1 //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tablegen backend emits a DAG instruction selector.
12 //===----------------------------------------------------------------------===//
14 #include "DAGISelEmitter.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Support/Debug.h"
22 //===----------------------------------------------------------------------===//
23 // Helpers for working with extended types.
25 /// FilterVTs - Filter a list of VT's according to a predicate.
28 static std::vector<MVT::ValueType>
29 FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
30 std::vector<MVT::ValueType> Result;
31 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
33 Result.push_back(InVTs[i]);
38 static std::vector<unsigned char>
39 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
40 std::vector<unsigned char> Result;
41 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
42 if (Filter((MVT::ValueType)InVTs[i]))
43 Result.push_back(InVTs[i]);
47 static std::vector<unsigned char>
48 ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
49 std::vector<unsigned char> Result;
50 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
51 Result.push_back(InVTs[i]);
55 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
56 const std::vector<unsigned char> &RHS) {
57 if (LHS.size() > RHS.size()) return false;
58 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
59 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
64 /// isExtIntegerVT - Return true if the specified extended value type vector
65 /// contains isInt or an integer value type.
66 static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
67 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
68 return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
71 /// isExtFloatingPointVT - Return true if the specified extended value type
72 /// vector contains isFP or a FP value type.
73 static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
74 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
75 return EVTs[0] == MVT::isFP ||
76 !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
79 //===----------------------------------------------------------------------===//
80 // SDTypeConstraint implementation
83 SDTypeConstraint::SDTypeConstraint(Record *R) {
84 OperandNo = R->getValueAsInt("OperandNum");
86 if (R->isSubClassOf("SDTCisVT")) {
87 ConstraintType = SDTCisVT;
88 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
89 } else if (R->isSubClassOf("SDTCisPtrTy")) {
90 ConstraintType = SDTCisPtrTy;
91 } else if (R->isSubClassOf("SDTCisInt")) {
92 ConstraintType = SDTCisInt;
93 } else if (R->isSubClassOf("SDTCisFP")) {
94 ConstraintType = SDTCisFP;
95 } else if (R->isSubClassOf("SDTCisSameAs")) {
96 ConstraintType = SDTCisSameAs;
97 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
98 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
99 ConstraintType = SDTCisVTSmallerThanOp;
100 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
101 R->getValueAsInt("OtherOperandNum");
102 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
103 ConstraintType = SDTCisOpSmallerThanOp;
104 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
105 R->getValueAsInt("BigOperandNum");
106 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
107 ConstraintType = SDTCisIntVectorOfSameSize;
108 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
109 R->getValueAsInt("OtherOpNum");
111 std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
116 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
117 /// N, which has NumResults results.
118 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
120 unsigned NumResults) const {
121 assert(NumResults <= 1 &&
122 "We only work with nodes with zero or one result so far!");
124 if (OpNo >= (NumResults + N->getNumChildren())) {
125 std::cerr << "Invalid operand number " << OpNo << " ";
131 if (OpNo < NumResults)
132 return N; // FIXME: need value #
134 return N->getChild(OpNo-NumResults);
137 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
138 /// constraint to the nodes operands. This returns true if it makes a
139 /// change, false otherwise. If a type contradiction is found, throw an
141 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
142 const SDNodeInfo &NodeInfo,
143 TreePattern &TP) const {
144 unsigned NumResults = NodeInfo.getNumResults();
145 assert(NumResults <= 1 &&
146 "We only work with nodes with zero or one result so far!");
148 // Check that the number of operands is sane.
149 if (NodeInfo.getNumOperands() >= 0) {
150 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
151 TP.error(N->getOperator()->getName() + " node requires exactly " +
152 itostr(NodeInfo.getNumOperands()) + " operands!");
155 const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
157 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
159 switch (ConstraintType) {
160 default: assert(0 && "Unknown constraint type!");
162 // Operand must be a particular type.
163 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
165 // Operand must be same as target pointer type.
166 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
169 // If there is only one integer type supported, this must be it.
170 std::vector<MVT::ValueType> IntVTs =
171 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
173 // If we found exactly one supported integer type, apply it.
174 if (IntVTs.size() == 1)
175 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
176 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
179 // If there is only one FP type supported, this must be it.
180 std::vector<MVT::ValueType> FPVTs =
181 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
183 // If we found exactly one supported FP type, apply it.
184 if (FPVTs.size() == 1)
185 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
186 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
189 TreePatternNode *OtherNode =
190 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
191 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
192 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
194 case SDTCisVTSmallerThanOp: {
195 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
196 // have an integer type that is smaller than the VT.
197 if (!NodeToApply->isLeaf() ||
198 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
199 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
200 ->isSubClassOf("ValueType"))
201 TP.error(N->getOperator()->getName() + " expects a VT operand!");
203 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
204 if (!MVT::isInteger(VT))
205 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
207 TreePatternNode *OtherNode =
208 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
210 // It must be integer.
211 bool MadeChange = false;
212 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
214 // This code only handles nodes that have one type set. Assert here so
215 // that we can change this if we ever need to deal with multiple value
216 // types at this point.
217 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
218 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
219 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
222 case SDTCisOpSmallerThanOp: {
223 TreePatternNode *BigOperand =
224 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
226 // Both operands must be integer or FP, but we don't care which.
227 bool MadeChange = false;
229 // This code does not currently handle nodes which have multiple types,
230 // where some types are integer, and some are fp. Assert that this is not
232 assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
233 isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
234 !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
235 isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
236 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
237 if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
238 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
239 else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
240 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
241 if (isExtIntegerInVTs(BigOperand->getExtTypes()))
242 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
243 else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
244 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
246 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
248 if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
249 VTs = FilterVTs(VTs, MVT::isInteger);
250 } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
251 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
256 switch (VTs.size()) {
257 default: // Too many VT's to pick from.
258 case 0: break; // No info yet.
260 // Only one VT of this flavor. Cannot ever satisify the constraints.
261 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
263 // If we have exactly two possible types, the little operand must be the
264 // small one, the big operand should be the big one. Common with
265 // float/double for example.
266 assert(VTs[0] < VTs[1] && "Should be sorted!");
267 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
268 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
273 case SDTCisIntVectorOfSameSize: {
274 TreePatternNode *OtherOperand =
275 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
277 if (OtherOperand->hasTypeSet()) {
278 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
279 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
280 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
281 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
282 return NodeToApply->UpdateNodeType(IVT, TP);
291 //===----------------------------------------------------------------------===//
292 // SDNodeInfo implementation
294 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
295 EnumName = R->getValueAsString("Opcode");
296 SDClassName = R->getValueAsString("SDClass");
297 Record *TypeProfile = R->getValueAsDef("TypeProfile");
298 NumResults = TypeProfile->getValueAsInt("NumResults");
299 NumOperands = TypeProfile->getValueAsInt("NumOperands");
301 // Parse the properties.
303 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
304 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
305 if (PropList[i]->getName() == "SDNPCommutative") {
306 Properties |= 1 << SDNPCommutative;
307 } else if (PropList[i]->getName() == "SDNPAssociative") {
308 Properties |= 1 << SDNPAssociative;
309 } else if (PropList[i]->getName() == "SDNPHasChain") {
310 Properties |= 1 << SDNPHasChain;
311 } else if (PropList[i]->getName() == "SDNPOutFlag") {
312 Properties |= 1 << SDNPOutFlag;
313 } else if (PropList[i]->getName() == "SDNPInFlag") {
314 Properties |= 1 << SDNPInFlag;
315 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
316 Properties |= 1 << SDNPOptInFlag;
318 std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
319 << "' on node '" << R->getName() << "'!\n";
325 // Parse the type constraints.
326 std::vector<Record*> ConstraintList =
327 TypeProfile->getValueAsListOfDefs("Constraints");
328 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
331 //===----------------------------------------------------------------------===//
332 // TreePatternNode implementation
335 TreePatternNode::~TreePatternNode() {
336 #if 0 // FIXME: implement refcounted tree nodes!
337 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
342 /// UpdateNodeType - Set the node type of N to VT if VT contains
343 /// information. If N already contains a conflicting type, then throw an
344 /// exception. This returns true if any information was updated.
346 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
348 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
350 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
352 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
357 if (getExtTypeNum(0) == MVT::iPTR) {
358 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
360 if (isExtIntegerInVTs(ExtVTs)) {
361 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
369 if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
370 assert(hasTypeSet() && "should be handled above!");
371 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
372 if (getExtTypes() == FVTs)
377 if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
378 //assert(hasTypeSet() && "should be handled above!");
379 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
380 if (getExtTypes() == FVTs)
387 if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
388 assert(hasTypeSet() && "should be handled above!");
389 std::vector<unsigned char> FVTs =
390 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
391 if (getExtTypes() == FVTs)
397 // If we know this is an int or fp type, and we are told it is a specific one,
400 // Similarly, we should probably set the type here to the intersection of
401 // {isInt|isFP} and ExtVTs
402 if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
403 (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
407 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
415 TP.error("Type inference contradiction found in node!");
417 TP.error("Type inference contradiction found in node " +
418 getOperator()->getName() + "!");
420 return true; // unreachable
424 void TreePatternNode::print(std::ostream &OS) const {
426 OS << *getLeafValue();
428 OS << "(" << getOperator()->getName();
431 // FIXME: At some point we should handle printing all the value types for
432 // nodes that are multiply typed.
433 switch (getExtTypeNum(0)) {
434 case MVT::Other: OS << ":Other"; break;
435 case MVT::isInt: OS << ":isInt"; break;
436 case MVT::isFP : OS << ":isFP"; break;
437 case MVT::isUnknown: ; /*OS << ":?";*/ break;
438 case MVT::iPTR: OS << ":iPTR"; break;
439 default: OS << ":" << getTypeNum(0); break;
443 if (getNumChildren() != 0) {
445 getChild(0)->print(OS);
446 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
448 getChild(i)->print(OS);
454 if (!PredicateFn.empty())
455 OS << "<<P:" << PredicateFn << ">>";
457 OS << "<<X:" << TransformFn->getName() << ">>";
458 if (!getName().empty())
459 OS << ":$" << getName();
462 void TreePatternNode::dump() const {
466 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
467 /// the specified node. For this comparison, all of the state of the node
468 /// is considered, except for the assigned name. Nodes with differing names
469 /// that are otherwise identical are considered isomorphic.
470 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
471 if (N == this) return true;
472 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
473 getPredicateFn() != N->getPredicateFn() ||
474 getTransformFn() != N->getTransformFn())
478 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
479 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
480 return DI->getDef() == NDI->getDef();
481 return getLeafValue() == N->getLeafValue();
484 if (N->getOperator() != getOperator() ||
485 N->getNumChildren() != getNumChildren()) return false;
486 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
487 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
492 /// clone - Make a copy of this tree and all of its children.
494 TreePatternNode *TreePatternNode::clone() const {
495 TreePatternNode *New;
497 New = new TreePatternNode(getLeafValue());
499 std::vector<TreePatternNode*> CChildren;
500 CChildren.reserve(Children.size());
501 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
502 CChildren.push_back(getChild(i)->clone());
503 New = new TreePatternNode(getOperator(), CChildren);
505 New->setName(getName());
506 New->setTypes(getExtTypes());
507 New->setPredicateFn(getPredicateFn());
508 New->setTransformFn(getTransformFn());
512 /// SubstituteFormalArguments - Replace the formal arguments in this tree
513 /// with actual values specified by ArgMap.
514 void TreePatternNode::
515 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
516 if (isLeaf()) return;
518 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
519 TreePatternNode *Child = getChild(i);
520 if (Child->isLeaf()) {
521 Init *Val = Child->getLeafValue();
522 if (dynamic_cast<DefInit*>(Val) &&
523 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
524 // We found a use of a formal argument, replace it with its value.
525 Child = ArgMap[Child->getName()];
526 assert(Child && "Couldn't find formal argument!");
530 getChild(i)->SubstituteFormalArguments(ArgMap);
536 /// InlinePatternFragments - If this pattern refers to any pattern
537 /// fragments, inline them into place, giving us a pattern without any
538 /// PatFrag references.
539 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
540 if (isLeaf()) return this; // nothing to do.
541 Record *Op = getOperator();
543 if (!Op->isSubClassOf("PatFrag")) {
544 // Just recursively inline children nodes.
545 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
546 setChild(i, getChild(i)->InlinePatternFragments(TP));
550 // Otherwise, we found a reference to a fragment. First, look up its
551 // TreePattern record.
552 TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
554 // Verify that we are passing the right number of operands.
555 if (Frag->getNumArgs() != Children.size())
556 TP.error("'" + Op->getName() + "' fragment requires " +
557 utostr(Frag->getNumArgs()) + " operands!");
559 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
561 // Resolve formal arguments to their actual value.
562 if (Frag->getNumArgs()) {
563 // Compute the map of formal to actual arguments.
564 std::map<std::string, TreePatternNode*> ArgMap;
565 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
566 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
568 FragTree->SubstituteFormalArguments(ArgMap);
571 FragTree->setName(getName());
572 FragTree->UpdateNodeType(getExtTypes(), TP);
574 // Get a new copy of this fragment to stitch into here.
575 //delete this; // FIXME: implement refcounting!
579 /// getImplicitType - Check to see if the specified record has an implicit
580 /// type which should be applied to it. This infer the type of register
581 /// references from the register file information, for example.
583 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
585 // Some common return values
586 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
587 std::vector<unsigned char> Other(1, MVT::Other);
589 // Check to see if this is a register or a register class...
590 if (R->isSubClassOf("RegisterClass")) {
593 const CodeGenRegisterClass &RC =
594 TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
595 return ConvertVTs(RC.getValueTypes());
596 } else if (R->isSubClassOf("PatFrag")) {
597 // Pattern fragment types will be resolved when they are inlined.
599 } else if (R->isSubClassOf("Register")) {
602 const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
603 return T.getRegisterVTs(R);
604 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
605 // Using a VTSDNode or CondCodeSDNode.
