1 //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tablegen backend emits a DAG instruction selector.
12 //===----------------------------------------------------------------------===//
14 #include "DAGISelEmitter.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Support/Debug.h"
22 //===----------------------------------------------------------------------===//
23 // Helpers for working with extended types.
25 /// FilterVTs - Filter a list of VT's according to a predicate.
28 static std::vector<MVT::ValueType>
29 FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
30 std::vector<MVT::ValueType> Result;
31 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
33 Result.push_back(InVTs[i]);
38 static std::vector<unsigned char>
39 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
40 std::vector<unsigned char> Result;
41 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
42 if (Filter((MVT::ValueType)InVTs[i]))
43 Result.push_back(InVTs[i]);
47 static std::vector<unsigned char>
48 ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
49 std::vector<unsigned char> Result;
50 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
51 Result.push_back(InVTs[i]);
55 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
56 const std::vector<unsigned char> &RHS) {
57 if (LHS.size() > RHS.size()) return false;
58 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
59 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
64 /// isExtIntegerVT - Return true if the specified extended value type vector
65 /// contains isInt or an integer value type.
66 static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
67 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
68 return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
71 /// isExtFloatingPointVT - Return true if the specified extended value type
72 /// vector contains isFP or a FP value type.
73 static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
74 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
75 return EVTs[0] == MVT::isFP ||
76 !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
79 //===----------------------------------------------------------------------===//
80 // SDTypeConstraint implementation
83 SDTypeConstraint::SDTypeConstraint(Record *R) {
84 OperandNo = R->getValueAsInt("OperandNum");
86 if (R->isSubClassOf("SDTCisVT")) {
87 ConstraintType = SDTCisVT;
88 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
89 } else if (R->isSubClassOf("SDTCisPtrTy")) {
90 ConstraintType = SDTCisPtrTy;
91 } else if (R->isSubClassOf("SDTCisInt")) {
92 ConstraintType = SDTCisInt;
93 } else if (R->isSubClassOf("SDTCisFP")) {
94 ConstraintType = SDTCisFP;
95 } else if (R->isSubClassOf("SDTCisSameAs")) {
96 ConstraintType = SDTCisSameAs;
97 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
98 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
99 ConstraintType = SDTCisVTSmallerThanOp;
100 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
101 R->getValueAsInt("OtherOperandNum");
102 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
103 ConstraintType = SDTCisOpSmallerThanOp;
104 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
105 R->getValueAsInt("BigOperandNum");
106 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
107 ConstraintType = SDTCisIntVectorOfSameSize;
108 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
109 R->getValueAsInt("OtherOpNum");
111 std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
116 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
117 /// N, which has NumResults results.
118 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
120 unsigned NumResults) const {
121 assert(NumResults <= 1 &&
122 "We only work with nodes with zero or one result so far!");
124 if (OpNo >= (NumResults + N->getNumChildren())) {
125 std::cerr << "Invalid operand number " << OpNo << " ";
131 if (OpNo < NumResults)
132 return N; // FIXME: need value #
134 return N->getChild(OpNo-NumResults);
137 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
138 /// constraint to the nodes operands. This returns true if it makes a
139 /// change, false otherwise. If a type contradiction is found, throw an
141 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
142 const SDNodeInfo &NodeInfo,
143 TreePattern &TP) const {
144 unsigned NumResults = NodeInfo.getNumResults();
145 assert(NumResults <= 1 &&
146 "We only work with nodes with zero or one result so far!");
148 // Check that the number of operands is sane. Negative operands -> varargs.
149 if (NodeInfo.getNumOperands() >= 0) {
150 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
151 TP.error(N->getOperator()->getName() + " node requires exactly " +
152 itostr(NodeInfo.getNumOperands()) + " operands!");
155 const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
157 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
159 switch (ConstraintType) {
160 default: assert(0 && "Unknown constraint type!");
162 // Operand must be a particular type.
163 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
165 // Operand must be same as target pointer type.
166 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
169 // If there is only one integer type supported, this must be it.
170 std::vector<MVT::ValueType> IntVTs =
171 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
173 // If we found exactly one supported integer type, apply it.
174 if (IntVTs.size() == 1)
175 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
176 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
179 // If there is only one FP type supported, this must be it.
180 std::vector<MVT::ValueType> FPVTs =
181 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
183 // If we found exactly one supported FP type, apply it.
184 if (FPVTs.size() == 1)
185 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
186 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
189 TreePatternNode *OtherNode =
190 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
191 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
192 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
194 case SDTCisVTSmallerThanOp: {
195 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
196 // have an integer type that is smaller than the VT.
197 if (!NodeToApply->isLeaf() ||
198 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
199 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
200 ->isSubClassOf("ValueType"))
201 TP.error(N->getOperator()->getName() + " expects a VT operand!");
203 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
204 if (!MVT::isInteger(VT))
205 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
207 TreePatternNode *OtherNode =
208 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
210 // It must be integer.
211 bool MadeChange = false;
212 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
214 // This code only handles nodes that have one type set. Assert here so
215 // that we can change this if we ever need to deal with multiple value
216 // types at this point.
217 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
218 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
219 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
222 case SDTCisOpSmallerThanOp: {
223 TreePatternNode *BigOperand =
224 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
226 // Both operands must be integer or FP, but we don't care which.
227 bool MadeChange = false;
229 // This code does not currently handle nodes which have multiple types,
230 // where some types are integer, and some are fp. Assert that this is not
232 assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
233 isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
234 !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
235 isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
236 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
237 if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
238 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
239 else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
240 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
241 if (isExtIntegerInVTs(BigOperand->getExtTypes()))
242 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
243 else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
244 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
246 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
248 if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
249 VTs = FilterVTs(VTs, MVT::isInteger);
250 } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
251 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
256 switch (VTs.size()) {
257 default: // Too many VT's to pick from.
258 case 0: break; // No info yet.
260 // Only one VT of this flavor. Cannot ever satisify the constraints.
261 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
263 // If we have exactly two possible types, the little operand must be the
264 // small one, the big operand should be the big one. Common with
265 // float/double for example.
266 assert(VTs[0] < VTs[1] && "Should be sorted!");
267 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
268 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
273 case SDTCisIntVectorOfSameSize: {
274 TreePatternNode *OtherOperand =
275 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
277 if (OtherOperand->hasTypeSet()) {
278 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
279 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
280 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
281 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
282 return NodeToApply->UpdateNodeType(IVT, TP);
291 //===----------------------------------------------------------------------===//
292 // SDNodeInfo implementation
294 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
295 EnumName = R->getValueAsString("Opcode");
296 SDClassName = R->getValueAsString("SDClass");
297 Record *TypeProfile = R->getValueAsDef("TypeProfile");
298 NumResults = TypeProfile->getValueAsInt("NumResults");
299 NumOperands = TypeProfile->getValueAsInt("NumOperands");
301 // Parse the properties.
303 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
304 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
305 if (PropList[i]->getName() == "SDNPCommutative") {
306 Properties |= 1 << SDNPCommutative;
307 } else if (PropList[i]->getName() == "SDNPAssociative") {
308 Properties |= 1 << SDNPAssociative;
309 } else if (PropList[i]->getName() == "SDNPHasChain") {
310 Properties |= 1 << SDNPHasChain;
311 } else if (PropList[i]->getName() == "SDNPOutFlag") {
312 Properties |= 1 << SDNPOutFlag;
313 } else if (PropList[i]->getName() == "SDNPInFlag") {
314 Properties |= 1 << SDNPInFlag;
315 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
316 Properties |= 1 << SDNPOptInFlag;
318 std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
319 << "' on node '" << R->getName() << "'!\n";
325 // Parse the type constraints.
326 std::vector<Record*> ConstraintList =
327 TypeProfile->getValueAsListOfDefs("Constraints");
328 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
331 //===----------------------------------------------------------------------===//
332 // TreePatternNode implementation
335 TreePatternNode::~TreePatternNode() {
336 #if 0 // FIXME: implement refcounted tree nodes!
337 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
342 /// UpdateNodeType - Set the node type of N to VT if VT contains
343 /// information. If N already contains a conflicting type, then throw an
344 /// exception. This returns true if any information was updated.
346 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
348 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
350 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
352 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
357 if (getExtTypeNum(0) == MVT::iPTR) {
358 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
360 if (isExtIntegerInVTs(ExtVTs)) {
361 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
369 if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
370 assert(hasTypeSet() && "should be handled above!");
371 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
372 if (getExtTypes() == FVTs)
377 if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
378 //assert(hasTypeSet() && "should be handled above!");
379 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
380 if (getExtTypes() == FVTs)
387 if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
388 assert(hasTypeSet() && "should be handled above!");
389 std::vector<unsigned char> FVTs =
390 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
391 if (getExtTypes() == FVTs)
397 // If we know this is an int or fp type, and we are told it is a specific one,
400 // Similarly, we should probably set the type here to the intersection of
401 // {isInt|isFP} and ExtVTs
402 if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
403 (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
407 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
415 TP.error("Type inference contradiction found in node!");
417 TP.error("Type inference contradiction found in node " +
418 getOperator()->getName() + "!");
420 return true; // unreachable
424 void TreePatternNode::print(std::ostream &OS) const {
426 OS << *getLeafValue();
428 OS << "(" << getOperator()->getName();
431 // FIXME: At some point we should handle printing all the value types for
432 // nodes that are multiply typed.
433 switch (getExtTypeNum(0)) {
434 case MVT::Other: OS << ":Other"; break;
435 case MVT::isInt: OS << ":isInt"; break;
436 case MVT::isFP : OS << ":isFP"; break;
437 case MVT::isUnknown: ; /*OS << ":?";*/ break;
438 case MVT::iPTR: OS << ":iPTR"; break;
440 std::string VTName = llvm::getName(getTypeNum(0));
441 // Strip off MVT:: prefix if present.
442 if (VTName.substr(0,5) == "MVT::")
443 VTName = VTName.substr(5);
450 if (getNumChildren() != 0) {
452 getChild(0)->print(OS);
453 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
455 getChild(i)->print(OS);
461 if (!PredicateFn.empty())
462 OS << "<<P:" << PredicateFn << ">>";
464 OS << "<<X:" << TransformFn->getName() << ">>";
465 if (!getName().empty())
466 OS << ":$" << getName();
469 void TreePatternNode::dump() const {
473 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
474 /// the specified node. For this comparison, all of the state of the node
475 /// is considered, except for the assigned name. Nodes with differing names
476 /// that are otherwise identical are considered isomorphic.
477 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
478 if (N == this) return true;
479 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
480 getPredicateFn() != N->getPredicateFn() ||
481 getTransformFn() != N->getTransformFn())
485 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
486 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
487 return DI->getDef() == NDI->getDef();
488 return getLeafValue() == N->getLeafValue();
491 if (N->getOperator() != getOperator() ||
492 N->getNumChildren() != getNumChildren()) return false;
493 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
494 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
499 /// clone - Make a copy of this tree and all of its children.
501 TreePatternNode *TreePatternNode::clone() const {
502 TreePatternNode *New;
504 New = new TreePatternNode(getLeafValue());
506 std::vector<TreePatternNode*> CChildren;
507 CChildren.reserve(Children.size());
508 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
509 CChildren.push_back(getChild(i)->clone());
510 New = new TreePatternNode(getOperator(), CChildren);
512 New->setName(getName());
513 New->setTypes(getExtTypes());
514 New->setPredicateFn(getPredicateFn());
515 New->setTransformFn(getTransformFn());
519 /// SubstituteFormalArguments - Replace the formal arguments in this tree
520 /// with actual values specified by ArgMap.
521 void TreePatternNode::
522 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
523 if (isLeaf()) return;
525 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
526 TreePatternNode *Child = getChild(i);
527 if (Child->isLeaf()) {
528 Init *Val = Child->getLeafValue();
529 if (dynamic_cast<DefInit*>(Val) &&
530 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
531 // We found a use of a formal argument, replace it with its value.
532 Child = ArgMap[Child->getName()];
533 assert(Child && "Couldn't find formal argument!");
537 getChild(i)->SubstituteFormalArguments(ArgMap);
543 /// InlinePatternFragments - If this pattern refers to any pattern
544 /// fragments, inline them into place, giving us a pattern without any
545 /// PatFrag references.
546 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
547 if (isLeaf()) return this; // nothing to do.
548 Record *Op = getOperator();
550 if (!Op->isSubClassOf("PatFrag")) {
551 // Just recursively inline children nodes.
552 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
553 setChild(i, getChild(i)->InlinePatternFragments(TP));
557 // Otherwise, we found a reference to a fragment. First, look up its
558 // TreePattern record.
559 TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
561 // Verify that we are passing the right number of operands.
562 if (Frag->getNumArgs() != Children.size())
563 TP.error("'" + Op->getName() + "' fragment requires " +
564 utostr(Frag->getNumArgs()) + " operands!");
566 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
568 // Resolve formal arguments to their actual value.
569 if (Frag->getNumArgs()) {
570 // Compute the map of formal to actual arguments.
571 std::map<std::string, TreePatternNode*> ArgMap;
572 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
573 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
575 FragTree->SubstituteFormalArguments(ArgMap);
578 FragTree->setName(getName());
579 FragTree->UpdateNodeType(getExtTypes(), TP);
581 // Get a new copy of this fragment to stitch into here.
582 //delete this; // FIXME: implement refcounting!
586 /// getImplicitType - Check to see if the specified record has an implicit
587 /// type which should be applied to it. This infer the type of register
588 /// references from the register file information, for example.
