92e5235f537763e5fa215c6f8c7ace0dfffe47cd
[firefly-linux-kernel-4.4.55.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 #include "trace-event.h"
27
28 static struct {
29         bool sample_id_all;
30         bool exclude_guest;
31         bool mmap2;
32         bool cloexec;
33 } perf_missing_features;
34
35 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
36
37 int __perf_evsel__sample_size(u64 sample_type)
38 {
39         u64 mask = sample_type & PERF_SAMPLE_MASK;
40         int size = 0;
41         int i;
42
43         for (i = 0; i < 64; i++) {
44                 if (mask & (1ULL << i))
45                         size++;
46         }
47
48         size *= sizeof(u64);
49
50         return size;
51 }
52
53 /**
54  * __perf_evsel__calc_id_pos - calculate id_pos.
55  * @sample_type: sample type
56  *
57  * This function returns the position of the event id (PERF_SAMPLE_ID or
58  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
59  * sample_event.
60  */
61 static int __perf_evsel__calc_id_pos(u64 sample_type)
62 {
63         int idx = 0;
64
65         if (sample_type & PERF_SAMPLE_IDENTIFIER)
66                 return 0;
67
68         if (!(sample_type & PERF_SAMPLE_ID))
69                 return -1;
70
71         if (sample_type & PERF_SAMPLE_IP)
72                 idx += 1;
73
74         if (sample_type & PERF_SAMPLE_TID)
75                 idx += 1;
76
77         if (sample_type & PERF_SAMPLE_TIME)
78                 idx += 1;
79
80         if (sample_type & PERF_SAMPLE_ADDR)
81                 idx += 1;
82
83         return idx;
84 }
85
86 /**
87  * __perf_evsel__calc_is_pos - calculate is_pos.
88  * @sample_type: sample type
89  *
90  * This function returns the position (counting backwards) of the event id
91  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
92  * sample_id_all is used there is an id sample appended to non-sample events.
93  */
94 static int __perf_evsel__calc_is_pos(u64 sample_type)
95 {
96         int idx = 1;
97
98         if (sample_type & PERF_SAMPLE_IDENTIFIER)
99                 return 1;
100
101         if (!(sample_type & PERF_SAMPLE_ID))
102                 return -1;
103
104         if (sample_type & PERF_SAMPLE_CPU)
105                 idx += 1;
106
107         if (sample_type & PERF_SAMPLE_STREAM_ID)
108                 idx += 1;
109
110         return idx;
111 }
112
113 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
114 {
115         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
116         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
117 }
118
119 void hists__init(struct hists *hists)
120 {
121         memset(hists, 0, sizeof(*hists));
122         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
123         hists->entries_in = &hists->entries_in_array[0];
124         hists->entries_collapsed = RB_ROOT;
125         hists->entries = RB_ROOT;
126         pthread_mutex_init(&hists->lock, NULL);
127 }
128
129 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
130                                   enum perf_event_sample_format bit)
131 {
132         if (!(evsel->attr.sample_type & bit)) {
133                 evsel->attr.sample_type |= bit;
134                 evsel->sample_size += sizeof(u64);
135                 perf_evsel__calc_id_pos(evsel);
136         }
137 }
138
139 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
140                                     enum perf_event_sample_format bit)
141 {
142         if (evsel->attr.sample_type & bit) {
143                 evsel->attr.sample_type &= ~bit;
144                 evsel->sample_size -= sizeof(u64);
145                 perf_evsel__calc_id_pos(evsel);
146         }
147 }
148
149 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
150                                bool can_sample_identifier)
151 {
152         if (can_sample_identifier) {
153                 perf_evsel__reset_sample_bit(evsel, ID);
154                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
155         } else {
156                 perf_evsel__set_sample_bit(evsel, ID);
157         }
158         evsel->attr.read_format |= PERF_FORMAT_ID;
159 }
160
161 void perf_evsel__init(struct perf_evsel *evsel,
162                       struct perf_event_attr *attr, int idx)
163 {
164         evsel->idx         = idx;
165         evsel->attr        = *attr;
166         evsel->leader      = evsel;
167         evsel->unit        = "";
168         evsel->scale       = 1.0;
169         INIT_LIST_HEAD(&evsel->node);
170         hists__init(&evsel->hists);
171         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
172         perf_evsel__calc_id_pos(evsel);
173 }
174
175 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
176 {
177         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
178
179         if (evsel != NULL)
180                 perf_evsel__init(evsel, attr, idx);
181
182         return evsel;
183 }
184
185 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
186 {
187         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
188
189         if (evsel != NULL) {
190                 struct perf_event_attr attr = {
191                         .type          = PERF_TYPE_TRACEPOINT,
192                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
193                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
194                 };
195
196                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
197                         goto out_free;
198
199                 evsel->tp_format = trace_event__tp_format(sys, name);
200                 if (evsel->tp_format == NULL)
201                         goto out_free;
202
203                 event_attr_init(&attr);
204                 attr.config = evsel->tp_format->id;
205                 attr.sample_period = 1;
206                 perf_evsel__init(evsel, &attr, idx);
207         }
208
209         return evsel;
210
211 out_free:
212         zfree(&evsel->name);
213         free(evsel);
214         return NULL;
215 }
216
217 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
218         "cycles",
219         "instructions",
220         "cache-references",
221         "cache-misses",
222         "branches",
223         "branch-misses",
224         "bus-cycles",
225         "stalled-cycles-frontend",
226         "stalled-cycles-backend",
227         "ref-cycles",
228 };
229
230 static const char *__perf_evsel__hw_name(u64 config)
231 {
232         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
233                 return perf_evsel__hw_names[config];
234
235         return "unknown-hardware";
236 }
237
238 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
239 {
240         int colon = 0, r = 0;
241         struct perf_event_attr *attr = &evsel->attr;
242         bool exclude_guest_default = false;
243
244 #define MOD_PRINT(context, mod) do {                                    \
245                 if (!attr->exclude_##context) {                         \
246                         if (!colon) colon = ++r;                        \
247                         r += scnprintf(bf + r, size - r, "%c", mod);    \
248                 } } while(0)
249
250         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
251                 MOD_PRINT(kernel, 'k');
252                 MOD_PRINT(user, 'u');
253                 MOD_PRINT(hv, 'h');
254                 exclude_guest_default = true;
255         }
256
257         if (attr->precise_ip) {
258                 if (!colon)
259                         colon = ++r;
260                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
261                 exclude_guest_default = true;
262         }
263
264         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
265                 MOD_PRINT(host, 'H');
266                 MOD_PRINT(guest, 'G');
267         }
268 #undef MOD_PRINT
269         if (colon)
270                 bf[colon - 1] = ':';
271         return r;
272 }
273
274 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
275 {
276         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
277         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
278 }
279
280 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
281         "cpu-clock",
282         "task-clock",
283         "page-faults",
284         "context-switches",
285         "cpu-migrations",
286         "minor-faults",
287         "major-faults",
288         "alignment-faults",
289         "emulation-faults",
290         "dummy",
291 };
292
293 static const char *__perf_evsel__sw_name(u64 config)
294 {
295         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
296                 return perf_evsel__sw_names[config];
297         return "unknown-software";
298 }
299
300 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
301 {
302         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
303         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
304 }
305
306 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
307 {
308         int r;
309
310         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
311
312         if (type & HW_BREAKPOINT_R)
313                 r += scnprintf(bf + r, size - r, "r");
314
315         if (type & HW_BREAKPOINT_W)
316                 r += scnprintf(bf + r, size - r, "w");
317
318         if (type & HW_BREAKPOINT_X)
319                 r += scnprintf(bf + r, size - r, "x");
320
321         return r;
322 }
323
324 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
325 {
326         struct perf_event_attr *attr = &evsel->attr;
