dad64926170f492d4dbb21630ea3d57070182d2d
[firefly-linux-kernel-4.4.55.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28         bool sample_id_all;
29         bool exclude_guest;
30         bool mmap2;
31 } perf_missing_features;
32
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37         u64 mask = sample_type & PERF_SAMPLE_MASK;
38         int size = 0;
39         int i;
40
41         for (i = 0; i < 64; i++) {
42                 if (mask & (1ULL << i))
43                         size++;
44         }
45
46         size *= sizeof(u64);
47
48         return size;
49 }
50
51 /**
52  * __perf_evsel__calc_id_pos - calculate id_pos.
53  * @sample_type: sample type
54  *
55  * This function returns the position of the event id (PERF_SAMPLE_ID or
56  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57  * sample_event.
58  */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61         int idx = 0;
62
63         if (sample_type & PERF_SAMPLE_IDENTIFIER)
64                 return 0;
65
66         if (!(sample_type & PERF_SAMPLE_ID))
67                 return -1;
68
69         if (sample_type & PERF_SAMPLE_IP)
70                 idx += 1;
71
72         if (sample_type & PERF_SAMPLE_TID)
73                 idx += 1;
74
75         if (sample_type & PERF_SAMPLE_TIME)
76                 idx += 1;
77
78         if (sample_type & PERF_SAMPLE_ADDR)
79                 idx += 1;
80
81         return idx;
82 }
83
84 /**
85  * __perf_evsel__calc_is_pos - calculate is_pos.
86  * @sample_type: sample type
87  *
88  * This function returns the position (counting backwards) of the event id
89  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90  * sample_id_all is used there is an id sample appended to non-sample events.
91  */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94         int idx = 1;
95
96         if (sample_type & PERF_SAMPLE_IDENTIFIER)
97                 return 1;
98
99         if (!(sample_type & PERF_SAMPLE_ID))
100                 return -1;
101
102         if (sample_type & PERF_SAMPLE_CPU)
103                 idx += 1;
104
105         if (sample_type & PERF_SAMPLE_STREAM_ID)
106                 idx += 1;
107
108         return idx;
109 }
110
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116
117 void hists__init(struct hists *hists)
118 {
119         memset(hists, 0, sizeof(*hists));
120         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121         hists->entries_in = &hists->entries_in_array[0];
122         hists->entries_collapsed = RB_ROOT;
123         hists->entries = RB_ROOT;
124         pthread_mutex_init(&hists->lock, NULL);
125 }
126
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128                                   enum perf_event_sample_format bit)
129 {
130         if (!(evsel->attr.sample_type & bit)) {
131                 evsel->attr.sample_type |= bit;
132                 evsel->sample_size += sizeof(u64);
133                 perf_evsel__calc_id_pos(evsel);
134         }
135 }
136
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138                                     enum perf_event_sample_format bit)
139 {
140         if (evsel->attr.sample_type & bit) {
141                 evsel->attr.sample_type &= ~bit;
142                 evsel->sample_size -= sizeof(u64);
143                 perf_evsel__calc_id_pos(evsel);
144         }
145 }
146
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148                                bool can_sample_identifier)
149 {
150         if (can_sample_identifier) {
151                 perf_evsel__reset_sample_bit(evsel, ID);
152                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153         } else {
154                 perf_evsel__set_sample_bit(evsel, ID);
155         }
156         evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158
159 void perf_evsel__init(struct perf_evsel *evsel,
160                       struct perf_event_attr *attr, int idx)
161 {
162         evsel->idx         = idx;
163         evsel->attr        = *attr;
164         evsel->leader      = evsel;
165         evsel->unit        = "";
166         evsel->scale       = 1.0;
167         INIT_LIST_HEAD(&evsel->node);
168         hists__init(&evsel->hists);
169         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
170         perf_evsel__calc_id_pos(evsel);
171 }
172
173 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
174 {
175         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
176
177         if (evsel != NULL)
178                 perf_evsel__init(evsel, attr, idx);
179
180         return evsel;
181 }
182
183 struct event_format *event_format__new(const char *sys, const char *name)
184 {
185         int fd, n;
186         char *filename;
187         void *bf = NULL, *nbf;
188         size_t size = 0, alloc_size = 0;
189         struct event_format *format = NULL;
190
191         if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
192                 goto out;
193
194         fd = open(filename, O_RDONLY);
195         if (fd < 0)
196                 goto out_free_filename;
197
198         do {
199                 if (size == alloc_size) {
200                         alloc_size += BUFSIZ;
201                         nbf = realloc(bf, alloc_size);
202                         if (nbf == NULL)
203                                 goto out_free_bf;
204                         bf = nbf;
205                 }
206
207                 n = read(fd, bf + size, alloc_size - size);
208                 if (n < 0)
209                         goto out_free_bf;
210                 size += n;
211         } while (n > 0);
212
213         pevent_parse_format(&format, bf, size, sys);
214
215 out_free_bf:
216         free(bf);
217         close(fd);
218 out_free_filename:
219         free(filename);
220 out:
221         return format;
222 }
223
224 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
225 {
226         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
227
228         if (evsel != NULL) {
229                 struct perf_event_attr attr = {
230                         .type          = PERF_TYPE_TRACEPOINT,
231                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
232                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
233                 };
234
235                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
236                         goto out_free;
237
238                 evsel->tp_format = event_format__new(sys, name);
239                 if (evsel->tp_format == NULL)
240                         goto out_free;
241
242                 event_attr_init(&attr);
243                 attr.config = evsel->tp_format->id;
244                 attr.sample_period = 1;
245                 perf_evsel__init(evsel, &attr, idx);
246         }
247
248         return evsel;
249
250 out_free:
251         free(evsel->name);
252         free(evsel);
253         return NULL;
254 }
255
256 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
257         "cycles",
258         "instructions",
259         "cache-references",
260         "cache-misses",
261         "branches",
262         "branch-misses",
263         "bus-cycles",
264         "stalled-cycles-frontend",
265         "stalled-cycles-backend",
266         "ref-cycles",
267 };
268
269 static const char *__perf_evsel__hw_name(u64 config)
270 {
271         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
272                 return perf_evsel__hw_names[config];
273
274         return "unknown-hardware";
275 }
276
277 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
278 {
279         int colon = 0, r = 0;
280         struct perf_event_attr *attr = &evsel->attr;
281         bool exclude_guest_default = false;
282
283 #define MOD_PRINT(context, mod) do {                                    \
284                 if (!attr->exclude_##context) {                         \
285                         if (!colon) colon = ++r;                        \
286                         r += scnprintf(bf + r, size - r, "%c", mod);    \
287                 } } while(0)
288
289         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
290                 MOD_PRINT(kernel, 'k');
291                 MOD_PRINT(user, 'u');
292                 MOD_PRINT(hv, 'h');
293                 exclude_guest_default = true;
294         }
295
296         if (attr->precise_ip) {
297                 if (!colon)
298                         colon = ++r;
299                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
300                 exclude_guest_default = true;
301         }
302
303         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
304                 MOD_PRINT(host, 'H');
305                 MOD_PRINT(guest, 'G');
306         }
307 #undef MOD_PRINT
308         if (colon)
309                 bf[colon - 1] = ':';
310         return r;
311 }
312
313 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
314 {
315         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
316         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
317 }
318
319 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
320         "cpu-clock",
321         "task-clock",
322         "page-faults",
323         "context-switches",
324         "cpu-migrations",
325         "minor-faults",
326         "major-faults",
327         "alignment-faults",
328         "emulation-faults",
329         "dummy",
330 };
331
332 static const char *__perf_evsel__sw_name(u64 config)
333 {
334         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
335                 return perf_evsel__sw_names[config];
