838b9246aad67ff13b30a69a4c30958e7e756419
[oota-llvm.git] / utils / TableGen / SetTheory.cpp
1 //===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SetTheory class that computes ordered sets of
11 // Records from DAG expressions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SetTheory.h"
16 #include "llvm/TableGen/Error.h"
17 #include "llvm/TableGen/Record.h"
18 #include "llvm/Support/Format.h"
19
20 using namespace llvm;
21
22 // Define the standard operators.
23 namespace {
24
25 typedef SetTheory::RecSet RecSet;
26 typedef SetTheory::RecVec RecVec;
27
28 // (add a, b, ...) Evaluate and union all arguments.
29 struct AddOp : public SetTheory::Operator {
30   void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
31     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts);
32   }
33 };
34
35 // (sub Add, Sub, ...) Set difference.
36 struct SubOp : public SetTheory::Operator {
37   void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
38     if (Expr->arg_size() < 2)
39       throw "Set difference needs at least two arguments: " +
40         Expr->getAsString();
41     RecSet Add, Sub;
42     ST.evaluate(*Expr->arg_begin(), Add);
43     ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub);
44     for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I)
45       if (!Sub.count(*I))
46         Elts.insert(*I);
47   }
48 };
49
50 // (and S1, S2) Set intersection.
51 struct AndOp : public SetTheory::Operator {
52   void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
53     if (Expr->arg_size() != 2)
54       throw "Set intersection requires two arguments: " + Expr->getAsString();
55     RecSet S1, S2;
56     ST.evaluate(Expr->arg_begin()[0], S1);
57     ST.evaluate(Expr->arg_begin()[1], S2);
58     for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I)
59       if (S2.count(*I))
60         Elts.insert(*I);
61   }
62 };
63
64 // SetIntBinOp - Abstract base class for (Op S, N) operators.
65 struct SetIntBinOp : public SetTheory::Operator {
66   virtual void apply2(SetTheory &ST, DagInit *Expr,
67                      RecSet &Set, int64_t N,
68                      RecSet &Elts) =0;
69
70   void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
71     if (Expr->arg_size() != 2)
72       throw "Operator requires (Op Set, Int) arguments: " + Expr->getAsString();
73     RecSet Set;
74     ST.evaluate(Expr->arg_begin()[0], Set);
75     IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]);
76     if (!II)
77       throw "Second argument must be an integer: " + Expr->getAsString();
78     apply2(ST, Expr, Set, II->getValue(), Elts);
79   }
80 };
81
82 // (shl S, N) Shift left, remove the first N elements.
83 struct ShlOp : public SetIntBinOp {
84   void apply2(SetTheory &ST, DagInit *Expr,
85              RecSet &Set, int64_t N,
86              RecSet &Elts) {
87     if (N < 0)
88       throw "Positive shift required: " + Expr->getAsString();
89     if (unsigned(N) < Set.size())
90       Elts.insert(Set.begin() + N, Set.end());
91   }
92 };
93
94 // (trunc S, N) Truncate after the first N elements.
95 struct TruncOp : public SetIntBinOp {
96   void apply2(SetTheory &ST, DagInit *Expr,
97              RecSet &Set, int64_t N,
98              RecSet &Elts) {
99     if (N < 0)
100       throw "Positive length required: " + Expr->getAsString();
101     if (unsigned(N) > Set.size())
102       N = Set.size();
103     Elts.insert(Set.begin(), Set.begin() + N);
104   }
105 };
106
107 // Left/right rotation.
108 struct RotOp : public SetIntBinOp {
109   const bool Reverse;
110
111   RotOp(bool Rev) : Reverse(Rev) {}
112
113   void apply2(SetTheory &ST, DagInit *Expr,
114              RecSet &Set, int64_t N,
115              RecSet &Elts) {
116     if (Reverse)
117       N = -N;
118     // N > 0 -> rotate left, N < 0 -> rotate right.
119     if (Set.empty())
120       return;
121     if (N < 0)
122       N = Set.size() - (-N % Set.size());
123     else
124       N %= Set.size();
125     Elts.insert(Set.begin() + N, Set.end());
126     Elts.insert(Set.begin(), Set.begin() + N);
127   }
128 };
129
130 // (decimate S, N) Pick every N'th element of S.
131 struct DecimateOp : public SetIntBinOp {
132   void apply2(SetTheory &ST, DagInit *Expr,
133              RecSet &Set, int64_t N,
134              RecSet &Elts) {
135     if (N <= 0)
136       throw "Positive stride required: " + Expr->getAsString();
137     for (unsigned I = 0; I < Set.size(); I += N)
138       Elts.insert(Set[I]);
139   }
140 };
141
142 // (sequence "Format", From, To) Generate a sequence of records by name.