590 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
592 // Some common return values
593 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
594 std::vector<unsigned char> Other(1, MVT::Other);
596 // Check to see if this is a register or a register class...
597 if (R->isSubClassOf("RegisterClass")) {
600 const CodeGenRegisterClass &RC =
601 TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
602 return ConvertVTs(RC.getValueTypes());
603 } else if (R->isSubClassOf("PatFrag")) {
604 // Pattern fragment types will be resolved when they are inlined.
606 } else if (R->isSubClassOf("Register")) {
609 const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
610 return T.getRegisterVTs(R);
611 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
612 // Using a VTSDNode or CondCodeSDNode.
614 } else if (R->isSubClassOf("ComplexPattern")) {
617 std::vector<unsigned char>
618 ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
620 } else if (R->getName() == "node" || R->getName() == "srcvalue") {
625 TP.error("Unknown node flavor used in pattern: " + R->getName());
629 /// ApplyTypeConstraints - Apply all of the type constraints relevent to
630 /// this node and its children in the tree. This returns true if it makes a
631 /// change, false otherwise. If a type contradiction is found, throw an
633 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
634 DAGISelEmitter &ISE = TP.getDAGISelEmitter();
636 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
637 // If it's a regclass or something else known, include the type.
638 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
639 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
640 // Int inits are always integers. :)
641 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
644 // At some point, it may make sense for this tree pattern to have
645 // multiple types. Assert here that it does not, so we revisit this
646 // code when appropriate.
647 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
648 MVT::ValueType VT = getTypeNum(0);
649 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
650 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
653 if (VT != MVT::iPTR) {
654 unsigned Size = MVT::getSizeInBits(VT);
655 // Make sure that the value is representable for this type.
657 int Val = (II->getValue() << (32-Size)) >> (32-Size);
658 if (Val != II->getValue())
659 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
660 "' is out of range for type '" +
661 getEnumName(getTypeNum(0)) + "'!");
671 // special handling for set, which isn't really an SDNode.
672 if (getOperator()->getName() == "set") {
673 assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
674 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
675 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
677 // Types of operands must match.
678 MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
679 MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
680 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
682 } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
683 getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
684 getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
686 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
687 const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
688 bool MadeChange = false;
690 // Apply the result type to the node.
691 MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
693 if (getNumChildren() != Int.ArgVTs.size())
694 TP.error("Intrinsic '" + Int.Name + "' expects " +
695 utostr(Int.ArgVTs.size()-1) + " operands, not " +
696 utostr(getNumChildren()-1) + " operands!");
698 // Apply type info to the intrinsic ID.
699 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
701 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
702 MVT::ValueType OpVT = Int.ArgVTs[i];
703 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
704 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
707 } else if (getOperator()->isSubClassOf("SDNode")) {
708 const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
710 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
711 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
712 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
713 // Branch, etc. do not produce results and top-level forms in instr pattern
714 // must have void types.
715 if (NI.getNumResults() == 0)
716 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
718 // If this is a vector_shuffle operation, apply types to the build_vector
719 // operation. The types of the integers don't matter, but this ensures they
720 // won't get checked.
721 if (getOperator()->getName() == "vector_shuffle" &&
722 getChild(2)->getOperator()->getName() == "build_vector") {
723 TreePatternNode *BV = getChild(2);
724 const std::vector<MVT::ValueType> &LegalVTs
725 = ISE.getTargetInfo().getLegalValueTypes();
726 MVT::ValueType LegalIntVT = MVT::Other;
727 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
728 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
729 LegalIntVT = LegalVTs[i];
732 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
734 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
735 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
738 } else if (getOperator()->isSubClassOf("Instruction")) {
739 const DAGInstruction &Inst = ISE.getInstruction(getOperator());
740 bool MadeChange = false;
741 unsigned NumResults = Inst.getNumResults();
743 assert(NumResults <= 1 &&
744 "Only supports zero or one result instrs!");
746 CodeGenInstruction &InstInfo =
747 ISE.getTargetInfo().getInstruction(getOperator()->getName());
748 // Apply the result type to the node
749 if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack...
750 MadeChange = UpdateNodeType(MVT::isVoid, TP);
752 Record *ResultNode = Inst.getResult(0);
753 assert(ResultNode->isSubClassOf("RegisterClass") &&
754 "Operands should be register classes!");
756 const CodeGenRegisterClass &RC =
757 ISE.getTargetInfo().getRegisterClass(ResultNode);
758 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
761 if (getNumChildren() != Inst.getNumOperands())
762 TP.error("Instruction '" + getOperator()->getName() + " expects " +
763 utostr(Inst.getNumOperands()) + " operands, not " +
764 utostr(getNumChildren()) + " operands!");
765 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
766 Record *OperandNode = Inst.getOperand(i);
768 if (OperandNode->isSubClassOf("RegisterClass")) {
769 const CodeGenRegisterClass &RC =
770 ISE.getTargetInfo().getRegisterClass(OperandNode);
771 MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()),
773 } else if (OperandNode->isSubClassOf("Operand")) {
774 VT = getValueType(OperandNode->getValueAsDef("Type"));
775 MadeChange |= getChild(i)->UpdateNodeType(VT, TP);
777 assert(0 && "Unknown operand type!");
780 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
784 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
786 // Node transforms always take one operand.
787 if (getNumChildren() != 1)
788 TP.error("Node transform '" + getOperator()->getName() +
789 "' requires one operand!");
791 // If either the output or input of the xform does not have exact
792 // type info. We assume they must be the same. Otherwise, it is perfectly
793 // legal to transform from one type to a completely different type.
794 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
795 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
796 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
803 /// canPatternMatch - If it is impossible for this pattern to match on this
804 /// target, fill in Reason and return false. Otherwise, return true. This is
805 /// used as a santity check for .td files (to prevent people from writing stuff
806 /// that can never possibly work), and to prevent the pattern permuter from
807 /// generating stuff that is useless.
808 bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
809 if (isLeaf()) return true;
811 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
812 if (!getChild(i)->canPatternMatch(Reason, ISE))
815 // If this is an intrinsic, handle cases that would make it not match. For
816 // example, if an operand is required to be an immediate.
817 if (getOperator()->isSubClassOf("Intrinsic")) {
822 // If this node is a commutative operator, check that the LHS isn't an
824 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
825 if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
826 // Scan all of the operands of the node and make sure that only the last one
827 // is a constant node, unless the RHS also is.
828 if (getChild(getNumChildren()-1)->isLeaf() ||
829 getChild(getNumChildren()-1)->getOperator()->getName() != "imm") {
830 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
831 if (!getChild(i)->isLeaf() &&
832 getChild(i)->getOperator()->getName() == "imm") {
833 Reason = "Immediate value must be on the RHS of commutative operators!";
842 //===----------------------------------------------------------------------===//
843 // TreePattern implementation
846 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
847 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
848 isInputPattern = isInput;
849 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
850 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
853 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
854 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
855 isInputPattern = isInput;
856 Trees.push_back(ParseTreePattern(Pat));
859 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
860 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
861 isInputPattern = isInput;
862 Trees.push_back(Pat);
867 void TreePattern::error(const std::string &Msg) const {
869 throw "In " + TheRecord->getName() + ": " + Msg;
872 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
873 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
874 if (!OpDef) error("Pattern has unexpected operator type!");
875 Record *Operator = OpDef->getDef();
877 if (Operator->isSubClassOf("ValueType")) {
878 // If the operator is a ValueType, then this must be "type cast" of a leaf
880 if (Dag->getNumArgs() != 1)
881 error("Type cast only takes one operand!");
883 Init *Arg = Dag->getArg(0);
884 TreePatternNode *New;
885 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
886 Record *R = DI->getDef();
887 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
888 Dag->setArg(0, new DagInit(DI,
889 std::vector<std::pair<Init*, std::string> >()));
890 return ParseTreePattern(Dag);
892 New = new TreePatternNode(DI);
893 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
894 New = ParseTreePattern(DI);
895 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
896 New = new TreePatternNode(II);
897 if (!Dag->getArgName(0).empty())
898 error("Constant int argument should not have a name!");
899 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
900 // Turn this into an IntInit.
901 Init *II = BI->convertInitializerTo(new IntRecTy());
902 if (II == 0 || !dynamic_cast<IntInit*>(II))
903 error("Bits value must be constants!");
905 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
906 if (!Dag->getArgName(0).empty())
907 error("Constant int argument should not have a name!");
910 error("Unknown leaf value for tree pattern!");
914 // Apply the type cast.
915 New->UpdateNodeType(getValueType(Operator), *this);
916 New->setName(Dag->getArgName(0));
920 // Verify that this is something that makes sense for an operator.
921 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
922 !Operator->isSubClassOf("Instruction") &&
923 !Operator->isSubClassOf("SDNodeXForm") &&
924 !Operator->isSubClassOf("Intrinsic") &&
925 Operator->getName() != "set")
926 error("Unrecognized node '" + Operator->getName() + "'!");
928 // Check to see if this is something that is illegal in an input pattern.
929 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
930 Operator->isSubClassOf("SDNodeXForm")))
931 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
933 std::vector<TreePatternNode*> Children;
935 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
936 Init *Arg = Dag->getArg(i);
937 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
938 Children.push_back(ParseTreePattern(DI));
939 if (Children.back()->getName().empty())
940 Children.back()->setName(Dag->getArgName(i));
941 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
942 Record *R = DefI->getDef();
943 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
944 // TreePatternNode if its own.
945 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
946 Dag->setArg(i, new DagInit(DefI,
947 std::vector<std::pair<Init*, std::string> >()));
948 --i; // Revisit this node...
950 TreePatternNode *Node = new TreePatternNode(DefI);
951 Node->setName(Dag->getArgName(i));
952 Children.push_back(Node);
955 if (R->getName() == "node") {
956 if (Dag->getArgName(i).empty())
957 error("'node' argument requires a name to match with operand list");
958 Args.push_back(Dag->getArgName(i));
961 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
962 TreePatternNode *Node = new TreePatternNode(II);
963 if (!Dag->getArgName(i).empty())
964 error("Constant int argument should not have a name!");
965 Children.push_back(Node);
966 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
967 // Turn this into an IntInit.
968 Init *II = BI->convertInitializerTo(new IntRecTy());
969 if (II == 0 || !dynamic_cast<IntInit*>(II))
970 error("Bits value must be constants!");
972 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
973 if (!Dag->getArgName(i).empty())
974 error("Constant int argument should not have a name!");
975 Children.push_back(Node);
980 error("Unknown leaf value for tree pattern!");
984 // If the operator is an intrinsic, then this is just syntactic sugar for for
985 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
986 // convert the intrinsic name to a number.
987 if (Operator->isSubClassOf("Intrinsic")) {
988 const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
989 unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
991 // If this intrinsic returns void, it must have side-effects and thus a
993 if (Int.ArgVTs[0] == MVT::isVoid) {
994 Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
995 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
996 // Has side-effects, requires chain.
997 Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
999 // Otherwise, no chain.
1000 Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
1003 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1004 Children.insert(Children.begin(), IIDNode);
1007 return new TreePatternNode(Operator, Children);
1010 /// InferAllTypes - Infer/propagate as many types throughout the expression
1011 /// patterns as possible. Return true if all types are infered, false
1012 /// otherwise. Throw an exception if a type contradiction is found.
1013 bool TreePattern::InferAllTypes() {
1014 bool MadeChange = true;
1015 while (MadeChange) {
1017 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1018 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1021 bool HasUnresolvedTypes = false;
1022 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1023 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1024 return !HasUnresolvedTypes;
1027 void TreePattern::print(std::ostream &OS) const {
1028 OS << getRecord()->getName();
1029 if (!Args.empty()) {
1030 OS << "(" << Args[0];
1031 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1032 OS << ", " << Args[i];
1037 if (Trees.size() > 1)
1039 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1041 Trees[i]->print(OS);
1045 if (Trees.size() > 1)
1049 void TreePattern::dump() const { print(std::cerr); }
1053 //===----------------------------------------------------------------------===//
1054 // DAGISelEmitter implementation
1057 // Parse all of the SDNode definitions for the target, populating SDNodes.
1058 void DAGISelEmitter::ParseNodeInfo() {
1059 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1060 while (!Nodes.empty()) {
1061 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1065 // Get the buildin intrinsic nodes.
1066 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1067 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1068 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1071 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1072 /// map, and emit them to the file as functions.
1073 void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
1074 OS << "\n// Node transformations.\n";
1075 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1076 while (!Xforms.empty()) {
1077 Record *XFormNode = Xforms.back();
1078 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1079 std::string Code = XFormNode->getValueAsCode("XFormFunction");
1080 SDNodeXForms.insert(std::make_pair(XFormNode,
1081 std::make_pair(SDNode, Code)));
1083 if (!Code.empty()) {
1084 std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
1085 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1087 OS << "inline SDOperand Transform_" << XFormNode->getName()
1088 << "(SDNode *" << C2 << ") {\n";
1089 if (ClassName != "SDNode")
1090 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1091 OS << Code << "\n}\n";
1098 void DAGISelEmitter::ParseComplexPatterns() {
1099 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1100 while (!AMs.empty()) {
1101 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1107 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1108 /// file, building up the PatternFragments map. After we've collected them all,
1109 /// inline fragments together as necessary, so that there are no references left
1110 /// inside a pattern fragment to a pattern fragment.
1112 /// This also emits all of the predicate functions to the output file.
