamp;
430                 p->current->state = TYPE_WAITING;
431         }
432         if (p && p->current && p->current->state == TYPE_BLOCKED) {
433                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
434                 p->current->state_since = timestamp;
435                 p->current->state = TYPE_WAITING;
436         }
437 }
438
439 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
440 {
441         struct per_pid *p = NULL, *prev_p;
442         struct sched_switch *sw = (void *)te;
443
444
445         prev_p = find_create_pid(sw->prev_pid);
446
447         p = find_create_pid(sw->next_pid);
448
449         if (prev_p->current && prev_p->current->state != TYPE_NONE)
450                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
451         if (p && p->current) {
452                 if (p->current->state != TYPE_NONE)
453                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
454
455                 p->current->state_since = timestamp;
456                 p->current->state = TYPE_RUNNING;
457         }
458
459         if (prev_p->current) {
460                 prev_p->current->state = TYPE_NONE;
461                 prev_p->current->state_since = timestamp;
462                 if (sw->prev_state & 2)
463                         prev_p->current->state = TYPE_BLOCKED;
464                 if (sw->prev_state == 0)
465                         prev_p->current->state = TYPE_WAITING;
466         }
467 }
468
469 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
470                                   struct perf_sample *sample);
471
472 static int process_sample_event(struct perf_tool *tool __maybe_unused,
473                                 union perf_event *event __maybe_unused,
474                                 struct perf_sample *sample,
475                                 struct perf_evsel *evsel,
476                                 struct machine *machine __maybe_unused)
477 {
478         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
479                 if (!first_time || first_time > sample->time)
480                         first_time = sample->time;
481                 if (last_time < sample->time)
482                         last_time = sample->time;
483         }
484
485         if (sample->cpu > numcpus)
486                 numcpus = sample->cpu;
487
488         if (evsel->handler != NULL) {
489                 tracepoint_handler f = evsel->handler;
490                 return f(evsel, sample);
491         }
492
493         return 0;
494 }
495
496 static int
497 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
498                         struct perf_sample *sample)
499 {
500         struct power_processor_entry *ppe = sample->raw_data;
501
502         if (ppe->state == (u32) PWR_EVENT_EXIT)
503                 c_state_end(ppe->cpu_id, sample->time);
504         else
505                 c_state_start(ppe->cpu_id, sample->time, ppe->state);
506         return 0;
507 }
508
509 static int
510 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
511                              struct perf_sample *sample)
512 {
513         struct power_processor_entry *ppe = sample->raw_data;
514
515         p_state_change(ppe->cpu_id, sample->time, ppe->state);
516         return 0;
517 }
518
519 static int
520 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
521                             struct perf_sample *sample)
522 {
523         struct trace_entry *te = sample->raw_data;
524
525         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
526         return 0;
527 }
528
529 static int
530 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
531                             struct perf_sample *sample)
532 {
533         struct trace_entry *te = sample->raw_data;
534
535         sched_switch(sample->cpu, sample->time, te);
536         return 0;
537 }
538
539 #ifdef SUPPORT_OLD_POWER_EVENTS
540 static int
541 process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
542                            struct perf_sample *sample)
543 {
544         struct power_entry_old *peo = sample->raw_data;
545
546         c_state_start(peo->cpu_id, sample->time, peo->value);
547         return 0;
548 }
549
550 static int
551 process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
552                          struct perf_sample *sample)
553 {
554         c_state_end(sample->cpu, sample->time);
555         return 0;
556 }
557
558 static int
559 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
560                                struct perf_sample *sample)
561 {
562         struct power_entry_old *peo = sample->raw_data;
563
564         p_state_change(peo->cpu_id, sample->time, peo->value);
565         return 0;
566 }
567 #endif /* SUPPORT_OLD_POWER_EVENTS */
568
569 /*
570  * After the last sample we need to wrap up the current C/P state
571  * and close out each CPU for these.