607 } else if (R->isSubClassOf("ComplexPattern")) {
610 std::vector<unsigned char>
611 ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
613 } else if (R->getName() == "node" || R->getName() == "srcvalue") {
618 TP.error("Unknown node flavor used in pattern: " + R->getName());
622 /// ApplyTypeConstraints - Apply all of the type constraints relevent to
623 /// this node and its children in the tree. This returns true if it makes a
624 /// change, false otherwise. If a type contradiction is found, throw an
626 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
627 DAGISelEmitter &ISE = TP.getDAGISelEmitter();
629 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
630 // If it's a regclass or something else known, include the type.
631 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
632 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
633 // Int inits are always integers. :)
634 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
637 // At some point, it may make sense for this tree pattern to have
638 // multiple types. Assert here that it does not, so we revisit this
639 // code when appropriate.
640 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
641 MVT::ValueType VT = getTypeNum(0);
642 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
643 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
646 if (VT != MVT::iPTR) {
647 unsigned Size = MVT::getSizeInBits(VT);
648 // Make sure that the value is representable for this type.
650 int Val = (II->getValue() << (32-Size)) >> (32-Size);
651 if (Val != II->getValue())
652 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
653 "' is out of range for type '" +
654 getEnumName(getTypeNum(0)) + "'!");
664 // special handling for set, which isn't really an SDNode.
665 if (getOperator()->getName() == "set") {
666 assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
667 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
668 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
670 // Types of operands must match.
671 MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
672 MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
673 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
675 } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
676 getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
677 getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
679 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
680 const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
681 bool MadeChange = false;
683 // Apply the result type to the node.
684 MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
686 if (getNumChildren() != Int.ArgVTs.size())
687 TP.error("Intrinsic '" + Int.Name + "' expects " +
688 utostr(Int.ArgVTs.size()-1) + " operands, not " +
689 utostr(getNumChildren()-1) + " operands!");
691 // Apply type info to the intrinsic ID.
692 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
694 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
695 MVT::ValueType OpVT = Int.ArgVTs[i];
696 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
697 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
700 } else if (getOperator()->isSubClassOf("SDNode")) {
701 const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
703 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
704 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
705 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
706 // Branch, etc. do not produce results and top-level forms in instr pattern
707 // must have void types.
708 if (NI.getNumResults() == 0)
709 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
711 // If this is a vector_shuffle operation, apply types to the build_vector
712 // operation. The types of the integers don't matter, but this ensures they
713 // won't get checked.
714 if (getOperator()->getName() == "vector_shuffle" &&
715 getChild(2)->getOperator()->getName() == "build_vector") {
716 TreePatternNode *BV = getChild(2);
717 const std::vector<MVT::ValueType> &LegalVTs
718 = ISE.getTargetInfo().getLegalValueTypes();
719 MVT::ValueType LegalIntVT = MVT::Other;
720 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
721 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
722 LegalIntVT = LegalVTs[i];
725 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
727 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
728 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
731 } else if (getOperator()->isSubClassOf("Instruction")) {
732 const DAGInstruction &Inst = ISE.getInstruction(getOperator());
733 bool MadeChange = false;
734 unsigned NumResults = Inst.getNumResults();
736 assert(NumResults <= 1 &&
737 "Only supports zero or one result instrs!");
738 // Apply the result type to the node
739 if (NumResults == 0) {
740 MadeChange = UpdateNodeType(MVT::isVoid, TP);
742 Record *ResultNode = Inst.getResult(0);
743 assert(ResultNode->isSubClassOf("RegisterClass") &&
744 "Operands should be register classes!");
746 const CodeGenRegisterClass &RC =
747 ISE.getTargetInfo().getRegisterClass(ResultNode);
748 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
751 if (getNumChildren() != Inst.getNumOperands())
752 TP.error("Instruction '" + getOperator()->getName() + " expects " +
753 utostr(Inst.getNumOperands()) + " operands, not " +
754 utostr(getNumChildren()) + " operands!");
755 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
756 Record *OperandNode = Inst.getOperand(i);
758 if (OperandNode->isSubClassOf("RegisterClass")) {
759 const CodeGenRegisterClass &RC =
760 ISE.getTargetInfo().getRegisterClass(OperandNode);
761 //VT = RC.getValueTypeNum(0);
762 MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()),
764 } else if (OperandNode->isSubClassOf("Operand")) {
765 VT = getValueType(OperandNode->getValueAsDef("Type"));
766 MadeChange |= getChild(i)->UpdateNodeType(VT, TP);
768 assert(0 && "Unknown operand type!");
771 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
775 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
777 // Node transforms always take one operand.
778 if (getNumChildren() != 1)
779 TP.error("Node transform '" + getOperator()->getName() +
780 "' requires one operand!");
782 // If either the output or input of the xform does not have exact
783 // type info. We assume they must be the same. Otherwise, it is perfectly
784 // legal to transform from one type to a completely different type.
785 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
786 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
787 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
794 /// canPatternMatch - If it is impossible for this pattern to match on this
795 /// target, fill in Reason and return false. Otherwise, return true. This is
796 /// used as a santity check for .td files (to prevent people from writing stuff
797 /// that can never possibly work), and to prevent the pattern permuter from
798 /// generating stuff that is useless.
799 bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
800 if (isLeaf()) return true;
802 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
803 if (!getChild(i)->canPatternMatch(Reason, ISE))
806 // If this is an intrinsic, handle cases that would make it not match. For
807 // example, if an operand is required to be an immediate.
808 if (getOperator()->isSubClassOf("Intrinsic")) {
813 // If this node is a commutative operator, check that the LHS isn't an
815 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
816 if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
817 // Scan all of the operands of the node and make sure that only the last one
818 // is a constant node.
819 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
820 if (!getChild(i)->isLeaf() &&
821 getChild(i)->getOperator()->getName() == "imm") {
822 Reason = "Immediate value must be on the RHS of commutative operators!";
830 //===----------------------------------------------------------------------===//
831 // TreePattern implementation
834 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
835 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
836 isInputPattern = isInput;
837 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
838 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
841 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
842 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
843 isInputPattern = isInput;
844 Trees.push_back(ParseTreePattern(Pat));
847 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
848 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
849 isInputPattern = isInput;
850 Trees.push_back(Pat);
855 void TreePattern::error(const std::string &Msg) const {
857 throw "In " + TheRecord->getName() + ": " + Msg;
860 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
861 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
862 if (!OpDef) error("Pattern has unexpected operator type!");
863 Record *Operator = OpDef->getDef();
865 if (Operator->isSubClassOf("ValueType")) {
866 // If the operator is a ValueType, then this must be "type cast" of a leaf
868 if (Dag->getNumArgs() != 1)
869 error("Type cast only takes one operand!");
871 Init *Arg = Dag->getArg(0);
872 TreePatternNode *New;
873 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
874 Record *R = DI->getDef();
875 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
876 Dag->setArg(0, new DagInit(DI,
877 std::vector<std::pair<Init*, std::string> >()));
878 return ParseTreePattern(Dag);
880 New = new TreePatternNode(DI);
881 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
882 New = ParseTreePattern(DI);
883 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
884 New = new TreePatternNode(II);
885 if (!Dag->getArgName(0).empty())
886 error("Constant int argument should not have a name!");
887 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
888 // Turn this into an IntInit.
889 Init *II = BI->convertInitializerTo(new IntRecTy());
890 if (II == 0 || !dynamic_cast<IntInit*>(II))
891 error("Bits value must be constants!");
893 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
894 if (!Dag->getArgName(0).empty())
895 error("Constant int argument should not have a name!");
898 error("Unknown leaf value for tree pattern!");
902 // Apply the type cast.
903 New->UpdateNodeType(getValueType(Operator), *this);
904 New->setName(Dag->getArgName(0));
908 // Verify that this is something that makes sense for an operator.
909 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
910 !Operator->isSubClassOf("Instruction") &&
911 !Operator->isSubClassOf("SDNodeXForm") &&
912 !Operator->isSubClassOf("Intrinsic") &&
913 Operator->getName() != "set")
914 error("Unrecognized node '" + Operator->getName() + "'!");
916 // Check to see if this is something that is illegal in an input pattern.
917 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
918 Operator->isSubClassOf("SDNodeXForm")))
919 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
921 std::vector<TreePatternNode*> Children;
923 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
924 Init *Arg = Dag->getArg(i);
925 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
926 Children.push_back(ParseTreePattern(DI));
927 if (Children.back()->getName().empty())
928 Children.back()->setName(Dag->getArgName(i));
929 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
930 Record *R = DefI->getDef();
931 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
932 // TreePatternNode if its own.
933 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
934 Dag->setArg(i, new DagInit(DefI,
935 std::vector<std::pair<Init*, std::string> >()));
936 --i; // Revisit this node...
938 TreePatternNode *Node = new TreePatternNode(DefI);
939 Node->setName(Dag->getArgName(i));
940 Children.push_back(Node);
943 if (R->getName() == "node") {
944 if (Dag->getArgName(i).empty())
945 error("'node' argument requires a name to match with operand list");
946 Args.push_back(Dag->getArgName(i));
949 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
950 TreePatternNode *Node = new TreePatternNode(II);
951 if (!Dag->getArgName(i).empty())
952 error("Constant int argument should not have a name!");
953 Children.push_back(Node);
954 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
955 // Turn this into an IntInit.
956 Init *II = BI->convertInitializerTo(new IntRecTy());
957 if (II == 0 || !dynamic_cast<IntInit*>(II))
958 error("Bits value must be constants!");
960 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
961 if (!Dag->getArgName(i).empty())
962 error("Constant int argument should not have a name!");
963 Children.push_back(Node);
968 error("Unknown leaf value for tree pattern!");
972 // If the operator is an intrinsic, then this is just syntactic sugar for for
973 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
974 // convert the intrinsic name to a number.
975 if (Operator->isSubClassOf("Intrinsic")) {
976 const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
977 unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
979 // If this intrinsic returns void, it must have side-effects and thus a
981 if (Int.ArgVTs[0] == MVT::isVoid) {
982 Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
983 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
984 // Has side-effects, requires chain.
985 Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
987 // Otherwise, no chain.
988 Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
991 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
992 Children.insert(Children.begin(), IIDNode);
995 return new TreePatternNode(Operator, Children);
998 /// InferAllTypes - Infer/propagate as many types throughout the expression
999 /// patterns as possible. Return true if all types are infered, false
1000 /// otherwise. Throw an exception if a type contradiction is found.
1001 bool TreePattern::InferAllTypes() {
1002 bool MadeChange = true;
1003 while (MadeChange) {
1005 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1006 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1009 bool HasUnresolvedTypes = false;
1010 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1011 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1012 return !HasUnresolvedTypes;
1015 void TreePattern::print(std::ostream &OS) const {
1016 OS << getRecord()->getName();
1017 if (!Args.empty()) {
1018 OS << "(" << Args[0];
1019 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1020 OS << ", " << Args[i];
1025 if (Trees.size() > 1)
1027 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1029 Trees[i]->print(OS);
1033 if (Trees.size() > 1)
1037 void TreePattern::dump() const { print(std::cerr); }
1041 //===----------------------------------------------------------------------===//
1042 // DAGISelEmitter implementation
1045 // Parse all of the SDNode definitions for the target, populating SDNodes.
1046 void DAGISelEmitter::ParseNodeInfo() {
1047 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1048 while (!Nodes.empty()) {
1049 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1053 // Get the buildin intrinsic nodes.
1054 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1055 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1056 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1059 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1060 /// map, and emit them to the file as functions.
1061 void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
1062 OS << "\n// Node transformations.\n";
1063 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1064 while (!Xforms.empty()) {
1065 Record *XFormNode = Xforms.back();
1066 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1067 std::string Code = XFormNode->getValueAsCode("XFormFunction");
1068 SDNodeXForms.insert(std::make_pair(XFormNode,
1069 std::make_pair(SDNode, Code)));
1071 if (!Code.empty()) {
1072 std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
1073 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1075 OS << "inline SDOperand Transform_" << XFormNode->getName()
1076 << "(SDNode *" << C2 << ") {\n";
1077 if (ClassName != "SDNode")
1078 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1079 OS << Code << "\n}\n";
1086 void DAGISelEmitter::ParseComplexPatterns() {
1087 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1088 while (!AMs.empty()) {
1089 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1095 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1096 /// file, building up the PatternFragments map. After we've collected them all,
1097 /// inline fragments together as necessary, so that there are no references left
1098 /// inside a pattern fragment to a pattern fragment.
1100 /// This also emits all of the predicate functions to the output file.
1102 void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
1103 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1105 // First step, parse all of the fragments and emit predicate functions.
1106 OS << "\n// Predicate functions.\n";
1107 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1108 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1109 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1110 PatternFragments[Fragments[i]] = P;
1112 // Validate the argument list, converting it to map, to discard duplicates.
1113 std::vector<std::string> &Args = P->getArgList();
1114 std::set<std::string> OperandsMap(Args.begin(), Args.end());
1116 if (OperandsMap.count(""))
1117 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1119 // Parse the operands list.
1120 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1121 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1122 if (!OpsOp || OpsOp->getDef()->getName() != "ops")
1123 P->error("Operands list should start with '(ops ... '!");
1125 // Copy over the arguments.
1127 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1128 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1129 static_cast<DefInit*>(OpsList->getArg(j))->
1130 getDef()->getName() != "node")
1131 P->error("Operands list should all be 'node' values.");
1132 if (OpsList->getArgName(j).empty())
1133 P->error("Operands list should have names for each operand!");
1134 if (!OperandsMap.count(OpsList->getArgName(j)))
1135 P->error("'" + OpsList->getArgName(j) +
1136 "' does not occur in pattern or was multiply specified!");
1137 OperandsMap.erase(OpsList->getArgName(j));
1138 Args.push_back(OpsList->getArgName(j));
1141 if (!OperandsMap.empty())
1142 P->error("Operands list does not contain an entry for operand '" +
1143 *OperandsMap.begin() + "'!");
1145 // If there is a code init for this fragment, emit the predicate code and
1146 // keep track of the fact that this fragment uses it.