327         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
328         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
329 }
330
331 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
332                                 [PERF_EVSEL__MAX_ALIASES] = {
333  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
334  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
335  { "LLC",       "L2",                                                   },
336  { "dTLB",      "d-tlb",        "Data-TLB",                             },
337  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
338  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
339  { "node",                                                              },
340 };
341
342 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
343                                    [PERF_EVSEL__MAX_ALIASES] = {
344  { "load",      "loads",        "read",                                 },
345  { "store",     "stores",       "write",                                },
346  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
347 };
348
349 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
350                                        [PERF_EVSEL__MAX_ALIASES] = {
351  { "refs",      "Reference",    "ops",          "access",               },
352  { "misses",    "miss",                                                 },
353 };
354
355 #define C(x)            PERF_COUNT_HW_CACHE_##x
356 #define CACHE_READ      (1 << C(OP_READ))
357 #define CACHE_WRITE     (1 << C(OP_WRITE))
358 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
359 #define COP(x)          (1 << x)
360
361 /*
362  * cache operartion stat
363  * L1I : Read and prefetch only
364  * ITLB and BPU : Read-only
365  */
366 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
367  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
368  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
369  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
370  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
371  [C(ITLB)]      = (CACHE_READ),
372  [C(BPU)]       = (CACHE_READ),
373  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
374 };
375
376 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
377 {
378         if (perf_evsel__hw_cache_stat[type] & COP(op))
379                 return true;    /* valid */
380         else
381                 return false;   /* invalid */
382 }
383
384 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
385                                             char *bf, size_t size)
386 {
387         if (result) {
388                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
389                                  perf_evsel__hw_cache_op[op][0],
390                                  perf_evsel__hw_cache_result[result][0]);
391         }
392
393         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
394                          perf_evsel__hw_cache_op[op][1]);
395 }
396
397 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
398 {
399         u8 op, result, type = (config >>  0) & 0xff;
400         const char *err = "unknown-ext-hardware-cache-type";
401
402         if (type > PERF_COUNT_HW_CACHE_MAX)
403                 goto out_err;
404
405         op = (config >>  8) & 0xff;
406         err = "unknown-ext-hardware-cache-op";
407         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
408                 goto out_err;
409
410         result = (config >> 16) & 0xff;
411         err = "unknown-ext-hardware-cache-result";
412         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
413                 goto out_err;
414
415         err = "invalid-cache";
416         if (!perf_evsel__is_cache_op_valid(type, op))
417                 goto out_err;
418
419         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
420 out_err:
421         return scnprintf(bf, size, "%s", err);
422 }
423
424 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
427         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
428 }
429
430 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
431 {
432         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
433         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
434 }
435
436 const char *perf_evsel__name(struct perf_evsel *evsel)
437 {
438         char bf[128];
439
440         if (evsel->name)
441                 return evsel->name;
442
443         switch (evsel->attr.type) {
444         case PERF_TYPE_RAW:
445                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
446                 break;
447
448         case PERF_TYPE_HARDWARE:
449                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
450                 break;
451
452         case PERF_TYPE_HW_CACHE:
453                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
454                 break;
455
456         case PERF_TYPE_SOFTWARE:
457                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
458                 break;
459
460         case PERF_TYPE_TRACEPOINT:
461                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
462                 break;
463
464         case PERF_TYPE_BREAKPOINT:
465                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
466                 break;
467
468         default:
469                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
470                           evsel->attr.type);
471                 break;
472         }
473
474         evsel->name = strdup(bf);
475
476         return evsel->name ?: "unknown";
477 }
478
479 const char *perf_evsel__group_name(struct perf_evsel *evsel)
480 {
481         return evsel->group_name ?: "anon group";
482 }
483
484 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
485 {
486         int ret;
487         struct perf_evsel *pos;
488         const char *group_name = perf_evsel__group_name(evsel);
489
490         ret = scnprintf(buf, size, "%s", group_name);
491
492         ret += scnprintf(buf + ret, size - ret, " { %s",
493                          perf_evsel__name(evsel));
494
495         for_each_group_member(pos, evsel)
496                 ret += scnprintf(buf + ret, size - ret, ", %s",
497                                  perf_evsel__name(pos));
498
499         ret += scnprintf(buf + ret, size - ret, " }");
500
501         return ret;
502 }
503
504 static void
505 perf_evsel__config_callgraph(struct perf_evsel *evsel,
506                              struct record_opts *opts)
507 {
508         bool function = perf_evsel__is_function_event(evsel);
509         struct perf_event_attr *attr = &evsel->attr;
510
511         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
512
513         if (opts->call_graph == CALLCHAIN_DWARF) {
514                 if (!function) {
515                         perf_evsel__set_sample_bit(evsel, REGS_USER);
516                         perf_evsel__set_sample_bit(evsel, STACK_USER);
517                         attr->sample_regs_user = PERF_REGS_MASK;
518                         attr->sample_stack_user = opts->stack_dump_size;
519                         attr->exclude_callchain_user = 1;
520                 } else {
521                         pr_info("Cannot use DWARF unwind for function trace event,"
522                                 " falling back to framepointers.\n");
523                 }
524         }
525
526         if (function) {
527                 pr_info("Disabling user space callchains for function trace event.\n");
528                 attr->exclude_callchain_user = 1;
529         }
530 }
531
532 /*
533  * The enable_on_exec/disabled value strategy:
534  *
535  *  1) For any type of traced program:
536  *    - all independent events and group leaders are disabled
537  *    - all group members are enabled
538  *
539  *     Group members are ruled by group leaders. They need to
540  *     be enabled, because the group scheduling relies on that.
541  *
542  *  2) For traced programs executed by perf:
543  *     - all independent events and group leaders have
544  *       enable_on_exec set
545  *     - we don't specifically enable or disable any event during
546  *       the record command
547  *
548  *     Independent events and group leaders are initially disabled
549  *     and get enabled by exec. Group members are ruled by group
550  *     leaders as stated in 1).
551  *
552  *  3) For traced programs attached by perf (pid/tid):
553  *     - we specifically enable or disable all events during
554  *       the record command
555  *
556  *     When attaching events to already running traced we
557  *     enable/disable events specifically, as there's no
558  *     initial traced exec call.
559  */
560 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
561 {
562         struct perf_evsel *leader = evsel->leader;
563         struct perf_event_attr *attr = &evsel->attr;
564         int track = !evsel->idx; /* only the first counter needs these */
565         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
566
567         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
568         attr->inherit       = !opts->no_inherit;
569
570         perf_evsel__set_sample_bit(evsel, IP);
571         perf_evsel__set_sample_bit(evsel, TID);
572
573         if (evsel->sample_read) {
574                 perf_evsel__set_sample_bit(evsel, READ);
575
576                 /*
577                  * We need ID even in case of single event, because
578                  * PERF_SAMPLE_READ process ID specific data.