1114 void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
1115 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1117 // First step, parse all of the fragments and emit predicate functions.
1118 OS << "\n// Predicate functions.\n";
1119 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1120 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1121 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1122 PatternFragments[Fragments[i]] = P;
1124 // Validate the argument list, converting it to map, to discard duplicates.
1125 std::vector<std::string> &Args = P->getArgList();
1126 std::set<std::string> OperandsMap(Args.begin(), Args.end());
1128 if (OperandsMap.count(""))
1129 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1131 // Parse the operands list.
1132 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1133 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1134 if (!OpsOp || OpsOp->getDef()->getName() != "ops")
1135 P->error("Operands list should start with '(ops ... '!");
1137 // Copy over the arguments.
1139 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1140 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1141 static_cast<DefInit*>(OpsList->getArg(j))->
1142 getDef()->getName() != "node")
1143 P->error("Operands list should all be 'node' values.");
1144 if (OpsList->getArgName(j).empty())
1145 P->error("Operands list should have names for each operand!");
1146 if (!OperandsMap.count(OpsList->getArgName(j)))
1147 P->error("'" + OpsList->getArgName(j) +
1148 "' does not occur in pattern or was multiply specified!");
1149 OperandsMap.erase(OpsList->getArgName(j));
1150 Args.push_back(OpsList->getArgName(j));
1153 if (!OperandsMap.empty())
1154 P->error("Operands list does not contain an entry for operand '" +
1155 *OperandsMap.begin() + "'!");
1157 // If there is a code init for this fragment, emit the predicate code and
1158 // keep track of the fact that this fragment uses it.
1159 std::string Code = Fragments[i]->getValueAsCode("Predicate");
1160 if (!Code.empty()) {
1161 assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!");
1162 std::string ClassName =
1163 getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
1164 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1166 OS << "inline bool Predicate_" << Fragments[i]->getName()
1167 << "(SDNode *" << C2 << ") {\n";
1168 if (ClassName != "SDNode")
1169 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1170 OS << Code << "\n}\n";
1171 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
1174 // If there is a node transformation corresponding to this, keep track of
1176 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1177 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1178 P->getOnlyTree()->setTransformFn(Transform);
1183 // Now that we've parsed all of the tree fragments, do a closure on them so
1184 // that there are not references to PatFrags left inside of them.
1185 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1186 E = PatternFragments.end(); I != E; ++I) {
1187 TreePattern *ThePat = I->second;
1188 ThePat->InlinePatternFragments();
1190 // Infer as many types as possible. Don't worry about it if we don't infer
1191 // all of them, some may depend on the inputs of the pattern.
1193 ThePat->InferAllTypes();
1195 // If this pattern fragment is not supported by this target (no types can
1196 // satisfy its constraints), just ignore it. If the bogus pattern is
1197 // actually used by instructions, the type consistency error will be
1201 // If debugging, print out the pattern fragment result.
1202 DEBUG(ThePat->dump());
1206 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1207 /// instruction input. Return true if this is a real use.
1208 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1209 std::map<std::string, TreePatternNode*> &InstInputs,
1210 std::vector<Record*> &InstImpInputs) {
1211 // No name -> not interesting.
1212 if (Pat->getName().empty()) {
1213 if (Pat->isLeaf()) {
1214 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1215 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1216 I->error("Input " + DI->getDef()->getName() + " must be named!");
1217 else if (DI && DI->getDef()->isSubClassOf("Register"))
1218 InstImpInputs.push_back(DI->getDef());
1224 if (Pat->isLeaf()) {
1225 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1226 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1229 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1230 Rec = Pat->getOperator();
1233 // SRCVALUE nodes are ignored.
1234 if (Rec->getName() == "srcvalue")
1237 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1242 if (Slot->isLeaf()) {
1243 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1245 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1246 SlotRec = Slot->getOperator();
1249 // Ensure that the inputs agree if we've already seen this input.
1251 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1252 if (Slot->getExtTypes() != Pat->getExtTypes())
1253 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1258 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1259 /// part of "I", the instruction), computing the set of inputs and outputs of
1260 /// the pattern. Report errors if we see anything naughty.
1261 void DAGISelEmitter::
1262 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1263 std::map<std::string, TreePatternNode*> &InstInputs,
1264 std::map<std::string, TreePatternNode*>&InstResults,
1265 std::vector<Record*> &InstImpInputs,
1266 std::vector<Record*> &InstImpResults) {
1267 if (Pat->isLeaf()) {
1268 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1269 if (!isUse && Pat->getTransformFn())
1270 I->error("Cannot specify a transform function for a non-input value!");
1272 } else if (Pat->getOperator()->getName() != "set") {
1273 // If this is not a set, verify that the children nodes are not void typed,
1275 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1276 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1277 I->error("Cannot have void nodes inside of patterns!");
1278 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1279 InstImpInputs, InstImpResults);
1282 // If this is a non-leaf node with no children, treat it basically as if
1283 // it were a leaf. This handles nodes like (imm).
1285 if (Pat->getNumChildren() == 0)
1286 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1288 if (!isUse && Pat->getTransformFn())
1289 I->error("Cannot specify a transform function for a non-input value!");
1293 // Otherwise, this is a set, validate and collect instruction results.
1294 if (Pat->getNumChildren() == 0)
1295 I->error("set requires operands!");
1296 else if (Pat->getNumChildren() & 1)
1297 I->error("set requires an even number of operands");
1299 if (Pat->getTransformFn())
1300 I->error("Cannot specify a transform function on a set node!");
1302 // Check the set destinations.
1303 unsigned NumValues = Pat->getNumChildren()/2;
1304 for (unsigned i = 0; i != NumValues; ++i) {
1305 TreePatternNode *Dest = Pat->getChild(i);
1306 if (!Dest->isLeaf())
1307 I->error("set destination should be a register!");
1309 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1311 I->error("set destination should be a register!");
1313 if (Val->getDef()->isSubClassOf("RegisterClass")) {
1314 if (Dest->getName().empty())
1315 I->error("set destination must have a name!");
1316 if (InstResults.count(Dest->getName()))
1317 I->error("cannot set '" + Dest->getName() +"' multiple times");
1318 InstResults[Dest->getName()] = Dest;
1319 } else if (Val->getDef()->isSubClassOf("Register")) {
1320 InstImpResults.push_back(Val->getDef());
1322 I->error("set destination should be a register!");
1325 // Verify and collect info from the computation.
1326 FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
1327 InstInputs, InstResults,
1328 InstImpInputs, InstImpResults);
1332 /// ParseInstructions - Parse all of the instructions, inlining and resolving
1333 /// any fragments involved. This populates the Instructions list with fully
1334 /// resolved instructions.
1335 void DAGISelEmitter::ParseInstructions() {
1336 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1338 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1341 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1342 LI = Instrs[i]->getValueAsListInit("Pattern");
1344 // If there is no pattern, only collect minimal information about the
1345 // instruction for its operand list. We have to assume that there is one
1346 // result, as we have no detailed info.
1347 if (!LI || LI->getSize() == 0) {
1348 std::vector<Record*> Results;
1349 std::vector<Record*> Operands;
1351 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1353 if (InstInfo.OperandList.size() != 0) {
1354 // FIXME: temporary hack...
1355 if (InstInfo.noResults) {
1356 // These produce no results
1357 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1358 Operands.push_back(InstInfo.OperandList[j].Rec);
1360 // Assume the first operand is the result.
1361 Results.push_back(InstInfo.OperandList[0].Rec);
1363 // The rest are inputs.
1364 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1365 Operands.push_back(InstInfo.OperandList[j].Rec);
1369 // Create and insert the instruction.
1370 std::vector<Record*> ImpResults;
1371 std::vector<Record*> ImpOperands;
1372 Instructions.insert(std::make_pair(Instrs[i],
1373 DAGInstruction(0, Results, Operands, ImpResults,
1375 continue; // no pattern.
1378 // Parse the instruction.
1379 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1380 // Inline pattern fragments into it.
1381 I->InlinePatternFragments();
1383 // Infer as many types as possible. If we cannot infer all of them, we can
1384 // never do anything with this instruction pattern: report it to the user.
1385 if (!I->InferAllTypes())
1386 I->error("Could not infer all types in pattern!");
1388 // InstInputs - Keep track of all of the inputs of the instruction, along
1389 // with the record they are declared as.
1390 std::map<std::string, TreePatternNode*> InstInputs;
1392 // InstResults - Keep track of all the virtual registers that are 'set'
1393 // in the instruction, including what reg class they are.
1394 std::map<std::string, TreePatternNode*> InstResults;
1396 std::vector<Record*> InstImpInputs;
1397 std::vector<Record*> InstImpResults;
1399 // Verify that the top-level forms in the instruction are of void type, and
1400 // fill in the InstResults map.
1401 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1402 TreePatternNode *Pat = I->getTree(j);
1403 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1404 I->error("Top-level forms in instruction pattern should have"
1407 // Find inputs and outputs, and verify the structure of the uses/defs.
1408 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1409 InstImpInputs, InstImpResults);
1412 // Now that we have inputs and outputs of the pattern, inspect the operands
1413 // list for the instruction. This determines the order that operands are
1414 // added to the machine instruction the node corresponds to.
1415 unsigned NumResults = InstResults.size();
1417 // Parse the operands list from the (ops) list, validating it.
1418 std::vector<std::string> &Args = I->getArgList();
1419 assert(Args.empty() && "Args list should still be empty here!");
1420 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1422 // Check that all of the results occur first in the list.
1423 std::vector<Record*> Results;
1424 TreePatternNode *Res0Node = NULL;
1425 for (unsigned i = 0; i != NumResults; ++i) {
1426 if (i == CGI.OperandList.size())
1427 I->error("'" + InstResults.begin()->first +
1428 "' set but does not appear in operand list!");
1429 const std::string &OpName = CGI.OperandList[i].Name;
1431 // Check that it exists in InstResults.
1432 TreePatternNode *RNode = InstResults[OpName];
1434 I->error("Operand $" + OpName + " does not exist in operand list!");
1438 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1440 I->error("Operand $" + OpName + " should be a set destination: all "
1441 "outputs must occur before inputs in operand list!");
1443 if (CGI.OperandList[i].Rec != R)
1444 I->error("Operand $" + OpName + " class mismatch!");
1446 // Remember the return type.
1447 Results.push_back(CGI.OperandList[i].Rec);
1449 // Okay, this one checks out.
1450 InstResults.erase(OpName);
1453 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1454 // the copy while we're checking the inputs.
1455 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1457 std::vector<TreePatternNode*> ResultNodeOperands;
1458 std::vector<Record*> Operands;
1459 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1460 const std::string &OpName = CGI.OperandList[i].Name;
1462 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1464 if (!InstInputsCheck.count(OpName))
1465 I->error("Operand $" + OpName +
1466 " does not appear in the instruction pattern");
1467 TreePatternNode *InVal = InstInputsCheck[OpName];
1468 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1470 if (InVal->isLeaf() &&
1471 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1472 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1473 if (CGI.OperandList[i].Rec != InRec &&
1474 !InRec->isSubClassOf("ComplexPattern"))
1475 I->error("Operand $" + OpName + "'s register class disagrees"
1476 " between the operand and pattern");
1478 Operands.push_back(CGI.OperandList[i].Rec);
1480 // Construct the result for the dest-pattern operand list.
1481 TreePatternNode *OpNode = InVal->clone();
1483 // No predicate is useful on the result.
1484 OpNode->setPredicateFn("");
1486 // Promote the xform function to be an explicit node if set.
1487 if (Record *Xform = OpNode->getTransformFn()) {
1488 OpNode->setTransformFn(0);
1489 std::vector<TreePatternNode*> Children;
1490 Children.push_back(OpNode);
1491 OpNode = new TreePatternNode(Xform, Children);
1494 ResultNodeOperands.push_back(OpNode);
1497 if (!InstInputsCheck.empty())
1498 I->error("Input operand $" + InstInputsCheck.begin()->first +
1499 " occurs in pattern but not in operands list!");
1501 TreePatternNode *ResultPattern =
1502 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1503 // Copy fully inferred output node type to instruction result pattern.
1505 ResultPattern->setTypes(Res0Node->getExtTypes());
1507 // Create and insert the instruction.
1508 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1509 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1511 // Use a temporary tree pattern to infer all types and make sure that the
1512 // constructed result is correct. This depends on the instruction already
1513 // being inserted into the Instructions map.
1514 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1515 Temp.InferAllTypes();
1517 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1518 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1523 // If we can, convert the instructions to be patterns that are matched!
1524 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1525 E = Instructions.end(); II != E; ++II) {
1526 DAGInstruction &TheInst = II->second;
1527 TreePattern *I = TheInst.getPattern();
1528 if (I == 0) continue; // No pattern.
1530 if (I->getNumTrees() != 1) {
1531 std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
1534 TreePatternNode *Pattern = I->getTree(0);
1535 TreePatternNode *SrcPattern;
1536 if (Pattern->getOperator()->getName() == "set") {
1537 if (Pattern->getNumChildren() != 2)
1538 continue; // Not a set of a single value (not handled so far)
1540 SrcPattern = Pattern->getChild(1)->clone();
1542 // Not a set (store or something?)
1543 SrcPattern = Pattern;
1547 if (!SrcPattern->canPatternMatch(Reason, *this))
1548 I->error("Instruction can never match: " + Reason);
1550 Record *Instr = II->first;
1551 TreePatternNode *DstPattern = TheInst.getResultPattern();
1553 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1554 SrcPattern, DstPattern,
1555 Instr->getValueAsInt("AddedComplexity")));
1559 void DAGISelEmitter::ParsePatterns() {
1560 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1562 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1563 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1564 TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1566 // Inline pattern fragments into it.