1147 std::string Code = Fragments[i]->getValueAsCode("Predicate");
1148 if (!Code.empty()) {
1149 assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!");
1150 std::string ClassName =
1151 getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
1152 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1154 OS << "inline bool Predicate_" << Fragments[i]->getName()
1155 << "(SDNode *" << C2 << ") {\n";
1156 if (ClassName != "SDNode")
1157 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1158 OS << Code << "\n}\n";
1159 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
1162 // If there is a node transformation corresponding to this, keep track of
1164 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1165 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1166 P->getOnlyTree()->setTransformFn(Transform);
1171 // Now that we've parsed all of the tree fragments, do a closure on them so
1172 // that there are not references to PatFrags left inside of them.
1173 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1174 E = PatternFragments.end(); I != E; ++I) {
1175 TreePattern *ThePat = I->second;
1176 ThePat->InlinePatternFragments();
1178 // Infer as many types as possible. Don't worry about it if we don't infer
1179 // all of them, some may depend on the inputs of the pattern.
1181 ThePat->InferAllTypes();
1183 // If this pattern fragment is not supported by this target (no types can
1184 // satisfy its constraints), just ignore it. If the bogus pattern is
1185 // actually used by instructions, the type consistency error will be
1189 // If debugging, print out the pattern fragment result.
1190 DEBUG(ThePat->dump());
1194 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1195 /// instruction input. Return true if this is a real use.
1196 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1197 std::map<std::string, TreePatternNode*> &InstInputs,
1198 std::vector<Record*> &InstImpInputs) {
1199 // No name -> not interesting.
1200 if (Pat->getName().empty()) {
1201 if (Pat->isLeaf()) {
1202 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1203 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1204 I->error("Input " + DI->getDef()->getName() + " must be named!");
1205 else if (DI && DI->getDef()->isSubClassOf("Register"))
1206 InstImpInputs.push_back(DI->getDef());
1212 if (Pat->isLeaf()) {
1213 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1214 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1217 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1218 Rec = Pat->getOperator();
1221 // SRCVALUE nodes are ignored.
1222 if (Rec->getName() == "srcvalue")
1225 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1230 if (Slot->isLeaf()) {
1231 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1233 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1234 SlotRec = Slot->getOperator();
1237 // Ensure that the inputs agree if we've already seen this input.
1239 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1240 if (Slot->getExtTypes() != Pat->getExtTypes())
1241 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1246 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1247 /// part of "I", the instruction), computing the set of inputs and outputs of
1248 /// the pattern. Report errors if we see anything naughty.
1249 void DAGISelEmitter::
1250 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1251 std::map<std::string, TreePatternNode*> &InstInputs,
1252 std::map<std::string, TreePatternNode*>&InstResults,
1253 std::vector<Record*> &InstImpInputs,
1254 std::vector<Record*> &InstImpResults) {
1255 if (Pat->isLeaf()) {
1256 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1257 if (!isUse && Pat->getTransformFn())
1258 I->error("Cannot specify a transform function for a non-input value!");
1260 } else if (Pat->getOperator()->getName() != "set") {
1261 // If this is not a set, verify that the children nodes are not void typed,
1263 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1264 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1265 I->error("Cannot have void nodes inside of patterns!");
1266 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1267 InstImpInputs, InstImpResults);
1270 // If this is a non-leaf node with no children, treat it basically as if
1271 // it were a leaf. This handles nodes like (imm).
1273 if (Pat->getNumChildren() == 0)
1274 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1276 if (!isUse && Pat->getTransformFn())
1277 I->error("Cannot specify a transform function for a non-input value!");
1281 // Otherwise, this is a set, validate and collect instruction results.
1282 if (Pat->getNumChildren() == 0)
1283 I->error("set requires operands!");
1284 else if (Pat->getNumChildren() & 1)
1285 I->error("set requires an even number of operands");
1287 if (Pat->getTransformFn())
1288 I->error("Cannot specify a transform function on a set node!");
1290 // Check the set destinations.
1291 unsigned NumValues = Pat->getNumChildren()/2;
1292 for (unsigned i = 0; i != NumValues; ++i) {
1293 TreePatternNode *Dest = Pat->getChild(i);
1294 if (!Dest->isLeaf())
1295 I->error("set destination should be a register!");
1297 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1299 I->error("set destination should be a register!");
1301 if (Val->getDef()->isSubClassOf("RegisterClass")) {
1302 if (Dest->getName().empty())
1303 I->error("set destination must have a name!");
1304 if (InstResults.count(Dest->getName()))
1305 I->error("cannot set '" + Dest->getName() +"' multiple times");
1306 InstResults[Dest->getName()] = Dest;
1307 } else if (Val->getDef()->isSubClassOf("Register")) {
1308 InstImpResults.push_back(Val->getDef());
1310 I->error("set destination should be a register!");
1313 // Verify and collect info from the computation.
1314 FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
1315 InstInputs, InstResults,
1316 InstImpInputs, InstImpResults);
1320 /// ParseInstructions - Parse all of the instructions, inlining and resolving
1321 /// any fragments involved. This populates the Instructions list with fully
1322 /// resolved instructions.
1323 void DAGISelEmitter::ParseInstructions() {
1324 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1326 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1329 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1330 LI = Instrs[i]->getValueAsListInit("Pattern");
1332 // If there is no pattern, only collect minimal information about the
1333 // instruction for its operand list. We have to assume that there is one
1334 // result, as we have no detailed info.
1335 if (!LI || LI->getSize() == 0) {
1336 std::vector<Record*> Results;
1337 std::vector<Record*> Operands;
1339 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1341 if (InstInfo.OperandList.size() != 0) {
1342 // FIXME: temporary hack...
1343 if (InstInfo.noResults) {
1344 // These produce no results
1345 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1346 Operands.push_back(InstInfo.OperandList[j].Rec);
1348 // Assume the first operand is the result.
1349 Results.push_back(InstInfo.OperandList[0].Rec);
1351 // The rest are inputs.
1352 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1353 Operands.push_back(InstInfo.OperandList[j].Rec);
1357 // Create and insert the instruction.
1358 std::vector<Record*> ImpResults;
1359 std::vector<Record*> ImpOperands;
1360 Instructions.insert(std::make_pair(Instrs[i],
1361 DAGInstruction(0, Results, Operands, ImpResults,
1363 continue; // no pattern.
1366 // Parse the instruction.
1367 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1368 // Inline pattern fragments into it.
1369 I->InlinePatternFragments();
1371 // Infer as many types as possible. If we cannot infer all of them, we can
1372 // never do anything with this instruction pattern: report it to the user.
1373 if (!I->InferAllTypes())
1374 I->error("Could not infer all types in pattern!");
1376 // InstInputs - Keep track of all of the inputs of the instruction, along
1377 // with the record they are declared as.
1378 std::map<std::string, TreePatternNode*> InstInputs;
1380 // InstResults - Keep track of all the virtual registers that are 'set'
1381 // in the instruction, including what reg class they are.
1382 std::map<std::string, TreePatternNode*> InstResults;
1384 std::vector<Record*> InstImpInputs;
1385 std::vector<Record*> InstImpResults;
1387 // Verify that the top-level forms in the instruction are of void type, and
1388 // fill in the InstResults map.
1389 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1390 TreePatternNode *Pat = I->getTree(j);
1391 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1392 I->error("Top-level forms in instruction pattern should have"
1395 // Find inputs and outputs, and verify the structure of the uses/defs.
1396 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1397 InstImpInputs, InstImpResults);
1400 // Now that we have inputs and outputs of the pattern, inspect the operands
1401 // list for the instruction. This determines the order that operands are
1402 // added to the machine instruction the node corresponds to.
1403 unsigned NumResults = InstResults.size();
1405 // Parse the operands list from the (ops) list, validating it.
1406 std::vector<std::string> &Args = I->getArgList();
1407 assert(Args.empty() && "Args list should still be empty here!");
1408 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1410 // Check that all of the results occur first in the list.
1411 std::vector<Record*> Results;
1412 TreePatternNode *Res0Node = NULL;
1413 for (unsigned i = 0; i != NumResults; ++i) {
1414 if (i == CGI.OperandList.size())
1415 I->error("'" + InstResults.begin()->first +
1416 "' set but does not appear in operand list!");
1417 const std::string &OpName = CGI.OperandList[i].Name;
1419 // Check that it exists in InstResults.
1420 TreePatternNode *RNode = InstResults[OpName];
1422 I->error("Operand $" + OpName + " does not exist in operand list!");
1426 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1428 I->error("Operand $" + OpName + " should be a set destination: all "
1429 "outputs must occur before inputs in operand list!");
1431 if (CGI.OperandList[i].Rec != R)
1432 I->error("Operand $" + OpName + " class mismatch!");
1434 // Remember the return type.
1435 Results.push_back(CGI.OperandList[i].Rec);
1437 // Okay, this one checks out.
1438 InstResults.erase(OpName);
1441 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1442 // the copy while we're checking the inputs.
1443 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1445 std::vector<TreePatternNode*> ResultNodeOperands;
1446 std::vector<Record*> Operands;
1447 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1448 const std::string &OpName = CGI.OperandList[i].Name;
1450 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1452 if (!InstInputsCheck.count(OpName))
1453 I->error("Operand $" + OpName +
1454 " does not appear in the instruction pattern");
1455 TreePatternNode *InVal = InstInputsCheck[OpName];
1456 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1458 if (InVal->isLeaf() &&
1459 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1460 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1461 if (CGI.OperandList[i].Rec != InRec &&
1462 !InRec->isSubClassOf("ComplexPattern"))
1463 I->error("Operand $" + OpName + "'s register class disagrees"
1464 " between the operand and pattern");
1466 Operands.push_back(CGI.OperandList[i].Rec);
1468 // Construct the result for the dest-pattern operand list.
1469 TreePatternNode *OpNode = InVal->clone();
1471 // No predicate is useful on the result.
1472 OpNode->setPredicateFn("");
1474 // Promote the xform function to be an explicit node if set.
1475 if (Record *Xform = OpNode->getTransformFn()) {
1476 OpNode->setTransformFn(0);
1477 std::vector<TreePatternNode*> Children;
1478 Children.push_back(OpNode);
1479 OpNode = new TreePatternNode(Xform, Children);
1482 ResultNodeOperands.push_back(OpNode);
1485 if (!InstInputsCheck.empty())
1486 I->error("Input operand $" + InstInputsCheck.begin()->first +
1487 " occurs in pattern but not in operands list!");
1489 TreePatternNode *ResultPattern =
1490 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1491 // Copy fully inferred output node type to instruction result pattern.
1493 ResultPattern->setTypes(Res0Node->getExtTypes());
1495 // Create and insert the instruction.
1496 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1497 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1499 // Use a temporary tree pattern to infer all types and make sure that the
1500 // constructed result is correct. This depends on the instruction already
1501 // being inserted into the Instructions map.
1502 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1503 Temp.InferAllTypes();
1505 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1506 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1511 // If we can, convert the instructions to be patterns that are matched!
1512 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1513 E = Instructions.end(); II != E; ++II) {
1514 DAGInstruction &TheInst = II->second;
1515 TreePattern *I = TheInst.getPattern();
1516 if (I == 0) continue; // No pattern.
1518 if (I->getNumTrees() != 1) {
1519 std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
1522 TreePatternNode *Pattern = I->getTree(0);
1523 TreePatternNode *SrcPattern;
1524 if (Pattern->getOperator()->getName() == "set") {
1525 if (Pattern->getNumChildren() != 2)
1526 continue; // Not a set of a single value (not handled so far)
1528 SrcPattern = Pattern->getChild(1)->clone();
1530 // Not a set (store or something?)
1531 SrcPattern = Pattern;
1535 if (!SrcPattern->canPatternMatch(Reason, *this))
1536 I->error("Instruction can never match: " + Reason);
1538 Record *Instr = II->first;
1539 TreePatternNode *DstPattern = TheInst.getResultPattern();
1541 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1542 SrcPattern, DstPattern,
1543 Instr->getValueAsInt("AddedComplexity")));
1547 void DAGISelEmitter::ParsePatterns() {
1548 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1550 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1551 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1552 TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1554 // Inline pattern fragments into it.
1555 Pattern->InlinePatternFragments();
1557 // Infer as many types as possible. If we cannot infer all of them, we can
1558 // never do anything with this pattern: report it to the user.
1559 if (!Pattern->InferAllTypes())
1560 Pattern->error("Could not infer all types in pattern!");
1562 // Validate that the input pattern is correct.
1564 std::map<std::string, TreePatternNode*> InstInputs;
1565 std::map<std::string, TreePatternNode*> InstResults;
1566 std::vector<Record*> InstImpInputs;
1567 std::vector<Record*> InstImpResults;
1568 FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
1569 InstInputs, InstResults,
1570 InstImpInputs, InstImpResults);
1573 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1574 if (LI->getSize() == 0) continue; // no pattern.
1576 // Parse the instruction.
1577 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1579 // Inline pattern fragments into it.
1580 Result->InlinePatternFragments();
1582 // Infer as many types as possible. If we cannot infer all of them, we can
1583 // never do anything with this pattern: report it to the user.
1584 if (!Result->InferAllTypes())
1585 Result->error("Could not infer all types in pattern result!");
1587 if (Result->getNumTrees() != 1)
1588 Result->error("Cannot handle instructions producing instructions "
1589 "with temporaries yet!");
1591 // Promote the xform function to be an explicit node if set.
1592 std::vector<TreePatternNode*> ResultNodeOperands;
1593 TreePatternNode *DstPattern = Result->getOnlyTree();
1594 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1595 TreePatternNode *OpNode = DstPattern->getChild(ii);
1596 if (Record *Xform = OpNode->getTransformFn()) {
1597 OpNode->setTransformFn(0);
1598 std::vector<TreePatternNode*> Children;
1599 Children.push_back(OpNode);
1600 OpNode = new TreePatternNode(Xform, Children);
1602 ResultNodeOperands.push_back(OpNode);
1604 DstPattern = Result->getOnlyTree();
1605 if (!DstPattern->isLeaf())
1606 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1607 ResultNodeOperands);
1608 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1609 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1610 Temp.InferAllTypes();
1613 if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
1614 Pattern->error("Pattern can never match: " + Reason);
1617 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1618 Pattern->getOnlyTree(),
1620 Patterns[i]->getValueAsInt("AddedComplexity")));
1624 /// CombineChildVariants - Given a bunch of permutations of each child of the
1625 /// 'operator' node, put them together in all possible ways.