336         return "unknown-software";
337 }
338
339 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
340 {
341         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
342         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
343 }
344
345 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
346 {
347         int r;
348
349         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
350
351         if (type & HW_BREAKPOINT_R)
352                 r += scnprintf(bf + r, size - r, "r");
353
354         if (type & HW_BREAKPOINT_W)
355                 r += scnprintf(bf + r, size - r, "w");
356
357         if (type & HW_BREAKPOINT_X)
358                 r += scnprintf(bf + r, size - r, "x");
359
360         return r;
361 }
362
363 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
364 {
365         struct perf_event_attr *attr = &evsel->attr;
366         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
367         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
368 }
369
370 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
371                                 [PERF_EVSEL__MAX_ALIASES] = {
372  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
373  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
374  { "LLC",       "L2",                                                   },
375  { "dTLB",      "d-tlb",        "Data-TLB",                             },
376  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
377  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
378  { "node",                                                              },
379 };
380
381 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
382                                    [PERF_EVSEL__MAX_ALIASES] = {
383  { "load",      "loads",        "read",                                 },
384  { "store",     "stores",       "write",                                },
385  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
386 };
387
388 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
389                                        [PERF_EVSEL__MAX_ALIASES] = {
390  { "refs",      "Reference",    "ops",          "access",               },
391  { "misses",    "miss",                                                 },
392 };
393
394 #define C(x)            PERF_COUNT_HW_CACHE_##x
395 #define CACHE_READ      (1 << C(OP_READ))
396 #define CACHE_WRITE     (1 << C(OP_WRITE))
397 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
398 #define COP(x)          (1 << x)
399
400 /*
401  * cache operartion stat
402  * L1I : Read and prefetch only
403  * ITLB and BPU : Read-only
404  */
405 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
406  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
408  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410  [C(ITLB)]      = (CACHE_READ),
411  [C(BPU)]       = (CACHE_READ),
412  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413 };
414
415 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
416 {
417         if (perf_evsel__hw_cache_stat[type] & COP(op))
418                 return true;    /* valid */
419         else
420                 return false;   /* invalid */
421 }
422
423 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
424                                             char *bf, size_t size)
425 {
426         if (result) {
427                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
428                                  perf_evsel__hw_cache_op[op][0],
429                                  perf_evsel__hw_cache_result[result][0]);
430         }
431
432         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
433                          perf_evsel__hw_cache_op[op][1]);
434 }
435
436 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
437 {
438         u8 op, result, type = (config >>  0) & 0xff;
439         const char *err = "unknown-ext-hardware-cache-type";
440
441         if (type > PERF_COUNT_HW_CACHE_MAX)
442                 goto out_err;
443
444         op = (config >>  8) & 0xff;
445         err = "unknown-ext-hardware-cache-op";
446         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
447                 goto out_err;
448
449         result = (config >> 16) & 0xff;
450         err = "unknown-ext-hardware-cache-result";
451         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
452                 goto out_err;
453
454         err = "invalid-cache";
455         if (!perf_evsel__is_cache_op_valid(type, op))
456                 goto out_err;
457
458         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
459 out_err:
460         return scnprintf(bf, size, "%s", err);
461 }
462
463 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
464 {
465         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
466         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
467 }
468
469 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
470 {
471         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
472         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
473 }
474
475 const char *perf_evsel__name(struct perf_evsel *evsel)
476 {
477         char bf[128];
478
479         if (evsel->name)
480                 return evsel->name;
481
482         switch (evsel->attr.type) {
483         case PERF_TYPE_RAW:
484                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HARDWARE:
488                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_HW_CACHE:
492                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_SOFTWARE:
496                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
497                 break;
498
499         case PERF_TYPE_TRACEPOINT:
500                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
501                 break;
502
503         case PERF_TYPE_BREAKPOINT:
504                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
505                 break;
506
507         default:
508                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
509                           evsel->attr.type);
510                 break;
511         }
512
513         evsel->name = strdup(bf);
514
515         return evsel->name ?: "unknown";
516 }
517
518 const char *perf_evsel__group_name(struct perf_evsel *evsel)
519 {
520         return evsel->group_name ?: "anon group";
521 }
522
523 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
524 {
525         int ret;
526         struct perf_evsel *pos;
527         const char *group_name = perf_evsel__group_name(evsel);
528
529         ret = scnprintf(buf, size, "%s", group_name);
530
531         ret += scnprintf(buf + ret, size - ret, " { %s",
532                          perf_evsel__name(evsel));
533
534         for_each_group_member(pos, evsel)
535                 ret += scnprintf(buf + ret, size - ret, ", %s",
536                                  perf_evsel__name(pos));
537
538         ret += scnprintf(buf + ret, size - ret, " }");
539
540         return ret;
541 }
542
543 /*
544  * The enable_on_exec/disabled value strategy:
545  *
546  *  1) For any type of traced program:
547  *    - all independent events and group leaders are disabled
548  *    - all group members are enabled
549  *
550  *     Group members are ruled by group leaders. They need to
551  *     be enabled, because the group scheduling relies on that.
552  *
553  *  2) For traced programs executed by perf:
554  *     - all independent events and group leaders have
555  *       enable_on_exec set
556  *     - we don't specifically enable or disable any event during
557  *       the record command
558  *
559  *     Independent events and group leaders are initially disabled
560  *     and get enabled by exec. Group members are ruled by group
561  *     leaders as stated in 1).
562  *
563  *  3) For traced programs attached by perf (pid/tid):
564  *     - we specifically enable or disable all events during
565  *       the record command
566  *
567  *     When attaching events to already running traced we
568  *     enable/disable events specifically, as there's no
569  *     initial traced exec call.
570  */
571 void perf_evsel__config(struct perf_evsel *evsel,
572                         struct perf_record_opts *opts)
573 {
574         struct perf_evsel *leader = evsel->leader;
575         struct perf_event_attr *attr = &evsel->attr;
576         int track = !evsel->idx; /* only the first counter needs these */
577
578         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
579         attr->inherit       = !opts->no_inherit;
580
581         perf_evsel__set_sample_bit(evsel, IP);
582         perf_evsel__set_sample_bit(evsel, TID);
583
584         if (evsel->sample_read) {
585                 perf_evsel__set_sample_bit(evsel, READ);
586
587                 /*
588                  * We need ID even in case of single event, because
589                  * PERF_SAMPLE_READ process ID specific data.
590                  */
591                 perf_evsel__set_sample_id(evsel, false);
592
593                 /*
594                  * Apply group format only if we belong to group
595                  * with more than one members.
596                  */
597                 if (leader->nr_members > 1) {
598                         attr->read_format |= PERF_FORMAT_GROUP;
599                         attr->inherit = 0;
600                 }
601         }
602
603         /*
604          * We default some events to a 1 default interval. But keep
605          * it a weak assumption overridable by the user.