579                  */
580                 perf_evsel__set_sample_id(evsel, false);
581
582                 /*
583                  * Apply group format only if we belong to group
584                  * with more than one members.
585                  */
586                 if (leader->nr_members > 1) {
587                         attr->read_format |= PERF_FORMAT_GROUP;
588                         attr->inherit = 0;
589                 }
590         }
591
592         /*
593          * We default some events to have a default interval. But keep
594          * it a weak assumption overridable by the user.
595          */
596         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
597                                      opts->user_interval != ULLONG_MAX)) {
598                 if (opts->freq) {
599                         perf_evsel__set_sample_bit(evsel, PERIOD);
600                         attr->freq              = 1;
601                         attr->sample_freq       = opts->freq;
602                 } else {
603                         attr->sample_period = opts->default_interval;
604                 }
605         }
606
607         /*
608          * Disable sampling for all group members other
609          * than leader in case leader 'leads' the sampling.
610          */
611         if ((leader != evsel) && leader->sample_read) {
612                 attr->sample_freq   = 0;
613                 attr->sample_period = 0;
614         }
615
616         if (opts->no_samples)
617                 attr->sample_freq = 0;
618
619         if (opts->inherit_stat)
620                 attr->inherit_stat = 1;
621
622         if (opts->sample_address) {
623                 perf_evsel__set_sample_bit(evsel, ADDR);
624                 attr->mmap_data = track;
625         }
626
627         if (opts->call_graph_enabled && !evsel->no_aux_samples)
628                 perf_evsel__config_callgraph(evsel, opts);
629
630         if (target__has_cpu(&opts->target))
631                 perf_evsel__set_sample_bit(evsel, CPU);
632
633         if (opts->period)
634                 perf_evsel__set_sample_bit(evsel, PERIOD);
635
636         /*
637          * When the user explicitely disabled time don't force it here.
638          */
639         if (opts->sample_time &&
640             (!perf_missing_features.sample_id_all &&
641             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
642                 perf_evsel__set_sample_bit(evsel, TIME);
643
644         if (opts->raw_samples && !evsel->no_aux_samples) {
645                 perf_evsel__set_sample_bit(evsel, TIME);
646                 perf_evsel__set_sample_bit(evsel, RAW);
647                 perf_evsel__set_sample_bit(evsel, CPU);
648         }
649
650         if (opts->sample_address)
651                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
652
653         if (opts->no_buffering) {
654                 attr->watermark = 0;
655                 attr->wakeup_events = 1;
656         }
657         if (opts->branch_stack && !evsel->no_aux_samples) {
658                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
659                 attr->branch_sample_type = opts->branch_stack;
660         }
661
662         if (opts->sample_weight)
663                 perf_evsel__set_sample_bit(evsel, WEIGHT);
664
665         attr->mmap  = track;
666         attr->mmap2 = track && !perf_missing_features.mmap2;
667         attr->comm  = track;
668
669         if (opts->sample_transaction)
670                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
671
672         /*
673          * XXX see the function comment above
674          *
675          * Disabling only independent events or group leaders,
676          * keeping group members enabled.
677          */
678         if (perf_evsel__is_group_leader(evsel))
679                 attr->disabled = 1;
680
681         /*
682          * Setting enable_on_exec for independent events and
683          * group leaders for traced executed by perf.
684          */
685         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
686                 !opts->initial_delay)
687                 attr->enable_on_exec = 1;
688
689         if (evsel->immediate) {
690                 attr->disabled = 0;
691                 attr->enable_on_exec = 0;
692         }
693 }
694
695 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
696 {
697         int cpu, thread;
698         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
699
700         if (evsel->fd) {
701                 for (cpu = 0; cpu < ncpus; cpu++) {
702                         for (thread = 0; thread < nthreads; thread++) {
703                                 FD(evsel, cpu, thread) = -1;
704                         }
705                 }
706         }
707
708         return evsel->fd != NULL ? 0 : -ENOMEM;
709 }
710
711 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
712                           int ioc,  void *arg)
713 {
714         int cpu, thread;
715
716         for (cpu = 0; cpu < ncpus; cpu++) {
717                 for (thread = 0; thread < nthreads; thread++) {
718                         int fd = FD(evsel, cpu, thread),
719                             err = ioctl(fd, ioc, arg);
720
721                         if (err)
722                                 return err;
723                 }
724         }
725
726         return 0;
727 }
728
729 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
730                            const char *filter)
731 {
732         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
733                                      PERF_EVENT_IOC_SET_FILTER,
734                                      (void *)filter);
735 }
736
737 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
738 {
739         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
740                                      PERF_EVENT_IOC_ENABLE,
741                                      0);
742 }
743
744 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
745 {
746         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
747         if (evsel->sample_id == NULL)
748                 return -ENOMEM;
749
750         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
751         if (evsel->id == NULL) {
752                 xyarray__delete(evsel->sample_id);
753                 evsel->sample_id = NULL;
754                 return -ENOMEM;
755         }
756
757         return 0;
758 }
759
760 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
761 {
762         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
763                                  (ncpus * sizeof(struct perf_counts_values))));
764 }
765
766 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
767 {
768         evsel->counts = zalloc((sizeof(*evsel->counts) +
769                                 (ncpus * sizeof(struct perf_counts_values))));
770         return evsel->counts != NULL ? 0 : -ENOMEM;
771 }
772
773 void perf_evsel__free_fd(struct perf_evsel *evsel)
774 {
775         xyarray__delete(evsel->fd);
776         evsel->fd = NULL;
777 }
778
779 void perf_evsel__free_id(struct perf_evsel *evsel)
780 {
781         xyarray__delete(evsel->sample_id);
782         evsel->sample_id = NULL;
783         zfree(&evsel->id);
784 }
785
786 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
787 {
788         int cpu, thread;
789
790         for (cpu = 0; cpu < ncpus; cpu++)
791                 for (thread = 0; thread < nthreads; ++thread) {
792                         close(FD(evsel, cpu, thread));
793                         FD(evsel, cpu, thread) = -1;
794                 }
795 }
796
797 void perf_evsel__free_counts(struct perf_evsel *evsel)
798 {
799         zfree(&evsel->counts);
800 }
801
802 void perf_evsel__exit(struct perf_evsel *evsel)
803 {
804         assert(list_empty(&evsel->node));
805         perf_evsel__free_fd(evsel);
806         perf_evsel__free_id(evsel);
807 }
808
809 void perf_evsel__delete(struct perf_evsel *evsel)
810 {
811         perf_evsel__exit(evsel);
812         close_cgroup(evsel->cgrp);
813         zfree(&evsel->group_name);
814         if (evsel->tp_format)
815                 pevent_free_format(evsel->tp_format);
816         zfree(&evsel->name);
817         free(evsel);
818 }
819
820 static inline void compute_deltas(struct perf_evsel *evsel,
821                                   int cpu,
822                                   struct perf_counts_values *count)
823 {
824         struct perf_counts_values tmp;
825
826         if (!evsel->prev_raw_counts)
827                 return;
828
829         if (cpu == -1) {
830                 tmp = evsel->prev_raw_counts->aggr;
