KVM: arm/arm64: Optimize away redundant LR tracking
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
39
40 /*
41  * How the whole thing works (courtesy of Christoffer Dall):
42  *
43  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
44  *   something is pending on the CPU interface.
45  * - Interrupts that are pending on the distributor are stored on the
46  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
47  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
48  *   arch. timers).
49  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
50  *   recalculated
51  * - To calculate the oracle, we need info for each cpu from
52  *   compute_pending_for_cpu, which considers:
53  *   - PPI: dist->irq_pending & dist->irq_enable
54  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
55  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
56  *     registers, stored on each vcpu. We only keep one bit of
57  *     information per interrupt, making sure that only one vcpu can
58  *     accept the interrupt.
59  * - If any of the above state changes, we must recalculate the oracle.
60  * - The same is true when injecting an interrupt, except that we only
61  *   consider a single interrupt at a time. The irq_spi_cpu array
62  *   contains the target CPU for each SPI.
63  *
64  * The handling of level interrupts adds some extra complexity. We
65  * need to track when the interrupt has been EOIed, so we can sample
66  * the 'line' again. This is achieved as such:
67  *
68  * - When a level interrupt is moved onto a vcpu, the corresponding
69  *   bit in irq_queued is set. As long as this bit is set, the line
70  *   will be ignored for further interrupts. The interrupt is injected
71  *   into the vcpu with the GICH_LR_EOI bit set (generate a
72  *   maintenance interrupt on EOI).
73  * - When the interrupt is EOIed, the maintenance interrupt fires,
74  *   and clears the corresponding bit in irq_queued. This allows the
75  *   interrupt line to be sampled again.
76  * - Note that level-triggered interrupts can also be set to pending from
77  *   writes to GICD_ISPENDRn and lowering the external input line does not
78  *   cause the interrupt to become inactive in such a situation.
79  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
80  *   inactive as long as the external input line is held high.
81  *
82  *
83  * Initialization rules: there are multiple stages to the vgic
84  * initialization, both for the distributor and the CPU interfaces.
85  *
86  * Distributor:
87  *
88  * - kvm_vgic_early_init(): initialization of static data that doesn't
89  *   depend on any sizing information or emulation type. No allocation
90  *   is allowed there.
91  *
92  * - vgic_init(): allocation and initialization of the generic data
93  *   structures that depend on sizing information (number of CPUs,
94  *   number of interrupts). Also initializes the vcpu specific data
95  *   structures. Can be executed lazily for GICv2.
96  *   [to be renamed to kvm_vgic_init??]
97  *
98  * CPU Interface:
99  *
100  * - kvm_vgic_cpu_early_init(): initialization of static data that
101  *   doesn't depend on any sizing information or emulation type. No
102  *   allocation is allowed there.
103  */
104
105 #include "vgic.h"
106
107 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
108 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
109 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
110 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
111 static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
112 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
113                                                 int virt_irq);
114 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
115
116 static const struct vgic_ops *vgic_ops;
117 static const struct vgic_params *vgic;
118
119 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
120 {
121         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
122 }
123
124 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
125 {
126         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
127 }
128
129 int kvm_vgic_map_resources(struct kvm *kvm)
130 {
131         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
132 }
133
134 /*
135  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
136  * extracts u32s out of them.
137  *
138  * This does not work on 64-bit BE systems, because the bitmap access
139  * will store two consecutive 32-bit words with the higher-addressed
140  * register's bits at the lower index and the lower-addressed register's
141  * bits at the higher index.
142  *
143  * Therefore, swizzle the register index when accessing the 32-bit word
144  * registers to access the right register's value.
145  */
146 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
147 #define REG_OFFSET_SWIZZLE      1
148 #else
149 #define REG_OFFSET_SWIZZLE      0
150 #endif
151
152 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
153 {
154         int nr_longs;
155
156         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
157
158         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
159         if (!b->private)
160                 return -ENOMEM;
161
162         b->shared = b->private + nr_cpus;
163
164         return 0;
165 }
166
167 static void vgic_free_bitmap(struct vgic_bitmap *b)
168 {
169         kfree(b->private);
170         b->private = NULL;
171         b->shared = NULL;
172 }
173
174 /*
175  * Call this function to convert a u64 value to an unsigned long * bitmask
176  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
177  *
178  * Warning: Calling this function may modify *val.
179  */
180 static unsigned long *u64_to_bitmask(u64 *val)
181 {
182 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
183         *val = (*val >> 32) | (*val << 32);
184 #endif
185         return (unsigned long *)val;
186 }
187
188 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
189 {
190         offset >>= 2;
191         if (!offset)
192                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
193         else
194                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
195 }
196
197 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
198                                    int cpuid, int irq)
199 {
200         if (irq < VGIC_NR_PRIVATE_IRQS)
201                 return test_bit(irq, x->private + cpuid);
202
203         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
204 }
205
206 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
207                              int irq, int val)
208 {
209         unsigned long *reg;
210
211         if (irq < VGIC_NR_PRIVATE_IRQS) {
212                 reg = x->private + cpuid;
213         } else {
214                 reg = x->shared;
215                 irq -= VGIC_NR_PRIVATE_IRQS;
216         }
217
218         if (val)
219                 set_bit(irq, reg);
220         else
221                 clear_bit(irq, reg);
222 }
223
224 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
225 {
226         return x->private + cpuid;
227 }
228
229 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
230 {
231         return x->shared;
232 }
233
234 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
235 {
236         int size;
237
238         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
239         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
240
241         x->private = kzalloc(size, GFP_KERNEL);
242         if (!x->private)
243                 return -ENOMEM;
244
245         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
246         return 0;
247 }
248
249 static void vgic_free_bytemap(struct vgic_bytemap *b)
250 {
251         kfree(b->private);
252         b->private = NULL;
253         b->shared = NULL;
254 }
255
256 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
257 {
258         u32 *reg;
259
260         if (offset < VGIC_NR_PRIVATE_IRQS) {
261                 reg = x->private;
262                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
263         } else {
264                 reg = x->shared;
265                 offset -= VGIC_NR_PRIVATE_IRQS;
266         }
267
268         return reg + (offset / sizeof(u32));
269 }
270
271 #define VGIC_CFG_LEVEL  0
272 #define VGIC_CFG_EDGE   1
273
274 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277         int irq_val;
278
279         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
280         return irq_val == VGIC_CFG_EDGE;
281 }
282
283 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
288 }
289
290 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
295 }
296
297 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
302 }
303
304 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
309 }
310
311 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
316 }
317
318 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
323 }
324
325 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
330 }
331
332 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
337 }
338
339 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
344 }
345
346 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
351 }
352
353 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
358 }
359
360 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
361 {
362         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
363
364         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
365         if (!vgic_dist_irq_get_level(vcpu, irq)) {
366                 vgic_dist_irq_clear_pending(vcpu, irq);
367                 if (!compute_pending_for_cpu(vcpu))
368                         clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
369         }
370 }
371
372 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
373 {
374         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
375
376         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
377 }
378
379 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
380 {
381         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
382
383         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
384 }
385
386 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
387 {
388         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
389
390         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
391 }
392
393 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
394 {
395         if (irq < VGIC_NR_PRIVATE_IRQS)
396                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
397         else
398                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
399                         vcpu->arch.vgic_cpu.pending_shared);
400 }
401
402 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
403 {
404         if (irq < VGIC_NR_PRIVATE_IRQS)
405                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
406         else
407                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
408                           vcpu->arch.vgic_cpu.pending_shared);
409 }
410
411 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
412 {
413         return !vgic_irq_is_queued(vcpu, irq);
414 }
415
416 /**
417  * vgic_reg_access - access vgic register
418  * @mmio:   pointer to the data describing the mmio access
419  * @reg:    pointer to the virtual backing of vgic distributor data
420  * @offset: least significant 2 bits used for word offset
421  * @mode:   ACCESS_ mode (see defines above)