606          */
607         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
608                                      opts->user_interval != ULLONG_MAX)) {
609                 if (opts->freq) {
610                         perf_evsel__set_sample_bit(evsel, PERIOD);
611                         attr->freq              = 1;
612                         attr->sample_freq       = opts->freq;
613                 } else {
614                         attr->sample_period = opts->default_interval;
615                 }
616         }
617
618         /*
619          * Disable sampling for all group members other
620          * than leader in case leader 'leads' the sampling.
621          */
622         if ((leader != evsel) && leader->sample_read) {
623                 attr->sample_freq   = 0;
624                 attr->sample_period = 0;
625         }
626
627         if (opts->no_samples)
628                 attr->sample_freq = 0;
629
630         if (opts->inherit_stat)
631                 attr->inherit_stat = 1;
632
633         if (opts->sample_address) {
634                 perf_evsel__set_sample_bit(evsel, ADDR);
635                 attr->mmap_data = track;
636         }
637
638         if (opts->call_graph) {
639                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
640
641                 if (opts->call_graph == CALLCHAIN_DWARF) {
642                         perf_evsel__set_sample_bit(evsel, REGS_USER);
643                         perf_evsel__set_sample_bit(evsel, STACK_USER);
644                         attr->sample_regs_user = PERF_REGS_MASK;
645                         attr->sample_stack_user = opts->stack_dump_size;
646                         attr->exclude_callchain_user = 1;
647                 }
648         }
649
650         if (target__has_cpu(&opts->target) || opts->target.force_per_cpu)
651                 perf_evsel__set_sample_bit(evsel, CPU);
652
653         if (opts->period)
654                 perf_evsel__set_sample_bit(evsel, PERIOD);
655
656         if (!perf_missing_features.sample_id_all &&
657             (opts->sample_time || !opts->no_inherit ||
658              target__has_cpu(&opts->target) || opts->target.force_per_cpu))
659                 perf_evsel__set_sample_bit(evsel, TIME);
660
661         if (opts->raw_samples) {
662                 perf_evsel__set_sample_bit(evsel, TIME);
663                 perf_evsel__set_sample_bit(evsel, RAW);
664                 perf_evsel__set_sample_bit(evsel, CPU);
665         }
666
667         if (opts->sample_address)
668                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
669
670         if (opts->no_delay) {
671                 attr->watermark = 0;
672                 attr->wakeup_events = 1;
673         }
674         if (opts->branch_stack) {
675                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
676                 attr->branch_sample_type = opts->branch_stack;
677         }
678
679         if (opts->sample_weight)
680                 perf_evsel__set_sample_bit(evsel, WEIGHT);
681
682         attr->mmap  = track;
683         attr->comm  = track;
684
685         if (opts->sample_transaction)
686                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
687
688         /*
689          * XXX see the function comment above
690          *
691          * Disabling only independent events or group leaders,
692          * keeping group members enabled.
693          */
694         if (perf_evsel__is_group_leader(evsel))
695                 attr->disabled = 1;
696
697         /*
698          * Setting enable_on_exec for independent events and
699          * group leaders for traced executed by perf.
700          */
701         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
702                 attr->enable_on_exec = 1;
703 }
704
705 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
706 {
707         int cpu, thread;
708         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
709
710         if (evsel->fd) {
711                 for (cpu = 0; cpu < ncpus; cpu++) {
712                         for (thread = 0; thread < nthreads; thread++) {
713                                 FD(evsel, cpu, thread) = -1;
714                         }
715                 }
716         }
717
718         return evsel->fd != NULL ? 0 : -ENOMEM;
719 }
720
721 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
722                           int ioc,  void *arg)
723 {
724         int cpu, thread;
725
726         for (cpu = 0; cpu < ncpus; cpu++) {
727                 for (thread = 0; thread < nthreads; thread++) {
728                         int fd = FD(evsel, cpu, thread),
729                             err = ioctl(fd, ioc, arg);
730
731                         if (err)
732                                 return err;
733                 }
734         }
735
736         return 0;
737 }
738
739 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
740                            const char *filter)
741 {
742         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
743                                      PERF_EVENT_IOC_SET_FILTER,
744                                      (void *)filter);
745 }
746
747 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
748 {
749         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
750                                      PERF_EVENT_IOC_ENABLE,
751                                      0);
752 }
753
754 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
755 {
756         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
757         if (evsel->sample_id == NULL)
758                 return -ENOMEM;
759
760         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
761         if (evsel->id == NULL) {
762                 xyarray__delete(evsel->sample_id);
763                 evsel->sample_id = NULL;
764                 return -ENOMEM;
765         }
766
767         return 0;
768 }
769
770 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
771 {
772         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
773                                  (ncpus * sizeof(struct perf_counts_values))));
774 }
775
776 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
777 {
778         evsel->counts = zalloc((sizeof(*evsel->counts) +
779                                 (ncpus * sizeof(struct perf_counts_values))));
780         return evsel->counts != NULL ? 0 : -ENOMEM;
781 }
782
783 void perf_evsel__free_fd(struct perf_evsel *evsel)
784 {
785         xyarray__delete(evsel->fd);
786         evsel->fd = NULL;
787 }
788
789 void perf_evsel__free_id(struct perf_evsel *evsel)
790 {
791         xyarray__delete(evsel->sample_id);
792         evsel->sample_id = NULL;
793         free(evsel->id);
794         evsel->id = NULL;
795 }
796
797 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
798 {
799         int cpu, thread;
800
801         for (cpu = 0; cpu < ncpus; cpu++)
802                 for (thread = 0; thread < nthreads; ++thread) {
803                         close(FD(evsel, cpu, thread));
804                         FD(evsel, cpu, thread) = -1;
805                 }
806 }
807
808 void perf_evsel__free_counts(struct perf_evsel *evsel)
809 {
810         free(evsel->counts);
811 }
812
813 void perf_evsel__exit(struct perf_evsel *evsel)
814 {
815         assert(list_empty(&evsel->node));
816         perf_evsel__free_fd(evsel);
817         perf_evsel__free_id(evsel);
818 }
819
820 void perf_evsel__delete(struct perf_evsel *evsel)
821 {
822         perf_evsel__exit(evsel);
823         close_cgroup(evsel->cgrp);
824         free(evsel->group_name);
825         if (evsel->tp_format)
826                 pevent_free_format(evsel->tp_format);
827         free(evsel->name);
828         free(evsel);
829 }
830
831 static inline void compute_deltas(struct perf_evsel *evsel,
832                                   int cpu,
833                                   struct perf_counts_values *count)
834 {
835         struct perf_counts_values tmp;
836
837         if (!evsel->prev_raw_counts)
838                 return;
839
840         if (cpu == -1) {
841                 tmp = evsel->prev_raw_counts->aggr;
842                 evsel->prev_raw_counts->aggr = *count;
843         } else {
844                 tmp = evsel->prev_raw_counts->cpu[cpu];
845                 evsel->prev_raw_counts->cpu[cpu] = *count;
846         }
847
848         count->val = count->val - tmp.val;
849         count->ena = count->ena - tmp.ena;
850         count->run = count->run - tmp.run;
851 }
852
853 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
854                               int cpu, int thread, bool scale)
855 {
856         struct perf_counts_values count;
857         size_t nv = scale ? 3 : 1;
858
859         if (FD(evsel, cpu, thread) < 0)
860                 return -EINVAL;
861
862         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
863                 return -ENOMEM;
864
865         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
866                 return -errno;
867
868         compute_deltas(evsel, cpu, &count);
869
870         if (scale) {
871                 if (count.run == 0)
872                         count.val = 0;
873                 else if (count.run < count.ena)
874                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
875         } else
876                 count.ena = count.run = 0;
877
878         evsel->counts->cpu[cpu] = count;
879         return 0;
880 }
881
882 int __perf_evsel__read(struct perf_evsel *evsel,
883                        int ncpus, int nthreads, bool scale)
884 {
885         size_t nv = scale ? 3 : 1;
886         int cpu, thread;
887         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
888
889         aggr->val = aggr->ena = aggr->run = 0;
890
891         for (cpu = 0; cpu < ncpus; cpu++) {
892                 for (thread = 0; thread < nthreads; thread++) {
893                         if (FD(evsel, cpu, thread) < 0)
894                                 continue;
895
896                         if (readn(FD(evsel, cpu, thread),
897                                   &count, nv * sizeof(u64)) < 0)
898                                 return -errno;
899
900                         aggr->val += count.val;
901                         if (scale) {
902                                 aggr->ena += count.ena;
903                                 aggr->run += count.run;
904                         }
905                 }
906         }
907
908         compute_deltas(evsel, -1, aggr);
909
910         evsel->counts->scaled = 0;
911         if (scale) {
912                 if (aggr->run == 0) {
913                         evsel->counts->scaled = -1;
914                         aggr->val = 0;
915                         return 0;
916                 }
917
918                 if (aggr->run < aggr->ena) {
919                         evsel->counts->scaled = 1;
920                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
921                 }
922         } else
923                 aggr->ena = aggr->run = 0;
924
925         return 0;
926 }
927
928 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
929 {
930         struct perf_evsel *leader = evsel->leader;
931         int fd;
932
933         if (perf_evsel__is_group_leader(evsel))
934                 return -1;
935
936         /*
937          * Leader must be already processed/open,
938          * if not it's a bug.