1567 Pattern->InlinePatternFragments();
1569 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1570 if (LI->getSize() == 0) continue; // no pattern.
1572 // Parse the instruction.
1573 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1575 // Inline pattern fragments into it.
1576 Result->InlinePatternFragments();
1578 if (Result->getNumTrees() != 1)
1579 Result->error("Cannot handle instructions producing instructions "
1580 "with temporaries yet!");
1582 bool IterateInference;
1583 bool InferredAllPatternTypes, InferredAllResultTypes;
1585 // Infer as many types as possible. If we cannot infer all of them, we
1586 // can never do anything with this pattern: report it to the user.
1587 InferredAllPatternTypes = Pattern->InferAllTypes();
1589 // Infer as many types as possible. If we cannot infer all of them, we can
1590 // never do anything with this pattern: report it to the user.
1591 InferredAllResultTypes = Result->InferAllTypes();
1593 // Apply the type of the result to the source pattern. This helps us
1594 // resolve cases where the input type is known to be a pointer type (which
1595 // is considered resolved), but the result knows it needs to be 32- or
1596 // 64-bits. Infer the other way for good measure.
1597 IterateInference = Pattern->getOnlyTree()->
1598 UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
1599 IterateInference |= Result->getOnlyTree()->
1600 UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
1601 } while (IterateInference);
1603 // Verify that we inferred enough types that we can do something with the
1604 // pattern and result. If these fire the user has to add type casts.
1605 if (!InferredAllPatternTypes)
1606 Pattern->error("Could not infer all types in pattern!");
1607 if (!InferredAllResultTypes)
1608 Result->error("Could not infer all types in pattern result!");
1610 // Validate that the input pattern is correct.
1612 std::map<std::string, TreePatternNode*> InstInputs;
1613 std::map<std::string, TreePatternNode*> InstResults;
1614 std::vector<Record*> InstImpInputs;
1615 std::vector<Record*> InstImpResults;
1616 FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
1617 InstInputs, InstResults,
1618 InstImpInputs, InstImpResults);
1621 // Promote the xform function to be an explicit node if set.
1622 std::vector<TreePatternNode*> ResultNodeOperands;
1623 TreePatternNode *DstPattern = Result->getOnlyTree();
1624 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1625 TreePatternNode *OpNode = DstPattern->getChild(ii);
1626 if (Record *Xform = OpNode->getTransformFn()) {
1627 OpNode->setTransformFn(0);
1628 std::vector<TreePatternNode*> Children;
1629 Children.push_back(OpNode);
1630 OpNode = new TreePatternNode(Xform, Children);
1632 ResultNodeOperands.push_back(OpNode);
1634 DstPattern = Result->getOnlyTree();
1635 if (!DstPattern->isLeaf())
1636 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1637 ResultNodeOperands);
1638 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1639 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1640 Temp.InferAllTypes();
1643 if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
1644 Pattern->error("Pattern can never match: " + Reason);
1647 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1648 Pattern->getOnlyTree(),
1650 Patterns[i]->getValueAsInt("AddedComplexity")));
1654 /// CombineChildVariants - Given a bunch of permutations of each child of the
1655 /// 'operator' node, put them together in all possible ways.
1656 static void CombineChildVariants(TreePatternNode *Orig,
1657 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1658 std::vector<TreePatternNode*> &OutVariants,
1659 DAGISelEmitter &ISE) {
1660 // Make sure that each operand has at least one variant to choose from.
1661 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1662 if (ChildVariants[i].empty())
1665 // The end result is an all-pairs construction of the resultant pattern.
1666 std::vector<unsigned> Idxs;
1667 Idxs.resize(ChildVariants.size());
1668 bool NotDone = true;
1670 // Create the variant and add it to the output list.
1671 std::vector<TreePatternNode*> NewChildren;
1672 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1673 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1674 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1676 // Copy over properties.
1677 R->setName(Orig->getName());
1678 R->setPredicateFn(Orig->getPredicateFn());
1679 R->setTransformFn(Orig->getTransformFn());
1680 R->setTypes(Orig->getExtTypes());
1682 // If this pattern cannot every match, do not include it as a variant.
1683 std::string ErrString;
1684 if (!R->canPatternMatch(ErrString, ISE)) {
1687 bool AlreadyExists = false;
1689 // Scan to see if this pattern has already been emitted. We can get
1690 // duplication due to things like commuting:
1691 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1692 // which are the same pattern. Ignore the dups.
1693 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1694 if (R->isIsomorphicTo(OutVariants[i])) {
1695 AlreadyExists = true;
1702 OutVariants.push_back(R);
1705 // Increment indices to the next permutation.
1707 // Look for something we can increment without causing a wrap-around.
1708 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1709 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1710 NotDone = true; // Found something to increment.
1718 /// CombineChildVariants - A helper function for binary operators.
1720 static void CombineChildVariants(TreePatternNode *Orig,
1721 const std::vector<TreePatternNode*> &LHS,
1722 const std::vector<TreePatternNode*> &RHS,
1723 std::vector<TreePatternNode*> &OutVariants,
1724 DAGISelEmitter &ISE) {
1725 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1726 ChildVariants.push_back(LHS);
1727 ChildVariants.push_back(RHS);
1728 CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
1732 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1733 std::vector<TreePatternNode *> &Children) {
1734 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1735 Record *Operator = N->getOperator();
1737 // Only permit raw nodes.
1738 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1739 N->getTransformFn()) {
1740 Children.push_back(N);
1744 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1745 Children.push_back(N->getChild(0));
1747 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1749 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1750 Children.push_back(N->getChild(1));
1752 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1755 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1756 /// the (potentially recursive) pattern by using algebraic laws.
1758 static void GenerateVariantsOf(TreePatternNode *N,
1759 std::vector<TreePatternNode*> &OutVariants,
1760 DAGISelEmitter &ISE) {
1761 // We cannot permute leaves.
1763 OutVariants.push_back(N);
1767 // Look up interesting info about the node.
1768 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
1770 // If this node is associative, reassociate.
1771 if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) {
1772 // Reassociate by pulling together all of the linked operators
1773 std::vector<TreePatternNode*> MaximalChildren;
1774 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1776 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1778 if (MaximalChildren.size() == 3) {
1779 // Find the variants of all of our maximal children.
1780 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1781 GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
1782 GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
1783 GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
1785 // There are only two ways we can permute the tree:
1786 // (A op B) op C and A op (B op C)
1787 // Within these forms, we can also permute A/B/C.
1789 // Generate legal pair permutations of A/B/C.
1790 std::vector<TreePatternNode*> ABVariants;
1791 std::vector<TreePatternNode*> BAVariants;
1792 std::vector<TreePatternNode*> ACVariants;
1793 std::vector<TreePatternNode*> CAVariants;
1794 std::vector<TreePatternNode*> BCVariants;
1795 std::vector<TreePatternNode*> CBVariants;
1796 CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
1797 CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
1798 CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
1799 CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
1800 CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
1801 CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
1803 // Combine those into the result: (x op x) op x
1804 CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
1805 CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
1806 CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
1807 CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
1808 CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
1809 CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
1811 // Combine those into the result: x op (x op x)
1812 CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
1813 CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
1814 CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
1815 CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
1816 CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
1817 CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
1822 // Compute permutations of all children.
1823 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1824 ChildVariants.resize(N->getNumChildren());
1825 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1826 GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
1828 // Build all permutations based on how the children were formed.
1829 CombineChildVariants(N, ChildVariants, OutVariants, ISE);
1831 // If this node is commutative, consider the commuted order.
1832 if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) {
1833 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1834 // Don't count children which are actually register references.
1836 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1837 TreePatternNode *Child = N->getChild(i);
1838 if (Child->isLeaf())
1839 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1840 Record *RR = DI->getDef();
1841 if (RR->isSubClassOf("Register"))
1846 // Consider the commuted order.
1848 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
1854 // GenerateVariants - Generate variants. For example, commutative patterns can
1855 // match multiple ways. Add them to PatternsToMatch as well.
1856 void DAGISelEmitter::GenerateVariants() {
1858 DEBUG(std::cerr << "Generating instruction variants.\n");
1860 // Loop over all of the patterns we've collected, checking to see if we can
1861 // generate variants of the instruction, through the exploitation of
1862 // identities. This permits the target to provide agressive matching without
1863 // the .td file having to contain tons of variants of instructions.
1865 // Note that this loop adds new patterns to the PatternsToMatch list, but we
1866 // intentionally do not reconsider these. Any variants of added patterns have
1867 // already been added.
1869 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
1870 std::vector<TreePatternNode*> Variants;
1871 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
1873 assert(!Variants.empty() && "Must create at least original variant!");
1874 Variants.erase(Variants.begin()); // Remove the original pattern.
1876 if (Variants.empty()) // No variants for this pattern.
1879 DEBUG(std::cerr << "FOUND VARIANTS OF: ";
1880 PatternsToMatch[i].getSrcPattern()->dump();
1883 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
1884 TreePatternNode *Variant = Variants[v];
1886 DEBUG(std::cerr << " VAR#" << v << ": ";
1890 // Scan to see if an instruction or explicit pattern already matches this.
1891 bool AlreadyExists = false;
1892 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
1893 // Check to see if this variant already exists.
1894 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
1895 DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n");
1896 AlreadyExists = true;
1900 // If we already have it, ignore the variant.
1901 if (AlreadyExists) continue;
1903 // Otherwise, add it to the list of patterns we have.
1905 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
1906 Variant, PatternsToMatch[i].getDstPattern(),
1907 PatternsToMatch[i].getAddedComplexity()));
1910 DEBUG(std::cerr << "\n");
1914 // NodeIsComplexPattern - return true if N is a leaf node and a subclass of
1916 static bool NodeIsComplexPattern(TreePatternNode *N)
1918 return (N->isLeaf() &&
1919 dynamic_cast<DefInit*>(N->getLeafValue()) &&
1920 static_cast<DefInit*>(N->getLeafValue())->getDef()->
1921 isSubClassOf("ComplexPattern"));
1924 // NodeGetComplexPattern - return the pointer to the ComplexPattern if N
1925 // is a leaf node and a subclass of ComplexPattern, else it returns NULL.
1926 static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
1927 DAGISelEmitter &ISE)
1930 dynamic_cast<DefInit*>(N->getLeafValue()) &&
1931 static_cast<DefInit*>(N->getLeafValue())->getDef()->
1932 isSubClassOf("ComplexPattern")) {
1933 return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
1939 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1940 /// patterns before small ones. This is used to determine the size of a
1942 static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
1943 assert((isExtIntegerInVTs(P->getExtTypes()) ||
1944 isExtFloatingPointInVTs(P->getExtTypes()) ||
1945 P->getExtTypeNum(0) == MVT::isVoid ||
1946 P->getExtTypeNum(0) == MVT::Flag ||
1947 P->getExtTypeNum(0) == MVT::iPTR) &&
1948 "Not a valid pattern node to size!");
1949 unsigned Size = 3; // The node itself.
1950 // If the root node is a ConstantSDNode, increases its size.
1951 // e.g. (set R32:$dst, 0).
1952 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
1955 // FIXME: This is a hack to statically increase the priority of patterns
1956 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
1957 // Later we can allow complexity / cost for each pattern to be (optionally)
1958 // specified. To get best possible pattern match we'll need to dynamically
1959 // calculate the complexity of all patterns a dag can potentially map to.
1960 const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
1962 Size += AM->getNumOperands() * 3;
1964 // If this node has some predicate function that must match, it adds to the
1965 // complexity of this node.
1966 if (!P->getPredicateFn().empty())
1969 // Count children in the count if they are also nodes.
1970 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1971 TreePatternNode *Child = P->getChild(i);
1972 if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
1973 Size += getPatternSize(Child, ISE);
1974 else if (Child->isLeaf()) {
1975 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
1976 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1977 else if (NodeIsComplexPattern(Child))
1978 Size += getPatternSize(Child, ISE);
1979 else if (!Child->getPredicateFn().empty())
1987 /// getResultPatternCost - Compute the number of instructions for this pattern.
1988 /// This is a temporary hack. We should really include the instruction
1989 /// latencies in this calculation.
1990 static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
1991 if (P->isLeaf()) return 0;
1994 Record *Op = P->getOperator();
1995 if (Op->isSubClassOf("Instruction")) {
1997 CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
1998 if (II.usesCustomDAGSchedInserter)
2001 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2002 Cost += getResultPatternCost(P->getChild(i), ISE);
2006 /// getResultPatternCodeSize - Compute the code size of instructions for this
2008 static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
2009 if (P->isLeaf()) return 0;
2012 Record *Op = P->getOperator();
2013 if (Op->isSubClassOf("Instruction")) {
2014 Cost += Op->getValueAsInt("CodeSize");
2016 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2017 Cost += getResultPatternSize(P->getChild(i), ISE);
2021 // PatternSortingPredicate - return true if we prefer to match LHS before RHS.
2022 // In particular, we want to match maximal patterns first and lowest cost within
2023 // a particular complexity first.
