1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #ifndef CODEGEN_DAGPATTERNS_H
16 #define CODEGEN_DAGPATTERNS_H
18 #include "CodeGenTarget.h"
19 #include "CodeGenIntrinsics.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
34 class TreePatternNode;
35 class CodeGenDAGPatterns;
38 /// EEVT::DAGISelGenValueType - These are some extended forms of
39 /// MVT::SimpleValueType that we use as lattice values during type inference.
40 /// The existing MVT iAny, fAny and vAny types suffice to represent
41 /// arbitrary integer, floating-point, and vector types, so only an unknown
44 /// TypeSet - This is either empty if it's completely unknown, or holds a set
45 /// of types. It is used during type inference because register classes can
46 /// have multiple possible types and we don't know which one they get until
47 /// type inference is complete.
49 /// TypeSet can have three states:
50 /// Vector is empty: The type is completely unknown, it can be any valid
52 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
53 /// of those types only.
54 /// Vector has one concrete type: The type is completely known.
57 SmallVector<MVT::SimpleValueType, 4> TypeVec;
60 TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
61 TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
63 bool isCompletelyUnknown() const { return TypeVec.empty(); }
65 bool isConcrete() const {
66 if (TypeVec.size() != 1) return false;
67 unsigned char T = TypeVec[0]; (void)T;
68 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
72 MVT::SimpleValueType getConcrete() const {
73 assert(isConcrete() && "Type isn't concrete yet");
74 return (MVT::SimpleValueType)TypeVec[0];
77 bool isDynamicallyResolved() const {
78 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
81 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
82 assert(!TypeVec.empty() && "Not a type list!");
87 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
90 /// hasIntegerTypes - Return true if this TypeSet contains any integer value
92 bool hasIntegerTypes() const;
94 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
95 /// a floating point value type.
96 bool hasFloatingPointTypes() const;
98 /// hasVectorTypes - Return true if this TypeSet contains a vector value
100 bool hasVectorTypes() const;
102 /// getName() - Return this TypeSet as a string.
103 std::string getName() const;
105 /// MergeInTypeInfo - This merges in type information from the specified
106 /// argument. If 'this' changes, it returns true. If the two types are
107 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
108 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
110 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
111 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
114 /// Force this type list to only contain integer types.
115 bool EnforceInteger(TreePattern &TP);
117 /// Force this type list to only contain floating point types.
118 bool EnforceFloatingPoint(TreePattern &TP);
120 /// EnforceScalar - Remove all vector types from this type list.
121 bool EnforceScalar(TreePattern &TP);
123 /// EnforceVector - Remove all non-vector types from this type list.
124 bool EnforceVector(TreePattern &TP);
126 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
127 /// this an other based on this information.
128 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
130 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
131 /// whose element is VT.
132 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
134 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
135 /// be a vector type VT.
136 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
139 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
142 /// FillWithPossibleTypes - Set to all legal types and return true, only
143 /// valid on completely unknown type sets. If Pred is non-null, only MVTs
144 /// that pass the predicate are added.
145 bool FillWithPossibleTypes(TreePattern &TP,
146 bool (*Pred)(MVT::SimpleValueType) = 0,
147 const char *PredicateName = 0);
151 /// Set type used to track multiply used variables in patterns
152 typedef std::set<std::string> MultipleUseVarSet;
154 /// SDTypeConstraint - This is a discriminated union of constraints,
155 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
156 struct SDTypeConstraint {
157 SDTypeConstraint(Record *R);
159 unsigned OperandNo; // The operand # this constraint applies to.
161 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
162 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
166 union { // The discriminated union.
168 MVT::SimpleValueType VT;
171 unsigned OtherOperandNum;
174 unsigned OtherOperandNum;
175 } SDTCisVTSmallerThanOp_Info;
177 unsigned BigOperandNum;
178 } SDTCisOpSmallerThanOp_Info;
180 unsigned OtherOperandNum;
181 } SDTCisEltOfVec_Info;
183 unsigned OtherOperandNum;
184 } SDTCisSubVecOfVec_Info;
187 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
188 /// constraint to the nodes operands. This returns true if it makes a
189 /// change, false otherwise. If a type contradiction is found, throw an
191 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
192 TreePattern &TP) const;
195 /// SDNodeInfo - One of these records is created for each SDNode instance in
196 /// the target .td file. This represents the various dag nodes we will be
200 std::string EnumName;
201 std::string SDClassName;
205 std::vector<SDTypeConstraint> TypeConstraints;