939          */
940         BUG_ON(!leader->fd);
941
942         fd = FD(leader, cpu, thread);
943         BUG_ON(fd == -1);
944
945         return fd;
946 }
947
948 #define __PRINT_ATTR(fmt, cast, field)  \
949         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
950
951 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
952 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
953 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
954 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
955
956 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
957         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
958         name1, attr->field1, name2, attr->field2)
959
960 #define PRINT_ATTR2(field1, field2) \
961         PRINT_ATTR2N(#field1, field1, #field2, field2)
962
963 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
964 {
965         size_t ret = 0;
966
967         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
968         ret += fprintf(fp, "perf_event_attr:\n");
969
970         ret += PRINT_ATTR_U32(type);
971         ret += PRINT_ATTR_U32(size);
972         ret += PRINT_ATTR_X64(config);
973         ret += PRINT_ATTR_U64(sample_period);
974         ret += PRINT_ATTR_U64(sample_freq);
975         ret += PRINT_ATTR_X64(sample_type);
976         ret += PRINT_ATTR_X64(read_format);
977
978         ret += PRINT_ATTR2(disabled, inherit);
979         ret += PRINT_ATTR2(pinned, exclusive);
980         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
981         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
982         ret += PRINT_ATTR2(mmap, comm);
983         ret += PRINT_ATTR2(freq, inherit_stat);
984         ret += PRINT_ATTR2(enable_on_exec, task);
985         ret += PRINT_ATTR2(watermark, precise_ip);
986         ret += PRINT_ATTR2(mmap_data, sample_id_all);
987         ret += PRINT_ATTR2(exclude_host, exclude_guest);
988         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
989                             "excl.callchain_user", exclude_callchain_user);
990         ret += PRINT_ATTR_U32(mmap2);
991
992         ret += PRINT_ATTR_U32(wakeup_events);
993         ret += PRINT_ATTR_U32(wakeup_watermark);
994         ret += PRINT_ATTR_X32(bp_type);
995         ret += PRINT_ATTR_X64(bp_addr);
996         ret += PRINT_ATTR_X64(config1);
997         ret += PRINT_ATTR_U64(bp_len);
998         ret += PRINT_ATTR_X64(config2);
999         ret += PRINT_ATTR_X64(branch_sample_type);
1000         ret += PRINT_ATTR_X64(sample_regs_user);
1001         ret += PRINT_ATTR_U32(sample_stack_user);
1002
1003         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1004
1005         return ret;
1006 }
1007
1008 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1009                               struct thread_map *threads)
1010 {
1011         int cpu, thread;
1012         unsigned long flags = 0;
1013         int pid = -1, err;
1014         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1015
1016         if (evsel->fd == NULL &&
1017             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1018                 return -ENOMEM;
1019
1020         if (evsel->cgrp) {
1021                 flags = PERF_FLAG_PID_CGROUP;
1022                 pid = evsel->cgrp->fd;
1023         }
1024
1025 fallback_missing_features:
1026         if (perf_missing_features.mmap2)
1027                 evsel->attr.mmap2 = 0;
1028         if (perf_missing_features.exclude_guest)
1029                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1030 retry_sample_id:
1031         if (perf_missing_features.sample_id_all)
1032                 evsel->attr.sample_id_all = 0;
1033
1034         if (verbose >= 2)
1035                 perf_event_attr__fprintf(&evsel->attr, stderr);
1036
1037         for (cpu = 0; cpu < cpus->nr; cpu++) {
1038
1039                 for (thread = 0; thread < threads->nr; thread++) {
1040                         int group_fd;
1041
1042                         if (!evsel->cgrp)
1043                                 pid = threads->map[thread];
1044
1045                         group_fd = get_group_fd(evsel, cpu, thread);
1046 retry_open:
1047                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1048                                   pid, cpus->map[cpu], group_fd, flags);
1049
1050                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1051                                                                      pid,
1052                                                                      cpus->map[cpu],
1053                                                                      group_fd, flags);
1054                         if (FD(evsel, cpu, thread) < 0) {
1055                                 err = -errno;
1056                                 pr_debug2("perf_event_open failed, error %d\n",
1057                                           err);
1058                                 goto try_fallback;
1059                         }
1060                         set_rlimit = NO_CHANGE;
1061                 }
1062         }
1063
1064         return 0;
1065
1066 try_fallback:
1067         /*
1068          * perf stat needs between 5 and 22 fds per CPU. When we run out
1069          * of them try to increase the limits.