422  *
423  * Helper to make vgic register access easier using one of the access
424  * modes defined for vgic register access
425  * (read,raz,write-ignored,setbit,clearbit,write)
426  */
427 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
428                      phys_addr_t offset, int mode)
429 {
430         int word_offset = (offset & 3) * 8;
431         u32 mask = (1UL << (mmio->len * 8)) - 1;
432         u32 regval;
433
434         /*
435          * Any alignment fault should have been delivered to the guest
436          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
437          */
438
439         if (reg) {
440                 regval = *reg;
441         } else {
442                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
443                 regval = 0;
444         }
445
446         if (mmio->is_write) {
447                 u32 data = mmio_data_read(mmio, mask) << word_offset;
448                 switch (ACCESS_WRITE_MASK(mode)) {
449                 case ACCESS_WRITE_IGNORED:
450                         return;
451
452                 case ACCESS_WRITE_SETBIT:
453                         regval |= data;
454                         break;
455
456                 case ACCESS_WRITE_CLEARBIT:
457                         regval &= ~data;
458                         break;
459
460                 case ACCESS_WRITE_VALUE:
461                         regval = (regval & ~(mask << word_offset)) | data;
462                         break;
463                 }
464                 *reg = regval;
465         } else {
466                 switch (ACCESS_READ_MASK(mode)) {
467                 case ACCESS_READ_RAZ:
468                         regval = 0;
469                         /* fall through */
470
471                 case ACCESS_READ_VALUE:
472                         mmio_data_write(mmio, mask, regval >> word_offset);
473                 }
474         }
475 }
476
477 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
478                         phys_addr_t offset)
479 {
480         vgic_reg_access(mmio, NULL, offset,
481                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
482         return false;
483 }
484
485 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
486                             phys_addr_t offset, int vcpu_id, int access)
487 {
488         u32 *reg;
489         int mode = ACCESS_READ_VALUE | access;
490         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
491
492         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
493         vgic_reg_access(mmio, reg, offset, mode);
494         if (mmio->is_write) {
495                 if (access & ACCESS_WRITE_CLEARBIT) {
496                         if (offset < 4) /* Force SGI enabled */
497                                 *reg |= 0xffff;
498                         vgic_retire_disabled_irqs(target_vcpu);
499                 }
500                 vgic_update_state(kvm);
501                 return true;
502         }
503
504         return false;
505 }
506
507 bool vgic_handle_set_pending_reg(struct kvm *kvm,
508                                  struct kvm_exit_mmio *mmio,
509                                  phys_addr_t offset, int vcpu_id)
510 {
511         u32 *reg, orig;
512         u32 level_mask;
513         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
514         struct vgic_dist *dist = &kvm->arch.vgic;
515
516         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
517         level_mask = (~(*reg));
518
519         /* Mark both level and edge triggered irqs as pending */
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523
524         if (mmio->is_write) {
525                 /* Set the soft-pending flag only for level-triggered irqs */
526                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
527                                           vcpu_id, offset);
528                 vgic_reg_access(mmio, reg, offset, mode);
529                 *reg &= level_mask;
530
531                 /* Ignore writes to SGIs */
532                 if (offset < 2) {
533                         *reg &= ~0xffff;
534                         *reg |= orig & 0xffff;
535                 }
536
537                 vgic_update_state(kvm);
538                 return true;
539         }
540
541         return false;
542 }
543
544 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
545                                    struct kvm_exit_mmio *mmio,
546                                    phys_addr_t offset, int vcpu_id)
547 {
548         u32 *level_active;
549         u32 *reg, orig;
550         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
551         struct vgic_dist *dist = &kvm->arch.vgic;
552
553         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
554         orig = *reg;
555         vgic_reg_access(mmio, reg, offset, mode);
556         if (mmio->is_write) {
557                 /* Re-set level triggered level-active interrupts */
558                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
559                                           vcpu_id, offset);
560                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
561                 *reg |= *level_active;
562
563                 /* Ignore writes to SGIs */
564                 if (offset < 2) {
565                         *reg &= ~0xffff;
566                         *reg |= orig & 0xffff;
567                 }
568
569                 /* Clear soft-pending flags */
570                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
571                                           vcpu_id, offset);
572                 vgic_reg_access(mmio, reg, offset, mode);
573
574                 vgic_update_state(kvm);
575                 return true;
576         }
577         return false;
578 }
579
580 bool vgic_handle_set_active_reg(struct kvm *kvm,
581                                 struct kvm_exit_mmio *mmio,
582                                 phys_addr_t offset, int vcpu_id)
583 {
584         u32 *reg;
585         struct vgic_dist *dist = &kvm->arch.vgic;
586
587         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
588         vgic_reg_access(mmio, reg, offset,
589                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
590
591         if (mmio->is_write) {
592                 vgic_update_state(kvm);
593                 return true;
594         }
595
596         return false;
597 }
598
599 bool vgic_handle_clear_active_reg(struct kvm *kvm,
600                                   struct kvm_exit_mmio *mmio,
601                                   phys_addr_t offset, int vcpu_id)
602 {
603         u32 *reg;
604         struct vgic_dist *dist = &kvm->arch.vgic;
605
606         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607         vgic_reg_access(mmio, reg, offset,
608                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
609
610         if (mmio->is_write) {
611                 vgic_update_state(kvm);
612                 return true;
613         }
614
615         return false;
616 }
617
618 static u32 vgic_cfg_expand(u16 val)
619 {
620         u32 res = 0;
621         int i;
622
623         /*
624          * Turn a 16bit value like abcd...mnop into a 32bit word
625          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
626          */
627         for (i = 0; i < 16; i++)
628                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
629
630         return res;
631 }
632
633 static u16 vgic_cfg_compress(u32 val)
634 {
635         u16 res = 0;
636         int i;
637
638         /*
639          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
640          * abcd...mnop which is what we really care about.
641          */
642         for (i = 0; i < 16; i++)
643                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
644
645         return res;
646 }
647
648 /*
649  * The distributor uses 2 bits per IRQ for the CFG register, but the
650  * LSB is always 0. As such, we only keep the upper bit, and use the
651  * two above functions to compress/expand the bits
652  */
653 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
654                          phys_addr_t offset)
655 {
656         u32 val;
657
658         if (offset & 4)
659                 val = *reg >> 16;
660         else
661                 val = *reg & 0xffff;
662
663         val = vgic_cfg_expand(val);
664         vgic_reg_access(mmio, &val, offset,
665                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
666         if (mmio->is_write) {
667                 /* Ignore writes to read-only SGI and PPI bits */
668                 if (offset < 8)
669                         return false;
670
671                 val = vgic_cfg_compress(val);
672                 if (offset & 4) {
673                         *reg &= 0xffff;
674                         *reg |= val << 16;
675                 } else {
676                         *reg &= 0xffff << 16;
677                         *reg |= val;
678                 }
679         }
680
681         return false;
682 }
683
684 /**
685  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
686  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
687  *
688  * Move any IRQs that have already been assigned to LRs back to the
689  * emulated distributor state so that the complete emulated state can be read
690  * from the main emulation structures without investigating the LRs.
691  */
692 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
693 {
694         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
695         u64 elrsr = vgic_get_elrsr(vcpu);
696         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
697         int i;
698
699         for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
700                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
701
702                 /*
703                  * There are three options for the state bits:
704                  *
705                  * 01: pending
706                  * 10: active
707                  * 11: pending and active
708                  */
709                 BUG_ON(!(lr.state & LR_STATE_MASK));
710
711                 /* Reestablish SGI source for pending and active IRQs */
712                 if (lr.irq < VGIC_NR_SGIS)
713                         add_sgi_source(vcpu, lr.irq, lr.source);
714
715                 /*
716                  * If the LR holds an active (10) or a pending and active (11)
717                  * interrupt then move the active state to the
718                  * distributor tracking bit.
719                  */
720                 if (lr.state & LR_STATE_ACTIVE) {
721                         vgic_irq_set_active(vcpu, lr.irq);
722                         lr.state &= ~LR_STATE_ACTIVE;
723                 }
724
725                 /*
726                  * Reestablish the pending state on the distributor and the
727                  * CPU interface.  It may have already been pending, but that
728                  * is fine, then we are only setting a few bits that were
729                  * already set.
730                  */
731                 if (lr.state & LR_STATE_PENDING) {
732                         vgic_dist_irq_set_pending(vcpu, lr.irq);
733                         lr.state &= ~LR_STATE_PENDING;
734                 }
735
736                 vgic_set_lr(vcpu, i, lr);
737
738                 /*
739                  * Mark the LR as free for other use.
