1 //===- MCJITTestBase.h - Common base class for MCJIT Unit tests ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This class implements common functionality required by the MCJIT unit tests,
11 // as well as logic to skip tests on unsupported architectures and operating
14 //===----------------------------------------------------------------------===//
17 #ifndef MCJIT_TEST_BASE_H
18 #define MCJIT_TEST_BASE_H
20 #include "MCJITTestAPICommon.h"
21 #include "llvm/Config/config.h"
22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
23 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/TypeBuilder.h"
29 #include "llvm/Support/CodeGen.h"
33 /// Helper class that can build very simple Modules
34 class TrivialModuleBuilder {
38 std::string BuilderTriple;
40 TrivialModuleBuilder(const std::string &Triple)
41 : Builder(Context), BuilderTriple(Triple) {}
43 Module *createEmptyModule(StringRef Name = StringRef()) {
44 Module * M = new Module(Name, Context);
45 M->setTargetTriple(Triple::normalize(BuilderTriple));
49 template<typename FuncType>
50 Function *startFunction(Module *M, StringRef Name) {
51 Function *Result = Function::Create(
52 TypeBuilder<FuncType, false>::get(Context),
53 GlobalValue::ExternalLinkage, Name, M);
55 BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
56 Builder.SetInsertPoint(BB);
61 void endFunctionWithRet(Function *Func, Value *RetValue) {
62 Builder.CreateRet(RetValue);
65 // Inserts a simple function that invokes Callee and takes the same arguments:
66 // int Caller(...) { return Callee(...); }
67 template<typename Signature>
68 Function *insertSimpleCallFunction(Module *M, Function *Callee) {
69 Function *Result = startFunction<Signature>(M, "caller");
71 SmallVector<Value*, 1> CallArgs;
73 Function::arg_iterator arg_iter = Result->arg_begin();
74 for(;arg_iter != Result->arg_end(); ++arg_iter)
75 CallArgs.push_back(arg_iter);
77 Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
78 Builder.CreateRet(ReturnCode);
82 // Inserts a function named 'main' that returns a uint32_t:
83 // int32_t main() { return X; }
84 // where X is given by returnCode
85 Function *insertMainFunction(Module *M, uint32_t returnCode) {
86 Function *Result = startFunction<int32_t(void)>(M, "main");
88 Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
89 endFunctionWithRet(Result, ReturnVal);
95 // int32_t add(int32_t a, int32_t b) { return a + b; }
96 // in the current module and returns a pointer to it.
97 Function *insertAddFunction(Module *M, StringRef Name = "add") {
98 Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
100 Function::arg_iterator args = Result->arg_begin();
102 Value *Arg2 = ++args;
103 Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
105 endFunctionWithRet(Result, AddResult);
110 // Inserts an declaration to a function defined elsewhere
111 Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
112 FunctionType *FuncTy) {
113 Function *Result = Function::Create(FuncTy,
114 GlobalValue::ExternalLinkage,
119 // Inserts an declaration to a function defined elsewhere
120 Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
121 Function *Result = Function::Create(Func->getFunctionType(),
122 GlobalValue::ExternalLinkage,
127 // Inserts a global variable of type int32
128 // FIXME: make this a template function to support any type
129 GlobalVariable *insertGlobalInt32(Module *M,
131 int32_t InitialValue) {
132 Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
133 Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
134 GlobalVariable *Global = new GlobalVariable(*M,
137 GlobalValue::ExternalLinkage,
143 // Inserts a function
144 // int32_t recursive_add(int32_t num) {
148 // int32_t recursive_param = num - 1;
149 // return num + Helper(recursive_param);
152 // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
153 Function *insertAccumulateFunction(Module *M,
154 Function *Helper = 0,
155 StringRef Name = "accumulate") {
156 Function *Result = startFunction<int32_t(int32_t)>(M, Name);
160 BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
161 BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
164 Value *Param = Result->arg_begin();
165 Value *Zero = ConstantInt::get(Context, APInt(32, 0));
166 Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
167 BaseCase, RecursiveCase);
170 Builder.SetInsertPoint(BaseCase);
171 Builder.CreateRet(Param);
173 // int32_t recursive_param = num - 1;
174 // return Helper(recursive_param);
175 Builder.SetInsertPoint(RecursiveCase);
176 Value *One = ConstantInt::get(Context, APInt(32, 1));
177 Value *RecursiveParam = Builder.CreateSub(Param, One);
178 Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
179 Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
180 Builder.CreateRet(Accumulator);
185 // Populates Modules A and B:
186 // Module A { Extern FB1, Function FA which calls FB1 },
187 // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
188 void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
189 std::unique_ptr<Module> &B,
190 Function *&FB1, Function *&FB2) {
192 B.reset(createEmptyModule("B"));
193 FB1 = insertAccumulateFunction(B.get(), 0, "FB1");
195 // Declare FB1 in A (as an external).