1070          */
1071         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1072                 struct rlimit l;
1073                 int old_errno = errno;
1074
1075                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1076                         if (set_rlimit == NO_CHANGE)
1077                                 l.rlim_cur = l.rlim_max;
1078                         else {
1079                                 l.rlim_cur = l.rlim_max + 1000;
1080                                 l.rlim_max = l.rlim_cur;
1081                         }
1082                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1083                                 set_rlimit++;
1084                                 errno = old_errno;
1085                                 goto retry_open;
1086                         }
1087                 }
1088                 errno = old_errno;
1089         }
1090
1091         if (err != -EINVAL || cpu > 0 || thread > 0)
1092                 goto out_close;
1093
1094         if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1095                 perf_missing_features.mmap2 = true;
1096                 goto fallback_missing_features;
1097         } else if (!perf_missing_features.exclude_guest &&
1098                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1099                 perf_missing_features.exclude_guest = true;
1100                 goto fallback_missing_features;
1101         } else if (!perf_missing_features.sample_id_all) {
1102                 perf_missing_features.sample_id_all = true;
1103                 goto retry_sample_id;
1104         }
1105
1106 out_close:
1107         do {
1108                 while (--thread >= 0) {
1109                         close(FD(evsel, cpu, thread));
1110                         FD(evsel, cpu, thread) = -1;
1111                 }
1112                 thread = threads->nr;
1113         } while (--cpu >= 0);
1114         return err;
1115 }
1116
1117 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1118 {
1119         if (evsel->fd == NULL)
1120                 return;
1121
1122         perf_evsel__close_fd(evsel, ncpus, nthreads);
1123         perf_evsel__free_fd(evsel);
1124         evsel->fd = NULL;
1125 }
1126
1127 static struct {
1128         struct cpu_map map;
1129         int cpus[1];
1130 } empty_cpu_map = {
1131         .map.nr = 1,
1132         .cpus   = { -1, },
1133 };
1134
1135 static struct {
1136         struct thread_map map;
1137         int threads[1];
1138 } empty_thread_map = {
1139         .map.nr  = 1,
1140         .threads = { -1, },
1141 };
1142
1143 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1144                      struct thread_map *threads)
1145 {
1146         if (cpus == NULL) {
1147                 /* Work around old compiler warnings about strict aliasing */
1148                 cpus = &empty_cpu_map.map;
1149         }
1150
1151         if (threads == NULL)
1152                 threads = &empty_thread_map.map;
1153
1154         return __perf_evsel__open(evsel, cpus, threads);
1155 }
1156
1157 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1158                              struct cpu_map *cpus)
1159 {
1160         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1161 }
1162
1163 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1164                                 struct thread_map *threads)
1165 {
1166         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1167 }
1168
1169 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1170                                        const union perf_event *event,
1171                                        struct perf_sample *sample)
1172 {
1173         u64 type = evsel->attr.sample_type;
1174         const u64 *array = event->sample.array;
1175         bool swapped = evsel->needs_swap;
1176         union u64_swap u;
1177
1178         array += ((event->header.size -
1179                    sizeof(event->header)) / sizeof(u64)) - 1;
1180
1181         if (type & PERF_SAMPLE_IDENTIFIER) {
1182                 sample->id = *array;
1183                 array--;
1184         }
1185
1186         if (type & PERF_SAMPLE_CPU) {
1187                 u.val64 = *array;
1188                 if (swapped) {
1189                         /* undo swap of u64, then swap on individual u32s */
1190                         u.val64 = bswap_64(u.val64);
1191                         u.val32[0] = bswap_32(u.val32[0]);
1192                 }
1193
1194                 sample->cpu = u.val32[0];
1195                 array--;
1196         }
1197
1198         if (type & PERF_SAMPLE_STREAM_ID) {
1199                 sample->stream_id = *array;
1200                 array--;
1201         }
1202
1203         if (type & PERF_SAMPLE_ID) {
1204                 sample->id = *array;
1205                 array--;
1206         }
1207
1208         if (type & PERF_SAMPLE_TIME) {
1209                 sample->time = *array;
1210                 array--;
1211         }
1212
1213         if (type & PERF_SAMPLE_TID) {
1214                 u.val64 = *array;
1215                 if (swapped) {
1216                         /* undo swap of u64, then swap on individual u32s */
1217                         u.val64 = bswap_64(u.val64);
1218                         u.val32[0] = bswap_32(u.val32[0]);
1219                         u.val32[1] = bswap_32(u.val32[1]);
1220                 }
1221
1222                 sample->pid = u.val32[0];
1223                 sample->tid = u.val32[1];
1224                 array--;
1225         }
1226
1227         return 0;
1228 }
1229
1230 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1231                             u64 size)
1232 {
1233         return size > max_size || offset + size > endp;
1234 }
1235
1236 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1237         do {                                                            \
1238                 if (overflow(endp, (max_size), (offset), (size)))       \
1239                         return -EFAULT;                                 \
1240         } while (0)
1241
1242 #define OVERFLOW_CHECK_u64(offset) \
1243         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1244
1245 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1246                              struct perf_sample *data)
1247 {
1248         u64 type = evsel->attr.sample_type;
1249         bool swapped = evsel->needs_swap;
1250         const u64 *array;
1251         u16 max_size = event->header.size;
1252         const void *endp = (void *)event + max_size;
1253         u64 sz;
1254
1255         /*
1256          * used for cross-endian analysis. See git commit 65014ab3
1257          * for why this goofiness is needed.
1258          */
1259         union u64_swap u;
1260
1261         memset(data, 0, sizeof(*data));
1262         data->cpu = data->pid = data->tid = -1;
1263         data->stream_id = data->id = data->time = -1ULL;
1264         data->period = 1;
1265         data->weight = 0;
1266
1267         if (event->header.type != PERF_RECORD_SAMPLE) {
1268                 if (!evsel->attr.sample_id_all)
1269                         return 0;
1270                 return perf_evsel__parse_id_sample(evsel, event, data);
1271         }
1272
1273         array = event->sample.array;
1274
1275         /*
1276          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1277          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1278          * check the format does not go past the end of the event.