572  */
573 static void end_sample_processing(void)
574 {
575         u64 cpu;
576         struct power_event *pwr;
577
578         for (cpu = 0; cpu <= numcpus; cpu++) {
579                 /* C state */
580 #if 0
581                 pwr = zalloc(sizeof(*pwr));
582                 if (!pwr)
583                         return;
584
585                 pwr->state = cpus_cstate_state[cpu];
586                 pwr->start_time = cpus_cstate_start_times[cpu];
587                 pwr->end_time = last_time;
588                 pwr->cpu = cpu;
589                 pwr->type = CSTATE;
590                 pwr->next = power_events;
591
592                 power_events = pwr;
593 #endif
594                 /* P state */
595
596                 pwr = zalloc(sizeof(*pwr));
597                 if (!pwr)
598                         return;
599
600                 pwr->state = cpus_pstate_state[cpu];
601                 pwr->start_time = cpus_pstate_start_times[cpu];
602                 pwr->end_time = last_time;
603                 pwr->cpu = cpu;
604                 pwr->type = PSTATE;
605                 pwr->next = power_events;
606
607                 if (!pwr->start_time)
608                         pwr->start_time = first_time;
609                 if (!pwr->state)
610                         pwr->state = min_freq;
611                 power_events = pwr;
612         }
613 }
614
615 /*
616  * Sort the pid datastructure
617  */
618 static void sort_pids(void)
619 {
620         struct per_pid *new_list, *p, *cursor, *prev;
621         /* sort by ppid first, then by pid, lowest to highest */
622
623         new_list = NULL;
624
625         while (all_data) {
626                 p = all_data;
627                 all_data = p->next;
628                 p->next = NULL;
629
630                 if (new_list == NULL) {
631                         new_list = p;
632                         p->next = NULL;
633                         continue;
634                 }
635                 prev = NULL;
636                 cursor = new_list;
637                 while (cursor) {
638                         if (cursor->ppid > p->ppid ||
639                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
640                                 /* must insert before */
641                                 if (prev) {
642                                         p->next = prev->next;
643                                         prev->next = p;
644                                         cursor = NULL;
645                                         continue;
646                                 } else {
647                                         p->next = new_list;
648                                         new_list = p;
649                                         cursor = NULL;
650                                         continue;
651                                 }
652                         }
653
654                         prev = cursor;
655                         cursor = cursor->next;
656                         if (!cursor)
657                                 prev->next = p;
658                 }
659         }
660         all_data = new_list;
661 }
662
663
664 static void draw_c_p_states(void)
665 {
666         struct power_event *pwr;
667         pwr = power_events;
668
669         /*
670          * two pass drawing so that the P state bars are on top of the C state blocks
671          */
672         while (pwr) {
673                 if (pwr->type == CSTATE)
674                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
675                 pwr = pwr->next;
676         }
677
678         pwr = power_events;
679         while (pwr) {
680                 if (pwr->type == PSTATE) {
681                         if (!pwr->state)
682                                 pwr->state = min_freq;
683                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
684                 }
685                 pwr = pwr->next;
686         }
687 }
688
689 static void draw_wakeups(void)
690 {
691         struct wake_event *we;
692         struct per_pid *p;
693         struct per_pidcomm *c;
694
695         we = wake_events;
696         while (we) {
697                 int from = 0, to = 0;
698                 char *task_from = NULL, *task_to = NULL;
699
700                 /* locate the column of the waker and wakee */
701                 p = all_data;
702                 while (p) {
703                         if (p->pid == we->waker || p->pid == we->wakee) {
704                                 c = p->all;
705                                 while (c) {
706                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
707                                                 if (p->pid == we->waker && !from) {
708                                                         from = c->Y;
709                                                         task_from = strdup(c->comm);
710                                                 }
711                                                 if (p->pid == we->wakee && !to) {
712                                                         to = c->Y;
713                                                         task_to = strdup(c->comm);