740                  */
741                 BUG_ON(lr.state & LR_STATE_MASK);
742                 vgic_retire_lr(i, lr.irq, vcpu);
743                 vgic_irq_clear_queued(vcpu, lr.irq);
744
745                 /* Finally update the VGIC state. */
746                 vgic_update_state(vcpu->kvm);
747         }
748 }
749
750 const
751 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
752                                       int len, gpa_t offset)
753 {
754         while (ranges->len) {
755                 if (offset >= ranges->base &&
756                     (offset + len) <= (ranges->base + ranges->len))
757                         return ranges;
758                 ranges++;
759         }
760
761         return NULL;
762 }
763
764 static bool vgic_validate_access(const struct vgic_dist *dist,
765                                  const struct vgic_io_range *range,
766                                  unsigned long offset)
767 {
768         int irq;
769
770         if (!range->bits_per_irq)
771                 return true;    /* Not an irq-based access */
772
773         irq = offset * 8 / range->bits_per_irq;
774         if (irq >= dist->nr_irqs)
775                 return false;
776
777         return true;
778 }
779
780 /*
781  * Call the respective handler function for the given range.
782  * We split up any 64 bit accesses into two consecutive 32 bit
783  * handler calls and merge the result afterwards.
784  * We do this in a little endian fashion regardless of the host's
785  * or guest's endianness, because the GIC is always LE and the rest of
786  * the code (vgic_reg_access) also puts it in a LE fashion already.
787  * At this point we have already identified the handle function, so
788  * range points to that one entry and offset is relative to this.
789  */
790 static bool call_range_handler(struct kvm_vcpu *vcpu,
791                                struct kvm_exit_mmio *mmio,
792                                unsigned long offset,
793                                const struct vgic_io_range *range)
794 {
795         struct kvm_exit_mmio mmio32;
796         bool ret;
797
798         if (likely(mmio->len <= 4))
799                 return range->handle_mmio(vcpu, mmio, offset);
800
801         /*
802          * Any access bigger than 4 bytes (that we currently handle in KVM)
803          * is actually 8 bytes long, caused by a 64-bit access
804          */
805
806         mmio32.len = 4;
807         mmio32.is_write = mmio->is_write;
808         mmio32.private = mmio->private;
809
810         mmio32.phys_addr = mmio->phys_addr + 4;
811         mmio32.data = &((u32 *)mmio->data)[1];
812         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
813
814         mmio32.phys_addr = mmio->phys_addr;
815         mmio32.data = &((u32 *)mmio->data)[0];
816         ret |= range->handle_mmio(vcpu, &mmio32, offset);
817
818         return ret;
819 }
820
821 /**
822  * vgic_handle_mmio_access - handle an in-kernel MMIO access
823  * This is called by the read/write KVM IO device wrappers below.
824  * @vcpu:       pointer to the vcpu performing the access
825  * @this:       pointer to the KVM IO device in charge
826  * @addr:       guest physical address of the access
827  * @len:        size of the access
828  * @val:        pointer to the data region
829  * @is_write:   read or write access
830  *
831  * returns true if the MMIO access could be performed
832  */
833 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
834                                    struct kvm_io_device *this, gpa_t addr,
835                                    int len, void *val, bool is_write)
836 {
837         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
838         struct vgic_io_device *iodev = container_of(this,
839                                                     struct vgic_io_device, dev);
840         struct kvm_run *run = vcpu->run;
841         const struct vgic_io_range *range;
842         struct kvm_exit_mmio mmio;
843         bool updated_state;
844         gpa_t offset;
845
846         offset = addr - iodev->addr;
847         range = vgic_find_range(iodev->reg_ranges, len, offset);
848         if (unlikely(!range || !range->handle_mmio)) {
849                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
850                 return -ENXIO;
851         }
852
853         mmio.phys_addr = addr;
854         mmio.len = len;
855         mmio.is_write = is_write;
856         mmio.data = val;
857         mmio.private = iodev->redist_vcpu;
858
859         spin_lock(&dist->lock);
860         offset -= range->base;
861         if (vgic_validate_access(dist, range, offset)) {
862                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
863         } else {
864                 if (!is_write)
865                         memset(val, 0, len);
866                 updated_state = false;
867         }
868         spin_unlock(&dist->lock);
869         run->mmio.is_write      = is_write;
870         run->mmio.len           = len;
871         run->mmio.phys_addr     = addr;
872         memcpy(run->mmio.data, val, len);
873
874         kvm_handle_mmio_return(vcpu, run);
875
876         if (updated_state)
877                 vgic_kick_vcpus(vcpu->kvm);
878
879         return 0;
880 }
881
882 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
883                                  struct kvm_io_device *this,
884                                  gpa_t addr, int len, void *val)
885 {
886         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
887 }
888
889 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
890                                   struct kvm_io_device *this,
891                                   gpa_t addr, int len, const void *val)
892 {
893         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
894                                        true);
895 }
896
897 struct kvm_io_device_ops vgic_io_ops = {
898         .read   = vgic_handle_mmio_read,
899         .write  = vgic_handle_mmio_write,
900 };
901
902 /**
903  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
904  * @kvm:            The VM structure pointer
905  * @base:           The (guest) base address for the register frame
906  * @len:            Length of the register frame window
907  * @ranges:         Describing the handler functions for each register
908  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
909  * @iodev:          Points to memory to be passed on to the handler
910  *
911  * @iodev stores the parameters of this function to be usable by the handler
912  * respectively the dispatcher function (since the KVM I/O bus framework lacks
913  * an opaque parameter). Initialization is done in this function, but the
914  * reference should be valid and unique for the whole VGIC lifetime.
915  * If the register frame is not mapped for a specific VCPU, pass -1 to
916  * @redist_vcpu_id.
917  */
918 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
919                              const struct vgic_io_range *ranges,
920                              int redist_vcpu_id,
921                              struct vgic_io_device *iodev)
922 {
923         struct kvm_vcpu *vcpu = NULL;
924         int ret;
925
926         if (redist_vcpu_id >= 0)
927                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
928
929         iodev->addr             = base;
930         iodev->len              = len;
931         iodev->reg_ranges       = ranges;
932         iodev->redist_vcpu      = vcpu;
933
934         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
935
936         mutex_lock(&kvm->slots_lock);
937
938         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
939                                       &iodev->dev);
940         mutex_unlock(&kvm->slots_lock);
941
942         /* Mark the iodev as invalid if registration fails. */
943         if (ret)
944                 iodev->dev.ops = NULL;
945
946         return ret;
947 }
948
949 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
950 {
951         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
952 }
953
954 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
955 {
956         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
957         unsigned long *active, *enabled, *act_percpu, *act_shared;
958         unsigned long active_private, active_shared;
959         int nr_shared = vgic_nr_shared_irqs(dist);
960         int vcpu_id;
961
962         vcpu_id = vcpu->vcpu_id;
963         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
964         act_shared = vcpu->arch.vgic_cpu.active_shared;
965
966         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
967         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
968         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
969
970         active = vgic_bitmap_get_shared_map(&dist->irq_active);
971         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
972         bitmap_and(act_shared, active, enabled, nr_shared);
973         bitmap_and(act_shared, act_shared,
974                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
975                    nr_shared);
976
977         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
978         active_shared = find_first_bit(act_shared, nr_shared);
979
980         return (active_private < VGIC_NR_PRIVATE_IRQS ||
981                 active_shared < nr_shared);
982 }
983
984 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
985 {
986         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
987         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
988         unsigned long pending_private, pending_shared;
989         int nr_shared = vgic_nr_shared_irqs(dist);
990         int vcpu_id;
991
992         vcpu_id = vcpu->vcpu_id;
993         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
994         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
995
996         if (!dist->enabled) {
997                 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
998                 bitmap_zero(pend_shared, nr_shared);
999                 return 0;
1000         }
1001
1002         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1003         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1004         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1005
1006         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1007         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1008         bitmap_and(pend_shared, pending, enabled, nr_shared);
1009         bitmap_and(pend_shared, pend_shared,
1010                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1011                    nr_shared);
1012
1013         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1014         pending_shared = find_first_bit(pend_shared, nr_shared);
1015         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1016                 pending_shared < vgic_nr_shared_irqs(dist));
1017 }
1018
1019 /*
1020  * Update the interrupt state and determine which CPUs have pending
1021  * or active interrupts. Must be called with distributor lock held.