1279          */
1280         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1281                 return -EFAULT;
1282
1283         data->id = -1ULL;
1284         if (type & PERF_SAMPLE_IDENTIFIER) {
1285                 data->id = *array;
1286                 array++;
1287         }
1288
1289         if (type & PERF_SAMPLE_IP) {
1290                 data->ip = *array;
1291                 array++;
1292         }
1293
1294         if (type & PERF_SAMPLE_TID) {
1295                 u.val64 = *array;
1296                 if (swapped) {
1297                         /* undo swap of u64, then swap on individual u32s */
1298                         u.val64 = bswap_64(u.val64);
1299                         u.val32[0] = bswap_32(u.val32[0]);
1300                         u.val32[1] = bswap_32(u.val32[1]);
1301                 }
1302
1303                 data->pid = u.val32[0];
1304                 data->tid = u.val32[1];
1305                 array++;
1306         }
1307
1308         if (type & PERF_SAMPLE_TIME) {
1309                 data->time = *array;
1310                 array++;
1311         }
1312
1313         data->addr = 0;
1314         if (type & PERF_SAMPLE_ADDR) {
1315                 data->addr = *array;
1316                 array++;
1317         }
1318
1319         if (type & PERF_SAMPLE_ID) {
1320                 data->id = *array;
1321                 array++;
1322         }
1323
1324         if (type & PERF_SAMPLE_STREAM_ID) {
1325                 data->stream_id = *array;
1326                 array++;
1327         }
1328
1329         if (type & PERF_SAMPLE_CPU) {
1330
1331                 u.val64 = *array;
1332                 if (swapped) {
1333                         /* undo swap of u64, then swap on individual u32s */
1334                         u.val64 = bswap_64(u.val64);
1335                         u.val32[0] = bswap_32(u.val32[0]);
1336                 }
1337
1338                 data->cpu = u.val32[0];
1339                 array++;
1340         }
1341
1342         if (type & PERF_SAMPLE_PERIOD) {
1343                 data->period = *array;
1344                 array++;
1345         }
1346
1347         if (type & PERF_SAMPLE_READ) {
1348                 u64 read_format = evsel->attr.read_format;
1349
1350                 OVERFLOW_CHECK_u64(array);
1351                 if (read_format & PERF_FORMAT_GROUP)
1352                         data->read.group.nr = *array;
1353                 else
1354                         data->read.one.value = *array;
1355
1356                 array++;
1357
1358                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1359                         OVERFLOW_CHECK_u64(array);
1360                         data->read.time_enabled = *array;
1361                         array++;
1362                 }
1363
1364                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1365                         OVERFLOW_CHECK_u64(array);
1366                         data->read.time_running = *array;
1367                         array++;
1368                 }
1369
1370                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1371                 if (read_format & PERF_FORMAT_GROUP) {
1372                         const u64 max_group_nr = UINT64_MAX /
1373                                         sizeof(struct sample_read_value);
1374
1375                         if (data->read.group.nr > max_group_nr)
1376                                 return -EFAULT;
1377                         sz = data->read.group.nr *
1378                              sizeof(struct sample_read_value);
1379                         OVERFLOW_CHECK(array, sz, max_size);
1380                         data->read.group.values =
1381                                         (struct sample_read_value *)array;
1382                         array = (void *)array + sz;
1383                 } else {
1384                         OVERFLOW_CHECK_u64(array);
1385                         data->read.one.id = *array;
1386                         array++;
1387                 }
1388         }
1389
1390         if (type & PERF_SAMPLE_CALLCHAIN) {
1391                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1392
1393                 OVERFLOW_CHECK_u64(array);
1394                 data->callchain = (struct ip_callchain *)array++;
1395                 if (data->callchain->nr > max_callchain_nr)
1396                         return -EFAULT;
1397                 sz = data->callchain->nr * sizeof(u64);
1398                 OVERFLOW_CHECK(array, sz, max_size);
1399                 array = (void *)array + sz;
1400         }
1401
1402         if (type & PERF_SAMPLE_RAW) {
1403                 OVERFLOW_CHECK_u64(array);
1404                 u.val64 = *array;
1405                 if (WARN_ONCE(swapped,
1406                               "Endianness of raw data not corrected!\n")) {
1407                         /* undo swap of u64, then swap on individual u32s */
1408                         u.val64 = bswap_64(u.val64);
1409                         u.val32[0] = bswap_32(u.val32[0]);
1410                         u.val32[1] = bswap_32(u.val32[1]);
1411                 }
1412                 data->raw_size = u.val32[0];
1413                 array = (void *)array + sizeof(u32);
1414
1415                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1416                 data->raw_data = (void *)array;
1417                 array = (void *)array + data->raw_size;
1418         }
1419
1420         if (type & PERF_SAMPLE_BRANCH_STACK) {
1421                 const u64 max_branch_nr = UINT64_MAX /
1422                                           sizeof(struct branch_entry);
1423
1424                 OVERFLOW_CHECK_u64(array);
1425                 data->branch_stack = (struct branch_stack *)array++;
1426
1427                 if (data->branch_stack->nr > max_branch_nr)
1428                         return -EFAULT;
1429                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1430                 OVERFLOW_CHECK(array, sz, max_size);
1431                 array = (void *)array + sz;
1432         }
1433
1434         if (type & PERF_SAMPLE_REGS_USER) {
1435                 OVERFLOW_CHECK_u64(array);
1436                 data->user_regs.abi = *array;
1437                 array++;
1438
1439                 if (data->user_regs.abi) {
1440                         u64 regs_user = evsel->attr.sample_regs_user;
1441
1442                         sz = hweight_long(regs_user) * sizeof(u64);
1443                         OVERFLOW_CHECK(array, sz, max_size);
1444                         data->user_regs.regs = (u64 *)array;
1445                         array = (void *)array + sz;
1446                 }
1447         }
1448
1449         if (type & PERF_SAMPLE_STACK_USER) {
1450                 OVERFLOW_CHECK_u64(array);
1451                 sz = *array++;
1452
1453                 data->user_stack.offset = ((char *)(array - 1)
1454                                           - (char *) event);
1455
1456                 if (!sz) {
1457                         data->user_stack.size = 0;
1458                 } else {
1459                         OVERFLOW_CHECK(array, sz, max_size);
1460                         data->user_stack.data = (char *)array;
1461                         array = (void *)array + sz;
1462                         OVERFLOW_CHECK_u64(array);
1463                         data->user_stack.size = *array++;
1464                         if (WARN_ONCE(data->user_stack.size > sz,
1465                                       "user stack dump failure\n"))
1466                                 return -EFAULT;
1467                 }
1468         }
1469
1470         data->weight = 0;
1471         if (type & PERF_SAMPLE_WEIGHT) {
1472                 OVERFLOW_CHECK_u64(array);
1473                 data->weight = *array;
1474                 array++;
1475         }
1476
1477         data->data_src = PERF_MEM_DATA_SRC_NONE;
1478         if (type & PERF_SAMPLE_DATA_SRC) {
1479                 OVERFLOW_CHECK_u64(array);
1480                 data->data_src = *array;
1481                 array++;
1482         }
1483
1484         data->transaction = 0;
1485         if (type & PERF_SAMPLE_TRANSACTION) {
1486                 OVERFLOW_CHECK_u64(array);
1487                 data->transaction = *array;
1488                 array++;
1489         }
1490
1491         return 0;
1492 }
1493
1494 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1495                                      u64 sample_regs_user, u64 read_format)
1496 {
1497         size_t sz, result = sizeof(struct sample_event);
1498
1499         if (type & PERF_SAMPLE_IDENTIFIER)
1500                 result += sizeof(u64);
1501
1502         if (type & PERF_SAMPLE_IP)
1503                 result += sizeof(u64);
1504
1505         if (type & PERF_SAMPLE_TID)
1506                 result += sizeof(u64);
1507
1508         if (type & PERF_SAMPLE_TIME)
1509                 result += sizeof(u64);
1510
1511         if (type & PERF_SAMPLE_ADDR)
1512                 result += sizeof(u64);
1513
1514         if (type & PERF_SAMPLE_ID)
1515                 result += sizeof(u64);
1516
1517         if (type & PERF_SAMPLE_STREAM_ID)
1518                 result += sizeof(u64);
1519
1520         if (type & PERF_SAMPLE_CPU)
1521                 result += sizeof(u64);
1522
1523         if (type & PERF_SAMPLE_PERIOD)
1524                 result += sizeof(u64);
1525
1526         if (type & PERF_SAMPLE_READ) {
1527                 result += sizeof(u64);
1528                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1529                         result += sizeof(u64);
1530                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1531                         result += sizeof(u64);
1532                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1533                 if (read_format & PERF_FORMAT_GROUP) {
1534                         sz = sample->read.group.nr *
1535                              sizeof(struct sample_read_value);
1536                         result += sz;
1537                 } else {
1538                         result += sizeof(u64);
1539                 }
1540         }
1541
1542         if (type & PERF_SAMPLE_CALLCHAIN) {
1543                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1544                 result += sz;
1545         }
1546
1547         if (type & PERF_SAMPLE_RAW) {
1548                 result += sizeof(u32);
1549                 result += sample->raw_size;
1550         }
1551
1552         if (type & PERF_SAMPLE_BRANCH_STACK) {
1553                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1554                 sz += sizeof(u64);
1555                 result += sz;
1556         }
1557
1558         if (type & PERF_SAMPLE_REGS_USER) {
1559                 if (sample->user_regs.abi) {
1560                         result += sizeof(u64);
1561                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1562                         result += sz;
1563                 } else {
1564                         result += sizeof(u64);
1565                 }
1566         }
1567
1568         if (type & PERF_SAMPLE_STACK_USER) {
1569                 sz = sample->user_stack.size;
1570                 result += sizeof(u64);
1571                 if (sz) {
1572                         result += sz;
1573                         result += sizeof(u64);
1574                 }
1575         }
1576
1577         if (type & PERF_SAMPLE_WEIGHT)
1578                 result += sizeof(u64);
1579
1580         if (type & PERF_SAMPLE_DATA_SRC)
1581                 result += sizeof(u64);
1582
1583         if (type & PERF_SAMPLE_TRANSACTION)
1584                 result += sizeof(u64);
1585
1586         return result;
1587 }
1588
1589 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1590                                   u64 sample_regs_user, u64 read_format,
1591                                   const struct perf_sample *sample,
1592                                   bool swapped)
1593 {
1594         u64 *array;
1595         size_t sz;
1596         /*
1597          * used for cross-endian analysis. See git commit 65014ab3
1598          * for why this goofiness is needed.