196 A.reset(createEmptyModule("A"));
197 Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
199 // Define FA in A (with a call to FB1).
200 FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
202 // Declare FA in B (as an external)
203 Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
205 // Define FB2 in B (with a call to FA)
206 FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
209 // Module A { Function FA },
210 // Module B { Extern FA, Function FB which calls FA },
211 // Module C { Extern FB, Function FC which calls FB },
213 createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
214 std::unique_ptr<Module> &B, Function *&FB,
215 std::unique_ptr<Module> &C, Function *&FC) {
216 A.reset(createEmptyModule("A"));
217 FA = insertAddFunction(A.get());
219 B.reset(createEmptyModule("B"));
220 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
221 FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
223 C.reset(createEmptyModule("C"));
224 Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
225 FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
229 // Module A { Function FA },
230 // Populates Modules A and B:
231 // Module B { Function FB }
232 void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
233 std::unique_ptr<Module> &B, Function *&FB) {
234 A.reset(createEmptyModule("A"));
235 FA = insertAddFunction(A.get());
237 B.reset(createEmptyModule("B"));
238 FB = insertAddFunction(B.get());
241 // Module A { Function FA },
242 // Module B { Extern FA, Function FB which calls FA }
243 void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
244 std::unique_ptr<Module> &B, Function *&FB) {
245 A.reset(createEmptyModule("A"));
246 FA = insertAddFunction(A.get());
248 B.reset(createEmptyModule("B"));
249 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
250 FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
254 // Module A { Function FA },
255 // Module B { Extern FA, Function FB which calls FA },
256 // Module C { Extern FB, Function FC which calls FA },
257 void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
258 std::unique_ptr<Module> &B, Function *&FB,
259 std::unique_ptr<Module> &C, Function *&FC) {
260 A.reset(createEmptyModule("A"));
261 FA = insertAddFunction(A.get());
263 B.reset(createEmptyModule("B"));
264 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
265 FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
267 C.reset(createEmptyModule("C"));
268 Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
269 FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
274 class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
278 : TrivialModuleBuilder(HostTriple)
279 , OptLevel(CodeGenOpt::None)
280 , RelocModel(Reloc::Default)
281 , CodeModel(CodeModel::Default)
283 , MM(new SectionMemoryManager)
285 // The architectures below are known to be compatible with MCJIT as they
286 // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
288 SupportedArchs.push_back(Triple::aarch64);
289 SupportedArchs.push_back(Triple::arm);
290 SupportedArchs.push_back(Triple::mips);
291 SupportedArchs.push_back(Triple::mipsel);
292 SupportedArchs.push_back(Triple::x86);
293 SupportedArchs.push_back(Triple::x86_64);
295 // Some architectures have sub-architectures in which tests will fail, like
296 // ARM. These two vectors will define if they do have sub-archs (to avoid
297 // extra work for those who don't), and if so, if they are listed to work
298 HasSubArchs.push_back(Triple::arm);
299 SupportedSubArchs.push_back("armv6");
300 SupportedSubArchs.push_back("armv7");
302 // The operating systems below are known to be incompatible with MCJIT as
303 // they are copied from the test/ExecutionEngine/MCJIT/lit.local.cfg and
304 // should be kept in sync.
305 UnsupportedOSs.push_back(Triple::Cygwin);
306 UnsupportedOSs.push_back(Triple::Darwin);
308 UnsupportedEnvironments.push_back(Triple::Cygnus);
311 void createJIT(Module *M) {
313 // Due to the EngineBuilder constructor, it is required to have a Module
314 // in order to construct an ExecutionEngine (i.e. MCJIT)
315 assert(M != 0 && "a non-null Module must be provided to create MCJIT");
319 TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
320 .setUseMCJIT(true) /* can this be folded into the EngineKind enum? */
321 .setMCJITMemoryManager(MM)
323 .setOptLevel(CodeGenOpt::None)
324 .setAllocateGVsWithCode(false) /*does this do anything?*/
325 .setCodeModel(CodeModel::JITDefault)
326 .setRelocationModel(Reloc::Default)
328 .setMCPU(sys::getHostCPUName())
331 // At this point, we cannot modify the module any more.
332 assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
335 CodeGenOpt::Level OptLevel;
336 Reloc::Model RelocModel;
337 CodeModel::Model CodeModel;
339 SmallVector<std::string, 1> MAttrs;
340 std::unique_ptr<ExecutionEngine> TheJIT;
341 RTDyldMemoryManager *MM;
343 std::unique_ptr<Module> M;
348 #endif // MCJIT_TEST_H