1626 static void CombineChildVariants(TreePatternNode *Orig,
1627 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1628 std::vector<TreePatternNode*> &OutVariants,
1629 DAGISelEmitter &ISE) {
1630 // Make sure that each operand has at least one variant to choose from.
1631 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1632 if (ChildVariants[i].empty())
1635 // The end result is an all-pairs construction of the resultant pattern.
1636 std::vector<unsigned> Idxs;
1637 Idxs.resize(ChildVariants.size());
1638 bool NotDone = true;
1640 // Create the variant and add it to the output list.
1641 std::vector<TreePatternNode*> NewChildren;
1642 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1643 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1644 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1646 // Copy over properties.
1647 R->setName(Orig->getName());
1648 R->setPredicateFn(Orig->getPredicateFn());
1649 R->setTransformFn(Orig->getTransformFn());
1650 R->setTypes(Orig->getExtTypes());
1652 // If this pattern cannot every match, do not include it as a variant.
1653 std::string ErrString;
1654 if (!R->canPatternMatch(ErrString, ISE)) {
1657 bool AlreadyExists = false;
1659 // Scan to see if this pattern has already been emitted. We can get
1660 // duplication due to things like commuting:
1661 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1662 // which are the same pattern. Ignore the dups.
1663 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1664 if (R->isIsomorphicTo(OutVariants[i])) {
1665 AlreadyExists = true;
1672 OutVariants.push_back(R);
1675 // Increment indices to the next permutation.
1677 // Look for something we can increment without causing a wrap-around.
1678 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1679 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1680 NotDone = true; // Found something to increment.
1688 /// CombineChildVariants - A helper function for binary operators.
1690 static void CombineChildVariants(TreePatternNode *Orig,
1691 const std::vector<TreePatternNode*> &LHS,
1692 const std::vector<TreePatternNode*> &RHS,
1693 std::vector<TreePatternNode*> &OutVariants,
1694 DAGISelEmitter &ISE) {
1695 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1696 ChildVariants.push_back(LHS);
1697 ChildVariants.push_back(RHS);
1698 CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
1702 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1703 std::vector<TreePatternNode *> &Children) {
1704 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1705 Record *Operator = N->getOperator();
1707 // Only permit raw nodes.
1708 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1709 N->getTransformFn()) {
1710 Children.push_back(N);
1714 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1715 Children.push_back(N->getChild(0));
1717 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1719 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1720 Children.push_back(N->getChild(1));
1722 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1725 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1726 /// the (potentially recursive) pattern by using algebraic laws.
1728 static void GenerateVariantsOf(TreePatternNode *N,
1729 std::vector<TreePatternNode*> &OutVariants,
1730 DAGISelEmitter &ISE) {
1731 // We cannot permute leaves.
1733 OutVariants.push_back(N);
1737 // Look up interesting info about the node.
1738 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
1740 // If this node is associative, reassociate.
1741 if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) {
1742 // Reassociate by pulling together all of the linked operators
1743 std::vector<TreePatternNode*> MaximalChildren;
1744 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1746 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1748 if (MaximalChildren.size() == 3) {
1749 // Find the variants of all of our maximal children.
1750 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1751 GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
1752 GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
1753 GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
1755 // There are only two ways we can permute the tree:
1756 // (A op B) op C and A op (B op C)
1757 // Within these forms, we can also permute A/B/C.
1759 // Generate legal pair permutations of A/B/C.
1760 std::vector<TreePatternNode*> ABVariants;
1761 std::vector<TreePatternNode*> BAVariants;
1762 std::vector<TreePatternNode*> ACVariants;
1763 std::vector<TreePatternNode*> CAVariants;
1764 std::vector<TreePatternNode*> BCVariants;
1765 std::vector<TreePatternNode*> CBVariants;
1766 CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
1767 CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
1768 CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
1769 CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
1770 CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
1771 CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
1773 // Combine those into the result: (x op x) op x
1774 CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
1775 CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
1776 CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
1777 CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
1778 CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
1779 CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
1781 // Combine those into the result: x op (x op x)
1782 CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
1783 CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
1784 CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
1785 CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
1786 CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
1787 CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
1792 // Compute permutations of all children.
1793 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1794 ChildVariants.resize(N->getNumChildren());
1795 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1796 GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
1798 // Build all permutations based on how the children were formed.
1799 CombineChildVariants(N, ChildVariants, OutVariants, ISE);
1801 // If this node is commutative, consider the commuted order.
1802 if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
1803 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1804 // Consider the commuted order.
1805 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
1811 // GenerateVariants - Generate variants. For example, commutative patterns can
1812 // match multiple ways. Add them to PatternsToMatch as well.
1813 void DAGISelEmitter::GenerateVariants() {
1815 DEBUG(std::cerr << "Generating instruction variants.\n");
1817 // Loop over all of the patterns we've collected, checking to see if we can
1818 // generate variants of the instruction, through the exploitation of
1819 // identities. This permits the target to provide agressive matching without
1820 // the .td file having to contain tons of variants of instructions.
1822 // Note that this loop adds new patterns to the PatternsToMatch list, but we
1823 // intentionally do not reconsider these. Any variants of added patterns have
1824 // already been added.
1826 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
1827 std::vector<TreePatternNode*> Variants;
1828 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
1830 assert(!Variants.empty() && "Must create at least original variant!");
1831 Variants.erase(Variants.begin()); // Remove the original pattern.
1833 if (Variants.empty()) // No variants for this pattern.
1836 DEBUG(std::cerr << "FOUND VARIANTS OF: ";
1837 PatternsToMatch[i].getSrcPattern()->dump();
1840 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
1841 TreePatternNode *Variant = Variants[v];
1843 DEBUG(std::cerr << " VAR#" << v << ": ";
1847 // Scan to see if an instruction or explicit pattern already matches this.
1848 bool AlreadyExists = false;
1849 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
1850 // Check to see if this variant already exists.
1851 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
1852 DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n");
1853 AlreadyExists = true;
1857 // If we already have it, ignore the variant.
1858 if (AlreadyExists) continue;
1860 // Otherwise, add it to the list of patterns we have.
1862 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
1863 Variant, PatternsToMatch[i].getDstPattern(),
1864 PatternsToMatch[i].getAddedComplexity()));
1867 DEBUG(std::cerr << "\n");
1872 // NodeIsComplexPattern - return true if N is a leaf node and a subclass of
1874 static bool NodeIsComplexPattern(TreePatternNode *N)
1876 return (N->isLeaf() &&
1877 dynamic_cast<DefInit*>(N->getLeafValue()) &&
1878 static_cast<DefInit*>(N->getLeafValue())->getDef()->
1879 isSubClassOf("ComplexPattern"));
1882 // NodeGetComplexPattern - return the pointer to the ComplexPattern if N
1883 // is a leaf node and a subclass of ComplexPattern, else it returns NULL.
1884 static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
1885 DAGISelEmitter &ISE)
1888 dynamic_cast<DefInit*>(N->getLeafValue()) &&
1889 static_cast<DefInit*>(N->getLeafValue())->getDef()->
1890 isSubClassOf("ComplexPattern")) {
1891 return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
1897 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1898 /// patterns before small ones. This is used to determine the size of a
1900 static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
1901 assert((isExtIntegerInVTs(P->getExtTypes()) ||
1902 isExtFloatingPointInVTs(P->getExtTypes()) ||
1903 P->getExtTypeNum(0) == MVT::isVoid ||
1904 P->getExtTypeNum(0) == MVT::Flag ||
1905 P->getExtTypeNum(0) == MVT::iPTR) &&
1906 "Not a valid pattern node to size!");
1907 unsigned Size = 2; // The node itself.
1908 // If the root node is a ConstantSDNode, increases its size.
1909 // e.g. (set R32:$dst, 0).
1910 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
1913 // FIXME: This is a hack to statically increase the priority of patterns
1914 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
1915 // Later we can allow complexity / cost for each pattern to be (optionally)
1916 // specified. To get best possible pattern match we'll need to dynamically
1917 // calculate the complexity of all patterns a dag can potentially map to.
1918 const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
1920 Size += AM->getNumOperands() * 2;
1922 // If this node has some predicate function that must match, it adds to the
1923 // complexity of this node.
1924 if (!P->getPredicateFn().empty())
1927 // Count children in the count if they are also nodes.
1928 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1929 TreePatternNode *Child = P->getChild(i);
1930 if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
1931 Size += getPatternSize(Child, ISE);
1932 else if (Child->isLeaf()) {
1933 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
1934 Size += 3; // Matches a ConstantSDNode (+2) and a specific value (+1).
1935 else if (NodeIsComplexPattern(Child))
1936 Size += getPatternSize(Child, ISE);
1937 else if (!Child->getPredicateFn().empty())
1945 /// getResultPatternCost - Compute the number of instructions for this pattern.
1946 /// This is a temporary hack. We should really include the instruction
1947 /// latencies in this calculation.
1948 static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
1949 if (P->isLeaf()) return 0;
1952 Record *Op = P->getOperator();
1953 if (Op->isSubClassOf("Instruction")) {
1955 CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
1956 if (II.usesCustomDAGSchedInserter)
1959 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
1960 Cost += getResultPatternCost(P->getChild(i), ISE);
1964 // PatternSortingPredicate - return true if we prefer to match LHS before RHS.
1965 // In particular, we want to match maximal patterns first and lowest cost within
1966 // a particular complexity first.
1967 struct PatternSortingPredicate {
1968 PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
1969 DAGISelEmitter &ISE;
1971 bool operator()(PatternToMatch *LHS,
1972 PatternToMatch *RHS) {
1973 unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
1974 unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
1975 LHSSize += LHS->getAddedComplexity();
1976 RHSSize += RHS->getAddedComplexity();
1977 if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
1978 if (LHSSize < RHSSize) return false;
1980 // If the patterns have equal complexity, compare generated instruction cost
1981 return getResultPatternCost(LHS->getDstPattern(), ISE) <
1982 getResultPatternCost(RHS->getDstPattern(), ISE);
1986 /// getRegisterValueType - Look up and return the first ValueType of specified
1987 /// RegisterClass record
1988 static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
1989 if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
1990 return RC->getValueTypeNum(0);
1995 /// RemoveAllTypes - A quick recursive walk over a pattern which removes all
1996 /// type information from it.
1997 static void RemoveAllTypes(TreePatternNode *N) {
2000 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2001 RemoveAllTypes(N->getChild(i));
2004 Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
2005 Record *N = Records.getDef(Name);
2006 if (!N || !N->isSubClassOf("SDNode")) {
2007 std::cerr << "Error getting SDNode '" << Name << "'!\n";
2013 /// NodeHasProperty - return true if TreePatternNode has the specified
2015 static bool NodeHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property,
2016 DAGISelEmitter &ISE)
2018 if (N->isLeaf()) return false;
2019 Record *Operator = N->getOperator();
2020 if (!Operator->isSubClassOf("SDNode")) return false;
2022 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
2023 return NodeInfo.hasProperty(Property);
2026 static bool PatternHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property,
2027 DAGISelEmitter &ISE)
2029 if (NodeHasProperty(N, Property, ISE))
2032 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2033 TreePatternNode *Child = N->getChild(i);
2034 if (PatternHasProperty(Child, Property, ISE))
2041 class PatternCodeEmitter {
2043 DAGISelEmitter &ISE;
2046 ListInit *Predicates;
2049 // Instruction selector pattern.
2050 TreePatternNode *Pattern;
2051 // Matched instruction.
2052 TreePatternNode *Instruction;
2054 // Node to name mapping
2055 std::map<std::string, std::string> VariableMap;
2056 // Node to operator mapping
2057 std::map<std::string, Record*> OperatorMap;
2058 // Names of all the folded nodes which produce chains.
2059 std::vector<std::pair<std::string, unsigned> > FoldedChains;
2060 std::set<std::string> Duplicates;
2061 /// These nodes are being marked "in-flight" so they cannot be folded.
2062 std::vector<std::string> InflightNodes;
2064 /// GeneratedCode - This is the buffer that we emit code to. The first bool
2065 /// indicates whether this is an exit predicate (something that should be
2066 /// tested, and if true, the match fails) [when true] or normal code to emit
2068 std::vector<std::pair<bool, std::string> > &GeneratedCode;
2069 /// GeneratedDecl - This is the set of all SDOperand declarations needed for
2070 /// the set of patterns for each top-level opcode.
2071 std::set<std::pair<bool, std::string> > &GeneratedDecl;
2073 std::string ChainName;
2078 void emitCheck(const std::string &S) {
2080 GeneratedCode.push_back(std::make_pair(true, S));
2082 void emitCode(const std::string &S) {
2084 GeneratedCode.push_back(std::make_pair(false, S));
2086 void emitDecl(const std::string &S, bool isSDNode=false) {
2087 assert(!S.empty() && "Invalid declaration");
2088 GeneratedDecl.insert(std::make_pair(isSDNode, S));
2091 PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
2092 TreePatternNode *pattern, TreePatternNode *instr,
2093 std::vector<std::pair<bool, std::string> > &gc,
2094 std::set<std::pair<bool, std::string> > &gd,
2096 : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
2097 GeneratedCode(gc), GeneratedDecl(gd),
2098 NewTF(false), DoReplace(dorep), TmpNo(0) {}
2100 /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
2101 /// if the match fails. At this point, we already know that the opcode for N
2102 /// matches, and the SDNode for the result has the RootName specified name.
2103 void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
2104 const std::string &RootName, const std::string &ParentName,
2105 const std::string &ChainSuffix, bool &FoundChain) {
2106 bool isRoot = (P == NULL);
2107 // Emit instruction predicates. Each predicate is just a string for now.