207 SDNodeInfo(Record *R); // Parse the specified record.
209 unsigned getNumResults() const { return NumResults; }
211 /// getNumOperands - This is the number of operands required or -1 if
213 int getNumOperands() const { return NumOperands; }
214 Record *getRecord() const { return Def; }
215 const std::string &getEnumName() const { return EnumName; }
216 const std::string &getSDClassName() const { return SDClassName; }
218 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
219 return TypeConstraints;
222 /// getKnownType - If the type constraints on this node imply a fixed type
223 /// (e.g. all stores return void, etc), then return it as an
224 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
225 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
227 /// hasProperty - Return true if this node has the specified property.
229 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
231 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
232 /// constraints for this node to the operands of the node. This returns
233 /// true if it makes a change, false otherwise. If a type contradiction is
234 /// found, throw an exception.
235 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
236 bool MadeChange = false;
237 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
238 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
243 /// TreePredicateFn - This is an abstraction that represents the predicates on
244 /// a PatFrag node. This is a simple one-word wrapper around a pointer to
245 /// provide nice accessors.
246 class TreePredicateFn {
247 /// PatFragRec - This is the TreePattern for the PatFrag that we
248 /// originally came from.
249 TreePattern *PatFragRec;
251 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
252 TreePredicateFn(TreePattern *N);
255 TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
257 /// isAlwaysTrue - Return true if this is a noop predicate.
258 bool isAlwaysTrue() const;
260 bool isImmediatePattern() const { return !getImmCode().empty(); }
262 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
263 /// this is an immediate predicate. It is an error to call this on a
264 /// non-immediate pattern.
265 std::string getImmediatePredicateCode() const {
266 std::string Result = getImmCode();
267 assert(!Result.empty() && "Isn't an immediate pattern!");
272 bool operator==(const TreePredicateFn &RHS) const {
273 return PatFragRec == RHS.PatFragRec;
276 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
278 /// Return the name to use in the generated code to reference this, this is
279 /// "Predicate_foo" if from a pattern fragment "foo".
280 std::string getFnName() const;
282 /// getCodeToRunOnSDNode - Return the code for the function body that
283 /// evaluates this predicate. The argument is expected to be in "Node",
284 /// not N. This handles casting and conversion to a concrete node type as
286 std::string getCodeToRunOnSDNode() const;
289 std::string getPredCode() const;
290 std::string getImmCode() const;
294 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
295 /// patterns), and as such should be ref counted. We currently just leak all
296 /// TreePatternNode objects!
297 class TreePatternNode {
298 /// The type of each node result. Before and during type inference, each
299 /// result may be a set of possible types. After (successful) type inference,
300 /// each is a single concrete type.
301 SmallVector<EEVT::TypeSet, 1> Types;
303 /// Operator - The Record for the operator if this is an interior node (not
307 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
311 /// Name - The name given to this node with the :$foo notation.
315 /// PredicateFns - The predicate functions to execute on this node to check
316 /// for a match. If this list is empty, no predicate is involved.
317 std::vector<TreePredicateFn> PredicateFns;
319 /// TransformFn - The transformation function to execute on this node before
320 /// it can be substituted into the resulting instruction on a pattern match.
323 std::vector<TreePatternNode*> Children;
325 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
327 : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
328 Types.resize(NumResults);
330 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
331 : Operator(0), Val(val), TransformFn(0) {
332 Types.resize(NumResults);
336 const std::string &getName() const { return Name; }
337 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
339 bool isLeaf() const { return Val != 0; }
342 unsigned getNumTypes() const { return Types.size(); }
343 MVT::SimpleValueType getType(unsigned ResNo) const {
344 return Types[ResNo].getConcrete();
346 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
347 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
348 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
349 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
351 bool hasTypeSet(unsigned ResNo) const {
352 return Types[ResNo].isConcrete();
354 bool isTypeCompletelyUnknown(unsigned ResNo) const {
355 return Types[ResNo].isCompletelyUnknown();
357 bool isTypeDynamicallyResolved(unsigned ResNo) const {
358 return Types[ResNo].isDynamicallyResolved();
361 Init *getLeafValue() const { assert(isLeaf()); return Val; }
362 Record *getOperator() const { assert(!isLeaf()); return Operator; }
364 unsigned getNumChildren() const { return Children.size(); }
365 TreePatternNode *getChild(unsigned N) const { return Children[N]; }
366 void setChild(unsigned i, TreePatternNode *N) {
370 /// hasChild - Return true if N is any of our children.