831                 evsel->prev_raw_counts->aggr = *count;
832         } else {
833                 tmp = evsel->prev_raw_counts->cpu[cpu];
834                 evsel->prev_raw_counts->cpu[cpu] = *count;
835         }
836
837         count->val = count->val - tmp.val;
838         count->ena = count->ena - tmp.ena;
839         count->run = count->run - tmp.run;
840 }
841
842 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
843                               int cpu, int thread, bool scale)
844 {
845         struct perf_counts_values count;
846         size_t nv = scale ? 3 : 1;
847
848         if (FD(evsel, cpu, thread) < 0)
849                 return -EINVAL;
850
851         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
852                 return -ENOMEM;
853
854         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
855                 return -errno;
856
857         compute_deltas(evsel, cpu, &count);
858
859         if (scale) {
860                 if (count.run == 0)
861                         count.val = 0;
862                 else if (count.run < count.ena)
863                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
864         } else
865                 count.ena = count.run = 0;
866
867         evsel->counts->cpu[cpu] = count;
868         return 0;
869 }
870
871 int __perf_evsel__read(struct perf_evsel *evsel,
872                        int ncpus, int nthreads, bool scale)
873 {
874         size_t nv = scale ? 3 : 1;
875         int cpu, thread;
876         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
877
878         aggr->val = aggr->ena = aggr->run = 0;
879
880         for (cpu = 0; cpu < ncpus; cpu++) {
881                 for (thread = 0; thread < nthreads; thread++) {
882                         if (FD(evsel, cpu, thread) < 0)
883                                 continue;
884
885                         if (readn(FD(evsel, cpu, thread),
886                                   &count, nv * sizeof(u64)) < 0)
887                                 return -errno;
888
889                         aggr->val += count.val;
890                         if (scale) {
891                                 aggr->ena += count.ena;
892                                 aggr->run += count.run;
893                         }
894                 }
895         }
896
897         compute_deltas(evsel, -1, aggr);
898
899         evsel->counts->scaled = 0;
900         if (scale) {
901                 if (aggr->run == 0) {
902                         evsel->counts->scaled = -1;
903                         aggr->val = 0;
904                         return 0;
905                 }
906
907                 if (aggr->run < aggr->ena) {
908                         evsel->counts->scaled = 1;
909                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
910                 }
911         } else
912                 aggr->ena = aggr->run = 0;
913
914         return 0;
915 }
916
917 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
918 {
919         struct perf_evsel *leader = evsel->leader;
920         int fd;
921
922         if (perf_evsel__is_group_leader(evsel))
923                 return -1;
924
925         /*
926          * Leader must be already processed/open,
927          * if not it's a bug.
928          */
929         BUG_ON(!leader->fd);
930
931         fd = FD(leader, cpu, thread);
932         BUG_ON(fd == -1);
933
934         return fd;
935 }
936
937 #define __PRINT_ATTR(fmt, cast, field)  \
938         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
939
940 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
941 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
942 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
943 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
944
945 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
946         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
947         name1, attr->field1, name2, attr->field2)
948
949 #define PRINT_ATTR2(field1, field2) \
950         PRINT_ATTR2N(#field1, field1, #field2, field2)
951
952 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
953 {
954         size_t ret = 0;
955
956         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
957         ret += fprintf(fp, "perf_event_attr:\n");
958
959         ret += PRINT_ATTR_U32(type);
960         ret += PRINT_ATTR_U32(size);
961         ret += PRINT_ATTR_X64(config);
962         ret += PRINT_ATTR_U64(sample_period);
963         ret += PRINT_ATTR_U64(sample_freq);
964         ret += PRINT_ATTR_X64(sample_type);
965         ret += PRINT_ATTR_X64(read_format);
966
967         ret += PRINT_ATTR2(disabled, inherit);
968         ret += PRINT_ATTR2(pinned, exclusive);
969         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
970         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
971         ret += PRINT_ATTR2(mmap, comm);
972         ret += PRINT_ATTR2(mmap2, comm_exec);
973         ret += PRINT_ATTR2(freq, inherit_stat);
974         ret += PRINT_ATTR2(enable_on_exec, task);
975         ret += PRINT_ATTR2(watermark, precise_ip);
976         ret += PRINT_ATTR2(mmap_data, sample_id_all);
977         ret += PRINT_ATTR2(exclude_host, exclude_guest);
978         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
979                             "excl.callchain_user", exclude_callchain_user);
980
981         ret += PRINT_ATTR_U32(wakeup_events);
982         ret += PRINT_ATTR_U32(wakeup_watermark);
983         ret += PRINT_ATTR_X32(bp_type);
984         ret += PRINT_ATTR_X64(bp_addr);
985         ret += PRINT_ATTR_X64(config1);
986         ret += PRINT_ATTR_U64(bp_len);
987         ret += PRINT_ATTR_X64(config2);
988         ret += PRINT_ATTR_X64(branch_sample_type);
989         ret += PRINT_ATTR_X64(sample_regs_user);
990         ret += PRINT_ATTR_U32(sample_stack_user);
991
992         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
993
994         return ret;
995 }
996
997 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
998                               struct thread_map *threads)
999 {
1000         int cpu, thread;
1001         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1002         int pid = -1, err;
1003         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1004
1005         if (evsel->fd == NULL &&
1006             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1007                 return -ENOMEM;
1008
1009         if (evsel->cgrp) {
1010                 flags |= PERF_FLAG_PID_CGROUP;
1011                 pid = evsel->cgrp->fd;
1012         }
1013
1014 fallback_missing_features:
1015         if (perf_missing_features.cloexec)
1016                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1017         if (perf_missing_features.mmap2)
1018                 evsel->attr.mmap2 = 0;
1019         if (perf_missing_features.exclude_guest)
1020                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1021 retry_sample_id:
1022         if (perf_missing_features.sample_id_all)
1023                 evsel->attr.sample_id_all = 0;
1024
1025         if (verbose >= 2)
1026                 perf_event_attr__fprintf(&evsel->attr, stderr);
1027
1028         for (cpu = 0; cpu < cpus->nr; cpu++) {
1029
1030                 for (thread = 0; thread < threads->nr; thread++) {
1031                         int group_fd;
1032
1033                         if (!evsel->cgrp)
1034                                 pid = threads->map[thread];
1035
1036                         group_fd = get_group_fd(evsel, cpu, thread);
1037 retry_open:
1038                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1039                                   pid, cpus->map[cpu], group_fd, flags);
1040
1041                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1042                                                                      pid,
1043                                                                      cpus->map[cpu],
1044                                                                      group_fd, flags);
1045                         if (FD(evsel, cpu, thread) < 0) {
1046                                 err = -errno;
1047                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1048                                           err);
1049                                 goto try_fallback;
1050                         }
1051                         set_rlimit = NO_CHANGE;
1052                 }
1053         }
1054
1055         return 0;
1056
1057 try_fallback:
1058         /*
1059          * perf stat needs between 5 and 22 fds per CPU. When we run out
1060          * of them try to increase the limits.