2109 std::string PredicateCheck;
2110 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
2111 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
2112 Record *Def = Pred->getDef();
2113 if (!Def->isSubClassOf("Predicate")) {
2115 assert(0 && "Unknown predicate type!");
2117 if (!PredicateCheck.empty())
2118 PredicateCheck += " || ";
2119 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
2123 emitCheck(PredicateCheck);
2127 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2128 emitCheck("cast<ConstantSDNode>(" + RootName +
2129 ")->getSignExtended() == " + itostr(II->getValue()));
2131 } else if (!NodeIsComplexPattern(N)) {
2132 assert(0 && "Cannot match this as a leaf value!");
2137 // If this node has a name associated with it, capture it in VariableMap. If
2138 // we already saw this in the pattern, emit code to verify dagness.
2139 if (!N->getName().empty()) {
2140 std::string &VarMapEntry = VariableMap[N->getName()];
2141 if (VarMapEntry.empty()) {
2142 VarMapEntry = RootName;
2144 // If we get here, this is a second reference to a specific name. Since
2145 // we already have checked that the first reference is valid, we don't
2146 // have to recursively match it, just check that it's the same as the
2147 // previously named thing.
2148 emitCheck(VarMapEntry + " == " + RootName);
2153 OperatorMap[N->getName()] = N->getOperator();
2157 // Emit code to load the child nodes and match their contents recursively.
2159 bool NodeHasChain = NodeHasProperty (N, SDNodeInfo::SDNPHasChain, ISE);
2160 bool HasChain = PatternHasProperty(N, SDNodeInfo::SDNPHasChain, ISE);
2161 bool HasOutFlag = PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE);
2162 bool EmittedUseCheck = false;
2163 bool EmittedSlctedCheck = false;
2168 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2170 emitCheck("InFlightSet.count(" + RootName + ".Val) == 0");
2171 // Multiple uses of actual result?
2172 emitCheck(RootName + ".hasOneUse()");
2173 EmittedUseCheck = true;
2174 // hasOneUse() check is not strong enough. If the original node has
2175 // already been selected, it may have been replaced with another.
2176 for (unsigned j = 0; j != CInfo.getNumResults(); j++)
2177 emitCheck("!CodeGenMap.count(" + RootName + ".getValue(" + utostr(j) +
2180 EmittedSlctedCheck = true;
2182 // FIXME: Don't fold if 1) the parent node writes a flag, 2) the node
2184 // This a workaround for this problem:
2189 // [XX]--/ \- [flag : cmp]
2194 // cmp + br should be considered as a single node as they are flagged
2195 // together. So, if the ld is folded into the cmp, the XX node in the
2196 // graph is now both an operand and a use of the ld/cmp/br node.
2197 if (NodeHasProperty(P, SDNodeInfo::SDNPOutFlag, ISE))
2198 emitCheck(ParentName + ".Val->isOnlyUse(" + RootName + ".Val)");
2200 // If the immediate use can somehow reach this node through another
2201 // path, then can't fold it either or it will create a cycle.
2202 // e.g. In the following diagram, XX can reach ld through YY. If
2203 // ld is folded into XX, then YY is both a predecessor and a successor
2213 const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
2214 if (PInfo.getNumOperands() > 1 ||
2215 PInfo.hasProperty(SDNodeInfo::SDNPHasChain) ||
2216 PInfo.hasProperty(SDNodeInfo::SDNPInFlag) ||
2217 PInfo.hasProperty(SDNodeInfo::SDNPOptInFlag))
2218 if (PInfo.getNumOperands() > 1) {
2219 emitCheck("!isNonImmUse(" + ParentName + ".Val, " + RootName +
2222 emitCheck("(" + ParentName + ".getNumOperands() == 1 || !" +
2223 "isNonImmUse(" + ParentName + ".Val, " + RootName +
2230 ChainName = "Chain" + ChainSuffix;
2231 emitDecl(ChainName);
2233 // FIXME: temporary workaround for a common case where chain
2234 // is a TokenFactor and the previous "inner" chain is an operand.
2236 emitDecl("OldTF", true);
2237 emitCheck("(" + ChainName + " = UpdateFoldedChain(CurDAG, " +
2238 RootName + ".Val, Chain.Val, OldTF)).Val");
2241 emitCode(ChainName + " = " + RootName + ".getOperand(0);");
2246 // Don't fold any node which reads or writes a flag and has multiple uses.
2247 // FIXME: We really need to separate the concepts of flag and "glue". Those
2248 // real flag results, e.g. X86CMP output, can have multiple uses.
2249 // FIXME: If the optional incoming flag does not exist. Then it is ok to
2252 (PatternHasProperty(N, SDNodeInfo::SDNPInFlag, ISE) ||
2253 PatternHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE) ||
2254 PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE))) {
2255 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2256 if (!EmittedUseCheck) {
2257 // Multiple uses of actual result?
2258 emitCheck(RootName + ".hasOneUse()");
2260 if (!EmittedSlctedCheck)
2261 // hasOneUse() check is not strong enough. If the original node has
2262 // already been selected, it may have been replaced with another.
2263 for (unsigned j = 0; j < CInfo.getNumResults(); j++)
2264 emitCheck("!CodeGenMap.count(" + RootName + ".getValue(" + utostr(j) +
2268 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2269 emitDecl(RootName + utostr(OpNo));
2270 emitCode(RootName + utostr(OpNo) + " = " +
2271 RootName + ".getOperand(" +utostr(OpNo) + ");");
2272 TreePatternNode *Child = N->getChild(i);
2274 if (!Child->isLeaf()) {
2275 // If it's not a leaf, recursively match.
2276 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
2277 emitCheck(RootName + utostr(OpNo) + ".getOpcode() == " +
2278 CInfo.getEnumName());
2279 EmitMatchCode(Child, N, RootName + utostr(OpNo), RootName,
2280 ChainSuffix + utostr(OpNo), FoundChain);
2281 if (NodeHasProperty(Child, SDNodeInfo::SDNPHasChain, ISE))
2282 FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo),
2283 CInfo.getNumResults()));
2285 // If this child has a name associated with it, capture it in VarMap. If
2286 // we already saw this in the pattern, emit code to verify dagness.
2287 if (!Child->getName().empty()) {
2288 std::string &VarMapEntry = VariableMap[Child->getName()];
2289 if (VarMapEntry.empty()) {
2290 VarMapEntry = RootName + utostr(OpNo);
2292 // If we get here, this is a second reference to a specific name.
2293 // Since we already have checked that the first reference is valid,
2294 // we don't have to recursively match it, just check that it's the
2295 // same as the previously named thing.
2296 emitCheck(VarMapEntry + " == " + RootName + utostr(OpNo));
2297 Duplicates.insert(RootName + utostr(OpNo));
2302 // Handle leaves of various types.
2303 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2304 Record *LeafRec = DI->getDef();
2305 if (LeafRec->isSubClassOf("RegisterClass")) {
2306 // Handle register references. Nothing to do here.
2307 } else if (LeafRec->isSubClassOf("Register")) {
2308 // Handle register references.
2309 } else if (LeafRec->isSubClassOf("ComplexPattern")) {
2310 // Handle complex pattern. Nothing to do here.
2311 } else if (LeafRec->getName() == "srcvalue") {
2312 // Place holder for SRCVALUE nodes. Nothing to do here.
2313 } else if (LeafRec->isSubClassOf("ValueType")) {
2314 // Make sure this is the specified value type.
2315 emitCheck("cast<VTSDNode>(" + RootName + utostr(OpNo) +
2316 ")->getVT() == MVT::" + LeafRec->getName());
2317 } else if (LeafRec->isSubClassOf("CondCode")) {
2318 // Make sure this is the specified cond code.
2319 emitCheck("cast<CondCodeSDNode>(" + RootName + utostr(OpNo) +
2320 ")->get() == ISD::" + LeafRec->getName());
2324 assert(0 && "Unknown leaf type!");
2326 } else if (IntInit *II =
2327 dynamic_cast<IntInit*>(Child->getLeafValue())) {
2328 emitCheck("isa<ConstantSDNode>(" + RootName + utostr(OpNo) + ")");
2329 unsigned CTmp = TmpNo++;
2330 emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
2331 RootName + utostr(OpNo) + ")->getSignExtended();");
2333 emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
2336 assert(0 && "Unknown leaf type!");
2341 // If there is a node predicate for this, emit the call.
2342 if (!N->getPredicateFn().empty())
2343 emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
2346 /// EmitResultCode - Emit the action for a pattern. Now that it has matched
2347 /// we actually have to build a DAG!
2348 std::pair<unsigned, unsigned>
2349 EmitResultCode(TreePatternNode *N, bool LikeLeaf = false,
2350 bool isRoot = false) {
2351 // This is something selected from the pattern we matched.
2352 if (!N->getName().empty()) {
2353 std::string &Val = VariableMap[N->getName()];
2354 assert(!Val.empty() &&
2355 "Variable referenced but not defined and not caught earlier!");
2356 if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
2357 // Already selected this operand, just return the tmpval.
2358 return std::make_pair(1, atoi(Val.c_str()+3));
2361 const ComplexPattern *CP;
2362 unsigned ResNo = TmpNo++;
2363 unsigned NumRes = 1;
2364 if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
2365 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2366 std::string CastType;
2367 switch (N->getTypeNum(0)) {
2368 default: assert(0 && "Unknown type for constant node!");
2369 case MVT::i1: CastType = "bool"; break;
2370 case MVT::i8: CastType = "unsigned char"; break;
2371 case MVT::i16: CastType = "unsigned short"; break;
2372 case MVT::i32: CastType = "unsigned"; break;
2373 case MVT::i64: CastType = "uint64_t"; break;
2375 emitCode(CastType + " Tmp" + utostr(ResNo) + "C = (" + CastType +
2376 ")cast<ConstantSDNode>(" + Val + ")->getValue();");
2377 emitDecl("Tmp" + utostr(ResNo));
2378 emitCode("Tmp" + utostr(ResNo) +
2379 " = CurDAG->getTargetConstant(Tmp" + utostr(ResNo) +
2380 "C, " + getEnumName(N->getTypeNum(0)) + ");");
2381 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2382 Record *Op = OperatorMap[N->getName()];
2383 // Transform ExternalSymbol to TargetExternalSymbol
2384 if (Op && Op->getName() == "externalsym") {
2385 emitDecl("Tmp" + utostr(ResNo));
2386 emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2387 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
2388 Val + ")->getSymbol(), " +
2389 getEnumName(N->getTypeNum(0)) + ");");
2391 emitDecl("Tmp" + utostr(ResNo));
2392 emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";");
2394 } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
2395 Record *Op = OperatorMap[N->getName()];
2396 // Transform GlobalAddress to TargetGlobalAddress
2397 if (Op && Op->getName() == "globaladdr") {
2398 emitDecl("Tmp" + utostr(ResNo));
2399 emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2400 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
2401 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
2404 emitDecl("Tmp" + utostr(ResNo));
2405 emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";");
2407 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2408 emitDecl("Tmp" + utostr(ResNo));
2409 emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";");
2410 } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
2411 emitDecl("Tmp" + utostr(ResNo));
2412 emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";");
2413 } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2414 std::string Fn = CP->getSelectFunc();
2415 NumRes = CP->getNumOperands();
2416 for (unsigned i = 0; i < NumRes; ++i)
2417 emitDecl("CPTmp" + utostr(i+ResNo));
2419 std::string Code = "bool Match = " + Fn + "(" + Val;
2420 for (unsigned i = 0; i < NumRes; i++)
2421 Code += ", CPTmp" + utostr(i + ResNo);
2422 emitCode(Code + ");");
2423 if (InflightNodes.size()) {
2424 // Remove the in-flight nodes if the ComplexPattern does not match!
2425 emitCode("if (!Match) {");
2426 for (std::vector<std::string>::iterator AI = InflightNodes.begin(),
2427 AE = InflightNodes.end(); AI != AE; ++AI)
2428 emitCode(" InFlightSet.erase(" + *AI + ".Val);");
2434 for (unsigned i = 0; i < NumRes; ++i) {
2435 emitCode("InFlightSet.insert(CPTmp" + utostr(i+ResNo) + ".Val);");
2436 InflightNodes.push_back("CPTmp" + utostr(i+ResNo));
2438 for (unsigned i = 0; i < NumRes; ++i) {
2439 emitDecl("Tmp" + utostr(i+ResNo));
2440 emitCode("Select(Tmp" + utostr(i+ResNo) + ", CPTmp" +
2441 utostr(i+ResNo) + ");");
2444 TmpNo = ResNo + NumRes;
2446 emitDecl("Tmp" + utostr(ResNo));
2447 // This node, probably wrapped in a SDNodeXForms, behaves like a leaf
2448 // node even if it isn't one. Don't select it.
2450 emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";");
2452 emitCode("Select(Tmp" + utostr(ResNo) + ", " + Val + ");");
2455 if (isRoot && N->isLeaf()) {
2456 emitCode("Result = Tmp" + utostr(ResNo) + ";");
2457 emitCode("return;");
2460 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2461 // value if used multiple times by this pattern result.
2462 Val = "Tmp"+utostr(ResNo);
2463 return std::make_pair(NumRes, ResNo);
2466 // If this is an explicit register reference, handle it.