371 bool hasChild(const TreePatternNode *N) const {
372 for (unsigned i = 0, e = Children.size(); i != e; ++i)
373 if (Children[i] == N) return true;
377 bool hasAnyPredicate() const { return !PredicateFns.empty(); }
379 const std::vector<TreePredicateFn> &getPredicateFns() const {
382 void clearPredicateFns() { PredicateFns.clear(); }
383 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
384 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
387 void addPredicateFn(const TreePredicateFn &Fn) {
388 assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
389 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
391 PredicateFns.push_back(Fn);
394 Record *getTransformFn() const { return TransformFn; }
395 void setTransformFn(Record *Fn) { TransformFn = Fn; }
397 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
398 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
399 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
401 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
402 /// return the ComplexPattern information, otherwise return null.
403 const ComplexPattern *
404 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
406 /// NodeHasProperty - Return true if this node has the specified property.
407 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
409 /// TreeHasProperty - Return true if any node in this tree has the specified
411 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
413 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
414 /// marked isCommutative.
415 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
417 void print(raw_ostream &OS) const;
420 public: // Higher level manipulation routines.
422 /// clone - Return a new copy of this tree.
424 TreePatternNode *clone() const;
426 /// RemoveAllTypes - Recursively strip all the types of this tree.
427 void RemoveAllTypes();
429 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
430 /// the specified node. For this comparison, all of the state of the node
431 /// is considered, except for the assigned name. Nodes with differing names
432 /// that are otherwise identical are considered isomorphic.
433 bool isIsomorphicTo(const TreePatternNode *N,
434 const MultipleUseVarSet &DepVars) const;
436 /// SubstituteFormalArguments - Replace the formal arguments in this tree
437 /// with actual values specified by ArgMap.
438 void SubstituteFormalArguments(std::map<std::string,
439 TreePatternNode*> &ArgMap);
441 /// InlinePatternFragments - If this pattern refers to any pattern
442 /// fragments, inline them into place, giving us a pattern without any
443 /// PatFrag references.
444 TreePatternNode *InlinePatternFragments(TreePattern &TP);
446 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
447 /// this node and its children in the tree. This returns true if it makes a
448 /// change, false otherwise. If a type contradiction is found, throw an
450 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
452 /// UpdateNodeType - Set the node type of N to VT if VT contains
453 /// information. If N already contains a conflicting type, then throw an
454 /// exception. This returns true if any information was updated.
456 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
458 return Types[ResNo].MergeInTypeInfo(InTy, TP);
461 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
463 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
466 /// ContainsUnresolvedType - Return true if this tree contains any
467 /// unresolved types.
468 bool ContainsUnresolvedType() const {
469 for (unsigned i = 0, e = Types.size(); i != e; ++i)
470 if (!Types[i].isConcrete()) return true;
472 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
473 if (getChild(i)->ContainsUnresolvedType()) return true;
477 /// canPatternMatch - If it is impossible for this pattern to match on this
478 /// target, fill in Reason and return false. Otherwise, return true.
479 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
482 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
488 /// TreePattern - Represent a pattern, used for instructions, pattern
492 /// Trees - The list of pattern trees which corresponds to this pattern.
493 /// Note that PatFrag's only have a single tree.
495 std::vector<TreePatternNode*> Trees;
497 /// NamedNodes - This is all of the nodes that have names in the trees in this
499 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
501 /// TheRecord - The actual TableGen record corresponding to this pattern.
505 /// Args - This is a list of all of the arguments to this pattern (for
506 /// PatFrag patterns), which are the 'node' markers in this pattern.
507 std::vector<std::string> Args;
509 /// CDP - the top-level object coordinating this madness.
511 CodeGenDAGPatterns &CDP;
513 /// isInputPattern - True if this is an input pattern, something to match.