1022  */
1023 void vgic_update_state(struct kvm *kvm)
1024 {
1025         struct vgic_dist *dist = &kvm->arch.vgic;
1026         struct kvm_vcpu *vcpu;
1027         int c;
1028
1029         kvm_for_each_vcpu(c, vcpu, kvm) {
1030                 if (compute_pending_for_cpu(vcpu))
1031                         set_bit(c, dist->irq_pending_on_cpu);
1032
1033                 if (compute_active_for_cpu(vcpu))
1034                         set_bit(c, dist->irq_active_on_cpu);
1035                 else
1036                         clear_bit(c, dist->irq_active_on_cpu);
1037         }
1038 }
1039
1040 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1041 {
1042         return vgic_ops->get_lr(vcpu, lr);
1043 }
1044
1045 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1046                                struct vgic_lr vlr)
1047 {
1048         vgic_ops->set_lr(vcpu, lr, vlr);
1049 }
1050
1051 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1052                                struct vgic_lr vlr)
1053 {
1054         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1055 }
1056
1057 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1058 {
1059         return vgic_ops->get_elrsr(vcpu);
1060 }
1061
1062 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1063 {
1064         return vgic_ops->get_eisr(vcpu);
1065 }
1066
1067 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1068 {
1069         vgic_ops->clear_eisr(vcpu);
1070 }
1071
1072 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1073 {
1074         return vgic_ops->get_interrupt_status(vcpu);
1075 }
1076
1077 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1078 {
1079         vgic_ops->enable_underflow(vcpu);
1080 }
1081
1082 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1083 {
1084         vgic_ops->disable_underflow(vcpu);
1085 }
1086
1087 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1088 {
1089         vgic_ops->get_vmcr(vcpu, vmcr);
1090 }
1091
1092 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1093 {
1094         vgic_ops->set_vmcr(vcpu, vmcr);
1095 }
1096
1097 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1098 {
1099         vgic_ops->enable(vcpu);
1100 }
1101
1102 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1103 {
1104         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1105
1106         /*
1107          * We must transfer the pending state back to the distributor before
1108          * retiring the LR, otherwise we may loose edge-triggered interrupts.
1109          */
1110         if (vlr.state & LR_STATE_PENDING) {
1111                 vgic_dist_irq_set_pending(vcpu, irq);
1112                 vlr.hwirq = 0;
1113         }
1114
1115         vlr.state = 0;
1116         vgic_set_lr(vcpu, lr_nr, vlr);
1117         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1118 }
1119
1120 /*
1121  * An interrupt may have been disabled after being made pending on the
1122  * CPU interface (the classic case is a timer running while we're
1123  * rebooting the guest - the interrupt would kick as soon as the CPU
1124  * interface gets enabled, with deadly consequences).
1125  *
1126  * The solution is to examine already active LRs, and check the
1127  * interrupt is still enabled. If not, just retire it.
1128  */
1129 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1130 {
1131         u64 elrsr = vgic_get_elrsr(vcpu);
1132         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1133         int lr;
1134
1135         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1136                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1137
1138                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1139                         vgic_retire_lr(lr, vlr.irq, vcpu);
1140                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1141                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1142                 }
1143         }
1144 }
1145
1146 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1147                                  int lr_nr, struct vgic_lr vlr)
1148 {
1149         if (vgic_irq_is_active(vcpu, irq)) {
1150                 vlr.state |= LR_STATE_ACTIVE;
1151                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1152                 vgic_irq_clear_active(vcpu, irq);
1153                 vgic_update_state(vcpu->kvm);
1154         } else {
1155                 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1156                 vlr.state |= LR_STATE_PENDING;
1157                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1158         }
1159
1160         if (!vgic_irq_is_edge(vcpu, irq))
1161                 vlr.state |= LR_EOI_INT;
1162
1163         if (vlr.irq >= VGIC_NR_SGIS) {
1164                 struct irq_phys_map *map;
1165                 map = vgic_irq_map_search(vcpu, irq);
1166
1167                 if (map) {
1168                         vlr.hwirq = map->phys_irq;
1169                         vlr.state |= LR_HW;
1170                         vlr.state &= ~LR_EOI_INT;
1171
1172                         /*
1173                          * Make sure we're not going to sample this
1174                          * again, as a HW-backed interrupt cannot be
1175                          * in the PENDING_ACTIVE stage.
1176                          */
1177                         vgic_irq_set_queued(vcpu, irq);
1178                 }
1179         }
1180
1181         vgic_set_lr(vcpu, lr_nr, vlr);
1182         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1183 }
1184
1185 /*
1186  * Queue an interrupt to a CPU virtual interface. Return true on success,
1187  * or false if it wasn't possible to queue it.
1188  * sgi_source must be zero for any non-SGI interrupts.
1189  */
1190 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1191 {
1192         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1193         u64 elrsr = vgic_get_elrsr(vcpu);
1194         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1195         struct vgic_lr vlr;
1196         int lr;
1197
1198         /* Sanitize the input... */
1199         BUG_ON(sgi_source_id & ~7);
1200         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1201         BUG_ON(irq >= dist->nr_irqs);
1202
1203         kvm_debug("Queue IRQ%d\n", irq);
1204
1205         /* Do we have an active interrupt for the same CPUID? */
1206         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1207                 vlr = vgic_get_lr(vcpu, lr);
1208                 if (vlr.irq == irq && vlr.source == sgi_source_id) {
1209                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1210                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1211                         return true;
1212                 }
1213         }
1214
1215         /* Try to use another LR for this interrupt */
1216         lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
1217         if (lr >= vgic->nr_lr)
1218                 return false;
1219
1220         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1221
1222         vlr.irq = irq;
1223         vlr.source = sgi_source_id;
1224         vlr.state = 0;
1225         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1226
1227         return true;
1228 }
1229
1230 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1231 {
1232         if (!vgic_can_sample_irq(vcpu, irq))
1233                 return true; /* level interrupt, already queued */
1234
1235         if (vgic_queue_irq(vcpu, 0, irq)) {
1236                 if (vgic_irq_is_edge(vcpu, irq)) {
1237                         vgic_dist_irq_clear_pending(vcpu, irq);
1238                         vgic_cpu_irq_clear(vcpu, irq);
1239                 } else {
1240                         vgic_irq_set_queued(vcpu, irq);
1241                 }
1242
1243                 return true;
1244         }
1245
1246         return false;
1247 }
1248
1249 /*
1250  * Fill the list registers with pending interrupts before running the
1251  * guest.
1252  */
1253 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1254 {
1255         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1256         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1257         unsigned long *pa_percpu, *pa_shared;
1258         int i, vcpu_id;
1259         int overflow = 0;
1260         int nr_shared = vgic_nr_shared_irqs(dist);
1261
1262         vcpu_id = vcpu->vcpu_id;
1263
1264         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1265         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1266
1267         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1268                   VGIC_NR_PRIVATE_IRQS);
1269         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1270                   nr_shared);
1271         /*
1272          * We may not have any pending interrupt, or the interrupts
1273          * may have been serviced from another vcpu. In all cases,
1274          * move along.
1275          */
1276         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1277                 goto epilog;
1278
1279         /* SGIs */
1280         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1281                 if (!queue_sgi(vcpu, i))
1282                         overflow = 1;
1283         }
1284
1285         /* PPIs */
1286         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1287                 if (!vgic_queue_hwirq(vcpu, i))
1288                         overflow = 1;
1289         }
1290
1291         /* SPIs */
1292         for_each_set_bit(i, pa_shared, nr_shared) {
1293                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1294                         overflow = 1;
1295         }
1296
1297
1298
1299
1300 epilog:
1301         if (overflow) {
1302                 vgic_enable_underflow(vcpu);
1303         } else {
1304                 vgic_disable_underflow(vcpu);
1305                 /*
1306                  * We're about to run this VCPU, and we've consumed
1307                  * everything the distributor had in store for
1308                  * us. Claim we don't have anything pending. We'll
1309                  * adjust that if needed while exiting.