714                                                 }
715                                         }
716                                         c = c->next;
717                                 }
718                                 c = p->all;
719                                 while (c) {
720                                         if (p->pid == we->waker && !from) {
721                                                 from = c->Y;
722                                                 task_from = strdup(c->comm);
723                                         }
724                                         if (p->pid == we->wakee && !to) {
725                                                 to = c->Y;
726                                                 task_to = strdup(c->comm);
727                                         }
728                                         c = c->next;
729                                 }
730                         }
731                         p = p->next;
732                 }
733
734                 if (!task_from) {
735                         task_from = malloc(40);
736                         sprintf(task_from, "[%i]", we->waker);
737                 }
738                 if (!task_to) {
739                         task_to = malloc(40);
740                         sprintf(task_to, "[%i]", we->wakee);
741                 }
742
743                 if (we->waker == -1)
744                         svg_interrupt(we->time, to);
745                 else if (from && to && abs(from - to) == 1)
746                         svg_wakeline(we->time, from, to);
747                 else
748                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
749                 we = we->next;
750
751                 free(task_from);
752                 free(task_to);
753         }
754 }
755
756 static void draw_cpu_usage(void)
757 {
758         struct per_pid *p;
759         struct per_pidcomm *c;
760         struct cpu_sample *sample;
761         p = all_data;
762         while (p) {
763                 c = p->all;
764                 while (c) {
765                         sample = c->samples;
766                         while (sample) {
767                                 if (sample->type == TYPE_RUNNING)
768                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
769
770                                 sample = sample->next;
771                         }
772                         c = c->next;
773                 }
774                 p = p->next;
775         }
776 }
777
778 static void draw_process_bars(void)
779 {
780         struct per_pid *p;
781         struct per_pidcomm *c;
782         struct cpu_sample *sample;
783         int Y = 0;
784
785         Y = 2 * numcpus + 2;
786
787         p = all_data;
788         while (p) {
789                 c = p->all;
790                 while (c) {
791                         if (!c->display) {
792                                 c->Y = 0;
793                                 c = c->next;
794                                 continue;
795                         }
796
797                         svg_box(Y, c->start_time, c->end_time, "process");
798                         sample = c->samples;
799                         while (sample) {
800                                 if (sample->type == TYPE_RUNNING)
801                                         svg_running(Y, sample->cpu, sample->start_time, sample->end_time);
802                                 if (sample->type == TYPE_BLOCKED)
803                                         svg_blocked(Y, sample->cpu, sample->start_time, sample->end_time);
804                                 if (sample->type == TYPE_WAITING)
805                                         svg_waiting(Y, sample->cpu, sample->start_time, sample->end_time);
806                                 sample = sample->next;
807                         }
808
809                         if (c->comm) {
810                                 char comm[256];
811                                 if (c->total_time > 5000000000) /* 5 seconds */
812                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
813                                 else
814                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
815
816                                 svg_text(Y, c->start_time, comm);
817                         }
818                         c->Y = Y;
819                         Y++;
820                         c = c->next;
821                 }
822                 p = p->next;
823         }
824 }
825
826 static void add_process_filter(const char *string)
827 {
828         int pid = strtoull(string, NULL, 10);
829         struct process_filter *filt = malloc(sizeof(*filt));
830
831         if (!filt)
832                 return;
833
834         filt->name = strdup(string);
835         filt->pid  = pid;
836         filt->next = process_filter;
837
838         process_filter = filt;
839 }
840
841 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
842 {
843         struct process_filter *filt;
844         if (!process_filter)
845                 return 1;
846
847         filt = process_filter;
848         while (filt) {