1061          */
1062         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1063                 struct rlimit l;
1064                 int old_errno = errno;
1065
1066                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1067                         if (set_rlimit == NO_CHANGE)
1068                                 l.rlim_cur = l.rlim_max;
1069                         else {
1070                                 l.rlim_cur = l.rlim_max + 1000;
1071                                 l.rlim_max = l.rlim_cur;
1072                         }
1073                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1074                                 set_rlimit++;
1075                                 errno = old_errno;
1076                                 goto retry_open;
1077                         }
1078                 }
1079                 errno = old_errno;
1080         }
1081
1082         if (err != -EINVAL || cpu > 0 || thread > 0)
1083                 goto out_close;
1084
1085         if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1086                 perf_missing_features.cloexec = true;
1087                 goto fallback_missing_features;
1088         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1089                 perf_missing_features.mmap2 = true;
1090                 goto fallback_missing_features;
1091         } else if (!perf_missing_features.exclude_guest &&
1092                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1093                 perf_missing_features.exclude_guest = true;
1094                 goto fallback_missing_features;
1095         } else if (!perf_missing_features.sample_id_all) {
1096                 perf_missing_features.sample_id_all = true;
1097                 goto retry_sample_id;
1098         }
1099
1100 out_close:
1101         do {
1102                 while (--thread >= 0) {
1103                         close(FD(evsel, cpu, thread));
1104                         FD(evsel, cpu, thread) = -1;
1105                 }
1106                 thread = threads->nr;
1107         } while (--cpu >= 0);
1108         return err;
1109 }
1110
1111 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1112 {
1113         if (evsel->fd == NULL)
1114                 return;
1115
1116         perf_evsel__close_fd(evsel, ncpus, nthreads);
1117         perf_evsel__free_fd(evsel);
1118 }
1119
1120 static struct {
1121         struct cpu_map map;
1122         int cpus[1];
1123 } empty_cpu_map = {
1124         .map.nr = 1,
1125         .cpus   = { -1, },
1126 };
1127
1128 static struct {
1129         struct thread_map map;
1130         int threads[1];
1131 } empty_thread_map = {
1132         .map.nr  = 1,
1133         .threads = { -1, },
1134 };
1135
1136 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1137                      struct thread_map *threads)
1138 {
1139         if (cpus == NULL) {
1140                 /* Work around old compiler warnings about strict aliasing */
1141                 cpus = &empty_cpu_map.map;
1142         }
1143
1144         if (threads == NULL)
1145                 threads = &empty_thread_map.map;
1146
1147         return __perf_evsel__open(evsel, cpus, threads);
1148 }
1149
1150 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1151                              struct cpu_map *cpus)
1152 {
1153         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1154 }
1155
1156 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1157                                 struct thread_map *threads)
1158 {
1159         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1160 }
1161
1162 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1163                                        const union perf_event *event,
1164                                        struct perf_sample *sample)
1165 {
1166         u64 type = evsel->attr.sample_type;
1167         const u64 *array = event->sample.array;
1168         bool swapped = evsel->needs_swap;
1169         union u64_swap u;
1170
1171         array += ((event->header.size -
1172                    sizeof(event->header)) / sizeof(u64)) - 1;
1173
1174         if (type & PERF_SAMPLE_IDENTIFIER) {
1175                 sample->id = *array;
1176                 array--;
1177         }
1178
1179         if (type & PERF_SAMPLE_CPU) {
1180                 u.val64 = *array;
1181                 if (swapped) {
1182                         /* undo swap of u64, then swap on individual u32s */
1183                         u.val64 = bswap_64(u.val64);
1184                         u.val32[0] = bswap_32(u.val32[0]);
1185                 }
1186
1187                 sample->cpu = u.val32[0];
1188                 array--;
1189         }
1190
1191         if (type & PERF_SAMPLE_STREAM_ID) {
1192                 sample->stream_id = *array;
1193                 array--;
1194         }
1195
1196         if (type & PERF_SAMPLE_ID) {
1197                 sample->id = *array;
1198                 array--;
1199         }
1200
1201         if (type & PERF_SAMPLE_TIME) {
1202                 sample->time = *array;
1203                 array--;
1204         }
1205
1206         if (type & PERF_SAMPLE_TID) {
1207                 u.val64 = *array;
1208                 if (swapped) {
1209                         /* undo swap of u64, then swap on individual u32s */
1210                         u.val64 = bswap_64(u.val64);
1211                         u.val32[0] = bswap_32(u.val32[0]);
1212                         u.val32[1] = bswap_32(u.val32[1]);
1213                 }
1214
1215                 sample->pid = u.val32[0];
1216                 sample->tid = u.val32[1];
1217                 array--;
1218         }
1219
1220         return 0;
1221 }
1222
1223 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1224                             u64 size)
1225 {
1226         return size > max_size || offset + size > endp;
1227 }
1228
1229 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1230         do {                                                            \
1231                 if (overflow(endp, (max_size), (offset), (size)))       \
1232                         return -EFAULT;                                 \
1233         } while (0)
1234
1235 #define OVERFLOW_CHECK_u64(offset) \
1236         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1237
1238 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1239                              struct perf_sample *data)
1240 {
1241         u64 type = evsel->attr.sample_type;
1242         bool swapped = evsel->needs_swap;
1243         const u64 *array;
1244         u16 max_size = event->header.size;
1245         const void *endp = (void *)event + max_size;
1246         u64 sz;
1247
1248         /*
1249          * used for cross-endian analysis. See git commit 65014ab3
1250          * for why this goofiness is needed.
1251          */
1252         union u64_swap u;
1253
1254         memset(data, 0, sizeof(*data));
1255         data->cpu = data->pid = data->tid = -1;
1256         data->stream_id = data->id = data->time = -1ULL;
1257         data->period = evsel->attr.sample_period;
1258         data->weight = 0;
1259
1260         if (event->header.type != PERF_RECORD_SAMPLE) {
1261                 if (!evsel->attr.sample_id_all)
1262                         return 0;
1263                 return perf_evsel__parse_id_sample(evsel, event, data);
1264         }
1265
1266         array = event->sample.array;
1267
1268         /*
1269          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1270          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1271          * check the format does not go past the end of the event.