1310                  */
1311                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1312         }
1313 }
1314
1315 static int process_queued_irq(struct kvm_vcpu *vcpu,
1316                                    int lr, struct vgic_lr vlr)
1317 {
1318         int pending = 0;
1319
1320         /*
1321          * If the IRQ was EOIed (called from vgic_process_maintenance) or it
1322          * went from active to non-active (called from vgic_sync_hwirq) it was
1323          * also ACKed and we we therefore assume we can clear the soft pending
1324          * state (should it had been set) for this interrupt.
1325          *
1326          * Note: if the IRQ soft pending state was set after the IRQ was
1327          * acked, it actually shouldn't be cleared, but we have no way of
1328          * knowing that unless we start trapping ACKs when the soft-pending
1329          * state is set.
1330          */
1331         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1332
1333         /*
1334          * Tell the gic to start sampling this interrupt again.
1335          */
1336         vgic_irq_clear_queued(vcpu, vlr.irq);
1337
1338         /* Any additional pending interrupt? */
1339         if (vgic_irq_is_edge(vcpu, vlr.irq)) {
1340                 BUG_ON(!(vlr.state & LR_HW));
1341                 pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
1342         } else {
1343                 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1344                         vgic_cpu_irq_set(vcpu, vlr.irq);
1345                         pending = 1;
1346                 } else {
1347                         vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1348                         vgic_cpu_irq_clear(vcpu, vlr.irq);
1349                 }
1350         }
1351
1352         /*
1353          * Despite being EOIed, the LR may not have
1354          * been marked as empty.
1355          */
1356         vlr.state = 0;
1357         vlr.hwirq = 0;
1358         vgic_set_lr(vcpu, lr, vlr);
1359
1360         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1361
1362         return pending;
1363 }
1364
1365 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1366 {
1367         u32 status = vgic_get_interrupt_status(vcpu);
1368         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1369         struct kvm *kvm = vcpu->kvm;
1370         int level_pending = 0;
1371
1372         kvm_debug("STATUS = %08x\n", status);
1373
1374         if (status & INT_STATUS_EOI) {
1375                 /*
1376                  * Some level interrupts have been EOIed. Clear their
1377                  * active bit.
1378                  */
1379                 u64 eisr = vgic_get_eisr(vcpu);
1380                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1381                 int lr;
1382
1383                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1384                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1385
1386                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1387                         WARN_ON(vlr.state & LR_STATE_MASK);
1388
1389
1390                         /*
1391                          * kvm_notify_acked_irq calls kvm_set_irq()
1392                          * to reset the IRQ level, which grabs the dist->lock
1393                          * so we call this before taking the dist->lock.
1394                          */
1395                         kvm_notify_acked_irq(kvm, 0,
1396                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1397
1398                         spin_lock(&dist->lock);
1399                         level_pending |= process_queued_irq(vcpu, lr, vlr);
1400                         spin_unlock(&dist->lock);
1401                 }
1402         }
1403
1404         if (status & INT_STATUS_UNDERFLOW)
1405                 vgic_disable_underflow(vcpu);
1406
1407         /*
1408          * In the next iterations of the vcpu loop, if we sync the vgic state
1409          * after flushing it, but before entering the guest (this happens for
1410          * pending signals and vmid rollovers), then make sure we don't pick
1411          * up any old maintenance interrupts here.
1412          */
1413         vgic_clear_eisr(vcpu);
1414
1415         return level_pending;
1416 }
1417
1418 /*
1419  * Save the physical active state, and reset it to inactive.
1420  *
1421  * Return true if there's a pending forwarded interrupt to queue.
1422  */
1423 static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
1424 {
1425         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1426         struct irq_phys_map *map;
1427         bool phys_active;
1428         bool level_pending;
1429         int ret;
1430
1431         if (!(vlr.state & LR_HW))
1432                 return false;
1433
1434         map = vgic_irq_map_search(vcpu, vlr.irq);
1435         BUG_ON(!map);
1436
1437         ret = irq_get_irqchip_state(map->irq,
1438                                     IRQCHIP_STATE_ACTIVE,
1439                                     &phys_active);
1440
1441         WARN_ON(ret);
1442
1443         if (phys_active)
1444                 return 0;
1445
1446         spin_lock(&dist->lock);
1447         level_pending = process_queued_irq(vcpu, lr, vlr);
1448         spin_unlock(&dist->lock);
1449         return level_pending;
1450 }
1451
1452 /* Sync back the VGIC state after a guest run */
1453 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1454 {
1455         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1456         u64 elrsr;
1457         unsigned long *elrsr_ptr;
1458         int lr, pending;
1459         bool level_pending;
1460
1461         level_pending = vgic_process_maintenance(vcpu);
1462         elrsr = vgic_get_elrsr(vcpu);
1463         elrsr_ptr = u64_to_bitmask(&elrsr);
1464
1465         /* Deal with HW interrupts, and clear mappings for empty LRs */
1466         for (lr = 0; lr < vgic->nr_lr; lr++) {
1467                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1468
1469                 level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
1470                 BUG_ON(vlr.irq >= dist->nr_irqs);
1471         }
1472
1473         /* Check if we still have something up our sleeve... */
1474         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1475         if (level_pending || pending < vgic->nr_lr)
1476                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1477 }
1478
1479 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1480 {
1481         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1482
1483         if (!irqchip_in_kernel(vcpu->kvm))
1484                 return;
1485
1486         spin_lock(&dist->lock);
1487         __kvm_vgic_flush_hwstate(vcpu);
1488         spin_unlock(&dist->lock);
1489 }
1490
1491 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1492 {
1493         if (!irqchip_in_kernel(vcpu->kvm))
1494                 return;
1495
1496         __kvm_vgic_sync_hwstate(vcpu);
1497 }
1498
1499 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1500 {
1501         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1502
1503         if (!irqchip_in_kernel(vcpu->kvm))
1504                 return 0;
1505
1506         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1507 }
1508
1509 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1510 {
1511         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1512
1513         if (!irqchip_in_kernel(vcpu->kvm))
1514                 return 0;
1515
1516         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1517 }
1518
1519
1520 void vgic_kick_vcpus(struct kvm *kvm)
1521 {
1522         struct kvm_vcpu *vcpu;
1523         int c;
1524
1525         /*
1526          * We've injected an interrupt, time to find out who deserves
1527          * a good kick...
1528          */
1529         kvm_for_each_vcpu(c, vcpu, kvm) {
1530                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1531                         kvm_vcpu_kick(vcpu);
1532         }
1533 }
1534
1535 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1536 {
1537         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1538
1539         /*
1540          * Only inject an interrupt if:
1541          * - edge triggered and we have a rising edge
1542          * - level triggered and we change level
1543          */
1544         if (edge_triggered) {
1545                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1546                 return level > state;
1547         } else {
1548                 int state = vgic_dist_irq_get_level(vcpu, irq);
1549                 return level != state;
1550         }
1551 }
1552
1553 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1554                                    struct irq_phys_map *map,
1555                                    unsigned int irq_num, bool level)
1556 {
1557         struct vgic_dist *dist = &kvm->arch.vgic;
1558         struct kvm_vcpu *vcpu;
1559         int edge_triggered, level_triggered;
1560         int enabled;
1561         bool ret = true, can_inject = true;
1562
1563         trace_vgic_update_irq_pending(cpuid, irq_num, level);
1564
1565         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1566                 return -EINVAL;
1567
1568         spin_lock(&dist->lock);
1569
1570         vcpu = kvm_get_vcpu(kvm, cpuid);
1571         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1572         level_triggered = !edge_triggered;
1573
1574         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1575                 ret = false;
1576                 goto out;
1577         }
1578
1579         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1580                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1581                 if (cpuid == VCPU_NOT_ALLOCATED) {
1582                         /* Pretend we use CPU0, and prevent injection */
1583                         cpuid = 0;
1584                         can_inject = false;
1585                 }
1586                 vcpu = kvm_get_vcpu(kvm, cpuid);
1587         }
1588
1589         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1590
1591         if (level) {
1592                 if (level_triggered)
1593                         vgic_dist_irq_set_level(vcpu, irq_num);
1594                 vgic_dist_irq_set_pending(vcpu, irq_num);
1595         } else {
1596                 if (level_triggered) {
1597                         vgic_dist_irq_clear_level(vcpu, irq_num);
1598                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1599                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1600                                 vgic_cpu_irq_clear(vcpu, irq_num);
1601                                 if (!compute_pending_for_cpu(vcpu))
1602                                         clear_bit(cpuid, dist->irq_pending_on_cpu);
1603                         }
1604                 }
1605
1606                 ret = false;
1607                 goto out;
1608         }
1609
1610         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1611
1612         if (!enabled || !can_inject) {
1613                 ret = false;
1614                 goto out;
1615         }
1616
1617         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1618                 /*
1619                  * Level interrupt in progress, will be picked up
1620                  * when EOId.