2024 struct PatternSortingPredicate {
2025 PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
2026 DAGISelEmitter &ISE;
2028 bool operator()(PatternToMatch *LHS,
2029 PatternToMatch *RHS) {
2030 unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
2031 unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
2032 LHSSize += LHS->getAddedComplexity();
2033 RHSSize += RHS->getAddedComplexity();
2034 if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
2035 if (LHSSize < RHSSize) return false;
2037 // If the patterns have equal complexity, compare generated instruction cost
2038 unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
2039 unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
2040 if (LHSCost < RHSCost) return true;
2041 if (LHSCost > RHSCost) return false;
2043 return getResultPatternSize(LHS->getDstPattern(), ISE) <
2044 getResultPatternSize(RHS->getDstPattern(), ISE);
2048 /// getRegisterValueType - Look up and return the first ValueType of specified
2049 /// RegisterClass record
2050 static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
2051 if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
2052 return RC->getValueTypeNum(0);
2057 /// RemoveAllTypes - A quick recursive walk over a pattern which removes all
2058 /// type information from it.
2059 static void RemoveAllTypes(TreePatternNode *N) {
2062 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2063 RemoveAllTypes(N->getChild(i));
2066 Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
2067 Record *N = Records.getDef(Name);
2068 if (!N || !N->isSubClassOf("SDNode")) {
2069 std::cerr << "Error getting SDNode '" << Name << "'!\n";
2075 /// NodeHasProperty - return true if TreePatternNode has the specified
2077 static bool NodeHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property,
2078 DAGISelEmitter &ISE)
2080 if (N->isLeaf()) return false;
2081 Record *Operator = N->getOperator();
2082 if (!Operator->isSubClassOf("SDNode")) return false;
2084 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
2085 return NodeInfo.hasProperty(Property);
2088 static bool PatternHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property,
2089 DAGISelEmitter &ISE)
2091 if (NodeHasProperty(N, Property, ISE))
2094 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2095 TreePatternNode *Child = N->getChild(i);
2096 if (PatternHasProperty(Child, Property, ISE))
2103 class PatternCodeEmitter {
2105 DAGISelEmitter &ISE;
2108 ListInit *Predicates;
2111 // Instruction selector pattern.
2112 TreePatternNode *Pattern;
2113 // Matched instruction.
2114 TreePatternNode *Instruction;
2116 // Node to name mapping
2117 std::map<std::string, std::string> VariableMap;
2118 // Node to operator mapping
2119 std::map<std::string, Record*> OperatorMap;
2120 // Names of all the folded nodes which produce chains.
2121 std::vector<std::pair<std::string, unsigned> > FoldedChains;
2122 std::set<std::string> Duplicates;
2124 /// GeneratedCode - This is the buffer that we emit code to. The first int
2125 /// indicates whether this is an exit predicate (something that should be
2126 /// tested, and if true, the match fails) [when 1], or normal code to emit
2127 /// [when 0], or initialization code to emit [when 2].
2128 std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
2129 /// GeneratedDecl - This is the set of all SDOperand declarations needed for
2130 /// the set of patterns for each top-level opcode.
2131 std::set<std::string> &GeneratedDecl;
2132 /// TargetOpcodes - The target specific opcodes used by the resulting
2134 std::vector<std::string> &TargetOpcodes;
2135 std::vector<std::string> &TargetVTs;
2137 std::string ChainName;
2142 void emitCheck(const std::string &S) {
2144 GeneratedCode.push_back(std::make_pair(1, S));
2146 void emitCode(const std::string &S) {
2148 GeneratedCode.push_back(std::make_pair(0, S));
2150 void emitInit(const std::string &S) {
2152 GeneratedCode.push_back(std::make_pair(2, S));
2154 void emitDecl(const std::string &S) {
2155 assert(!S.empty() && "Invalid declaration");
2156 GeneratedDecl.insert(S);
2158 void emitOpcode(const std::string &Opc) {
2159 TargetOpcodes.push_back(Opc);
2162 void emitVT(const std::string &VT) {
2163 TargetVTs.push_back(VT);
2167 PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
2168 TreePatternNode *pattern, TreePatternNode *instr,
2169 std::vector<std::pair<unsigned, std::string> > &gc,
2170 std::set<std::string> &gd,
2171 std::vector<std::string> &to,
2172 std::vector<std::string> &tv)
2173 : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
2174 GeneratedCode(gc), GeneratedDecl(gd),
2175 TargetOpcodes(to), TargetVTs(tv),
2176 TmpNo(0), OpcNo(0), VTNo(0) {}
2178 /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
2179 /// if the match fails. At this point, we already know that the opcode for N
2180 /// matches, and the SDNode for the result has the RootName specified name.
2181 void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
2182 const std::string &RootName, const std::string &ParentName,
2183 const std::string &ChainSuffix, bool &FoundChain) {
2184 bool isRoot = (P == NULL);
2185 // Emit instruction predicates. Each predicate is just a string for now.
2187 std::string PredicateCheck;
2188 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
2189 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
2190 Record *Def = Pred->getDef();
2191 if (!Def->isSubClassOf("Predicate")) {
2195 assert(0 && "Unknown predicate type!");
2197 if (!PredicateCheck.empty())
2198 PredicateCheck += " || ";
2199 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
2203 emitCheck(PredicateCheck);
2207 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2208 emitCheck("cast<ConstantSDNode>(" + RootName +
2209 ")->getSignExtended() == " + itostr(II->getValue()));
2211 } else if (!NodeIsComplexPattern(N)) {
2212 assert(0 && "Cannot match this as a leaf value!");
2217 // If this node has a name associated with it, capture it in VariableMap. If
2218 // we already saw this in the pattern, emit code to verify dagness.
2219 if (!N->getName().empty()) {
2220 std::string &VarMapEntry = VariableMap[N->getName()];
2221 if (VarMapEntry.empty()) {
2222 VarMapEntry = RootName;
2224 // If we get here, this is a second reference to a specific name. Since
2225 // we already have checked that the first reference is valid, we don't
2226 // have to recursively match it, just check that it's the same as the
2227 // previously named thing.
2228 emitCheck(VarMapEntry + " == " + RootName);
2233 OperatorMap[N->getName()] = N->getOperator();
2237 // Emit code to load the child nodes and match their contents recursively.
2239 bool NodeHasChain = NodeHasProperty (N, SDNodeInfo::SDNPHasChain, ISE);
2240 bool HasChain = PatternHasProperty(N, SDNodeInfo::SDNPHasChain, ISE);
2241 bool HasOutFlag = PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE);
2242 bool EmittedUseCheck = false;
2247 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2248 // Multiple uses of actual result?
2249 emitCheck(RootName + ".hasOneUse()");
2250 EmittedUseCheck = true;
2252 // If the immediate use can somehow reach this node through another
2253 // path, then can't fold it either or it will create a cycle.
2254 // e.g. In the following diagram, XX can reach ld through YY. If
2255 // ld is folded into XX, then YY is both a predecessor and a successor
2265 const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
2266 if (PInfo.getNumOperands() > 1 ||
2267 PInfo.hasProperty(SDNodeInfo::SDNPHasChain) ||
2268 PInfo.hasProperty(SDNodeInfo::SDNPInFlag) ||
2269 PInfo.hasProperty(SDNodeInfo::SDNPOptInFlag))
2270 emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
2277 emitCheck("Chain.Val == " + RootName + ".Val");
2280 ChainName = "Chain" + ChainSuffix;
2281 emitInit("SDOperand " + ChainName + " = " + RootName +
2286 // Don't fold any node which reads or writes a flag and has multiple uses.
2287 // FIXME: We really need to separate the concepts of flag and "glue". Those
2288 // real flag results, e.g. X86CMP output, can have multiple uses.
2289 // FIXME: If the optional incoming flag does not exist. Then it is ok to
2292 (PatternHasProperty(N, SDNodeInfo::SDNPInFlag, ISE) ||
2293 PatternHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE) ||
2294 PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE))) {
2295 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator());
2296 if (!EmittedUseCheck) {
2297 // Multiple uses of actual result?
2298 emitCheck(RootName + ".hasOneUse()");
2302 const ComplexPattern *CP;
2303 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2304 emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
2305 RootName + ".getOperand(" +utostr(OpNo) + ");");
2307 TreePatternNode *Child = N->getChild(i);
2308 if (!Child->isLeaf()) {
2309 // If it's not a leaf, recursively match.
2310 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
2311 emitCheck(RootName + utostr(OpNo) + ".getOpcode() == " +
2312 CInfo.getEnumName());
2313 EmitMatchCode(Child, N, RootName + utostr(OpNo), RootName,
2314 ChainSuffix + utostr(OpNo), FoundChain);
2315 if (NodeHasProperty(Child, SDNodeInfo::SDNPHasChain, ISE))
2316 FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo),
2317 CInfo.getNumResults()));
2319 // If this child has a name associated with it, capture it in VarMap. If
2320 // we already saw this in the pattern, emit code to verify dagness.
2321 if (!Child->getName().empty()) {
2322 std::string &VarMapEntry = VariableMap[Child->getName()];
2323 if (VarMapEntry.empty()) {
2324 VarMapEntry = RootName + utostr(OpNo);
2326 // If we get here, this is a second reference to a specific name.
2327 // Since we already have checked that the first reference is valid,
2328 // we don't have to recursively match it, just check that it's the
2329 // same as the previously named thing.
2330 emitCheck(VarMapEntry + " == " + RootName + utostr(OpNo));
2331 Duplicates.insert(RootName + utostr(OpNo));
2336 // Handle leaves of various types.
2337 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2338 Record *LeafRec = DI->getDef();
2339 if (LeafRec->isSubClassOf("RegisterClass")) {
2340 // Handle register references. Nothing to do here.
2341 } else if (LeafRec->isSubClassOf("Register")) {
2342 // Handle register references.
2343 } else if (LeafRec->isSubClassOf("ComplexPattern")) {
2344 // Handle complex pattern.
2345 CP = NodeGetComplexPattern(Child, ISE);
2346 std::string Fn = CP->getSelectFunc();
2347 unsigned NumOps = CP->getNumOperands();
2348 for (unsigned i = 0; i < NumOps; ++i) {
2349 emitDecl("CPTmp" + utostr(i));
2350 emitCode("SDOperand CPTmp" + utostr(i) + ";");
2353 std::string Code = Fn + "(" + RootName + utostr(OpNo);
2354 for (unsigned i = 0; i < NumOps; i++)
2355 Code += ", CPTmp" + utostr(i);
2356 emitCheck(Code + ")");
2357 } else if (LeafRec->getName() == "srcvalue") {
2358 // Place holder for SRCVALUE nodes. Nothing to do here.
2359 } else if (LeafRec->isSubClassOf("ValueType")) {
2360 // Make sure this is the specified value type.
2361 emitCheck("cast<VTSDNode>(" + RootName + utostr(OpNo) +
2362 ")->getVT() == MVT::" + LeafRec->getName());
2363 } else if (LeafRec->isSubClassOf("CondCode")) {
2364 // Make sure this is the specified cond code.
2365 emitCheck("cast<CondCodeSDNode>(" + RootName + utostr(OpNo) +
2366 ")->get() == ISD::" + LeafRec->getName());
2372 assert(0 && "Unknown leaf type!");
2374 } else if (IntInit *II =
2375 dynamic_cast<IntInit*>(Child->getLeafValue())) {
2376 emitCheck("isa<ConstantSDNode>(" + RootName + utostr(OpNo) + ")");
2377 unsigned CTmp = TmpNo++;
2378 emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
2379 RootName + utostr(OpNo) + ")->getSignExtended();");
2381 emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
2386 assert(0 && "Unknown leaf type!");
2391 // Handle cases when root is a complex pattern.
2392 if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2393 std::string Fn = CP->getSelectFunc();
2394 unsigned NumOps = CP->getNumOperands();
2395 for (unsigned i = 0; i < NumOps; ++i) {
2396 emitDecl("CPTmp" + utostr(i));
2397 emitCode("SDOperand CPTmp" + utostr(i) + ";");
2400 std::string Code = Fn + "(" + RootName;
2401 for (unsigned i = 0; i < NumOps; i++)
2402 Code += ", CPTmp" + utostr(i);
2403 emitCheck(Code + ")");
2406 // If there is a node predicate for this, emit the call.
2407 if (!N->getPredicateFn().empty())
2408 emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
2411 /// EmitResultCode - Emit the action for a pattern. Now that it has matched
2412 /// we actually have to build a DAG!
2413 std::vector<std::string>
2414 EmitResultCode(TreePatternNode *N, bool RetSelected,
2415 bool InFlagDecled, bool ResNodeDecled,
2416 bool LikeLeaf = false, bool isRoot = false) {
2417 // List of arguments of getTargetNode() or SelectNodeTo().
2418 std::vector<std::string> NodeOps;
2419 // This is something selected from the pattern we matched.
2420 if (!N->getName().empty()) {
2421 std::string &Val = VariableMap[N->getName()];
2422 assert(!Val.empty() &&
2423 "Variable referenced but not defined and not caught earlier!");
2424 if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
2425 // Already selected this operand, just return the tmpval.
2426 NodeOps.push_back(Val);
2430 const ComplexPattern *CP;
2431 unsigned ResNo = TmpNo++;
2432 if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
2433 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2434 std::string CastType;
2435 switch (N->getTypeNum(0)) {
2436 default: assert(0 && "Unknown type for constant node!");
2437 case MVT::i1: CastType = "bool"; break;
2438 case MVT::i8: CastType = "unsigned char"; break;
2439 case MVT::i16: CastType = "unsigned short"; break;
2440 case MVT::i32: CastType = "unsigned"; break;
2441 case MVT::i64: CastType = "uint64_t"; break;
2443 emitCode("SDOperand Tmp" + utostr(ResNo) +
2444 " = CurDAG->getTargetConstant(((" + CastType +
2445 ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
2446 getEnumName(N->getTypeNum(0)) + ");");
2447 NodeOps.push_back("Tmp" + utostr(ResNo));
2448 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2449 // value if used multiple times by this pattern result.