1272          */
1273         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1274                 return -EFAULT;
1275
1276         data->id = -1ULL;
1277         if (type & PERF_SAMPLE_IDENTIFIER) {
1278                 data->id = *array;
1279                 array++;
1280         }
1281
1282         if (type & PERF_SAMPLE_IP) {
1283                 data->ip = *array;
1284                 array++;
1285         }
1286
1287         if (type & PERF_SAMPLE_TID) {
1288                 u.val64 = *array;
1289                 if (swapped) {
1290                         /* undo swap of u64, then swap on individual u32s */
1291                         u.val64 = bswap_64(u.val64);
1292                         u.val32[0] = bswap_32(u.val32[0]);
1293                         u.val32[1] = bswap_32(u.val32[1]);
1294                 }
1295
1296                 data->pid = u.val32[0];
1297                 data->tid = u.val32[1];
1298                 array++;
1299         }
1300
1301         if (type & PERF_SAMPLE_TIME) {
1302                 data->time = *array;
1303                 array++;
1304         }
1305
1306         data->addr = 0;
1307         if (type & PERF_SAMPLE_ADDR) {
1308                 data->addr = *array;
1309                 array++;
1310         }
1311
1312         if (type & PERF_SAMPLE_ID) {
1313                 data->id = *array;
1314                 array++;
1315         }
1316
1317         if (type & PERF_SAMPLE_STREAM_ID) {
1318                 data->stream_id = *array;
1319                 array++;
1320         }
1321
1322         if (type & PERF_SAMPLE_CPU) {
1323
1324                 u.val64 = *array;
1325                 if (swapped) {
1326                         /* undo swap of u64, then swap on individual u32s */
1327                         u.val64 = bswap_64(u.val64);
1328                         u.val32[0] = bswap_32(u.val32[0]);
1329                 }
1330
1331                 data->cpu = u.val32[0];
1332                 array++;
1333         }
1334
1335         if (type & PERF_SAMPLE_PERIOD) {
1336                 data->period = *array;
1337                 array++;
1338         }
1339
1340         if (type & PERF_SAMPLE_READ) {
1341                 u64 read_format = evsel->attr.read_format;
1342
1343                 OVERFLOW_CHECK_u64(array);
1344                 if (read_format & PERF_FORMAT_GROUP)
1345                         data->read.group.nr = *array;
1346                 else
1347                         data->read.one.value = *array;
1348
1349                 array++;
1350
1351                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1352                         OVERFLOW_CHECK_u64(array);
1353                         data->read.time_enabled = *array;
1354                         array++;
1355                 }
1356
1357                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1358                         OVERFLOW_CHECK_u64(array);
1359                         data->read.time_running = *array;
1360                         array++;
1361                 }
1362
1363                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1364                 if (read_format & PERF_FORMAT_GROUP) {
1365                         const u64 max_group_nr = UINT64_MAX /
1366                                         sizeof(struct sample_read_value);
1367
1368                         if (data->read.group.nr > max_group_nr)
1369                                 return -EFAULT;
1370                         sz = data->read.group.nr *
1371                              sizeof(struct sample_read_value);
1372                         OVERFLOW_CHECK(array, sz, max_size);
1373                         data->read.group.values =
1374                                         (struct sample_read_value *)array;
1375                         array = (void *)array + sz;
1376                 } else {
1377                         OVERFLOW_CHECK_u64(array);
1378                         data->read.one.id = *array;
1379                         array++;
1380                 }
1381         }
1382
1383         if (type & PERF_SAMPLE_CALLCHAIN) {
1384                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1385
1386                 OVERFLOW_CHECK_u64(array);
1387                 data->callchain = (struct ip_callchain *)array++;
1388                 if (data->callchain->nr > max_callchain_nr)
1389                         return -EFAULT;
1390                 sz = data->callchain->nr * sizeof(u64);
1391                 OVERFLOW_CHECK(array, sz, max_size);
1392                 array = (void *)array + sz;
1393         }
1394
1395         if (type & PERF_SAMPLE_RAW) {
1396                 OVERFLOW_CHECK_u64(array);
1397                 u.val64 = *array;
1398                 if (WARN_ONCE(swapped,
1399                               "Endianness of raw data not corrected!\n")) {
1400                         /* undo swap of u64, then swap on individual u32s */
1401                         u.val64 = bswap_64(u.val64);
1402                         u.val32[0] = bswap_32(u.val32[0]);
1403                         u.val32[1] = bswap_32(u.val32[1]);
1404                 }
1405                 data->raw_size = u.val32[0];
1406                 array = (void *)array + sizeof(u32);
1407
1408                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1409                 data->raw_data = (void *)array;
1410                 array = (void *)array + data->raw_size;
1411         }
1412
1413         if (type & PERF_SAMPLE_BRANCH_STACK) {
1414                 const u64 max_branch_nr = UINT64_MAX /
1415                                           sizeof(struct branch_entry);
1416
1417                 OVERFLOW_CHECK_u64(array);
1418                 data->branch_stack = (struct branch_stack *)array++;
1419
1420                 if (data->branch_stack->nr > max_branch_nr)
1421                         return -EFAULT;
1422                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1423                 OVERFLOW_CHECK(array, sz, max_size);
1424                 array = (void *)array + sz;
1425         }
1426
1427         if (type & PERF_SAMPLE_REGS_USER) {
1428                 OVERFLOW_CHECK_u64(array);
1429                 data->user_regs.abi = *array;
1430                 array++;
1431
1432                 if (data->user_regs.abi) {
1433                         u64 mask = evsel->attr.sample_regs_user;
1434
1435                         sz = hweight_long(mask) * sizeof(u64);
1436                         OVERFLOW_CHECK(array, sz, max_size);
1437                         data->user_regs.mask = mask;
1438                         data->user_regs.regs = (u64 *)array;
1439                         array = (void *)array + sz;
1440                 }
1441         }
1442
1443         if (type & PERF_SAMPLE_STACK_USER) {
1444                 OVERFLOW_CHECK_u64(array);
1445                 sz = *array++;
1446
1447                 data->user_stack.offset = ((char *)(array - 1)
1448                                           - (char *) event);
1449
1450                 if (!sz) {
1451                         data->user_stack.size = 0;
1452                 } else {
1453                         OVERFLOW_CHECK(array, sz, max_size);
1454                         data->user_stack.data = (char *)array;
1455                         array = (void *)array + sz;
1456                         OVERFLOW_CHECK_u64(array);
1457                         data->user_stack.size = *array++;
1458                         if (WARN_ONCE(data->user_stack.size > sz,
1459                                       "user stack dump failure\n"))
1460                                 return -EFAULT;
1461                 }
1462         }
1463
1464         data->weight = 0;
1465         if (type & PERF_SAMPLE_WEIGHT) {
1466                 OVERFLOW_CHECK_u64(array);
1467                 data->weight = *array;
1468                 array++;
1469         }
1470
1471         data->data_src = PERF_MEM_DATA_SRC_NONE;
1472         if (type & PERF_SAMPLE_DATA_SRC) {
1473                 OVERFLOW_CHECK_u64(array);
1474                 data->data_src = *array;
1475                 array++;
1476         }
1477
1478         data->transaction = 0;
1479         if (type & PERF_SAMPLE_TRANSACTION) {
1480                 OVERFLOW_CHECK_u64(array);
1481                 data->transaction = *array;
1482                 array++;
1483         }
1484
1485         return 0;
1486 }
1487
1488 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1489                                      u64 read_format)
1490 {
1491         size_t sz, result = sizeof(struct sample_event);
1492
1493         if (type & PERF_SAMPLE_IDENTIFIER)
1494                 result += sizeof(u64);
1495
1496         if (type & PERF_SAMPLE_IP)
1497                 result += sizeof(u64);
1498
1499         if (type & PERF_SAMPLE_TID)
1500                 result += sizeof(u64);
1501
1502         if (type & PERF_SAMPLE_TIME)
1503                 result += sizeof(u64);
1504
1505         if (type & PERF_SAMPLE_ADDR)
1506                 result += sizeof(u64);
1507
1508         if (type & PERF_SAMPLE_ID)
1509                 result += sizeof(u64);
1510
1511         if (type & PERF_SAMPLE_STREAM_ID)
1512                 result += sizeof(u64);
1513
1514         if (type & PERF_SAMPLE_CPU)
1515                 result += sizeof(u64);
1516
1517         if (type & PERF_SAMPLE_PERIOD)
1518                 result += sizeof(u64);
1519
1520         if (type & PERF_SAMPLE_READ) {
1521                 result += sizeof(u64);
1522                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523                         result += sizeof(u64);
1524                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525                         result += sizeof(u64);
1526                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1527                 if (read_format & PERF_FORMAT_GROUP) {
1528                         sz = sample->read.group.nr *
1529                              sizeof(struct sample_read_value);
1530                         result += sz;
1531                 } else {
1532                         result += sizeof(u64);
1533                 }
1534         }
1535
1536         if (type & PERF_SAMPLE_CALLCHAIN) {
1537                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1538                 result += sz;
1539         }
1540
1541         if (type & PERF_SAMPLE_RAW) {
1542                 result += sizeof(u32);
1543                 result += sample->raw_size;
1544         }
1545
1546         if (type & PERF_SAMPLE_BRANCH_STACK) {
1547                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1548                 sz += sizeof(u64);
1549                 result += sz;
1550         }
1551
1552         if (type & PERF_SAMPLE_REGS_USER) {
1553                 if (sample->user_regs.abi) {
1554                         result += sizeof(u64);
1555                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1556                         result += sz;
1557                 } else {
1558                         result += sizeof(u64);
1559                 }
1560         }
1561
1562         if (type & PERF_SAMPLE_STACK_USER) {
1563                 sz = sample->user_stack.size;
1564                 result += sizeof(u64);
1565                 if (sz) {
1566                         result += sz;
1567                         result += sizeof(u64);
1568                 }
1569         }
1570
1571         if (type & PERF_SAMPLE_WEIGHT)
1572                 result += sizeof(u64);
1573
1574         if (type & PERF_SAMPLE_DATA_SRC)
1575                 result += sizeof(u64);
1576
1577         if (type & PERF_SAMPLE_TRANSACTION)
1578                 result += sizeof(u64);
1579
1580         return result;
1581 }
1582
1583 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1584                                   u64 read_format,
1585                                   const struct perf_sample *sample,
1586                                   bool swapped)
1587 {
1588         u64 *array;
1589         size_t sz;
1590         /*
1591          * used for cross-endian analysis. See git commit 65014ab3
1592          * for why this goofiness is needed.