1621                  */
1622                 ret = false;
1623                 goto out;
1624         }
1625
1626         if (level) {
1627                 vgic_cpu_irq_set(vcpu, irq_num);
1628                 set_bit(cpuid, dist->irq_pending_on_cpu);
1629         }
1630
1631 out:
1632         spin_unlock(&dist->lock);
1633
1634         if (ret) {
1635                 /* kick the specified vcpu */
1636                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1637         }
1638
1639         return 0;
1640 }
1641
1642 static int vgic_lazy_init(struct kvm *kvm)
1643 {
1644         int ret = 0;
1645
1646         if (unlikely(!vgic_initialized(kvm))) {
1647                 /*
1648                  * We only provide the automatic initialization of the VGIC
1649                  * for the legacy case of a GICv2. Any other type must
1650                  * be explicitly initialized once setup with the respective
1651                  * KVM device call.
1652                  */
1653                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1654                         return -EBUSY;
1655
1656                 mutex_lock(&kvm->lock);
1657                 ret = vgic_init(kvm);
1658                 mutex_unlock(&kvm->lock);
1659         }
1660
1661         return ret;
1662 }
1663
1664 /**
1665  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1666  * @kvm:     The VM structure pointer
1667  * @cpuid:   The CPU for PPIs
1668  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1669  *           must not be mapped to a HW interrupt.
1670  * @level:   Edge-triggered:  true:  to trigger the interrupt
1671  *                            false: to ignore the call
1672  *           Level-sensitive  true:  raise the input signal
1673  *                            false: lower the input signal
1674  *
1675  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1676  * level-sensitive interrupts.  You can think of the level parameter as 1
1677  * being HIGH and 0 being LOW and all devices being active-HIGH.
1678  */
1679 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1680                         bool level)
1681 {
1682         struct irq_phys_map *map;
1683         int ret;
1684
1685         ret = vgic_lazy_init(kvm);
1686         if (ret)
1687                 return ret;
1688
1689         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1690         if (map)
1691                 return -EINVAL;
1692
1693         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1694 }
1695
1696 /**
1697  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1698  * @kvm:     The VM structure pointer
1699  * @cpuid:   The CPU for PPIs
1700  * @map:     Pointer to a irq_phys_map structure describing the mapping
1701  * @level:   Edge-triggered:  true:  to trigger the interrupt
1702  *                            false: to ignore the call
1703  *           Level-sensitive  true:  raise the input signal
1704  *                            false: lower the input signal
1705  *
1706  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1707  * level-sensitive interrupts.  You can think of the level parameter as 1
1708  * being HIGH and 0 being LOW and all devices being active-HIGH.
1709  */
1710 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1711                                struct irq_phys_map *map, bool level)
1712 {
1713         int ret;
1714
1715         ret = vgic_lazy_init(kvm);
1716         if (ret)
1717                 return ret;
1718
1719         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1720 }
1721
1722 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1723 {
1724         /*
1725          * We cannot rely on the vgic maintenance interrupt to be
1726          * delivered synchronously. This means we can only use it to
1727          * exit the VM, and we perform the handling of EOIed
1728          * interrupts on the exit path (see vgic_process_maintenance).
1729          */
1730         return IRQ_HANDLED;
1731 }
1732
1733 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1734                                                     int virt_irq)
1735 {
1736         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1737                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1738         else
1739                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1740 }
1741
1742 /**
1743  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1744  * @vcpu: The VCPU pointer
1745  * @virt_irq: The virtual irq number
1746  * @irq: The Linux IRQ number
1747  *
1748  * Establish a mapping between a guest visible irq (@virt_irq) and a
1749  * Linux irq (@irq). On injection, @virt_irq will be associated with
1750  * the physical interrupt represented by @irq. This mapping can be
1751  * established multiple times as long as the parameters are the same.
1752  *
1753  * Returns a valid pointer on success, and an error pointer otherwise
1754  */
1755 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1756                                            int virt_irq, int irq)
1757 {
1758         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1759         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1760         struct irq_phys_map *map;
1761         struct irq_phys_map_entry *entry;
1762         struct irq_desc *desc;
1763         struct irq_data *data;
1764         int phys_irq;
1765
1766         desc = irq_to_desc(irq);
1767         if (!desc) {
1768                 kvm_err("%s: no interrupt descriptor\n", __func__);
1769                 return ERR_PTR(-EINVAL);
1770         }
1771
1772         data = irq_desc_get_irq_data(desc);
1773         while (data->parent_data)
1774                 data = data->parent_data;
1775
1776         phys_irq = data->hwirq;
1777
1778         /* Create a new mapping */
1779         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1780         if (!entry)
1781                 return ERR_PTR(-ENOMEM);
1782
1783         spin_lock(&dist->irq_phys_map_lock);
1784
1785         /* Try to match an existing mapping */
1786         map = vgic_irq_map_search(vcpu, virt_irq);
1787         if (map) {
1788                 /* Make sure this mapping matches */
1789                 if (map->phys_irq != phys_irq   ||
1790                     map->irq      != irq)
1791                         map = ERR_PTR(-EINVAL);
1792
1793                 /* Found an existing, valid mapping */
1794                 goto out;
1795         }
1796
1797         map           = &entry->map;
1798         map->virt_irq = virt_irq;
1799         map->phys_irq = phys_irq;
1800         map->irq      = irq;
1801
1802         list_add_tail_rcu(&entry->entry, root);
1803
1804 out:
1805         spin_unlock(&dist->irq_phys_map_lock);
1806         /* If we've found a hit in the existing list, free the useless
1807          * entry */
1808         if (IS_ERR(map) || map != &entry->map)
1809                 kfree(entry);
1810         return map;
1811 }
1812
1813 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1814                                                 int virt_irq)
1815 {
1816         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1817         struct irq_phys_map_entry *entry;
1818         struct irq_phys_map *map;
1819
1820         rcu_read_lock();
1821
1822         list_for_each_entry_rcu(entry, root, entry) {
1823                 map = &entry->map;
1824                 if (map->virt_irq == virt_irq) {
1825                         rcu_read_unlock();
1826                         return map;
1827                 }
1828         }
1829
1830         rcu_read_unlock();
1831
1832         return NULL;
1833 }
1834
1835 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1836 {
1837         struct irq_phys_map_entry *entry;
1838
1839         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1840         kfree(entry);
1841 }
1842
1843 /**
1844  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1845  * @vcpu: The VCPU pointer
1846  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1847  *
1848  * Remove an existing mapping between virtual and physical interrupts.
1849  */
1850 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1851 {
1852         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1853         struct irq_phys_map_entry *entry;
1854         struct list_head *root;
1855
1856         if (!map)
1857                 return -EINVAL;
1858
1859         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1860
1861         spin_lock(&dist->irq_phys_map_lock);
1862
1863         list_for_each_entry(entry, root, entry) {
1864                 if (&entry->map == map) {
1865                         list_del_rcu(&entry->entry);
1866                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1867                         break;
1868                 }
1869         }
1870
1871         spin_unlock(&dist->irq_phys_map_lock);
1872
1873         return 0;
1874 }
1875
1876 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1877 {
1878         struct vgic_dist *dist = &kvm->arch.vgic;
1879         struct irq_phys_map_entry *entry;
1880
1881         spin_lock(&dist->irq_phys_map_lock);
1882
1883         list_for_each_entry(entry, root, entry) {
1884                 list_del_rcu(&entry->entry);
1885                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1886         }
1887
1888         spin_unlock(&dist->irq_phys_map_lock);
1889 }
1890
1891 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1892 {
1893         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1894
1895         kfree(vgic_cpu->pending_shared);
1896         kfree(vgic_cpu->active_shared);
1897         kfree(vgic_cpu->pend_act_shared);
1898         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1899         vgic_cpu->pending_shared = NULL;
1900         vgic_cpu->active_shared = NULL;
1901         vgic_cpu->pend_act_shared = NULL;
1902 }
1903
1904 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1905 {
1906         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1907
1908         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1909         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1910         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1911         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1912
1913         if (!vgic_cpu->pending_shared
1914                 || !vgic_cpu->active_shared
1915                 || !vgic_cpu->pend_act_shared) {
1916                 kvm_vgic_vcpu_destroy(vcpu);
1917                 return -ENOMEM;
1918         }
1919
1920         /*
1921          * Store the number of LRs per vcpu, so we don't have to go
1922          * all the way to the distributor structure to find out. Only
1923          * assembly code should use this one.