514 /// False if this is an output pattern, something to emit.
518 /// TreePattern constructor - Parse the specified DagInits into the
520 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
521 CodeGenDAGPatterns &ise);
522 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
523 CodeGenDAGPatterns &ise);
524 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
525 CodeGenDAGPatterns &ise);
527 /// getTrees - Return the tree patterns which corresponds to this pattern.
529 const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
530 unsigned getNumTrees() const { return Trees.size(); }
531 TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
532 TreePatternNode *getOnlyTree() const {
533 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
537 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
538 if (NamedNodes.empty())
543 /// getRecord - Return the actual TableGen record corresponding to this
546 Record *getRecord() const { return TheRecord; }
548 unsigned getNumArgs() const { return Args.size(); }
549 const std::string &getArgName(unsigned i) const {
550 assert(i < Args.size() && "Argument reference out of range!");
553 std::vector<std::string> &getArgList() { return Args; }
555 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
557 /// InlinePatternFragments - If this pattern refers to any pattern
558 /// fragments, inline them into place, giving us a pattern without any
559 /// PatFrag references.
560 void InlinePatternFragments() {
561 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
562 Trees[i] = Trees[i]->InlinePatternFragments(*this);
565 /// InferAllTypes - Infer/propagate as many types throughout the expression
566 /// patterns as possible. Return true if all types are inferred, false
567 /// otherwise. Throw an exception if a type contradiction is found.
568 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
571 /// error - Throw an exception, prefixing it with information about this
573 void error(const std::string &Msg) const;
575 void print(raw_ostream &OS) const;
579 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
580 void ComputeNamedNodes();
581 void ComputeNamedNodes(TreePatternNode *N);
584 /// DAGDefaultOperand - One of these is created for each PredicateOperand
585 /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
586 struct DAGDefaultOperand {
587 std::vector<TreePatternNode*> DefaultOps;
590 class DAGInstruction {
591 TreePattern *Pattern;
592 std::vector<Record*> Results;
593 std::vector<Record*> Operands;
594 std::vector<Record*> ImpResults;
595 TreePatternNode *ResultPattern;
597 DAGInstruction(TreePattern *TP,
598 const std::vector<Record*> &results,
599 const std::vector<Record*> &operands,
600 const std::vector<Record*> &impresults)
601 : Pattern(TP), Results(results), Operands(operands),
602 ImpResults(impresults), ResultPattern(0) {}
604 const TreePattern *getPattern() const { return Pattern; }
605 unsigned getNumResults() const { return Results.size(); }
606 unsigned getNumOperands() const { return Operands.size(); }
607 unsigned getNumImpResults() const { return ImpResults.size(); }
608 const std::vector<Record*>& getImpResults() const { return ImpResults; }
610 void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
612 Record *getResult(unsigned RN) const {
613 assert(RN < Results.size());
617 Record *getOperand(unsigned ON) const {
618 assert(ON < Operands.size());
622 Record *getImpResult(unsigned RN) const {
623 assert(RN < ImpResults.size());
624 return ImpResults[RN];
627 TreePatternNode *getResultPattern() const { return ResultPattern; }
630 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
631 /// processed to produce isel.
632 class PatternToMatch {
634 PatternToMatch(Record *srcrecord, ListInit *preds,
635 TreePatternNode *src, TreePatternNode *dst,
636 const std::vector<Record*> &dstregs,
637 unsigned complexity, unsigned uid)
638 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
639 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
641 Record *SrcRecord; // Originating Record for the pattern.
642 ListInit *Predicates; // Top level predicate conditions to match.
643 TreePatternNode *SrcPattern; // Source pattern to match.
644 TreePatternNode *DstPattern; // Resulting pattern.
645 std::vector<Record*> Dstregs; // Physical register defs being matched.
646 unsigned AddedComplexity; // Add to matching pattern complexity.
647 unsigned ID; // Unique ID for the record.
649 Record *getSrcRecord() const { return SrcRecord; }
650 ListInit *getPredicates() const { return Predicates; }
651 TreePatternNode *getSrcPattern() const { return SrcPattern; }
652 TreePatternNode *getDstPattern() const { return DstPattern; }
653 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
654 unsigned getAddedComplexity() const { return AddedComplexity; }
656 std::string getPredicateCheck() const;
658 /// Compute the complexity metric for the input pattern. This roughly
659 /// corresponds to the number of nodes that are covered.