1593          */
1594         union u64_swap u;
1595
1596         array = event->sample.array;
1597
1598         if (type & PERF_SAMPLE_IDENTIFIER) {
1599                 *array = sample->id;
1600                 array++;
1601         }
1602
1603         if (type & PERF_SAMPLE_IP) {
1604                 *array = sample->ip;
1605                 array++;
1606         }
1607
1608         if (type & PERF_SAMPLE_TID) {
1609                 u.val32[0] = sample->pid;
1610                 u.val32[1] = sample->tid;
1611                 if (swapped) {
1612                         /*
1613                          * Inverse of what is done in perf_evsel__parse_sample
1614                          */
1615                         u.val32[0] = bswap_32(u.val32[0]);
1616                         u.val32[1] = bswap_32(u.val32[1]);
1617                         u.val64 = bswap_64(u.val64);
1618                 }
1619
1620                 *array = u.val64;
1621                 array++;
1622         }
1623
1624         if (type & PERF_SAMPLE_TIME) {
1625                 *array = sample->time;
1626                 array++;
1627         }
1628
1629         if (type & PERF_SAMPLE_ADDR) {
1630                 *array = sample->addr;
1631                 array++;
1632         }
1633
1634         if (type & PERF_SAMPLE_ID) {
1635                 *array = sample->id;
1636                 array++;
1637         }
1638
1639         if (type & PERF_SAMPLE_STREAM_ID) {
1640                 *array = sample->stream_id;
1641                 array++;
1642         }
1643
1644         if (type & PERF_SAMPLE_CPU) {
1645                 u.val32[0] = sample->cpu;
1646                 if (swapped) {
1647                         /*
1648                          * Inverse of what is done in perf_evsel__parse_sample
1649                          */
1650                         u.val32[0] = bswap_32(u.val32[0]);
1651                         u.val64 = bswap_64(u.val64);
1652                 }
1653                 *array = u.val64;
1654                 array++;
1655         }
1656
1657         if (type & PERF_SAMPLE_PERIOD) {
1658                 *array = sample->period;
1659                 array++;
1660         }
1661
1662         if (type & PERF_SAMPLE_READ) {
1663                 if (read_format & PERF_FORMAT_GROUP)
1664                         *array = sample->read.group.nr;
1665                 else
1666                         *array = sample->read.one.value;
1667                 array++;
1668
1669                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1670                         *array = sample->read.time_enabled;
1671                         array++;
1672                 }
1673
1674                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1675                         *array = sample->read.time_running;
1676                         array++;
1677                 }
1678
1679                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1680                 if (read_format & PERF_FORMAT_GROUP) {
1681                         sz = sample->read.group.nr *
1682                              sizeof(struct sample_read_value);
1683                         memcpy(array, sample->read.group.values, sz);
1684                         array = (void *)array + sz;
1685                 } else {
1686                         *array = sample->read.one.id;
1687                         array++;
1688                 }
1689         }
1690
1691         if (type & PERF_SAMPLE_CALLCHAIN) {
1692                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1693                 memcpy(array, sample->callchain, sz);
1694                 array = (void *)array + sz;
1695         }
1696
1697         if (type & PERF_SAMPLE_RAW) {
1698                 u.val32[0] = sample->raw_size;
1699                 if (WARN_ONCE(swapped,
1700                               "Endianness of raw data not corrected!\n")) {
1701                         /*
1702                          * Inverse of what is done in perf_evsel__parse_sample
1703                          */
1704                         u.val32[0] = bswap_32(u.val32[0]);
1705                         u.val32[1] = bswap_32(u.val32[1]);
1706                         u.val64 = bswap_64(u.val64);
1707                 }
1708                 *array = u.val64;
1709                 array = (void *)array + sizeof(u32);
1710
1711                 memcpy(array, sample->raw_data, sample->raw_size);
1712                 array = (void *)array + sample->raw_size;
1713         }
1714
1715         if (type & PERF_SAMPLE_BRANCH_STACK) {
1716                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1717                 sz += sizeof(u64);
1718                 memcpy(array, sample->branch_stack, sz);
1719                 array = (void *)array + sz;
1720         }
1721
1722         if (type & PERF_SAMPLE_REGS_USER) {
1723                 if (sample->user_regs.abi) {
1724                         *array++ = sample->user_regs.abi;
1725                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1726                         memcpy(array, sample->user_regs.regs, sz);
1727                         array = (void *)array + sz;
1728                 } else {
1729                         *array++ = 0;
1730                 }
1731         }
1732
1733         if (type & PERF_SAMPLE_STACK_USER) {
1734                 sz = sample->user_stack.size;
1735                 *array++ = sz;
1736                 if (sz) {
1737                         memcpy(array, sample->user_stack.data, sz);
1738                         array = (void *)array + sz;
1739                         *array++ = sz;
1740                 }
1741         }
1742
1743         if (type & PERF_SAMPLE_WEIGHT) {
1744                 *array = sample->weight;
1745                 array++;
1746         }
1747
1748         if (type & PERF_SAMPLE_DATA_SRC) {
1749                 *array = sample->data_src;
1750                 array++;
1751         }
1752
1753         if (type & PERF_SAMPLE_TRANSACTION) {
1754                 *array = sample->transaction;
1755                 array++;
1756         }
1757
1758         return 0;
1759 }
1760
1761 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1762 {
1763         return pevent_find_field(evsel->tp_format, name);
1764 }
1765
1766 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1767                          const char *name)
1768 {
1769         struct format_field *field = perf_evsel__field(evsel, name);
1770         int offset;
1771
1772         if (!field)
1773                 return NULL;
1774
1775         offset = field->offset;
1776
1777         if (field->flags & FIELD_IS_DYNAMIC) {
1778                 offset = *(int *)(sample->raw_data + field->offset);
1779                 offset &= 0xffff;
1780         }
1781
1782         return sample->raw_data + offset;
1783 }
1784
1785 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1786                        const char *name)
1787 {
1788         struct format_field *field = perf_evsel__field(evsel, name);
1789         void *ptr;
1790         u64 value;
1791
1792         if (!field)
1793                 return 0;
1794
1795         ptr = sample->raw_data + field->offset;
1796
1797         switch (field->size) {
1798         case 1:
1799                 return *(u8 *)ptr;
1800         case 2:
1801                 value = *(u16 *)ptr;
1802                 break;
1803         case 4:
1804                 value = *(u32 *)ptr;
1805                 break;
1806         case 8:
1807                 value = *(u64 *)ptr;
1808                 break;
1809         default:
1810                 return 0;
1811         }
1812
1813         if (!evsel->needs_swap)
1814                 return value;
1815
1816         switch (field->size) {
1817         case 2:
1818                 return bswap_16(value);
1819         case 4:
1820                 return bswap_32(value);
1821         case 8:
1822                 return bswap_64(value);
1823         default:
1824                 return 0;
1825         }
1826
1827         return 0;
1828 }
1829
1830 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1831 {
1832         va_list args;
1833         int ret = 0;
1834
1835         if (!*first) {
1836                 ret += fprintf(fp, ",");
1837         } else {
1838                 ret += fprintf(fp, ":");
1839                 *first = false;