143 struct SequenceOp : public SetTheory::Operator {
144   void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
145     if (Expr->arg_size() != 3)
146       throw "Bad args to (sequence \"Format\", From, To): " +
147         Expr->getAsString();
148     std::string Format;
149     if (StringInit *SI = dynamic_cast<StringInit*>(Expr->arg_begin()[0]))
150       Format = SI->getValue();
151     else
152       throw "Format must be a string: " + Expr->getAsString();
153
154     int64_t From, To;
155     if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]))
156       From = II->getValue();
157     else
158       throw "From must be an integer: " + Expr->getAsString();
159     if (From < 0 || From >= (1 << 30))
160       throw "From out of range";
161
162     if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[2]))
163       To = II->getValue();
164     else
165       throw "From must be an integer: " + Expr->getAsString();
166     if (To < 0 || To >= (1 << 30))
167       throw "To out of range";
168
169     RecordKeeper &Records =
170       dynamic_cast<DefInit&>(*Expr->getOperator()).getDef()->getRecords();
171
172     int Step = From <= To ? 1 : -1;
173     for (To += Step; From != To; From += Step) {
174       std::string Name;
175       raw_string_ostream OS(Name);
176       OS << format(Format.c_str(), unsigned(From));
177       Record *Rec = Records.getDef(OS.str());
178       if (!Rec)
179         throw "No def named '" + Name + "': " + Expr->getAsString();
180       // Try to reevaluate Rec in case it is a set.
181       if (const RecVec *Result = ST.expand(Rec))
182         Elts.insert(Result->begin(), Result->end());
183       else
184         Elts.insert(Rec);
185     }
186   }
187 };
188
189 // Expand a Def into a set by evaluating one of its fields.
190 struct FieldExpander : public SetTheory::Expander {
191   StringRef FieldName;
192
193   FieldExpander(StringRef fn) : FieldName(fn) {}
194
195   void expand(SetTheory &ST, Record *Def, RecSet &Elts) {
196     ST.evaluate(Def->getValueInit(FieldName), Elts);
197   }
198 };
199 } // end anonymous namespace
200
201 void SetTheory::Operator::anchor() { }
202
203 void SetTheory::Expander::anchor() { }
204
205 SetTheory::SetTheory() {
206   addOperator("add", new AddOp);
207   addOperator("sub", new SubOp);
208   addOperator("and", new AndOp);
209   addOperator("shl", new ShlOp);
210   addOperator("trunc", new TruncOp);
211   addOperator("rotl", new RotOp(false));
212   addOperator("rotr", new RotOp(true));
213   addOperator("decimate", new DecimateOp);
214   addOperator("sequence", new SequenceOp);
215 }
216
217 void SetTheory::addOperator(StringRef Name, Operator *Op) {
218   Operators[Name] = Op;
219 }
220
221 void SetTheory::addExpander(StringRef ClassName, Expander *E) {
222   Expanders[ClassName] = E;
223 }
224
225 void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) {
226   addExpander(ClassName, new FieldExpander(FieldName));
227 }
228
229 void SetTheory::evaluate(Init *Expr, RecSet &Elts) {
230   // A def in a list can be a just an element, or it may expand.
231   if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) {
232     if (const RecVec *Result = expand(Def->getDef()))
233       return Elts.insert(Result->begin(), Result->end());
234     Elts.insert(Def->getDef());
235     return;
236   }
237
238   // Lists simply expand.
239   if (ListInit *LI = dynamic_cast<ListInit*>(Expr))
240     return evaluate(LI->begin(), LI->end(), Elts);
241
242   // Anything else must be a DAG.
243   DagInit *DagExpr = dynamic_cast<DagInit*>(Expr);
244   if (!DagExpr)
245     throw "Invalid set element: " + Expr->getAsString();
246   DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator());
247   if (!OpInit)
248     throw "Bad set expression: " + Expr->getAsString();
249   Operator *Op = Operators.lookup(OpInit->getDef()->getName());
250   if (!Op)
251     throw "Unknown set operator: " + Expr->getAsString();
252   Op->apply(*this, DagExpr, Elts);
253 }
254
255 const RecVec *SetTheory::expand(Record *Set) {
256   // Check existing entries for Set and return early.
257   ExpandMap::iterator I = Expansions.find(Set);
258   if (I != Expansions.end())
259     return &I->second;
260
261   // This is the first time we see Set. Find a suitable expander.
262   try {
263     const std::vector<Record*> &SC = Set->getSuperClasses();
264     for (unsigned i = 0, e = SC.size(); i != e; ++i)
265       if (Expander *Exp = Expanders.lookup(SC[i]->getName())) {
266         // This breaks recursive definitions.
267         RecVec &EltVec = Expansions[Set];
268         RecSet Elts;
269         Exp->expand(*this, Set, Elts);
270         EltVec.assign(Elts.begin(), Elts.end());
271         return &EltVec;
272       }
273   } catch (const std::string &Error) {
274     throw TGError(Set->getLoc(), Error);
275   }
276
277   // Set is not expandable.
278   return 0;
279 }
280