2450 Val = "Tmp"+utostr(ResNo);
2451 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2452 Record *Op = OperatorMap[N->getName()];
2453 // Transform ExternalSymbol to TargetExternalSymbol
2454 if (Op && Op->getName() == "externalsym") {
2455 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2456 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
2457 Val + ")->getSymbol(), " +
2458 getEnumName(N->getTypeNum(0)) + ");");
2459 NodeOps.push_back("Tmp" + utostr(ResNo));
2460 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2461 // value if used multiple times by this pattern result.
2462 Val = "Tmp"+utostr(ResNo);
2464 NodeOps.push_back(Val);
2466 } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
2467 Record *Op = OperatorMap[N->getName()];
2468 // Transform GlobalAddress to TargetGlobalAddress
2469 if (Op && Op->getName() == "globaladdr") {
2470 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2471 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
2472 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
2474 NodeOps.push_back("Tmp" + utostr(ResNo));
2475 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2476 // value if used multiple times by this pattern result.
2477 Val = "Tmp"+utostr(ResNo);
2479 NodeOps.push_back(Val);
2481 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2482 NodeOps.push_back(Val);
2483 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2484 // value if used multiple times by this pattern result.
2485 Val = "Tmp"+utostr(ResNo);
2486 } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
2487 NodeOps.push_back(Val);
2488 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2489 // value if used multiple times by this pattern result.
2490 Val = "Tmp"+utostr(ResNo);
2491 } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2492 std::string Fn = CP->getSelectFunc();
2493 for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
2494 emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
2495 NodeOps.push_back("CPTmp" + utostr(i));
2498 // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
2499 // node even if it isn't one. Don't select it.
2501 emitCode("AddToISelQueue(" + Val + ");");
2502 if (isRoot && N->isLeaf()) {
2503 emitCode("ReplaceUses(N, " + Val + ");");
2504 emitCode("return NULL;");
2507 NodeOps.push_back(Val);
2512 // If this is an explicit register reference, handle it.
2513 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2514 unsigned ResNo = TmpNo++;
2515 if (DI->getDef()->isSubClassOf("Register")) {
2516 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
2517 ISE.getQualifiedName(DI->getDef()) + ", " +
2518 getEnumName(N->getTypeNum(0)) + ");");
2519 NodeOps.push_back("Tmp" + utostr(ResNo));
2522 } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2523 unsigned ResNo = TmpNo++;
2524 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2525 emitCode("SDOperand Tmp" + utostr(ResNo) +
2526 " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
2527 ", " + getEnumName(N->getTypeNum(0)) + ");");
2528 NodeOps.push_back("Tmp" + utostr(ResNo));
2535 assert(0 && "Unknown leaf type!");
2539 Record *Op = N->getOperator();
2540 if (Op->isSubClassOf("Instruction")) {
2541 const CodeGenTarget &CGT = ISE.getTargetInfo();
2542 CodeGenInstruction &II = CGT.getInstruction(Op->getName());
2543 const DAGInstruction &Inst = ISE.getInstruction(Op);
2544 TreePattern *InstPat = Inst.getPattern();
2545 TreePatternNode *InstPatNode =
2546 isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
2547 : (InstPat ? InstPat->getOnlyTree() : NULL);
2548 if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
2549 InstPatNode = InstPatNode->getChild(1);
2551 bool HasVarOps = isRoot && II.hasVariableNumberOfOperands;
2552 bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
2553 bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
2554 bool NodeHasOptInFlag = isRoot &&
2555 PatternHasProperty(Pattern, SDNodeInfo::SDNPOptInFlag, ISE);
2556 bool NodeHasInFlag = isRoot &&
2557 PatternHasProperty(Pattern, SDNodeInfo::SDNPInFlag, ISE);
2558 bool NodeHasOutFlag = HasImpResults || (isRoot &&
2559 PatternHasProperty(Pattern, SDNodeInfo::SDNPOutFlag, ISE));
2560 bool NodeHasChain = InstPatNode &&
2561 PatternHasProperty(InstPatNode, SDNodeInfo::SDNPHasChain, ISE);
2562 bool InputHasChain = isRoot &&
2563 NodeHasProperty(Pattern, SDNodeInfo::SDNPHasChain, ISE);
2565 if (NodeHasOptInFlag) {
2566 emitCode("bool HasInFlag = "
2567 "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
2570 emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
2572 // How many results is this pattern expected to produce?
2573 unsigned PatResults = 0;
2574 for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
2575 MVT::ValueType VT = Pattern->getTypeNum(i);
2576 if (VT != MVT::isVoid && VT != MVT::Flag)
2580 std::vector<std::string> AllOps;
2581 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2582 std::vector<std::string> Ops = EmitResultCode(N->getChild(i),
2583 RetSelected, InFlagDecled, ResNodeDecled);
2584 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
2587 // Emit all the chain and CopyToReg stuff.
2588 bool ChainEmitted = NodeHasChain;
2590 emitCode("AddToISelQueue(" + ChainName + ");");
2591 if (NodeHasInFlag || HasImpInputs)
2592 EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
2593 InFlagDecled, ResNodeDecled, true);
2594 if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
2595 if (!InFlagDecled) {
2596 emitCode("SDOperand InFlag(0, 0);");
2597 InFlagDecled = true;
2599 if (NodeHasOptInFlag) {
2600 emitCode("if (HasInFlag) {");
2601 emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
2602 emitCode(" AddToISelQueue(InFlag);");
2607 unsigned NumResults = Inst.getNumResults();
2608 unsigned ResNo = TmpNo++;
2609 if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
2613 std::string NodeName;
2615 NodeName = "Tmp" + utostr(ResNo);
2616 Code2 = "SDOperand " + NodeName + " = SDOperand(";
2618 NodeName = "ResNode";
2620 Code2 = "SDNode *" + NodeName + " = ";
2622 Code2 = NodeName + " = ";
2625 Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
2626 unsigned OpsNo = OpcNo;
2627 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
2629 // Output order: results, chain, flags
2631 if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
2632 Code += ", VT" + utostr(VTNo);
2633 emitVT(getEnumName(N->getTypeNum(0)));
2636 Code += ", MVT::Other";
2638 Code += ", MVT::Flag";
2642 for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
2643 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
2648 if (NodeHasInFlag || HasImpInputs)
2649 emitCode("for (unsigned i = 2, e = N.getNumOperands()-1; "
2651 else if (NodeHasOptInFlag)
2652 emitCode("for (unsigned i = 2, e = N.getNumOperands()-"
2653 "(HasInFlag?1:0); i != e; ++i) {");
2655 emitCode("for (unsigned i = 2, e = N.getNumOperands(); "
2657 emitCode(" AddToISelQueue(N.getOperand(i));");
2658 emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
2664 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
2666 AllOps.push_back(ChainName);
2670 if (NodeHasInFlag || HasImpInputs)
2671 emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2672 else if (NodeHasOptInFlag) {
2673 emitCode("if (HasInFlag)");
2674 emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2676 Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
2678 } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2679 AllOps.push_back("InFlag");
2681 unsigned NumOps = AllOps.size();
2683 if (!NodeHasOptInFlag && NumOps < 4) {
2684 for (unsigned i = 0; i != NumOps; ++i)
2685 Code += ", " + AllOps[i];
2687 std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
2688 for (unsigned i = 0; i != NumOps; ++i) {
2689 OpsCode += AllOps[i];
2693 emitCode(OpsCode + " };");
2694 Code += ", Ops" + utostr(OpsNo) + ", ";
2695 if (NodeHasOptInFlag) {
2696 Code += "HasInFlag ? ";
2697 Code += utostr(NumOps) + " : " + utostr(NumOps-1);
2699 Code += utostr(NumOps);
2705 emitCode(Code2 + Code + ");");
2708 // Remember which op produces the chain.
2710 emitCode(ChainName + " = SDOperand(" + NodeName +
2711 ".Val, " + utostr(PatResults) + ");");
2713 emitCode(ChainName + " = SDOperand(" + NodeName +
2714 ", " + utostr(PatResults) + ");");
2717 NodeOps.push_back("Tmp" + utostr(ResNo));
2721 bool NeedReplace = false;
2722 if (NodeHasOutFlag) {
2723 if (!InFlagDecled) {
2724 emitCode("SDOperand InFlag = SDOperand(ResNode, " +
2725 utostr(NumResults + (unsigned)NodeHasChain) + ");");
2726 InFlagDecled = true;
2728 emitCode("InFlag = SDOperand(ResNode, " +
2729 utostr(NumResults + (unsigned)NodeHasChain) + ");");
2732 if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
2733 emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
2737 if (FoldedChains.size() > 0) {
2739 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
2740 emitCode("ReplaceUses(SDOperand(" +
2741 FoldedChains[j].first + ".Val, " +
2742 utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
2743 utostr(NumResults) + "));");
2747 if (NodeHasOutFlag) {
2748 emitCode("ReplaceUses(SDOperand(N.Val, " +
2749 utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
2754 for (unsigned i = 0; i < NumResults; i++)
2755 emitCode("ReplaceUses(SDOperand(N.Val, " +
2756 utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
2758 emitCode("ReplaceUses(SDOperand(N.Val, " +
2759 utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " +
2760 ChainName + ".ResNo" + "));");
2764 // User does not expect the instruction would produce a chain!
2765 if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
2767 } else if (InputHasChain && !NodeHasChain) {
2768 // One of the inner node produces a chain.
2770 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
2771 "), SDOperand(ResNode, N.ResNo-1));");
2772 for (unsigned i = 0; i < PatResults; ++i)
2773 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
2774 "), SDOperand(ResNode, " + utostr(i) + "));");
2775 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
2776 "), " + ChainName + ");");
2777 RetSelected = false;
2781 emitCode("return ResNode;");
2783 emitCode("return NULL;");
2785 std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
2787 if (N->getTypeNum(0) != MVT::isVoid)
2788 Code += ", VT" + utostr(VTNo);
2790 Code += ", MVT::Flag";
2792 if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2793 AllOps.push_back("InFlag");
2795 unsigned NumOps = AllOps.size();
2797 if (!NodeHasOptInFlag && NumOps < 4) {
2798 for (unsigned i = 0; i != NumOps; ++i)
2799 Code += ", " + AllOps[i];
2801 std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
2802 for (unsigned i = 0; i != NumOps; ++i) {
2803 OpsCode += AllOps[i];
2807 emitCode(OpsCode + " };");
2808 Code += ", Ops" + utostr(OpcNo) + ", ";
2809 Code += utostr(NumOps);
2812 emitCode(Code + ");");
2813 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
2814 if (N->getTypeNum(0) != MVT::isVoid)
2815 emitVT(getEnumName(N->getTypeNum(0)));
2819 } else if (Op->isSubClassOf("SDNodeXForm")) {
2820 assert(N->getNumChildren() == 1 && "node xform should have one child!");
2821 // PatLeaf node - the operand may or may not be a leaf node. But it should
2823 std::vector<std::string> Ops =
2824 EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
2825 ResNodeDecled, true);
2826 unsigned ResNo = TmpNo++;
2827 emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
2828 + "(" + Ops.back() + ".Val);");
2829 NodeOps.push_back("Tmp" + utostr(ResNo));
2831 emitCode("return Tmp" + utostr(ResNo) + ".Val;");
2836 throw std::string("Unknown node in result pattern!");
2840 /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
2841 /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
2842 /// 'Pat' may be missing types. If we find an unresolved type to add a check
2843 /// for, this returns true otherwise false if Pat has all types.
2844 bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
2845 const std::string &Prefix, bool isRoot = false) {
2847 if (Pat->getExtTypes() != Other->getExtTypes()) {
2848 // Move a type over from 'other' to 'pat'.
2849 Pat->setTypes(Other->getExtTypes());
2850 // The top level node type is checked outside of the select function.
2852 emitCheck(Prefix + ".Val->getValueType(0) == " +
2853 getName(Pat->getTypeNum(0)));
2858 (unsigned) NodeHasProperty(Pat, SDNodeInfo::SDNPHasChain, ISE);
2859 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
2860 if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
2861 Prefix + utostr(OpNo)))
2867 /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
2869 void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
2870 bool &ChainEmitted, bool &InFlagDecled,
2871 bool &ResNodeDecled, bool isRoot = false) {
2872 const CodeGenTarget &T = ISE.getTargetInfo();
2874 (unsigned) NodeHasProperty(N, SDNodeInfo::SDNPHasChain, ISE);
2875 bool HasInFlag = NodeHasProperty(N, SDNodeInfo::SDNPInFlag, ISE);
2876 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2877 TreePatternNode *Child = N->getChild(i);
2878 if (!Child->isLeaf()) {
2879 EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
2880 InFlagDecled, ResNodeDecled);
2882 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2883 if (!Child->getName().empty()) {
2884 std::string Name = RootName + utostr(OpNo);
2885 if (Duplicates.find(Name) != Duplicates.end())
2886 // A duplicate! Do not emit a copy for this node.