2467 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2468 unsigned ResNo = TmpNo++;
2469 if (DI->getDef()->isSubClassOf("Register")) {
2470 emitDecl("Tmp" + utostr(ResNo));
2471 emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
2472 ISE.getQualifiedName(DI->getDef()) + ", " +
2473 getEnumName(N->getTypeNum(0)) + ");");
2474 return std::make_pair(1, ResNo);
2476 } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2477 unsigned ResNo = TmpNo++;
2478 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2479 emitDecl("Tmp" + utostr(ResNo));
2480 emitCode("Tmp" + utostr(ResNo) +
2481 " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
2482 ", " + getEnumName(N->getTypeNum(0)) + ");");
2483 return std::make_pair(1, ResNo);
2487 assert(0 && "Unknown leaf type!");
2488 return std::make_pair(1, ~0U);
2491 Record *Op = N->getOperator();
2492 if (Op->isSubClassOf("Instruction")) {
2493 const CodeGenTarget &CGT = ISE.getTargetInfo();
2494 CodeGenInstruction &II = CGT.getInstruction(Op->getName());
2495 const DAGInstruction &Inst = ISE.getInstruction(Op);
2496 TreePattern *InstPat = Inst.getPattern();
2497 TreePatternNode *InstPatNode =
2498 isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
2499 : (InstPat ? InstPat->getOnlyTree() : NULL);
2500 if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
2501 InstPatNode = InstPatNode->getChild(1);
2503 bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
2504 bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
2505 bool NodeHasOptInFlag = isRoot &&
2506 PatternHasProperty(Pattern, SDNodeInfo::SDNPOptInFlag, ISE);
2507 bool NodeHasInFlag = isRoot &&
2508 PatternHasProperty(Pattern, SDNodeInfo::SDNPInFlag, ISE);
2509 bool NodeHasOutFlag = HasImpResults || (isRoot &&
2510 PatternHasProperty(Pattern, SDNodeInfo::SDNPOutFlag, ISE));
2511 bool NodeHasChain = InstPatNode &&
2512 PatternHasProperty(InstPatNode, SDNodeInfo::SDNPHasChain, ISE);
2513 bool InputHasChain = isRoot &&
2514 NodeHasProperty(Pattern, SDNodeInfo::SDNPHasChain, ISE);
2516 if (NodeHasInFlag || NodeHasOutFlag || NodeHasOptInFlag || HasImpInputs)
2518 if (NodeHasOptInFlag)
2519 emitCode("bool HasOptInFlag = false;");
2521 // How many results is this pattern expected to produce?
2522 unsigned PatResults = 0;
2523 for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
2524 MVT::ValueType VT = Pattern->getTypeNum(i);
2525 if (VT != MVT::isVoid && VT != MVT::Flag)
2529 // Determine operand emission order. Complex pattern first.
2530 std::vector<std::pair<unsigned, TreePatternNode*> > EmitOrder;
2531 std::vector<std::pair<unsigned, TreePatternNode*> >::iterator OI;
2532 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2533 TreePatternNode *Child = N->getChild(i);
2535 EmitOrder.push_back(std::make_pair(i, Child));
2536 OI = EmitOrder.begin();
2537 } else if (NodeIsComplexPattern(Child)) {
2538 OI = EmitOrder.insert(OI, std::make_pair(i, Child));
2540 EmitOrder.push_back(std::make_pair(i, Child));
2544 // Make sure these operands which would be selected won't be folded while
2545 // the isel traverses the DAG upward.
2546 for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) {
2547 TreePatternNode *Child = EmitOrder[i].second;
2548 if (!Child->getName().empty()) {
2549 std::string &Val = VariableMap[Child->getName()];
2550 assert(!Val.empty() &&
2551 "Variable referenced but not defined and not caught earlier!");
2552 if (Child->isLeaf() && !NodeGetComplexPattern(Child, ISE)) {
2553 emitCode("InFlightSet.insert(" + Val + ".Val);");
2554 InflightNodes.push_back(Val);
2559 // Emit all of the operands.
2560 std::vector<std::pair<unsigned, unsigned> > NumTemps(EmitOrder.size());
2561 for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) {
2562 unsigned OpOrder = EmitOrder[i].first;
2563 TreePatternNode *Child = EmitOrder[i].second;
2564 std::pair<unsigned, unsigned> NumTemp = EmitResultCode(Child);
2565 NumTemps[OpOrder] = NumTemp;
2568 // List all the operands in the right order.
2569 std::vector<unsigned> Ops;
2570 for (unsigned i = 0, e = NumTemps.size(); i != e; i++) {
2571 for (unsigned j = 0; j < NumTemps[i].first; j++)
2572 Ops.push_back(NumTemps[i].second + j);
2575 // Emit all the chain and CopyToReg stuff.
2576 bool ChainEmitted = NodeHasChain;
2578 emitCode("Select(" + ChainName + ", " + ChainName + ");");
2579 if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2580 EmitInFlagSelectCode(Pattern, "N", ChainEmitted, true);
2583 // The operands have been selected. Remove them from InFlightSet.
2584 for (std::vector<std::string>::iterator AI = InflightNodes.begin(),
2585 AE = InflightNodes.end(); AI != AE; ++AI)
2586 emitCode("InFlightSet.erase(" + *AI + ".Val);");
2589 unsigned NumResults = Inst.getNumResults();
2590 unsigned ResNo = TmpNo++;
2591 if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
2593 if (NodeHasOptInFlag) {
2594 unsigned FlagNo = (unsigned) NodeHasChain + Pattern->getNumChildren();
2595 emitDecl("ResNode", true);
2596 emitCode("if (HasOptInFlag)");
2597 std::string Code = " ResNode = CurDAG->getTargetNode(" +
2598 II.Namespace + "::" + II.TheDef->getName();
2600 // Output order: results, chain, flags
2602 if (PatResults > 0) {
2603 if (N->getTypeNum(0) != MVT::isVoid)
2604 Code += ", " + getEnumName(N->getTypeNum(0));
2607 Code += ", MVT::Other";
2609 Code += ", MVT::Flag";
2612 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2613 Code += ", Tmp" + utostr(Ops[i]);
2614 if (NodeHasChain) Code += ", " + ChainName;
2615 emitCode(Code + ", InFlag);");
2618 Code = " ResNode = CurDAG->getTargetNode(" + II.Namespace + "::" +
2619 II.TheDef->getName();
2621 // Output order: results, chain, flags
2623 if (PatResults > 0 && N->getTypeNum(0) != MVT::isVoid)
2624 Code += ", " + getEnumName(N->getTypeNum(0));
2626 Code += ", MVT::Other";
2628 Code += ", MVT::Flag";
2631 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2632 Code += ", Tmp" + utostr(Ops[i]);
2633 if (NodeHasChain) Code += ", " + ChainName + ");";
2637 // Remember which op produces the chain.
2638 emitCode(ChainName + " = SDOperand(ResNode" +
2639 ", " + utostr(PatResults) + ");");
2642 std::string NodeName;
2644 NodeName = "Tmp" + utostr(ResNo);
2646 Code = NodeName + " = SDOperand(";
2648 NodeName = "ResNode";
2649 emitDecl(NodeName, true);
2650 Code = NodeName + " = ";
2652 Code += "CurDAG->getTargetNode(" +
2653 II.Namespace + "::" + II.TheDef->getName();
2655 // Output order: results, chain, flags
2657 if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid)
2658 Code += ", " + getEnumName(N->getTypeNum(0));
2660 Code += ", MVT::Other";
2662 Code += ", MVT::Flag";
2665 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2666 Code += ", Tmp" + utostr(Ops[i]);
2667 if (NodeHasChain) Code += ", " + ChainName;
2668 if (NodeHasInFlag || HasImpInputs) Code += ", InFlag";
2670 emitCode(Code + "), 0);");
2672 emitCode(Code + ");");
2675 // Remember which op produces the chain.
2677 emitCode(ChainName + " = SDOperand(" + NodeName +
2678 ".Val, " + utostr(PatResults) + ");");
2680 emitCode(ChainName + " = SDOperand(" + NodeName +
2681 ", " + utostr(PatResults) + ");");
2685 return std::make_pair(1, ResNo);
2688 emitCode("if (OldTF) "
2689 "SelectionDAG::InsertISelMapEntry(CodeGenMap, OldTF, 0, " +
2690 ChainName + ".Val, 0);");
2692 for (unsigned i = 0; i < NumResults; i++)
2693 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " +
2694 utostr(i) + ", ResNode, " + utostr(i) + ");");
2697 emitCode("InFlag = SDOperand(ResNode, " +
2698 utostr(NumResults + (unsigned)NodeHasChain) + ");");
2700 if (HasImpResults && EmitCopyFromRegs(N, ChainEmitted)) {
2701 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, "
2706 if (InputHasChain) {
2707 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " +
2708 utostr(PatResults) + ", " + ChainName + ".Val, " +
2709 ChainName + ".ResNo" + ");");
2711 emitCode("if (N.ResNo == 0) AddHandleReplacement(N.Val, " +
2712 utostr(PatResults) + ", " + ChainName + ".Val, " +
2713 ChainName + ".ResNo" + ");");
2716 if (FoldedChains.size() > 0) {
2718 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
2719 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, " +
2720 FoldedChains[j].first + ".Val, " +
2721 utostr(FoldedChains[j].second) + ", ResNode, " +
2722 utostr(NumResults) + ");");
2724 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) {
2726 FoldedChains[j].first + ".Val, " +
2727 utostr(FoldedChains[j].second) + ", ";
2728 emitCode("AddHandleReplacement(" + Code + "ResNode, " +
2729 utostr(NumResults) + ");");
2734 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " +
2735 utostr(PatResults + (unsigned)InputHasChain) +
2736 ", InFlag.Val, InFlag.ResNo);");
2738 // User does not expect the instruction would produce a chain!
2739 bool AddedChain = NodeHasChain && !InputHasChain;
2740 if (AddedChain && NodeHasOutFlag) {
2741 if (PatResults == 0) {
2742 emitCode("Result = SDOperand(ResNode, N.ResNo+1);");
2744 emitCode("if (N.ResNo < " + utostr(PatResults) + ")");
2745 emitCode(" Result = SDOperand(ResNode, N.ResNo);");
2747 emitCode(" Result = SDOperand(ResNode, N.ResNo+1);");
2749 } else if (InputHasChain && !NodeHasChain) {
2750 // One of the inner node produces a chain.
2751 emitCode("if (N.ResNo < " + utostr(PatResults) + ")");
2752 emitCode(" Result = SDOperand(ResNode, N.ResNo);");
2753 if (NodeHasOutFlag) {
2754 emitCode("else if (N.ResNo > " + utostr(PatResults) + ")");
2755 emitCode(" Result = SDOperand(ResNode, N.ResNo-1);");
2758 emitCode(" Result = SDOperand(" + ChainName + ".Val, " +
2759 ChainName + ".ResNo);");
2761 emitCode("Result = SDOperand(ResNode, N.ResNo);");
2764 // If this instruction is the root, and if there is only one use of it,
2765 // use SelectNodeTo instead of getTargetNode to avoid an allocation.
2766 emitCode("if (N.Val->hasOneUse()) {");
2767 std::string Code = " Result = CurDAG->SelectNodeTo(N.Val, " +
2768 II.Namespace + "::" + II.TheDef->getName();
2769 if (N->getTypeNum(0) != MVT::isVoid)
2770 Code += ", " + getEnumName(N->getTypeNum(0));
2772 Code += ", MVT::Flag";
2773 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2774 Code += ", Tmp" + utostr(Ops[i]);
2775 if (NodeHasInFlag || HasImpInputs)
2777 emitCode(Code + ");");
2778 emitCode("} else {");
2779 emitDecl("ResNode", true);
2780 Code = " ResNode = CurDAG->getTargetNode(" +
2781 II.Namespace + "::" + II.TheDef->getName();
2782 if (N->getTypeNum(0) != MVT::isVoid)
2783 Code += ", " + getEnumName(N->getTypeNum(0));
2785 Code += ", MVT::Flag";
2786 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2787 Code += ", Tmp" + utostr(Ops[i]);
2788 if (NodeHasInFlag || HasImpInputs)
2790 emitCode(Code + ");");
2791 emitCode(" SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo"
2793 emitCode(" Result = SDOperand(ResNode, 0);");
2798 emitCode("return;");
2799 return std::make_pair(1, ResNo);
2800 } else if (Op->isSubClassOf("SDNodeXForm")) {
2801 assert(N->getNumChildren() == 1 && "node xform should have one child!");
2802 // PatLeaf node - the operand may or may not be a leaf node. But it should
2804 unsigned OpVal = EmitResultCode(N->getChild(0), true).second;
2805 unsigned ResNo = TmpNo++;
2806 emitDecl("Tmp" + utostr(ResNo));
2807 emitCode("Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
2808 + "(Tmp" + utostr(OpVal) + ".Val);");
2810 emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val,"
2811 "N.ResNo, Tmp" + utostr(ResNo) + ".Val, Tmp" +
2812 utostr(ResNo) + ".ResNo);");
2813 emitCode("Result = Tmp" + utostr(ResNo) + ";");
2814 emitCode("return;");
2816 return std::make_pair(1, ResNo);
2820 throw std::string("Unknown node in result pattern!");
2824 /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
2825 /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
2826 /// 'Pat' may be missing types. If we find an unresolved type to add a check
2827 /// for, this returns true otherwise false if Pat has all types.
2828 bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
2829 const std::string &Prefix) {
2831 if (Pat->getExtTypes() != Other->getExtTypes()) {
2832 // Move a type over from 'other' to 'pat'.
2833 Pat->setTypes(Other->getExtTypes());
2834 emitCheck(Prefix + ".Val->getValueType(0) == MVT::" +
2835 getName(Pat->getTypeNum(0)));
2840 (unsigned) NodeHasProperty(Pat, SDNodeInfo::SDNPHasChain, ISE);
2841 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
2842 if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
2843 Prefix + utostr(OpNo)))
2849 /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
2851 void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
2852 bool &ChainEmitted, bool isRoot = false) {
2853 const CodeGenTarget &T = ISE.getTargetInfo();
2855 (unsigned) NodeHasProperty(N, SDNodeInfo::SDNPHasChain, ISE);
2856 bool HasInFlag = NodeHasProperty(N, SDNodeInfo::SDNPInFlag, ISE);
2857 bool HasOptInFlag = NodeHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE);
2858 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2859 TreePatternNode *Child = N->getChild(i);
2860 if (!Child->isLeaf()) {
2861 EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted);
2863 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2864 if (!Child->getName().empty()) {
2865 std::string Name = RootName + utostr(OpNo);
2866 if (Duplicates.find(Name) != Duplicates.end())
2867 // A duplicate! Do not emit a copy for this node.