849                 if (filt->pid && p->pid == filt->pid)
850                         return 1;
851                 if (strcmp(filt->name, c->comm) == 0)
852                         return 1;
853                 filt = filt->next;
854         }
855         return 0;
856 }
857
858 static int determine_display_tasks_filtered(void)
859 {
860         struct per_pid *p;
861         struct per_pidcomm *c;
862         int count = 0;
863
864         p = all_data;
865         while (p) {
866                 p->display = 0;
867                 if (p->start_time == 1)
868                         p->start_time = first_time;
869
870                 /* no exit marker, task kept running to the end */
871                 if (p->end_time == 0)
872                         p->end_time = last_time;
873
874                 c = p->all;
875
876                 while (c) {
877                         c->display = 0;
878
879                         if (c->start_time == 1)
880                                 c->start_time = first_time;
881
882                         if (passes_filter(p, c)) {
883                                 c->display = 1;
884                                 p->display = 1;
885                                 count++;
886                         }
887
888                         if (c->end_time == 0)
889                                 c->end_time = last_time;
890
891                         c = c->next;
892                 }
893                 p = p->next;
894         }
895         return count;
896 }
897
898 static int determine_display_tasks(u64 threshold)
899 {
900         struct per_pid *p;
901         struct per_pidcomm *c;
902         int count = 0;
903
904         if (process_filter)
905                 return determine_display_tasks_filtered();
906
907         p = all_data;
908         while (p) {
909                 p->display = 0;
910                 if (p->start_time == 1)
911                         p->start_time = first_time;
912
913                 /* no exit marker, task kept running to the end */
914                 if (p->end_time == 0)
915                         p->end_time = last_time;
916                 if (p->total_time >= threshold)
917                         p->display = 1;
918
919                 c = p->all;
920
921                 while (c) {
922                         c->display = 0;
923
924                         if (c->start_time == 1)
925                                 c->start_time = first_time;
926
927                         if (c->total_time >= threshold) {
928                                 c->display = 1;
929                                 count++;
930                         }
931
932                         if (c->end_time == 0)
933                                 c->end_time = last_time;
934
935                         c = c->next;
936                 }
937                 p = p->next;
938         }
939         return count;
940 }
941
942
943
944 #define TIME_THRESH 10000000
945
946 static void write_svg_file(const char *filename)
947 {
948         u64 i;
949         int count;
950         int thresh = TIME_THRESH;
951
952         numcpus++;
953
954         if (power_only)
955                 proc_num = 0;
956
957         /* We'd like to show at least proc_num tasks;
958          * be less picky if we have fewer */
959         do {
960                 count = determine_display_tasks(thresh);
961                 thresh /= 10;
962         } while (!process_filter && thresh && count < proc_num);
963
964         open_svg(filename, numcpus, count, first_time, last_time);
965
966         svg_time_grid();
967         svg_legenda();
968
969         for (i = 0; i < numcpus; i++)
970                 svg_cpu_box(i, max_freq, turbo_frequency);
971
972         draw_cpu_usage();
973         if (proc_num)
974                 draw_process_bars();
975         if (!tasks_only)
976                 draw_c_p_states();
977         if (proc_num)
978                 draw_wakeups();
979
980         svg_close();
981 }
982
983 static int __cmd_timechart(const char *output_name)
984 {
985         struct perf_tool perf_timechart = {
986                 .comm            = process_comm_event,
987                 .fork            = process_fork_event,
988                 .exit            = process_exit_event,
989                 .sample          = process_sample_event,
990                 .ordered_samples = true,
991         };
992         const struct perf_evsel_str_handler power_tracepoints[] = {
993                 { "power:cpu_idle",             process_sample_cpu_idle },
994                 { "power:cpu_frequency",        process_sample_cpu_frequency },
995                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
996                 { "sched:sched_switch",         process_sample_sched_switch },
997 #ifdef SUPPORT_OLD_POWER_EVENTS
998                 { "power:power_start",          process_sample_power_start },
999                 { "power:power_end",            process_sample_power_end },
1000                 { "power:power_frequency",      process_sample_power_frequency },
1001 #endif
1002         };
1003         struct perf_data_file file = {
1004                 .path = input_name,