660 unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
663 // Deterministic comparison of Record*.
664 struct RecordPtrCmp {
665 bool operator()(const Record *LHS, const Record *RHS) const;
668 class CodeGenDAGPatterns {
669 RecordKeeper &Records;
670 CodeGenTarget Target;
671 std::vector<CodeGenIntrinsic> Intrinsics;
672 std::vector<CodeGenIntrinsic> TgtIntrinsics;
674 std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
675 std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
676 std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
677 std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
678 std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
679 std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
681 // Specific SDNode definitions:
682 Record *intrinsic_void_sdnode;
683 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
685 /// PatternsToMatch - All of the things we are matching on the DAG. The first
686 /// value is the pattern to match, the second pattern is the result to
688 std::vector<PatternToMatch> PatternsToMatch;
690 CodeGenDAGPatterns(RecordKeeper &R);
691 ~CodeGenDAGPatterns();
693 CodeGenTarget &getTargetInfo() { return Target; }
694 const CodeGenTarget &getTargetInfo() const { return Target; }
696 Record *getSDNodeNamed(const std::string &Name) const;
698 const SDNodeInfo &getSDNodeInfo(Record *R) const {
699 assert(SDNodes.count(R) && "Unknown node!");
700 return SDNodes.find(R)->second;
703 // Node transformation lookups.
704 typedef std::pair<Record*, std::string> NodeXForm;
705 const NodeXForm &getSDNodeTransform(Record *R) const {
706 assert(SDNodeXForms.count(R) && "Invalid transform!");
707 return SDNodeXForms.find(R)->second;
710 typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
712 nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
713 nx_iterator nx_end() const { return SDNodeXForms.end(); }
716 const ComplexPattern &getComplexPattern(Record *R) const {
717 assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
718 return ComplexPatterns.find(R)->second;
721 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
722 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
723 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
724 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
725 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
726 assert(0 && "Unknown intrinsic!");
730 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
731 if (IID-1 < Intrinsics.size())
732 return Intrinsics[IID-1];
733 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
734 return TgtIntrinsics[IID-Intrinsics.size()-1];
735 assert(0 && "Bad intrinsic ID!");
739 unsigned getIntrinsicID(Record *R) const {
740 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
741 if (Intrinsics[i].TheDef == R) return i;
742 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
743 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
744 assert(0 && "Unknown intrinsic!");
748 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
749 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
750 return DefaultOperands.find(R)->second;
753 // Pattern Fragment information.
754 TreePattern *getPatternFragment(Record *R) const {
755 assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
756 return PatternFragments.find(R)->second;
758 TreePattern *getPatternFragmentIfRead(Record *R) const {
759 if (!PatternFragments.count(R)) return 0;
760 return PatternFragments.find(R)->second;
763 typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
765 pf_iterator pf_begin() const { return PatternFragments.begin(); }
766 pf_iterator pf_end() const { return PatternFragments.end(); }
768 // Patterns to match information.
769 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
770 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
771 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
775 const DAGInstruction &getInstruction(Record *R) const {
776 assert(Instructions.count(R) && "Unknown instruction!");
777 return Instructions.find(R)->second;
780 Record *get_intrinsic_void_sdnode() const {
781 return intrinsic_void_sdnode;
783 Record *get_intrinsic_w_chain_sdnode() const {
784 return intrinsic_w_chain_sdnode;
786 Record *get_intrinsic_wo_chain_sdnode() const {
787 return intrinsic_wo_chain_sdnode;
790 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
793 void ParseNodeInfo();
794 void ParseNodeTransforms();
795 void ParseComplexPatterns();
796 void ParsePatternFragments();
797 void ParseDefaultOperands();
798 void ParseInstructions();
799 void ParsePatterns();
800 void InferInstructionFlags();
801 void GenerateVariants();
803 void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
804 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
805 std::map<std::string,
806 TreePatternNode*> &InstInputs,
807 std::map<std::string,
808 TreePatternNode*> &InstResults,
809 std::vector<Record*> &InstImpResults);
811 } // end namespace llvm