1599          */
1600         union u64_swap u;
1601
1602         array = event->sample.array;
1603
1604         if (type & PERF_SAMPLE_IDENTIFIER) {
1605                 *array = sample->id;
1606                 array++;
1607         }
1608
1609         if (type & PERF_SAMPLE_IP) {
1610                 *array = sample->ip;
1611                 array++;
1612         }
1613
1614         if (type & PERF_SAMPLE_TID) {
1615                 u.val32[0] = sample->pid;
1616                 u.val32[1] = sample->tid;
1617                 if (swapped) {
1618                         /*
1619                          * Inverse of what is done in perf_evsel__parse_sample
1620                          */
1621                         u.val32[0] = bswap_32(u.val32[0]);
1622                         u.val32[1] = bswap_32(u.val32[1]);
1623                         u.val64 = bswap_64(u.val64);
1624                 }
1625
1626                 *array = u.val64;
1627                 array++;
1628         }
1629
1630         if (type & PERF_SAMPLE_TIME) {
1631                 *array = sample->time;
1632                 array++;
1633         }
1634
1635         if (type & PERF_SAMPLE_ADDR) {
1636                 *array = sample->addr;
1637                 array++;
1638         }
1639
1640         if (type & PERF_SAMPLE_ID) {
1641                 *array = sample->id;
1642                 array++;
1643         }
1644
1645         if (type & PERF_SAMPLE_STREAM_ID) {
1646                 *array = sample->stream_id;
1647                 array++;
1648         }
1649
1650         if (type & PERF_SAMPLE_CPU) {
1651                 u.val32[0] = sample->cpu;
1652                 if (swapped) {
1653                         /*
1654                          * Inverse of what is done in perf_evsel__parse_sample
1655                          */
1656                         u.val32[0] = bswap_32(u.val32[0]);
1657                         u.val64 = bswap_64(u.val64);
1658                 }
1659                 *array = u.val64;
1660                 array++;
1661         }
1662
1663         if (type & PERF_SAMPLE_PERIOD) {
1664                 *array = sample->period;
1665                 array++;
1666         }
1667
1668         if (type & PERF_SAMPLE_READ) {
1669                 if (read_format & PERF_FORMAT_GROUP)
1670                         *array = sample->read.group.nr;
1671                 else
1672                         *array = sample->read.one.value;
1673                 array++;
1674
1675                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1676                         *array = sample->read.time_enabled;
1677                         array++;
1678                 }
1679
1680                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1681                         *array = sample->read.time_running;
1682                         array++;
1683                 }
1684
1685                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1686                 if (read_format & PERF_FORMAT_GROUP) {
1687                         sz = sample->read.group.nr *
1688                              sizeof(struct sample_read_value);
1689                         memcpy(array, sample->read.group.values, sz);
1690                         array = (void *)array + sz;
1691                 } else {
1692                         *array = sample->read.one.id;
1693                         array++;
1694                 }
1695         }
1696
1697         if (type & PERF_SAMPLE_CALLCHAIN) {
1698                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1699                 memcpy(array, sample->callchain, sz);
1700                 array = (void *)array + sz;
1701         }
1702
1703         if (type & PERF_SAMPLE_RAW) {
1704                 u.val32[0] = sample->raw_size;
1705                 if (WARN_ONCE(swapped,
1706                               "Endianness of raw data not corrected!\n")) {
1707                         /*
1708                          * Inverse of what is done in perf_evsel__parse_sample
1709                          */
1710                         u.val32[0] = bswap_32(u.val32[0]);
1711                         u.val32[1] = bswap_32(u.val32[1]);
1712                         u.val64 = bswap_64(u.val64);
1713                 }
1714                 *array = u.val64;
1715                 array = (void *)array + sizeof(u32);
1716
1717                 memcpy(array, sample->raw_data, sample->raw_size);
1718                 array = (void *)array + sample->raw_size;
1719         }
1720
1721         if (type & PERF_SAMPLE_BRANCH_STACK) {
1722                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1723                 sz += sizeof(u64);
1724                 memcpy(array, sample->branch_stack, sz);
1725                 array = (void *)array + sz;
1726         }
1727
1728         if (type & PERF_SAMPLE_REGS_USER) {
1729                 if (sample->user_regs.abi) {
1730                         *array++ = sample->user_regs.abi;
1731                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1732                         memcpy(array, sample->user_regs.regs, sz);
1733                         array = (void *)array + sz;
1734                 } else {
1735                         *array++ = 0;
1736                 }
1737         }
1738
1739         if (type & PERF_SAMPLE_STACK_USER) {
1740                 sz = sample->user_stack.size;
1741                 *array++ = sz;
1742                 if (sz) {
1743                         memcpy(array, sample->user_stack.data, sz);
1744                         array = (void *)array + sz;
1745                         *array++ = sz;
1746                 }
1747         }
1748
1749         if (type & PERF_SAMPLE_WEIGHT) {
1750                 *array = sample->weight;
1751                 array++;
1752         }
1753
1754         if (type & PERF_SAMPLE_DATA_SRC) {
1755                 *array = sample->data_src;
1756                 array++;
1757         }
1758
1759         if (type & PERF_SAMPLE_TRANSACTION) {
1760                 *array = sample->transaction;
1761                 array++;
1762         }
1763
1764         return 0;
1765 }
1766
1767 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1768 {
1769         return pevent_find_field(evsel->tp_format, name);
1770 }
1771
1772 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1773                          const char *name)
1774 {
1775         struct format_field *field = perf_evsel__field(evsel, name);
1776         int offset;
1777
1778         if (!field)
1779                 return NULL;
1780
1781         offset = field->offset;
1782
1783         if (field->flags & FIELD_IS_DYNAMIC) {
1784                 offset = *(int *)(sample->raw_data + field->offset);
1785                 offset &= 0xffff;
1786         }
1787
1788         return sample->raw_data + offset;
1789 }
1790
1791 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1792                        const char *name)
1793 {
1794         struct format_field *field = perf_evsel__field(evsel, name);
1795         void *ptr;
1796         u64 value;
1797
1798         if (!field)
1799                 return 0;
1800
1801         ptr = sample->raw_data + field->offset;
1802
1803         switch (field->size) {
1804         case 1:
1805                 return *(u8 *)ptr;
1806         case 2:
1807                 value = *(u16 *)ptr;
1808                 break;
1809         case 4:
1810                 value = *(u32 *)ptr;
1811                 break;
1812         case 8:
1813                 value = *(u64 *)ptr;
1814                 break;
1815         default:
1816                 return 0;
1817         }
1818
1819         if (!evsel->needs_swap)
1820                 return value;
1821
1822         switch (field->size) {
1823         case 2:
1824                 return bswap_16(value);
1825         case 4:
1826                 return bswap_32(value);
1827         case 8:
1828                 return bswap_64(value);
1829         default:
1830                 return 0;
1831         }
1832
1833         return 0;
1834 }
1835
1836 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1837 {
1838         va_list args;
1839         int ret = 0;
1840
1841         if (!*first) {
1842                 ret += fprintf(fp, ",");
1843         } else {
1844                 ret += fprintf(fp, ":");
1845                 *first = false;