2871 Record *RR = DI->getDef();
2872 if (RR->isSubClassOf("Register")) {
2873 MVT::ValueType RVT = getRegisterValueType(RR, T);
2874 if (RVT == MVT::Flag) {
2875 emitCode("Select(InFlag, " + RootName + utostr(OpNo) + ");");
2877 if (!ChainEmitted) {
2879 emitCode("Chain = CurDAG->getEntryNode();");
2880 ChainName = "Chain";
2881 ChainEmitted = true;
2883 emitCode("Select(" + RootName + utostr(OpNo) + ", " +
2884 RootName + utostr(OpNo) + ");");
2885 emitCode("ResNode = CurDAG->getCopyToReg(" + ChainName +
2886 ", CurDAG->getRegister(" + ISE.getQualifiedName(RR) +
2887 ", " + getEnumName(RVT) + "), " +
2888 RootName + utostr(OpNo) + ", InFlag).Val;");
2889 emitCode(ChainName + " = SDOperand(ResNode, 0);");
2890 emitCode("InFlag = SDOperand(ResNode, 1);");
2897 if (HasInFlag || HasOptInFlag) {
2900 emitCode("if (" + RootName + ".getNumOperands() == " + utostr(OpNo+1) +
2904 emitCode(Code + "Select(InFlag, " + RootName +
2905 ".getOperand(" + utostr(OpNo) + "));");
2907 emitCode(" HasOptInFlag = true;");
2913 /// EmitCopyFromRegs - Emit code to copy result to physical registers
2914 /// as specified by the instruction. It returns true if any copy is
2916 bool EmitCopyFromRegs(TreePatternNode *N, bool &ChainEmitted) {
2917 bool RetVal = false;
2918 Record *Op = N->getOperator();
2919 if (Op->isSubClassOf("Instruction")) {
2920 const DAGInstruction &Inst = ISE.getInstruction(Op);
2921 const CodeGenTarget &CGT = ISE.getTargetInfo();
2922 unsigned NumImpResults = Inst.getNumImpResults();
2923 for (unsigned i = 0; i < NumImpResults; i++) {
2924 Record *RR = Inst.getImpResult(i);
2925 if (RR->isSubClassOf("Register")) {
2926 MVT::ValueType RVT = getRegisterValueType(RR, CGT);
2927 if (RVT != MVT::Flag) {
2928 if (!ChainEmitted) {
2930 emitCode("Chain = CurDAG->getEntryNode();");
2931 ChainEmitted = true;
2932 ChainName = "Chain";
2934 emitCode("ResNode = CurDAG->getCopyFromReg(" + ChainName + ", " +
2935 ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
2937 emitCode(ChainName + " = SDOperand(ResNode, 1);");
2938 emitCode("InFlag = SDOperand(ResNode, 2);");
2948 /// EmitCodeForPattern - Given a pattern to match, emit code to the specified
2949 /// stream to match the pattern, and generate the code for the match if it
2950 /// succeeds. Returns true if the pattern is not guaranteed to match.
2951 void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
2952 std::vector<std::pair<bool, std::string> > &GeneratedCode,
2953 std::set<std::pair<bool, std::string> > &GeneratedDecl,
2955 PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
2956 Pattern.getSrcPattern(), Pattern.getDstPattern(),
2957 GeneratedCode, GeneratedDecl, DoReplace);
2959 // Emit the matcher, capturing named arguments in VariableMap.
2960 bool FoundChain = false;
2961 Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", "", FoundChain);
2963 // TP - Get *SOME* tree pattern, we don't care which.
2964 TreePattern &TP = *PatternFragments.begin()->second;
2966 // At this point, we know that we structurally match the pattern, but the
2967 // types of the nodes may not match. Figure out the fewest number of type
2968 // comparisons we need to emit. For example, if there is only one integer
2969 // type supported by a target, there should be no type comparisons at all for
2970 // integer patterns!
2972 // To figure out the fewest number of type checks needed, clone the pattern,
2973 // remove the types, then perform type inference on the pattern as a whole.
2974 // If there are unresolved types, emit an explicit check for those types,
2975 // apply the type to the tree, then rerun type inference. Iterate until all
2976 // types are resolved.
2978 TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
2979 RemoveAllTypes(Pat);
2982 // Resolve/propagate as many types as possible.
2984 bool MadeChange = true;
2986 MadeChange = Pat->ApplyTypeConstraints(TP,
2987 true/*Ignore reg constraints*/);
2989 assert(0 && "Error: could not find consistent types for something we"
2990 " already decided was ok!");
2994 // Insert a check for an unresolved type and add it to the tree. If we find
2995 // an unresolved type to add a check for, this returns true and we iterate,
2996 // otherwise we are done.
2997 } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N"));
2999 Emitter.EmitResultCode(Pattern.getDstPattern(), false, true /*the root*/);
3003 /// EraseCodeLine - Erase one code line from all of the patterns. If removing
3004 /// a line causes any of them to be empty, remove them and return true when
3006 static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
3007 std::vector<std::pair<bool, std::string> > > >
3009 bool ErasedPatterns = false;
3010 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3011 Patterns[i].second.pop_back();
3012 if (Patterns[i].second.empty()) {
3013 Patterns.erase(Patterns.begin()+i);
3015 ErasedPatterns = true;
3018 return ErasedPatterns;
3021 /// EmitPatterns - Emit code for at least one pattern, but try to group common
3022 /// code together between the patterns.
3023 void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
3024 std::vector<std::pair<bool, std::string> > > >
3025 &Patterns, unsigned Indent,
3027 typedef std::pair<bool, std::string> CodeLine;
3028 typedef std::vector<CodeLine> CodeList;
3029 typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
3031 if (Patterns.empty()) return;
3033 // Figure out how many patterns share the next code line. Explicitly copy
3034 // FirstCodeLine so that we don't invalidate a reference when changing
3036 const CodeLine FirstCodeLine = Patterns.back().second.back();
3037 unsigned LastMatch = Patterns.size()-1;
3038 while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
3041 // If not all patterns share this line, split the list into two pieces. The
3042 // first chunk will use this line, the second chunk won't.
3043 if (LastMatch != 0) {
3044 PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
3045 PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
3047 // FIXME: Emit braces?
3048 if (Shared.size() == 1) {
3049 PatternToMatch &Pattern = *Shared.back().first;
3050 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3051 Pattern.getSrcPattern()->print(OS);
3052 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3053 Pattern.getDstPattern()->print(OS);
3055 unsigned AddedComplexity = Pattern.getAddedComplexity();
3056 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3057 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3059 << getResultPatternCost(Pattern.getDstPattern(), *this) << "\n";
3061 if (!FirstCodeLine.first) {
3062 OS << std::string(Indent, ' ') << "{\n";
3065 EmitPatterns(Shared, Indent, OS);
3066 if (!FirstCodeLine.first) {
3068 OS << std::string(Indent, ' ') << "}\n";
3071 if (Other.size() == 1) {
3072 PatternToMatch &Pattern = *Other.back().first;
3073 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3074 Pattern.getSrcPattern()->print(OS);
3075 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3076 Pattern.getDstPattern()->print(OS);
3078 unsigned AddedComplexity = Pattern.getAddedComplexity();
3079 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3080 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3082 << getResultPatternCost(Pattern.getDstPattern(), *this) << "\n";
3084 EmitPatterns(Other, Indent, OS);
3088 // Remove this code from all of the patterns that share it.
3089 bool ErasedPatterns = EraseCodeLine(Patterns);
3091 bool isPredicate = FirstCodeLine.first;
3093 // Otherwise, every pattern in the list has this line. Emit it.
3096 OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
3098 OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
3100 // If the next code line is another predicate, and if all of the pattern
3101 // in this group share the same next line, emit it inline now. Do this
3102 // until we run out of common predicates.
3103 while (!ErasedPatterns && Patterns.back().second.back().first) {
3104 // Check that all of fhe patterns in Patterns end with the same predicate.
3105 bool AllEndWithSamePredicate = true;
3106 for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
3107 if (Patterns[i].second.back() != Patterns.back().second.back()) {
3108 AllEndWithSamePredicate = false;
3111 // If all of the predicates aren't the same, we can't share them.
3112 if (!AllEndWithSamePredicate) break;
3114 // Otherwise we can. Emit it shared now.
3115 OS << " &&\n" << std::string(Indent+4, ' ')
3116 << Patterns.back().second.back().second;
3117 ErasedPatterns = EraseCodeLine(Patterns);
3124 EmitPatterns(Patterns, Indent, OS);
3127 OS << std::string(Indent-2, ' ') << "}\n";
3133 /// CompareByRecordName - An ordering predicate that implements less-than by
3134 /// comparing the names records.
3135 struct CompareByRecordName {
3136 bool operator()(const Record *LHS, const Record *RHS) const {
3137 // Sort by name first.
3138 if (LHS->getName() < RHS->getName()) return true;
3139 // If both names are equal, sort by pointer.
3140 return LHS->getName() == RHS->getName() && LHS < RHS;
3145 void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
3146 std::string InstNS = Target.inst_begin()->second.Namespace;
3147 if (!InstNS.empty()) InstNS += "::";
3149 // Group the patterns by their top-level opcodes.
3150 std::map<Record*, std::vector<PatternToMatch*>,
3151 CompareByRecordName> PatternsByOpcode;
3152 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3153 TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
3154 if (!Node->isLeaf()) {
3155 PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]);
3157 const ComplexPattern *CP;
3159 dynamic_cast<IntInit*>(Node->getLeafValue())) {
3160 PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]);
3161 } else if ((CP = NodeGetComplexPattern(Node, *this))) {
3162 std::vector<Record*> OpNodes = CP->getRootNodes();
3163 for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
3164 PatternsByOpcode[OpNodes[j]]
3165 .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]);
3168 std::cerr << "Unrecognized opcode '";
3170 std::cerr << "' on tree pattern '";
3172 PatternsToMatch[i].getDstPattern()->getOperator()->getName();
3173 std::cerr << "'!\n";
3179 // Emit one Select_* method for each top-level opcode. We do this instead of
3180 // emitting one giant switch statement to support compilers where this will
3181 // result in the recursive functions taking less stack space.
3182 for (std::map<Record*, std::vector<PatternToMatch*>,
3183 CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3184 E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3185 const std::string &OpName = PBOI->first->getName();
3186 OS << "void Select_" << OpName << "(SDOperand &Result, SDOperand N) {\n";
3188 const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3190 (OpcodeInfo.hasProperty(SDNodeInfo::SDNPHasChain) &&
3191 OpcodeInfo.getNumResults() > 0);
3194 OS << " if (N.ResNo == " << OpcodeInfo.getNumResults()
3195 << " && N.getValue(0).hasOneUse()) {\n"
3196 << " SDOperand Dummy = "
3197 << "CurDAG->getNode(ISD::HANDLENODE, MVT::Other, N);\n"
3198 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, "
3199 << OpcodeInfo.getNumResults() << ", Dummy.Val, 0);\n"
3200 << " SelectionDAG::InsertISelMapEntry(HandleMap, N.Val, "
3201 << OpcodeInfo.getNumResults() << ", Dummy.Val, 0);\n"
3202 << " Result = Dummy;\n"
3207 std::vector<PatternToMatch*> &Patterns = PBOI->second;
3208 assert(!Patterns.empty() && "No patterns but map has entry?");
3210 // We want to emit all of the matching code now. However, we want to emit
3211 // the matches in order of minimal cost. Sort the patterns so the least
3212 // cost one is at the start.
3213 std::stable_sort(Patterns.begin(), Patterns.end(),
3214 PatternSortingPredicate(*this));
3216 typedef std::vector<std::pair<bool, std::string> > CodeList;
3217 typedef std::set<std::string> DeclSet;
3219 std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
3220 std::set<std::pair<bool, std::string> > GeneratedDecl;
3221 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3222 CodeList GeneratedCode;
3223 GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
3225 CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
3228 // Scan the code to see if all of the patterns are reachable and if it is
3229 // possible that the last one might not match.
3230 bool mightNotMatch = true;
3231 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3232 CodeList &GeneratedCode = CodeForPatterns[i].second;
3233 mightNotMatch = false;
3235 for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
3236 if (GeneratedCode[j].first) { // predicate.
3237 mightNotMatch = true;
3242 // If this pattern definitely matches, and if it isn't the last one, the
3243 // patterns after it CANNOT ever match. Error out.
3244 if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
3245 std::cerr << "Pattern '";
3246 CodeForPatterns[i+1].first->getSrcPattern()->print(OS);
3247 std::cerr << "' is impossible to select!\n";
3252 // Print all declarations.
3253 for (std::set<std::pair<bool, std::string> >::iterator
3254 I = GeneratedDecl.begin(), E = GeneratedDecl.end(); I != E; ++I)
3256 OS << " SDNode *" << I->second << ";\n";
3258 OS << " SDOperand " << I->second << "(0, 0);\n";
3260 // Loop through and reverse all of the CodeList vectors, as we will be
3261 // accessing them from their logical front, but accessing the end of a
3262 // vector is more efficient.
3263 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3264 CodeList &GeneratedCode = CodeForPatterns[i].second;
3265 std::reverse(GeneratedCode.begin(), GeneratedCode.end());
3268 // Next, reverse the list of patterns itself for the same reason.
3269 std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
3271 // Emit all of the patterns now, grouped together to share code.
3272 EmitPatterns(CodeForPatterns, 2, OS);
3274 // If the last pattern has predicates (which could fail) emit code to catch
3275 // the case where nothing handles a pattern.
3276 if (mightNotMatch) {
3277 OS << " std::cerr << \"Cannot yet select: \";\n";
3278 if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" &&
3279 OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" &&
3280 OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") {
3281 OS << " N.Val->dump(CurDAG);\n";
3283 OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3284 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3285 << " std::cerr << \"intrinsic %\"<< "
3286 "Intrinsic::getName((Intrinsic::ID)iid);\n";
3288 OS << " std::cerr << '\\n';\n"
3294 // Emit boilerplate.