1924          */
1925         vgic_cpu->nr_lr = vgic->nr_lr;
1926
1927         return 0;
1928 }
1929
1930 /**
1931  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1932  *
1933  * No memory allocation should be performed here, only static init.
1934  */
1935 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1936 {
1937         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1938         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1939 }
1940
1941 /**
1942  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1943  *
1944  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1945  * can use.
1946  */
1947 int kvm_vgic_get_max_vcpus(void)
1948 {
1949         return vgic->max_gic_vcpus;
1950 }
1951
1952 void kvm_vgic_destroy(struct kvm *kvm)
1953 {
1954         struct vgic_dist *dist = &kvm->arch.vgic;
1955         struct kvm_vcpu *vcpu;
1956         int i;
1957
1958         kvm_for_each_vcpu(i, vcpu, kvm)
1959                 kvm_vgic_vcpu_destroy(vcpu);
1960
1961         vgic_free_bitmap(&dist->irq_enabled);
1962         vgic_free_bitmap(&dist->irq_level);
1963         vgic_free_bitmap(&dist->irq_pending);
1964         vgic_free_bitmap(&dist->irq_soft_pend);
1965         vgic_free_bitmap(&dist->irq_queued);
1966         vgic_free_bitmap(&dist->irq_cfg);
1967         vgic_free_bytemap(&dist->irq_priority);
1968         if (dist->irq_spi_target) {
1969                 for (i = 0; i < dist->nr_cpus; i++)
1970                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1971         }
1972         kfree(dist->irq_sgi_sources);
1973         kfree(dist->irq_spi_cpu);
1974         kfree(dist->irq_spi_mpidr);
1975         kfree(dist->irq_spi_target);
1976         kfree(dist->irq_pending_on_cpu);
1977         kfree(dist->irq_active_on_cpu);
1978         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1979         dist->irq_sgi_sources = NULL;
1980         dist->irq_spi_cpu = NULL;
1981         dist->irq_spi_target = NULL;
1982         dist->irq_pending_on_cpu = NULL;
1983         dist->irq_active_on_cpu = NULL;
1984         dist->nr_cpus = 0;
1985 }
1986
1987 /*
1988  * Allocate and initialize the various data structures. Must be called
1989  * with kvm->lock held!
1990  */
1991 int vgic_init(struct kvm *kvm)
1992 {
1993         struct vgic_dist *dist = &kvm->arch.vgic;
1994         struct kvm_vcpu *vcpu;
1995         int nr_cpus, nr_irqs;
1996         int ret, i, vcpu_id;
1997
1998         if (vgic_initialized(kvm))
1999                 return 0;
2000
2001         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2002         if (!nr_cpus)           /* No vcpus? Can't be good... */
2003                 return -ENODEV;
2004
2005         /*
2006          * If nobody configured the number of interrupts, use the
2007          * legacy one.
2008          */
2009         if (!dist->nr_irqs)
2010                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2011
2012         nr_irqs = dist->nr_irqs;
2013
2014         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2015         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2016         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2017         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2018         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2019         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2020         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2021         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2022
2023         if (ret)
2024                 goto out;
2025
2026         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2027         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2028         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2029                                        GFP_KERNEL);
2030         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2031                                            GFP_KERNEL);
2032         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2033                                            GFP_KERNEL);
2034         if (!dist->irq_sgi_sources ||
2035             !dist->irq_spi_cpu ||
2036             !dist->irq_spi_target ||
2037             !dist->irq_pending_on_cpu ||
2038             !dist->irq_active_on_cpu) {
2039                 ret = -ENOMEM;
2040                 goto out;
2041         }
2042
2043         for (i = 0; i < nr_cpus; i++)
2044                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2045                                         nr_cpus, nr_irqs);
2046
2047         if (ret)
2048                 goto out;
2049
2050         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2051         if (ret)
2052                 goto out;
2053
2054         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2055                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2056                 if (ret) {
2057                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2058                         break;
2059                 }
2060
2061                 /*
2062                  * Enable and configure all SGIs to be edge-triggere and
2063                  * configure all PPIs as level-triggered.
2064                  */
2065                 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
2066                         if (i < VGIC_NR_SGIS) {
2067                                 /* SGIs */
2068                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2069                                                         vcpu->vcpu_id, i, 1);
2070                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2071                                                         vcpu->vcpu_id, i,
2072                                                         VGIC_CFG_EDGE);
2073                         } else if (i < VGIC_NR_PRIVATE_IRQS) {
2074                                 /* PPIs */
2075                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2076                                                         vcpu->vcpu_id, i,
2077                                                         VGIC_CFG_LEVEL);
2078                         }
2079                 }
2080
2081                 vgic_enable(vcpu);
2082         }
2083
2084 out:
2085         if (ret)
2086                 kvm_vgic_destroy(kvm);
2087
2088         return ret;
2089 }
2090
2091 static int init_vgic_model(struct kvm *kvm, int type)
2092 {
2093         switch (type) {
2094         case KVM_DEV_TYPE_ARM_VGIC_V2:
2095                 vgic_v2_init_emulation(kvm);
2096                 break;
2097 #ifdef CONFIG_ARM_GIC_V3
2098         case KVM_DEV_TYPE_ARM_VGIC_V3:
2099                 vgic_v3_init_emulation(kvm);
2100                 break;
2101 #endif
2102         default:
2103                 return -ENODEV;
2104         }
2105
2106         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2107                 return -E2BIG;
2108
2109         return 0;
2110 }
2111
2112 /**
2113  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2114  *
2115  * No memory allocation should be performed here, only static init.
2116  */
2117 void kvm_vgic_early_init(struct kvm *kvm)
2118 {
2119         spin_lock_init(&kvm->arch.vgic.lock);
2120         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2121         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2122 }
2123
2124 int kvm_vgic_create(struct kvm *kvm, u32 type)
2125 {
2126         int i, vcpu_lock_idx = -1, ret;
2127         struct kvm_vcpu *vcpu;
2128
2129         mutex_lock(&kvm->lock);
2130
2131         if (irqchip_in_kernel(kvm)) {
2132                 ret = -EEXIST;
2133                 goto out;
2134         }
2135
2136         /*
2137          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2138          * which had no chance yet to check the availability of the GICv2
2139          * emulation. So check this here again. KVM_CREATE_DEVICE does
2140          * the proper checks already.
2141          */
2142         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2143                 ret = -ENODEV;
2144                 goto out;
2145         }
2146
2147         /*
2148          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2149          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2150          * that no other VCPUs are run while we create the vgic.