2890 Record *RR = DI->getDef();
2891 if (RR->isSubClassOf("Register")) {
2892 MVT::ValueType RVT = getRegisterValueType(RR, T);
2893 if (RVT == MVT::Flag) {
2894 if (!InFlagDecled) {
2895 emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
2896 InFlagDecled = true;
2898 emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
2899 emitCode("AddToISelQueue(InFlag);");
2901 if (!ChainEmitted) {
2902 emitCode("SDOperand Chain = CurDAG->getEntryNode();");
2903 ChainName = "Chain";
2904 ChainEmitted = true;
2906 emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
2907 if (!InFlagDecled) {
2908 emitCode("SDOperand InFlag(0, 0);");
2909 InFlagDecled = true;
2911 std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
2912 emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
2913 ", " + ISE.getQualifiedName(RR) +
2914 ", " + RootName + utostr(OpNo) + ", InFlag).Val;");
2915 ResNodeDecled = true;
2916 emitCode(ChainName + " = SDOperand(ResNode, 0);");
2917 emitCode("InFlag = SDOperand(ResNode, 1);");
2925 if (!InFlagDecled) {
2926 emitCode("SDOperand InFlag = " + RootName +
2927 ".getOperand(" + utostr(OpNo) + ");");
2928 InFlagDecled = true;
2930 emitCode("InFlag = " + RootName +
2931 ".getOperand(" + utostr(OpNo) + ");");
2932 emitCode("AddToISelQueue(InFlag);");
2936 /// EmitCopyFromRegs - Emit code to copy result to physical registers
2937 /// as specified by the instruction. It returns true if any copy is
2939 bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
2940 bool &ChainEmitted) {
2941 bool RetVal = false;
2942 Record *Op = N->getOperator();
2943 if (Op->isSubClassOf("Instruction")) {
2944 const DAGInstruction &Inst = ISE.getInstruction(Op);
2945 const CodeGenTarget &CGT = ISE.getTargetInfo();
2946 unsigned NumImpResults = Inst.getNumImpResults();
2947 for (unsigned i = 0; i < NumImpResults; i++) {
2948 Record *RR = Inst.getImpResult(i);
2949 if (RR->isSubClassOf("Register")) {
2950 MVT::ValueType RVT = getRegisterValueType(RR, CGT);
2951 if (RVT != MVT::Flag) {
2952 if (!ChainEmitted) {
2953 emitCode("SDOperand Chain = CurDAG->getEntryNode();");
2954 ChainEmitted = true;
2955 ChainName = "Chain";
2957 std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
2958 emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
2959 ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
2961 ResNodeDecled = true;
2962 emitCode(ChainName + " = SDOperand(ResNode, 1);");
2963 emitCode("InFlag = SDOperand(ResNode, 2);");
2973 /// EmitCodeForPattern - Given a pattern to match, emit code to the specified
2974 /// stream to match the pattern, and generate the code for the match if it
2975 /// succeeds. Returns true if the pattern is not guaranteed to match.
2976 void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
2977 std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
2978 std::set<std::string> &GeneratedDecl,
2979 std::vector<std::string> &TargetOpcodes,
2980 std::vector<std::string> &TargetVTs) {
2981 PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
2982 Pattern.getSrcPattern(), Pattern.getDstPattern(),
2983 GeneratedCode, GeneratedDecl,
2984 TargetOpcodes, TargetVTs);
2986 // Emit the matcher, capturing named arguments in VariableMap.
2987 bool FoundChain = false;
2988 Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", "",
2991 // TP - Get *SOME* tree pattern, we don't care which.
2992 TreePattern &TP = *PatternFragments.begin()->second;
2994 // At this point, we know that we structurally match the pattern, but the
2995 // types of the nodes may not match. Figure out the fewest number of type
2996 // comparisons we need to emit. For example, if there is only one integer
2997 // type supported by a target, there should be no type comparisons at all for
2998 // integer patterns!
3000 // To figure out the fewest number of type checks needed, clone the pattern,
3001 // remove the types, then perform type inference on the pattern as a whole.
3002 // If there are unresolved types, emit an explicit check for those types,
3003 // apply the type to the tree, then rerun type inference. Iterate until all
3004 // types are resolved.
3006 TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
3007 RemoveAllTypes(Pat);
3010 // Resolve/propagate as many types as possible.
3012 bool MadeChange = true;
3014 MadeChange = Pat->ApplyTypeConstraints(TP,
3015 true/*Ignore reg constraints*/);
3017 assert(0 && "Error: could not find consistent types for something we"
3018 " already decided was ok!");
3022 // Insert a check for an unresolved type and add it to the tree. If we find
3023 // an unresolved type to add a check for, this returns true and we iterate,
3024 // otherwise we are done.
3025 } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
3027 Emitter.EmitResultCode(Pattern.getDstPattern(),
3028 false, false, false, false, true);
3032 /// EraseCodeLine - Erase one code line from all of the patterns. If removing
3033 /// a line causes any of them to be empty, remove them and return true when
3035 static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
3036 std::vector<std::pair<unsigned, std::string> > > >
3038 bool ErasedPatterns = false;
3039 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3040 Patterns[i].second.pop_back();
3041 if (Patterns[i].second.empty()) {
3042 Patterns.erase(Patterns.begin()+i);
3044 ErasedPatterns = true;
3047 return ErasedPatterns;
3050 /// EmitPatterns - Emit code for at least one pattern, but try to group common
3051 /// code together between the patterns.
3052 void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
3053 std::vector<std::pair<unsigned, std::string> > > >
3054 &Patterns, unsigned Indent,
3056 typedef std::pair<unsigned, std::string> CodeLine;
3057 typedef std::vector<CodeLine> CodeList;
3058 typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
3060 if (Patterns.empty()) return;
3062 // Figure out how many patterns share the next code line. Explicitly copy
3063 // FirstCodeLine so that we don't invalidate a reference when changing
3065 const CodeLine FirstCodeLine = Patterns.back().second.back();
3066 unsigned LastMatch = Patterns.size()-1;
3067 while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
3070 // If not all patterns share this line, split the list into two pieces. The
3071 // first chunk will use this line, the second chunk won't.
3072 if (LastMatch != 0) {
3073 PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
3074 PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
3076 // FIXME: Emit braces?
3077 if (Shared.size() == 1) {
3078 PatternToMatch &Pattern = *Shared.back().first;
3079 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3080 Pattern.getSrcPattern()->print(OS);
3081 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3082 Pattern.getDstPattern()->print(OS);
3084 unsigned AddedComplexity = Pattern.getAddedComplexity();
3085 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3086 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3088 << getResultPatternCost(Pattern.getDstPattern(), *this)
3090 << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3092 if (FirstCodeLine.first != 1) {
3093 OS << std::string(Indent, ' ') << "{\n";
3096 EmitPatterns(Shared, Indent, OS);
3097 if (FirstCodeLine.first != 1) {
3099 OS << std::string(Indent, ' ') << "}\n";
3102 if (Other.size() == 1) {
3103 PatternToMatch &Pattern = *Other.back().first;
3104 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3105 Pattern.getSrcPattern()->print(OS);
3106 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3107 Pattern.getDstPattern()->print(OS);
3109 unsigned AddedComplexity = Pattern.getAddedComplexity();
3110 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3111 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3113 << getResultPatternCost(Pattern.getDstPattern(), *this)
3115 << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3117 EmitPatterns(Other, Indent, OS);
3121 // Remove this code from all of the patterns that share it.
3122 bool ErasedPatterns = EraseCodeLine(Patterns);
3124 bool isPredicate = FirstCodeLine.first == 1;
3126 // Otherwise, every pattern in the list has this line. Emit it.
3129 OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
3131 OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
3133 // If the next code line is another predicate, and if all of the pattern
3134 // in this group share the same next line, emit it inline now. Do this
3135 // until we run out of common predicates.
3136 while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
3137 // Check that all of fhe patterns in Patterns end with the same predicate.
3138 bool AllEndWithSamePredicate = true;
3139 for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
3140 if (Patterns[i].second.back() != Patterns.back().second.back()) {
3141 AllEndWithSamePredicate = false;
3144 // If all of the predicates aren't the same, we can't share them.
3145 if (!AllEndWithSamePredicate) break;
3147 // Otherwise we can. Emit it shared now.
3148 OS << " &&\n" << std::string(Indent+4, ' ')
3149 << Patterns.back().second.back().second;
3150 ErasedPatterns = EraseCodeLine(Patterns);
3157 EmitPatterns(Patterns, Indent, OS);
3160 OS << std::string(Indent-2, ' ') << "}\n";
3166 /// CompareByRecordName - An ordering predicate that implements less-than by
3167 /// comparing the names records.
3168 struct CompareByRecordName {
3169 bool operator()(const Record *LHS, const Record *RHS) const {
3170 // Sort by name first.
3171 if (LHS->getName() < RHS->getName()) return true;
3172 // If both names are equal, sort by pointer.
3173 return LHS->getName() == RHS->getName() && LHS < RHS;
3178 void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
3179 std::string InstNS = Target.inst_begin()->second.Namespace;
3180 if (!InstNS.empty()) InstNS += "::";
3182 // Group the patterns by their top-level opcodes.
3183 std::map<Record*, std::vector<PatternToMatch*>,
3184 CompareByRecordName> PatternsByOpcode;
3185 // All unique target node emission functions.
3186 std::map<std::string, unsigned> EmitFunctions;
3187 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3188 TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
3189 if (!Node->isLeaf()) {
3190 PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]);
3192 const ComplexPattern *CP;
3194 dynamic_cast<IntInit*>(Node->getLeafValue())) {
3195 PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]);
3196 } else if ((CP = NodeGetComplexPattern(Node, *this))) {
3197 std::vector<Record*> OpNodes = CP->getRootNodes();
3198 for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
3199 PatternsByOpcode[OpNodes[j]]
3200 .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]);
3203 std::cerr << "Unrecognized opcode '";
3205 std::cerr << "' on tree pattern '";
3207 PatternsToMatch[i].getDstPattern()->getOperator()->getName();
3208 std::cerr << "'!\n";
3214 // For each opcode, there might be multiple select functions, one per
3215 // ValueType of the node (or its first operand if it doesn't produce a
3216 // non-chain result.
3217 std::map<std::string, std::vector<std::string> > OpcodeVTMap;
3219 // Emit one Select_* method for each top-level opcode. We do this instead of
3220 // emitting one giant switch statement to support compilers where this will
3221 // result in the recursive functions taking less stack space.
3222 for (std::map<Record*, std::vector<PatternToMatch*>,
3223 CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3224 E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3225 const std::string &OpName = PBOI->first->getName();
3226 const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3227 std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
3228 assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
3230 // We want to emit all of the matching code now. However, we want to emit
3231 // the matches in order of minimal cost. Sort the patterns so the least
3232 // cost one is at the start.
3233 std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
3234 PatternSortingPredicate(*this));
3236 // Split them into groups by type.
3237 std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
3238 for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
3239 PatternToMatch *Pat = PatternsOfOp[i];
3240 TreePatternNode *SrcPat = Pat->getSrcPattern();
3241 if (OpcodeInfo.getNumResults() == 0 && SrcPat->getNumChildren() > 0)
3242 SrcPat = SrcPat->getChild(0);
3243 MVT::ValueType VT = SrcPat->getTypeNum(0);
3244 std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
3245 PatternsByType.find(VT);
3246 if (TI != PatternsByType.end())
3247 TI->second.push_back(Pat);
3249 std::vector<PatternToMatch*> PVec;
3250 PVec.push_back(Pat);
3251 PatternsByType.insert(std::make_pair(VT, PVec));
3255 for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
3256 II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
3258 MVT::ValueType OpVT = II->first;
3259 std::vector<PatternToMatch*> &Patterns = II->second;
3260 typedef std::vector<std::pair<unsigned, std::string> > CodeList;
3261 typedef std::vector<std::pair<unsigned, std::string> >::iterator CodeListI;
3263 std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
3264 std::vector<std::vector<std::string> > PatternOpcodes;
3265 std::vector<std::vector<std::string> > PatternVTs;
3266 std::vector<std::set<std::string> > PatternDecls;
3267 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3268 CodeList GeneratedCode;
3269 std::set<std::string> GeneratedDecl;
3270 std::vector<std::string> TargetOpcodes;
3271 std::vector<std::string> TargetVTs;
3272 GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
3273 TargetOpcodes, TargetVTs);
3274 CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
3275 PatternDecls.push_back(GeneratedDecl);
3276 PatternOpcodes.push_back(TargetOpcodes);
3277 PatternVTs.push_back(TargetVTs);
3280 // Scan the code to see if all of the patterns are reachable and if it is
3281 // possible that the last one might not match.
3282 bool mightNotMatch = true;
3283 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3284 CodeList &GeneratedCode = CodeForPatterns[i].second;
3285 mightNotMatch = false;
3287 for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
3288 if (GeneratedCode[j].first == 1) { // predicate.
3289 mightNotMatch = true;
3294 // If this pattern definitely matches, and if it isn't the last one, the
3295 // patterns after it CANNOT ever match. Error out.
3296 if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
3297 std::cerr << "Pattern '";
3298 CodeForPatterns[i].first->getSrcPattern()->print(std::cerr);
3299 std::cerr << "' is impossible to select!\n";
3304 // Factor target node emission code (emitted by EmitResultCode) into
3305 // separate functions. Uniquing and share them among all instruction
3306 // selection routines.