1846         }
1847
1848         va_start(args, fmt);
1849         ret += vfprintf(fp, fmt, args);
1850         va_end(args);
1851         return ret;
1852 }
1853
1854 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1855 {
1856         if (value == 0)
1857                 return 0;
1858
1859         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1860 }
1861
1862 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1863
1864 struct bit_names {
1865         int bit;
1866         const char *name;
1867 };
1868
1869 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1870                          struct bit_names *bits, bool *first)
1871 {
1872         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1873         bool first_bit = true;
1874
1875         do {
1876                 if (value & bits[i].bit) {
1877                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1878                         first_bit = false;
1879                 }
1880         } while (bits[++i].name != NULL);
1881
1882         return printed;
1883 }
1884
1885 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1886 {
1887 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1888         struct bit_names bits[] = {
1889                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1890                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1891                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1892                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1893                 bit_name(IDENTIFIER),
1894                 { .name = NULL, }
1895         };
1896 #undef bit_name
1897         return bits__fprintf(fp, "sample_type", value, bits, first);
1898 }
1899
1900 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1901 {
1902 #define bit_name(n) { PERF_FORMAT_##n, #n }
1903         struct bit_names bits[] = {
1904                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1905                 bit_name(ID), bit_name(GROUP),
1906                 { .name = NULL, }
1907         };
1908 #undef bit_name
1909         return bits__fprintf(fp, "read_format", value, bits, first);
1910 }
1911
1912 int perf_evsel__fprintf(struct perf_evsel *evsel,
1913                         struct perf_attr_details *details, FILE *fp)
1914 {
1915         bool first = true;
1916         int printed = 0;
1917
1918         if (details->event_group) {
1919                 struct perf_evsel *pos;
1920
1921                 if (!perf_evsel__is_group_leader(evsel))
1922                         return 0;
1923
1924                 if (evsel->nr_members > 1)
1925                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1926
1927                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1928                 for_each_group_member(pos, evsel)
1929                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1930
1931                 if (evsel->nr_members > 1)
1932                         printed += fprintf(fp, "}");
1933                 goto out;
1934         }
1935
1936         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1937
1938         if (details->verbose || details->freq) {
1939                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1940                                          (u64)evsel->attr.sample_freq);
1941         }
1942
1943         if (details->verbose) {
1944                 if_print(type);
1945                 if_print(config);
1946                 if_print(config1);
1947                 if_print(config2);
1948                 if_print(size);
1949                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1950                 if (evsel->attr.read_format)
1951                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1952                 if_print(disabled);
1953                 if_print(inherit);
1954                 if_print(pinned);
1955                 if_print(exclusive);
1956                 if_print(exclude_user);
1957                 if_print(exclude_kernel);
1958                 if_print(exclude_hv);
1959                 if_print(exclude_idle);
1960                 if_print(mmap);
1961                 if_print(mmap2);
1962                 if_print(comm);
1963                 if_print(freq);
1964                 if_print(inherit_stat);
1965                 if_print(enable_on_exec);
1966                 if_print(task);
1967                 if_print(watermark);
1968                 if_print(precise_ip);
1969                 if_print(mmap_data);
1970                 if_print(sample_id_all);
1971                 if_print(exclude_host);
1972                 if_print(exclude_guest);
1973                 if_print(__reserved_1);
1974                 if_print(wakeup_events);
1975                 if_print(bp_type);
1976                 if_print(branch_sample_type);
1977         }
1978 out:
1979         fputc('\n', fp);
1980         return ++printed;
1981 }
1982
1983 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1984                           char *msg, size_t msgsize)
1985 {
1986         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1987             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1988             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1989                 /*
1990                  * If it's cycles then fall back to hrtimer based
1991                  * cpu-clock-tick sw counter, which is always available even if
1992                  * no PMU support.
1993                  *
1994                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1995                  * b0a873e).
1996                  */
1997                 scnprintf(msg, msgsize, "%s",
1998 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1999
2000                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2001                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2002
2003                 free(evsel->name);
2004                 evsel->name = NULL;
2005                 return true;
2006         }
2007
2008         return false;
2009 }
2010
2011 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2012                               int err, char *msg, size_t size)
2013 {
2014         switch (err) {
2015         case EPERM:
2016         case EACCES:
2017                 return scnprintf(msg, size,
2018                  "You may not have permission to collect %sstats.\n"
2019                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2020                  " -1 - Not paranoid at all\n"
2021                  "  0 - Disallow raw tracepoint access for unpriv\n"
2022                  "  1 - Disallow cpu events for unpriv\n"
2023                  "  2 - Disallow kernel profiling for unpriv",
2024                                  target->system_wide ? "system-wide " : "");
2025         case ENOENT:
2026                 return scnprintf(msg, size, "The %s event is not supported.",
2027                                  perf_evsel__name(evsel));
2028         case EMFILE:
2029                 return scnprintf(msg, size, "%s",
2030                          "Too many events are opened.\n"
2031                          "Try again after reducing the number of events.");
2032         case ENODEV:
2033                 if (target->cpu_list)
2034                         return scnprintf(msg, size, "%s",
2035          "No such device - did you specify an out-of-range profile CPU?\n");
2036                 break;
2037         case EOPNOTSUPP:
2038                 if (evsel->attr.precise_ip)
2039                         return scnprintf(msg, size, "%s",
2040         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2041 #if defined(__i386__) || defined(__x86_64__)
2042                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2043                         return scnprintf(msg, size, "%s",
2044         "No hardware sampling interrupt available.\n"
2045         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2046 #endif
2047                 break;
2048         default:
2049                 break;
2050         }
2051
2052         return scnprintf(msg, size,
2053         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2054         "/bin/dmesg may provide additional information.\n"
2055         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2056                          err, strerror(err), perf_evsel__name(evsel));
2057 }