1005                 .mode = PERF_DATA_MODE_READ,
1006         };
1007
1008         struct perf_session *session = perf_session__new(&file, false,
1009                                                          &perf_timechart);
1010         int ret = -EINVAL;
1011
1012         if (session == NULL)
1013                 return -ENOMEM;
1014
1015         if (!perf_session__has_traces(session, "timechart record"))
1016                 goto out_delete;
1017
1018         if (perf_session__set_tracepoints_handlers(session,
1019                                                    power_tracepoints)) {
1020                 pr_err("Initializing session tracepoint handlers failed\n");
1021                 goto out_delete;
1022         }
1023
1024         ret = perf_session__process_events(session, &perf_timechart);
1025         if (ret)
1026                 goto out_delete;
1027
1028         end_sample_processing();
1029
1030         sort_pids();
1031
1032         write_svg_file(output_name);
1033
1034         pr_info("Written %2.1f seconds of trace to %s.\n",
1035                 (last_time - first_time) / 1000000000.0, output_name);
1036 out_delete:
1037         perf_session__delete(session);
1038         return ret;
1039 }
1040
1041 static int __cmd_record(int argc, const char **argv)
1042 {
1043 #ifdef SUPPORT_OLD_POWER_EVENTS
1044         const char * const record_old_args[] = {
1045                 "record", "-a", "-R", "-c", "1",
1046                 "-e", "power:power_start",
1047                 "-e", "power:power_end",
1048                 "-e", "power:power_frequency",
1049                 "-e", "sched:sched_wakeup",
1050                 "-e", "sched:sched_switch",
1051         };
1052 #endif
1053         const char * const record_new_args[] = {
1054                 "record", "-a", "-R", "-c", "1",
1055                 "-e", "power:cpu_frequency",
1056                 "-e", "power:cpu_idle",
1057                 "-e", "sched:sched_wakeup",
1058                 "-e", "sched:sched_switch",
1059         };
1060         unsigned int rec_argc, i, j;
1061         const char **rec_argv;
1062         const char * const *record_args = record_new_args;
1063         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1064
1065 #ifdef SUPPORT_OLD_POWER_EVENTS
1066         if (!is_valid_tracepoint("power:cpu_idle") &&
1067             is_valid_tracepoint("power:power_start")) {
1068                 use_old_power_events = 1;
1069                 record_args = record_old_args;
1070                 record_elems = ARRAY_SIZE(record_old_args);
1071         }
1072 #endif
1073
1074         rec_argc = record_elems + argc - 1;
1075         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1076
1077         if (rec_argv == NULL)
1078                 return -ENOMEM;
1079
1080         for (i = 0; i < record_elems; i++)
1081                 rec_argv[i] = strdup(record_args[i]);
1082
1083         for (j = 1; j < (unsigned int)argc; j++, i++)
1084                 rec_argv[i] = argv[j];
1085
1086         return cmd_record(i, rec_argv, NULL);
1087 }
1088
1089 static int
1090 parse_process(const struct option *opt __maybe_unused, const char *arg,
1091               int __maybe_unused unset)
1092 {
1093         if (arg)
1094                 add_process_filter(arg);
1095         return 0;
1096 }
1097
1098 int cmd_timechart(int argc, const char **argv,
1099                   const char *prefix __maybe_unused)
1100 {
1101         const char *output_name = "output.svg";
1102         const struct option options[] = {
1103         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1104         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1105         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1106         OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1107         OPT_BOOLEAN('T', "tasks-only", &tasks_only,
1108                     "output processes data only"),
1109         OPT_CALLBACK('p', "process", NULL, "process",
1110                       "process selector. Pass a pid or process name.",
1111                        parse_process),
1112         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1113                     "Look for files with symbols relative to this directory"),
1114         OPT_INTEGER('n', "proc-num", &proc_num,
1115                     "min. number of tasks to print"),
1116         OPT_END()
1117         };
1118         const char * const timechart_usage[] = {
1119                 "perf timechart [<options>] {record}",
1120                 NULL
1121         };
1122
1123         argc = parse_options(argc, argv, options, timechart_usage,
1124                         PARSE_OPT_STOP_AT_NON_OPTION);
1125
1126         if (power_only && tasks_only) {
1127                 pr_err("-P and -T options cannot be used at the same time.\n");
1128                 return -1;
1129         }
1130
1131         symbol__init();
1132
1133         if (argc && !strncmp(argv[0], "rec", 3))
1134                 return __cmd_record(argc, argv);
1135         else if (argc)
1136                 usage_with_options(timechart_usage, options);
1137
1138         setup_pager();
1139
1140         return __cmd_timechart(output_name);
1141 }