3307 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3308 CodeList &GeneratedCode = CodeForPatterns[i].second;
3309 std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
3310 std::vector<std::string> &TargetVTs = PatternVTs[i];
3311 std::set<std::string> Decls = PatternDecls[i];
3312 std::vector<std::string> AddedInits;
3313 int CodeSize = (int)GeneratedCode.size();
3315 for (int j = CodeSize-1; j >= 0; --j) {
3316 if (LastPred == -1 && GeneratedCode[j].first == 1)
3318 else if (LastPred != -1 && GeneratedCode[j].first == 2)
3319 AddedInits.push_back(GeneratedCode[j].second);
3322 std::string CalleeCode = "(const SDOperand &N";
3323 std::string CallerCode = "(N";
3324 for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
3325 CalleeCode += ", unsigned Opc" + utostr(j);
3326 CallerCode += ", " + TargetOpcodes[j];
3328 for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
3329 CalleeCode += ", MVT::ValueType VT" + utostr(j);
3330 CallerCode += ", " + TargetVTs[j];
3332 for (std::set<std::string>::iterator
3333 I = Decls.begin(), E = Decls.end(); I != E; ++I) {
3334 std::string Name = *I;
3335 CalleeCode += ", SDOperand &" + Name;
3336 CallerCode += ", " + Name;
3340 // Prevent emission routines from being inlined to reduce selection
3341 // routines stack frame sizes.
3342 CalleeCode += "DISABLE_INLINE ";
3343 CalleeCode += "{\n";
3345 for (std::vector<std::string>::const_reverse_iterator
3346 I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
3347 CalleeCode += " " + *I + "\n";
3349 for (int j = LastPred+1; j < CodeSize; ++j)
3350 CalleeCode += " " + GeneratedCode[j].second + "\n";
3351 for (int j = LastPred+1; j < CodeSize; ++j)
3352 GeneratedCode.pop_back();
3353 CalleeCode += "}\n";
3355 // Uniquing the emission routines.
3356 unsigned EmitFuncNum;
3357 std::map<std::string, unsigned>::iterator EFI =
3358 EmitFunctions.find(CalleeCode);
3359 if (EFI != EmitFunctions.end()) {
3360 EmitFuncNum = EFI->second;
3362 EmitFuncNum = EmitFunctions.size();
3363 EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
3364 OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
3367 // Replace the emission code within selection routines with calls to the
3368 // emission functions.
3369 CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
3370 GeneratedCode.push_back(std::make_pair(false, CallerCode));
3374 std::string OpVTStr = (OpVT != MVT::isVoid && OpVT != MVT::iPTR)
3375 ? getEnumName(OpVT).substr(5) : "" ;
3376 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3377 OpcodeVTMap.find(OpName);
3378 if (OpVTI == OpcodeVTMap.end()) {
3379 std::vector<std::string> VTSet;
3380 VTSet.push_back(OpVTStr);
3381 OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
3383 OpVTI->second.push_back(OpVTStr);
3385 OS << "SDNode *Select_" << OpName << (OpVTStr != "" ? "_" : "")
3386 << OpVTStr << "(const SDOperand &N) {\n";
3388 // Loop through and reverse all of the CodeList vectors, as we will be
3389 // accessing them from their logical front, but accessing the end of a
3390 // vector is more efficient.
3391 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3392 CodeList &GeneratedCode = CodeForPatterns[i].second;
3393 std::reverse(GeneratedCode.begin(), GeneratedCode.end());
3396 // Next, reverse the list of patterns itself for the same reason.
3397 std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
3399 // Emit all of the patterns now, grouped together to share code.
3400 EmitPatterns(CodeForPatterns, 2, OS);
3402 // If the last pattern has predicates (which could fail) emit code to catch
3403 // the case where nothing handles a pattern.
3404 if (mightNotMatch) {
3405 OS << " std::cerr << \"Cannot yet select: \";\n";
3406 if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" &&
3407 OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" &&
3408 OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") {
3409 OS << " N.Val->dump(CurDAG);\n";
3411 OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3412 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3413 << " std::cerr << \"intrinsic %\"<< "
3414 "Intrinsic::getName((Intrinsic::ID)iid);\n";
3416 OS << " std::cerr << '\\n';\n"
3418 << " return NULL;\n";
3424 // Emit boilerplate.
3425 OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
3426 << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
3427 << " AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n"
3428 << " // Select the flag operand.\n"
3429 << " if (Ops.back().getValueType() == MVT::Flag)\n"
3430 << " AddToISelQueue(Ops.back());\n"
3431 << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
3432 << " std::vector<MVT::ValueType> VTs;\n"
3433 << " VTs.push_back(MVT::Other);\n"
3434 << " VTs.push_back(MVT::Flag);\n"
3435 << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
3437 << " return New.Val;\n"
3440 OS << "// The main instruction selector code.\n"
3441 << "SDNode *SelectCode(SDOperand N) {\n"
3442 << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
3443 << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
3444 << "INSTRUCTION_LIST_END)) {\n"
3445 << " return NULL; // Already selected.\n"
3447 << " switch (N.getOpcode()) {\n"
3448 << " default: break;\n"
3449 << " case ISD::EntryToken: // These leaves remain the same.\n"
3450 << " case ISD::BasicBlock:\n"
3451 << " case ISD::Register:\n"
3452 << " case ISD::HANDLENODE:\n"
3453 << " case ISD::TargetConstant:\n"
3454 << " case ISD::TargetConstantPool:\n"
3455 << " case ISD::TargetFrameIndex:\n"
3456 << " case ISD::TargetJumpTable:\n"
3457 << " case ISD::TargetGlobalAddress: {\n"
3458 << " return NULL;\n"
3460 << " case ISD::AssertSext:\n"
3461 << " case ISD::AssertZext: {\n"
3462 << " AddToISelQueue(N.getOperand(0));\n"
3463 << " ReplaceUses(N, N.getOperand(0));\n"
3464 << " return NULL;\n"
3466 << " case ISD::TokenFactor:\n"
3467 << " case ISD::CopyFromReg:\n"
3468 << " case ISD::CopyToReg: {\n"
3469 << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
3470 << " AddToISelQueue(N.getOperand(i));\n"
3471 << " return NULL;\n"
3473 << " case ISD::INLINEASM: return Select_INLINEASM(N);\n";
3476 // Loop over all of the case statements, emiting a call to each method we
3478 for (std::map<Record*, std::vector<PatternToMatch*>,
3479 CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(),
3480 E = PatternsByOpcode.end(); PBOI != E; ++PBOI) {
3481 const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
3482 const std::string &OpName = PBOI->first->getName();
3483 // Potentially multiple versions of select for this opcode. One for each
3484 // ValueType of the node (or its first true operand if it doesn't produce a
3486 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3487 OpcodeVTMap.find(OpName);
3488 std::vector<std::string> &OpVTs = OpVTI->second;
3489 OS << " case " << OpcodeInfo.getEnumName() << ": {\n";
3490 if (OpVTs.size() == 1) {
3491 std::string &VTStr = OpVTs[0];
3492 OS << " return Select_" << OpName
3493 << (VTStr != "" ? "_" : "") << VTStr << "(N);\n";
3495 if (OpcodeInfo.getNumResults())
3496 OS << " MVT::ValueType NVT = N.Val->getValueType(0);\n";
3497 else if (OpcodeInfo.hasProperty(SDNodeInfo::SDNPHasChain))
3498 OS << " MVT::ValueType NVT = (N.getNumOperands() > 1) ?"
3499 << " N.getOperand(1).Val->getValueType(0) : MVT::isVoid;\n";
3501 OS << " MVT::ValueType NVT = (N.getNumOperands() > 0) ?"
3502 << " N.getOperand(0).Val->getValueType(0) : MVT::isVoid;\n";
3504 OS << " switch (NVT) {\n";
3505 for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
3506 std::string &VTStr = OpVTs[i];
3511 OS << " case MVT::" << VTStr << ":\n"
3512 << " return Select_" << OpName
3513 << "_" << VTStr << "(N);\n";
3515 OS << " default:\n";
3517 OS << " return Select_" << OpName << "(N);\n";
3526 OS << " } // end of big switch.\n\n"
3527 << " std::cerr << \"Cannot yet select: \";\n"
3528 << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
3529 << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
3530 << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
3531 << " N.Val->dump(CurDAG);\n"
3533 << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3534 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3535 << " std::cerr << \"intrinsic %\"<< "
3536 "Intrinsic::getName((Intrinsic::ID)iid);\n"
3538 << " std::cerr << '\\n';\n"
3540 << " return NULL;\n"
3544 void DAGISelEmitter::run(std::ostream &OS) {
3545 EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
3548 OS << "// *** NOTE: This file is #included into the middle of the target\n"
3549 << "// *** instruction selector class. These functions are really "
3552 OS << "#include \"llvm/Support/Compiler.h\"\n";
3554 OS << "// Instruction selector priority queue:\n"
3555 << "std::vector<SDNode*> ISelQueue;\n";
3556 OS << "/// Keep track of nodes which have already been added to queue.\n"
3557 << "unsigned char *ISelQueued;\n";
3558 OS << "/// Keep track of nodes which have already been selected.\n"
3559 << "unsigned char *ISelSelected;\n";
3560 OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
3561 << "std::vector<SDNode*> ISelKilled;\n\n";
3563 OS << "/// Sorting functions for the selection queue.\n"
3564 << "struct isel_sort : public std::binary_function"
3565 << "<SDNode*, SDNode*, bool> {\n"
3566 << " bool operator()(const SDNode* left, const SDNode* right) "
3568 << " return (left->getNodeId() > right->getNodeId());\n"
3572 OS << "inline void setQueued(int Id) {\n";
3573 OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
3575 OS << "inline bool isQueued(int Id) {\n";
3576 OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
3578 OS << "inline void setSelected(int Id) {\n";
3579 OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
3581 OS << "inline bool isSelected(int Id) {\n";
3582 OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
3585 OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
3586 OS << " int Id = N.Val->getNodeId();\n";
3587 OS << " if (Id != -1 && !isQueued(Id)) {\n";
3588 OS << " ISelQueue.push_back(N.Val);\n";
3589 OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3590 OS << " setQueued(Id);\n";
3594 OS << "inline void RemoveKilled() {\n";
3595 OS << " unsigned NumKilled = ISelKilled.size();\n";
3596 OS << " if (NumKilled) {\n";
3597 OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
3598 OS << " SDNode *Temp = ISelKilled[i];\n";
3599 OS << " std::remove(ISelQueue.begin(), ISelQueue.end(), Temp);\n";
3601 OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3602 OS << " ISelKilled.clear();\n";
3606 OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
3607 OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
3608 OS << " setSelected(F.Val->getNodeId());\n";
3609 OS << " RemoveKilled();\n";
3611 OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
3612 OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
3613 OS << " setSelected(F->getNodeId());\n";
3614 OS << " RemoveKilled();\n";
3617 OS << "void DeleteNode(SDNode *N) {\n";
3618 OS << " CurDAG->DeleteNode(N);\n";
3619 OS << " for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); "
3620 << "I != E; ++I) {\n";
3621 OS << " SDNode *Operand = I->Val;\n";
3622 OS << " if (Operand->use_empty())\n";
3623 OS << " DeleteNode(Operand);\n";
3627 OS << "// SelectRoot - Top level entry to DAG isel.\n";
3628 OS << "SDOperand SelectRoot(SDOperand Root) {\n";
3629 OS << " SelectRootInit();\n";
3630 OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
3631 OS << " ISelQueued = new unsigned char[NumBytes];\n";
3632 OS << " ISelSelected = new unsigned char[NumBytes];\n";
3633 OS << " memset(ISelQueued, 0, NumBytes);\n";
3634 OS << " memset(ISelSelected, 0, NumBytes);\n";
3636 OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
3637 << " // a reference to the root node, preventing it from being deleted,\n"
3638 << " // and tracking any changes of the root.\n"
3639 << " HandleSDNode Dummy(CurDAG->getRoot());\n"
3640 << " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
3641 OS << " while (!ISelQueue.empty()) {\n";
3642 OS << " SDNode *Node = ISelQueue.front();\n";
3643 OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3644 OS << " ISelQueue.pop_back();\n";
3645 OS << " if (!isSelected(Node->getNodeId())) {\n";
3646 OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
3647 OS << " if (ResNode != Node) {\n";
3648 OS << " if (ResNode)\n";
3649 OS << " ReplaceUses(Node, ResNode);\n";
3650 OS << " if (Node->use_empty()) // Don't delete EntryToken, etc.\n";
3651 OS << " DeleteNode(Node);\n";
3656 OS << " delete[] ISelQueued;\n";
3657 OS << " ISelQueued = NULL;\n";
3658 OS << " delete[] ISelSelected;\n";
3659 OS << " ISelSelected = NULL;\n";
3660 OS << " return Dummy.getValue();\n";
3663 Intrinsics = LoadIntrinsics(Records);
3665 ParseNodeTransforms(OS);
3666 ParseComplexPatterns();
3667 ParsePatternFragments(OS);
3668 ParseInstructions();
3671 // Generate variants. For example, commutative patterns can match
3672 // multiple ways. Add them to PatternsToMatch as well.
3676 DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
3677 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3678 std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump();
3679 std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump();
3683 // At this point, we have full information about the 'Patterns' we need to
3684 // parse, both implicitly from instructions as well as from explicit pattern
3685 // definitions. Emit the resultant instruction selector.
3686 EmitInstructionSelector(OS);
3688 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
3689 E = PatternFragments.end(); I != E; ++I)
3691 PatternFragments.clear();
3693 Instructions.clear();