2151          */
2152         ret = -EBUSY;
2153         kvm_for_each_vcpu(i, vcpu, kvm) {
2154                 if (!mutex_trylock(&vcpu->mutex))
2155                         goto out_unlock;
2156                 vcpu_lock_idx = i;
2157         }
2158
2159         kvm_for_each_vcpu(i, vcpu, kvm) {
2160                 if (vcpu->arch.has_run_once)
2161                         goto out_unlock;
2162         }
2163         ret = 0;
2164
2165         ret = init_vgic_model(kvm, type);
2166         if (ret)
2167                 goto out_unlock;
2168
2169         kvm->arch.vgic.in_kernel = true;
2170         kvm->arch.vgic.vgic_model = type;
2171         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2172         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2173         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2174         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2175
2176 out_unlock:
2177         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2178                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2179                 mutex_unlock(&vcpu->mutex);
2180         }
2181
2182 out:
2183         mutex_unlock(&kvm->lock);
2184         return ret;
2185 }
2186
2187 static int vgic_ioaddr_overlap(struct kvm *kvm)
2188 {
2189         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2190         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2191
2192         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2193                 return 0;
2194         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2195             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2196                 return -EBUSY;
2197         return 0;
2198 }
2199
2200 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2201                               phys_addr_t addr, phys_addr_t size)
2202 {
2203         int ret;
2204
2205         if (addr & ~KVM_PHYS_MASK)
2206                 return -E2BIG;
2207
2208         if (addr & (SZ_4K - 1))
2209                 return -EINVAL;
2210
2211         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2212                 return -EEXIST;
2213         if (addr + size < addr)
2214                 return -EINVAL;
2215
2216         *ioaddr = addr;
2217         ret = vgic_ioaddr_overlap(kvm);
2218         if (ret)
2219                 *ioaddr = VGIC_ADDR_UNDEF;
2220
2221         return ret;
2222 }
2223
2224 /**
2225  * kvm_vgic_addr - set or get vgic VM base addresses
2226  * @kvm:   pointer to the vm struct
2227  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2228  * @addr:  pointer to address value
2229  * @write: if true set the address in the VM address space, if false read the
2230  *          address
2231  *
2232  * Set or get the vgic base addresses for the distributor and the virtual CPU
2233  * interface in the VM physical address space.  These addresses are properties
2234  * of the emulated core/SoC and therefore user space initially knows this
2235  * information.
2236  */
2237 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2238 {
2239         int r = 0;
2240         struct vgic_dist *vgic = &kvm->arch.vgic;
2241         int type_needed;
2242         phys_addr_t *addr_ptr, block_size;
2243         phys_addr_t alignment;
2244
2245         mutex_lock(&kvm->lock);
2246         switch (type) {
2247         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2248                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2249                 addr_ptr = &vgic->vgic_dist_base;
2250                 block_size = KVM_VGIC_V2_DIST_SIZE;
2251                 alignment = SZ_4K;
2252                 break;
2253         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2254                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2255                 addr_ptr = &vgic->vgic_cpu_base;
2256                 block_size = KVM_VGIC_V2_CPU_SIZE;
2257                 alignment = SZ_4K;
2258                 break;
2259 #ifdef CONFIG_ARM_GIC_V3
2260         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2261                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2262                 addr_ptr = &vgic->vgic_dist_base;
2263                 block_size = KVM_VGIC_V3_DIST_SIZE;
2264                 alignment = SZ_64K;
2265                 break;
2266         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2267                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2268                 addr_ptr = &vgic->vgic_redist_base;
2269                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2270                 alignment = SZ_64K;
2271                 break;
2272 #endif
2273         default:
2274                 r = -ENODEV;
2275                 goto out;
2276         }
2277
2278         if (vgic->vgic_model != type_needed) {
2279                 r = -ENODEV;
2280                 goto out;
2281         }
2282
2283         if (write) {
2284                 if (!IS_ALIGNED(*addr, alignment))
2285                         r = -EINVAL;
2286                 else
2287                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2288                                                block_size);
2289         } else {
2290                 *addr = *addr_ptr;
2291         }
2292
2293 out:
2294         mutex_unlock(&kvm->lock);
2295         return r;
2296 }
2297
2298 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2299 {
2300         int r;
2301
2302         switch (attr->group) {
2303         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2304                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2305                 u64 addr;
2306                 unsigned long type = (unsigned long)attr->attr;
2307
2308                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2309                         return -EFAULT;
2310
2311                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2312                 return (r == -ENODEV) ? -ENXIO : r;
2313         }
2314         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2315                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2316                 u32 val;
2317                 int ret = 0;
2318
2319                 if (get_user(val, uaddr))
2320                         return -EFAULT;
2321
2322                 /*
2323                  * We require:
2324                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2325                  * - at most 1024 interrupts
2326                  * - a multiple of 32 interrupts
2327                  */
2328                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2329                     val > VGIC_MAX_IRQS ||
2330                     (val & 31))
2331                         return -EINVAL;
2332
2333                 mutex_lock(&dev->kvm->lock);
2334
2335                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2336                         ret = -EBUSY;
2337                 else
2338                         dev->kvm->arch.vgic.nr_irqs = val;
2339
2340                 mutex_unlock(&dev->kvm->lock);
2341
2342                 return ret;
2343         }
2344         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2345                 switch (attr->attr) {
2346                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2347                         r = vgic_init(dev->kvm);
2348                         return r;
2349                 }
2350                 break;
2351         }
2352         }
2353
2354         return -ENXIO;
2355 }
2356
2357 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2358 {
2359         int r = -ENXIO;
2360
2361         switch (attr->group) {
2362         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2363                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2364                 u64 addr;
2365                 unsigned long type = (unsigned long)attr->attr;
2366
2367                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2368                 if (r)
2369                         return (r == -ENODEV) ? -ENXIO : r;
2370
2371                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2372                         return -EFAULT;
2373                 break;
2374         }
2375         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2376                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2377
2378                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2379                 break;
2380         }
2381
2382         }
2383
2384         return r;
2385 }
2386
2387 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2388 {
2389         if (vgic_find_range(ranges, 4, offset))
2390                 return 0;
2391         else
2392                 return -ENXIO;
2393 }
2394
2395 static void vgic_init_maintenance_interrupt(void *info)
2396 {
2397         enable_percpu_irq(vgic->maint_irq, 0);
2398 }
2399
2400 static int vgic_cpu_notify(struct notifier_block *self,
2401                            unsigned long action, void *cpu)
2402 {
2403         switch (action) {
2404         case CPU_STARTING:
2405         case CPU_STARTING_FROZEN:
2406                 vgic_init_maintenance_interrupt(NULL);
2407                 break;
2408         case CPU_DYING:
2409         case CPU_DYING_FROZEN:
2410                 disable_percpu_irq(vgic->maint_irq);
2411                 break;
2412         }
2413
2414         return NOTIFY_OK;
2415 }
2416
2417 static struct notifier_block vgic_cpu_nb = {
2418         .notifier_call = vgic_cpu_notify,
2419 };
2420
2421 static const struct of_device_id vgic_ids[] = {
2422         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2423         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2424         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2425         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2426         {},
2427 };
2428
2429 int kvm_vgic_hyp_init(void)
2430 {
2431         const struct of_device_id *matched_id;
2432         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2433                                 const struct vgic_params **);
2434         struct device_node *vgic_node;
2435         int ret;
2436
2437         vgic_node = of_find_matching_node_and_match(NULL,
2438                                                     vgic_ids, &matched_id);
2439         if (!vgic_node) {
2440                 kvm_err("error: no compatible GIC node found\n");
2441                 return -ENODEV;
2442         }
2443
2444         vgic_probe = matched_id->data;
2445         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2446         if (ret)
2447                 return ret;
2448
2449         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2450                                  "vgic", kvm_get_running_vcpus());
2451         if (ret) {
2452                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2453                 return ret;
2454         }
2455
2456         ret = __register_cpu_notifier(&vgic_cpu_nb);
2457         if (ret) {
2458                 kvm_err("Cannot register vgic CPU notifier\n");
2459                 goto out_free_irq;
2460         }
2461
2462         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2463
2464         return 0;
2465
2466 out_free_irq:
2467         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2468         return ret;
2469 }
2470
2471 int kvm_irq_map_gsi(struct kvm *kvm,
2472                     struct kvm_kernel_irq_routing_entry *entries,
2473                     int gsi)
2474 {
2475         return 0;
2476 }
2477
2478 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2479 {
2480         return pin;
2481 }
2482
2483 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2484                 u32 irq, int level, bool line_status)
2485 {
2486         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2487
2488         trace_kvm_set_irq(irq, level, irq_source_id);
2489
2490         BUG_ON(!vgic_initialized(kvm));
2491
2492         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2493 }
2494
2495 /* MSI not implemented yet */
2496 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2497                 struct kvm *kvm, int irq_source_id,
2498                 int level, bool line_status)
2499 {
2500         return 0;
2501 }