3295 OS << "void Select_INLINEASM(SDOperand& Result, SDOperand N) {\n"
3296 << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
3297 << " Select(Ops[0], N.getOperand(0)); // Select the chain.\n\n"
3298 << " // Select the flag operand.\n"
3299 << " if (Ops.back().getValueType() == MVT::Flag)\n"
3300 << " Select(Ops.back(), Ops.back());\n"
3301 << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
3302 << " std::vector<MVT::ValueType> VTs;\n"
3303 << " VTs.push_back(MVT::Other);\n"
3304 << " VTs.push_back(MVT::Flag);\n"
3305 << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, Ops);\n"
3306 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, New.Val, 0);\n"
3307 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, New.Val, 1);\n"
3308 << " Result = New.getValue(N.ResNo);\n"
3312 OS << "// The main instruction selector code.\n"
3313 << "void SelectCode(SDOperand &Result, SDOperand N) {\n"
3314 << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
3315 << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
3316 << "INSTRUCTION_LIST_END)) {\n"
3318 << " return; // Already selected.\n"
3320 << " std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n"
3321 << " if (CGMI != CodeGenMap.end()) {\n"
3322 << " Result = CGMI->second;\n"
3325 << " switch (N.getOpcode()) {\n"
3326 << " default: break;\n"
3327 << " case ISD::EntryToken: // These leaves remain the same.\n"
3328 << " case ISD::BasicBlock:\n"
3329 << " case ISD::Register:\n"
3330 << " case ISD::HANDLENODE:\n"
3331 << " case ISD::TargetConstant:\n"
3332 << " case ISD::TargetConstantPool:\n"
3333 << " case ISD::TargetFrameIndex:\n"
3334 << " case ISD::TargetJumpTable:\n"
3335 << " case ISD::TargetGlobalAddress: {\n"
3339 << " case ISD::AssertSext:\n"
3340 << " case ISD::AssertZext: {\n"
3341 << " SDOperand Tmp0;\n"
3342 << " Select(Tmp0, N.getOperand(0));\n"
3343 << " if (!N.Val->hasOneUse())\n"
3344 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, "
3345 << "Tmp0.Val, Tmp0.ResNo);\n"
3346 << " Result = Tmp0;\n"
3349 << " case ISD::TokenFactor:\n"
3350 << " if (N.getNumOperands() == 2) {\n"
3351 << " SDOperand Op0, Op1;\n"
3352 << " Select(Op0, N.getOperand(0));\n"
3353 << " Select(Op1, N.getOperand(1));\n"
3355 << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n"
3356 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, "
3357 << "Result.Val, Result.ResNo);\n"
3359 << " std::vector<SDOperand> Ops;\n"
3360 << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) {\n"
3361 << " SDOperand Val;\n"
3362 << " Select(Val, N.getOperand(i));\n"
3363 << " Ops.push_back(Val);\n"
3366 << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n"
3367 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, "
3368 << "Result.Val, Result.ResNo);\n"
3371 << " case ISD::CopyFromReg: {\n"
3372 << " SDOperand Chain;\n"
3373 << " Select(Chain, N.getOperand(0));\n"
3374 << " unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n"
3375 << " MVT::ValueType VT = N.Val->getValueType(0);\n"
3376 << " if (N.Val->getNumValues() == 2) {\n"
3377 << " if (Chain == N.getOperand(0)) {\n"
3378 << " Result = N; // No change\n"
3381 << " SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT);\n"
3382 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, "
3384 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, "
3386 << " Result = New.getValue(N.ResNo);\n"
3389 << " SDOperand Flag;\n"
3390 << " if (N.getNumOperands() == 3) Select(Flag, N.getOperand(2));\n"
3391 << " if (Chain == N.getOperand(0) &&\n"
3392 << " (N.getNumOperands() == 2 || Flag == N.getOperand(2))) {\n"
3393 << " Result = N; // No change\n"
3396 << " SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT, Flag);\n"
3397 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, "
3399 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, "
3401 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 2, "
3403 << " Result = New.getValue(N.ResNo);\n"
3407 << " case ISD::CopyToReg: {\n"
3408 << " SDOperand Chain;\n"
3409 << " Select(Chain, N.getOperand(0));\n"
3410 << " unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n"
3411 << " SDOperand Val;\n"
3412 << " Select(Val, N.getOperand(2));\n"
3414 << " if (N.Val->getNumValues() == 1) {\n"
3415 << " if (Chain != N.getOperand(0) || Val != N.getOperand(2))\n"
3416 << " Result = CurDAG->getCopyToReg(Chain, Reg, Val);\n"
3417 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, "
3418 << "Result.Val, 0);\n"
3420 << " SDOperand Flag(0, 0);\n"
3421 << " if (N.getNumOperands() == 4) Select(Flag, N.getOperand(3));\n"
3422 << " if (Chain != N.getOperand(0) || Val != N.getOperand(2) ||\n"
3423 << " (N.getNumOperands() == 4 && Flag != N.getOperand(3)))\n"
3424 << " Result = CurDAG->getCopyToReg(Chain, Reg, Val, Flag);\n"
3425 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, "
3426 << "Result.Val, 0);\n"
3427 << " SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, "
3428 << "Result.Val, 1);\n"
3429 << " Result = Result.getValue(N.ResNo);\n"
3433 << " case ISD::INLINEASM: Select_INLINEASM(Result, N); return;\n";
3436 // Loop over all of the case statements, emiting a call to each method we
3438 for (std::map<Record*, std::vector<PatternToMatch*>,
3439 CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3440 E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3441 const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3442 OS << " case " << OpcodeInfo.getEnumName() << ": "
3443 << std::string(std::max(0, int(24-OpcodeInfo.getEnumName().size())), ' ')
3444 << "Select_" << PBOI->first->getName() << "(Result, N); return;\n";
3447 OS << " } // end of big switch.\n\n"
3448 << " std::cerr << \"Cannot yet select: \";\n"
3449 << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
3450 << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
3451 << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
3452 << " N.Val->dump(CurDAG);\n"
3454 << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3455 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3456 << " std::cerr << \"intrinsic %\"<< "
3457 "Intrinsic::getName((Intrinsic::ID)iid);\n"
3459 << " std::cerr << '\\n';\n"
3464 void DAGISelEmitter::run(std::ostream &OS) {
3465 EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
3468 OS << "// *** NOTE: This file is #included into the middle of the target\n"
3469 << "// *** instruction selector class. These functions are really "
3472 OS << "// Instance var to keep track of multiply used nodes that have \n"
3473 << "// already been selected.\n"
3474 << "std::map<SDOperand, SDOperand> CodeGenMap;\n";
3476 OS << "// Instance var to keep track of mapping of chain generating nodes\n"
3477 << "// and their place handle nodes.\n";
3478 OS << "std::map<SDOperand, SDOperand> HandleMap;\n";
3479 OS << "// Instance var to keep track of mapping of place handle nodes\n"
3480 << "// and their replacement nodes.\n";
3481 OS << "std::map<SDOperand, SDOperand> ReplaceMap;\n";
3482 OS << "// Keep track of nodes that are currently being selecte and therefore\n"
3483 << "// should not be folded.\n";
3484 OS << "std::set<SDNode*> InFlightSet;\n";
3487 OS << "static void findNonImmUse(SDNode* Use, SDNode* Def, bool &found, "
3488 << "std::set<SDNode *> &Visited) {\n";
3489 OS << " if (found || !Visited.insert(Use).second) return;\n";
3490 OS << " for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {\n";
3491 OS << " SDNode *N = Use->getOperand(i).Val;\n";
3492 OS << " if (N != Def) {\n";
3493 OS << " findNonImmUse(N, Def, found, Visited);\n";
3494 OS << " } else {\n";
3495 OS << " found = true;\n";
3502 OS << "static bool isNonImmUse(SDNode* Use, SDNode* Def) {\n";
3503 OS << " std::set<SDNode *> Visited;\n";
3504 OS << " bool found = false;\n";
3505 OS << " for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {\n";
3506 OS << " SDNode *N = Use->getOperand(i).Val;\n";
3507 OS << " if (N != Def) {\n";
3508 OS << " findNonImmUse(N, Def, found, Visited);\n";
3509 OS << " if (found) break;\n";
3512 OS << " return found;\n";
3516 OS << "// AddHandleReplacement - Note the pending replacement node for a\n"
3517 << "// handle node in ReplaceMap.\n";
3518 OS << "void AddHandleReplacement(SDNode *H, unsigned HNum, SDNode *R, "
3519 << "unsigned RNum) {\n";
3520 OS << " SDOperand N(H, HNum);\n";
3521 OS << " std::map<SDOperand, SDOperand>::iterator HMI = HandleMap.find(N);\n";
3522 OS << " if (HMI != HandleMap.end()) {\n";
3523 OS << " ReplaceMap[HMI->second] = SDOperand(R, RNum);\n";
3524 OS << " HandleMap.erase(N);\n";
3529 OS << "// SelectDanglingHandles - Select replacements for all `dangling`\n";
3530 OS << "// handles.Some handles do not yet have replacements because the\n";
3531 OS << "// nodes they replacements have only dead readers.\n";
3532 OS << "void SelectDanglingHandles() {\n";
3533 OS << " for (std::map<SDOperand, SDOperand>::iterator I = "
3534 << "HandleMap.begin(),\n"
3535 << " E = HandleMap.end(); I != E; ++I) {\n";
3536 OS << " SDOperand N = I->first;\n";
3537 OS << " SDOperand R;\n";
3538 OS << " Select(R, N.getValue(0));\n";
3539 OS << " AddHandleReplacement(N.Val, N.ResNo, R.Val, R.ResNo);\n";
3543 OS << "// ReplaceHandles - Replace all the handles with the real target\n";
3544 OS << "// specific nodes.\n";
3545 OS << "void ReplaceHandles() {\n";
3546 OS << " for (std::map<SDOperand, SDOperand>::iterator I = "
3547 << "ReplaceMap.begin(),\n"
3548 << " E = ReplaceMap.end(); I != E; ++I) {\n";
3549 OS << " SDOperand From = I->first;\n";
3550 OS << " SDOperand To = I->second;\n";
3551 OS << " for (SDNode::use_iterator UI = From.Val->use_begin(), "
3552 << "E = From.Val->use_end(); UI != E; ++UI) {\n";
3553 OS << " SDNode *Use = *UI;\n";
3554 OS << " std::vector<SDOperand> Ops;\n";
3555 OS << " for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i){\n";
3556 OS << " SDOperand O = Use->getOperand(i);\n";
3557 OS << " if (O.Val == From.Val)\n";
3558 OS << " Ops.push_back(To);\n";
3560 OS << " Ops.push_back(O);\n";
3562 OS << " SDOperand U = SDOperand(Use, 0);\n";
3563 OS << " CurDAG->UpdateNodeOperands(U, Ops);\n";
3569 OS << "// UpdateFoldedChain - return a SDOperand of the new chain created\n";
3570 OS << "// if the folding were to happen. This is called when, for example,\n";
3571 OS << "// a load is folded into a store. If the store's chain is the load,\n";
3572 OS << "// then the resulting node's input chain would be the load's input\n";
3573 OS << "// chain. If the store's chain is a TokenFactor and the load's\n";
3574 OS << "// output chain feeds into in, then the new chain is a TokenFactor\n";
3575 OS << "// with the other operands along with the input chain of the load.\n";
3576 OS << "SDOperand UpdateFoldedChain(SelectionDAG *DAG, SDNode *N, "
3577 << "SDNode *Chain, SDNode* &OldTF) {\n";
3578 OS << " OldTF = NULL;\n";
3579 OS << " if (N == Chain) {\n";
3580 OS << " return N->getOperand(0);\n";
3581 OS << " } else if (Chain->getOpcode() == ISD::TokenFactor &&\n";
3582 OS << " N->isOperand(Chain)) {\n";
3583 OS << " SDOperand Ch = SDOperand(Chain, 0);\n";
3584 OS << " std::map<SDOperand, SDOperand>::iterator CGMI = "
3585 << "CodeGenMap.find(Ch);\n";
3586 OS << " if (CGMI != CodeGenMap.end())\n";
3587 OS << " return SDOperand(0, 0);\n";
3588 OS << " OldTF = Chain;\n";
3589 OS << " std::vector<SDOperand> Ops;\n";
3590 OS << " for (unsigned i = 0; i < Chain->getNumOperands(); ++i) {\n";
3591 OS << " SDOperand Op = Chain->getOperand(i);\n";
3592 OS << " if (Op.Val == N)\n";
3593 OS << " Ops.push_back(N->getOperand(0));\n";
3595 OS << " Ops.push_back(Op);\n";
3597 OS << " return DAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n";
3599 OS << " return SDOperand(0, 0);\n";
3603 OS << "// SelectRoot - Top level entry to DAG isel.\n";
3604 OS << "SDOperand SelectRoot(SDOperand N) {\n";
3605 OS << " SDOperand ResNode;\n";
3606 OS << " Select(ResNode, N);\n";
3607 OS << " SelectDanglingHandles();\n";
3608 OS << " ReplaceHandles();\n";
3609 OS << " ReplaceMap.clear();\n";
3610 OS << " return ResNode;\n";
3613 Intrinsics = LoadIntrinsics(Records);
3615 ParseNodeTransforms(OS);
3616 ParseComplexPatterns();
3617 ParsePatternFragments(OS);
3618 ParseInstructions();
3621 // Generate variants. For example, commutative patterns can match
3622 // multiple ways. Add them to PatternsToMatch as well.
3626 DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
3627 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3628 std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump();
3629 std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump();
3633 // At this point, we have full information about the 'Patterns' we need to
3634 // parse, both implicitly from instructions as well as from explicit pattern
3635 // definitions. Emit the resultant instruction selector.
3636 EmitInstructionSelector(OS);
3638 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
3639 E = PatternFragments.end(); I != E; ++I)
3641 PatternFragments.clear();
3643 Instructions.clear();