1840         }
1841
1842         va_start(args, fmt);
1843         ret += vfprintf(fp, fmt, args);
1844         va_end(args);
1845         return ret;
1846 }
1847
1848 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1849 {
1850         if (value == 0)
1851                 return 0;
1852
1853         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1854 }
1855
1856 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1857
1858 struct bit_names {
1859         int bit;
1860         const char *name;
1861 };
1862
1863 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1864                          struct bit_names *bits, bool *first)
1865 {
1866         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1867         bool first_bit = true;
1868
1869         do {
1870                 if (value & bits[i].bit) {
1871                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1872                         first_bit = false;
1873                 }
1874         } while (bits[++i].name != NULL);
1875
1876         return printed;
1877 }
1878
1879 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1880 {
1881 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1882         struct bit_names bits[] = {
1883                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1884                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1885                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1886                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1887                 bit_name(IDENTIFIER),
1888                 { .name = NULL, }
1889         };
1890 #undef bit_name
1891         return bits__fprintf(fp, "sample_type", value, bits, first);
1892 }
1893
1894 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1895 {
1896 #define bit_name(n) { PERF_FORMAT_##n, #n }
1897         struct bit_names bits[] = {
1898                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1899                 bit_name(ID), bit_name(GROUP),
1900                 { .name = NULL, }
1901         };
1902 #undef bit_name
1903         return bits__fprintf(fp, "read_format", value, bits, first);
1904 }
1905
1906 int perf_evsel__fprintf(struct perf_evsel *evsel,
1907                         struct perf_attr_details *details, FILE *fp)
1908 {
1909         bool first = true;
1910         int printed = 0;
1911
1912         if (details->event_group) {
1913                 struct perf_evsel *pos;
1914
1915                 if (!perf_evsel__is_group_leader(evsel))
1916                         return 0;
1917
1918                 if (evsel->nr_members > 1)
1919                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1920
1921                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1922                 for_each_group_member(pos, evsel)
1923                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1924
1925                 if (evsel->nr_members > 1)
1926                         printed += fprintf(fp, "}");
1927                 goto out;
1928         }
1929
1930         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1931
1932         if (details->verbose || details->freq) {
1933                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1934                                          (u64)evsel->attr.sample_freq);
1935         }
1936
1937         if (details->verbose) {
1938                 if_print(type);
1939                 if_print(config);
1940                 if_print(config1);
1941                 if_print(config2);
1942                 if_print(size);
1943                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1944                 if (evsel->attr.read_format)
1945                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1946                 if_print(disabled);
1947                 if_print(inherit);
1948                 if_print(pinned);
1949                 if_print(exclusive);
1950                 if_print(exclude_user);
1951                 if_print(exclude_kernel);
1952                 if_print(exclude_hv);
1953                 if_print(exclude_idle);
1954                 if_print(mmap);
1955                 if_print(mmap2);
1956                 if_print(comm);
1957                 if_print(comm_exec);
1958                 if_print(freq);
1959                 if_print(inherit_stat);
1960                 if_print(enable_on_exec);
1961                 if_print(task);
1962                 if_print(watermark);
1963                 if_print(precise_ip);
1964                 if_print(mmap_data);
1965                 if_print(sample_id_all);
1966                 if_print(exclude_host);
1967                 if_print(exclude_guest);
1968                 if_print(__reserved_1);
1969                 if_print(wakeup_events);
1970                 if_print(bp_type);
1971                 if_print(branch_sample_type);
1972         }
1973 out:
1974         fputc('\n', fp);
1975         return ++printed;
1976 }
1977
1978 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1979                           char *msg, size_t msgsize)
1980 {
1981         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1982             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1983             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1984                 /*
1985                  * If it's cycles then fall back to hrtimer based
1986                  * cpu-clock-tick sw counter, which is always available even if
1987                  * no PMU support.
1988                  *
1989                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1990                  * b0a873e).
1991                  */
1992                 scnprintf(msg, msgsize, "%s",
1993 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1994
1995                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1996                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1997
1998                 zfree(&evsel->name);
1999                 return true;
2000         }
2001
2002         return false;
2003 }
2004
2005 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2006                               int err, char *msg, size_t size)
2007 {
2008         switch (err) {
2009         case EPERM:
2010         case EACCES:
2011                 return scnprintf(msg, size,
2012                  "You may not have permission to collect %sstats.\n"
2013                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2014                  " -1 - Not paranoid at all\n"
2015                  "  0 - Disallow raw tracepoint access for unpriv\n"
2016                  "  1 - Disallow cpu events for unpriv\n"
2017                  "  2 - Disallow kernel profiling for unpriv",
2018                                  target->system_wide ? "system-wide " : "");
2019         case ENOENT:
2020                 return scnprintf(msg, size, "The %s event is not supported.",
2021                                  perf_evsel__name(evsel));
2022         case EMFILE:
2023                 return scnprintf(msg, size, "%s",
2024                          "Too many events are opened.\n"
2025                          "Try again after reducing the number of events.");
2026         case ENODEV:
2027                 if (target->cpu_list)
2028                         return scnprintf(msg, size, "%s",
2029          "No such device - did you specify an out-of-range profile CPU?\n");
2030                 break;
2031         case EOPNOTSUPP:
2032                 if (evsel->attr.precise_ip)
2033                         return scnprintf(msg, size, "%s",
2034         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2035 #if defined(__i386__) || defined(__x86_64__)
2036                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2037                         return scnprintf(msg, size, "%s",
2038         "No hardware sampling interrupt available.\n"
2039         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2040 #endif
2041                 break;
2042         default:
2043                 break;
2044         }
2045
2046         return scnprintf(msg, size,
2047         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2048         "/bin/dmesg may provide additional information.\n"
2049         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2050                          err, strerror(err), perf_evsel__name(evsel));
2051 }